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ABSTRACT

In this paper we develop and investigate several criteria for assessing how well a proposed spectral form
fits observed spectra. We consider the classical improved figure of merit (FOM) along with several
modifications, as well as criteria motivated by Poisson regression from the statistical literature. We also
develop a new FOM that is based on the statistical idea of the bootstrap. A spectral simulator has been
developed to assess the performance of these different criteria under multiple data configurations.

Keywords: gamma spectroscopy; peak deconvolution; thermoluminescence CGCD; Poisson regression;
bootstrap

1. INTRODUCTION

One approach to performing quantitative radionuclide assay involves peak area analysis of gamma-ray
spectra. Consider an isolated peak superimposed on an underlying continuum. Assume over some region
of interest (ROI), comprising the peak and portions of the continuum on either side, each channel contains
a statistically “reasonable” number of counts. The peak and continuum may then be fit using a suitable
composite model function by a nonlinear search algorithm (such as nonlinear least squares) that
minimizes the normalized chi-squared. After the “best fit” has been obtained in this way one must decide
whether the fit can be considered good or not and whether one fit using one model can be considered
better that another fit using a different model (line shape, continuum shape, number of peaks, nuclear data
library, etc.) or different assumptions (for instance about precision and bias of the data, peak find criteria
in cases where a library driven analysis cannot be used).

The situation is not limited to gamma-ray spectroscopy but is a common application. As another example
drawn from radiation metrology we mention the method of thermoluminescence computer glow curve
deconvolution (TL CGCD) where fitting based on the basic physics of the underlying process, expressed
by the so called order of the kinetics employed, is used to describe the shape and symmetry of the
overlapping peaks.

The reasons for bad goodness-of-fit (GOF) scores are usually because of either bad model assumptions
resulting in a bad fit, or because of bad variance estimates (caused by improper detector set-up, drifts and
so forth), or a combination of both. The procedure used to define the continuum is also crucial for



multiplets, especially if the peaks of most interest are small relative to the other peaks in the ROI and/or
the continuum.

Balian and Eddy [1] and subsequently Misra and Eddy [2] have considered the problem given that for this
kind of comparative decisionmaking the relative magnitude of the normalized chi-squared may not
always be a reliable measure. In an attempt to overcome the deficiency of using chi-square as the sole
GOF metric, Balian and Eddy [1] proposed a FOM comprising the sum of the absolute deviations over
the continuum only channels normalized to the aggregate counts in the continuum and the sum of absolute
deviations over the peak only channels normalized to the aggregate counts in the peak. This FOM
concept was later revisited and refined by Misra and Eddy [2] to overcome undesirable consequences and
this resulted in an improved FOM, IFOM, which is given below:
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where

ny, is the number of channels considered to be “background” continuum

n, is the number of channels comprising the peak

n = np + ny is the number of channels in the spectral region analyzed

A, is the peak area, obtained from the model parameters describing the peak and estimated from the fit

|Ay;| is the absolute deviation between the fitted spectrum and the observed spectrum.

2. DISCUSSION

We agree with [1,2] that using normalized chi-square (the FOM) as the sole arbiter of goodness of fit is
poor practice.

What is needed is a fairly “scale invariant” GOF measure. That is, we don’t want secondary peaks to tend
to have better GOF simply because peak misfit is penalized more strongly in dominant peaks. It seems an
open-ended question however as to what particular choice for an alternative to standard chi-square (which
will tend to have large/bad values in dominant peaks even for the same relative peak misfit as for a
secondary peak) will give better performance.

At first look, standard chi-squared is scale invariant (not in a formal mathematical sense, but in a practical
sense because each squared error term is divided by a variance or variance estimate). But, peak misfit
effects are not scale invariant. FOMs are sensitive to size of peak if just fit by a single component
Gaussian (so “peak fitting” errors have bigger effects in bigger peaks, even if data is Poisson).



Despite the significant advances in automated gamma-ray spectral analysis (references [1] and [2]) and
our experience is that there is also great value in having a human subject matter expert visually review the
quality of the fit.

The FOM and IFOM add to the overall decisionmaking process. However, these tests alone are not
sufficient. For instance, analysis of residual plots is extremely informative. Basic statistical tests for bias,
sign preference and gross trending should probably also be applied. Systematic behaviors can inform the
experienced spectroscopist of differential non-linearity in the electronics, the manifestation of pulse shape
tailing caused by incorrectly pole-zero setting, poor charge collection due to for example radiation
damage, or by alerting the researcher to the possibility of random and or true coincidence summing.
Broad peaks, inconsistent with a prior shape calibration can be flagged because this could be the result of
Doppler broadening (a meaningful physical process) or spurious electrical noise in the system (which is
unwanted and uninformative). In situations where peak fits are being performed against a library of lines
with known energies, systematic deviations may indicate a shift of the energy calibration. The necessity
to include additional peaks may also be evidence. Depending on what is known ahead of time about the
assay problem, some or all of these tests may be included in the computer algorithms performing the
spectral analysis so that the human operator may only need to investigate when alerted to a possible
problem. So, although IFOM is a useful check, it is clear from the forgoing discussion that it is not a
panacea.

The formulation of IFOM is arbitrary. The values of IFOM that indicate a good fit (IFOM<0.75%), small
flaw (0.75%<IFOM<1.5%), and poor fit IFOM>1.5%) are empirical, based on a particular experience
and subjective. We are aware (see for example [3] and [4]) that the FOM concept has been applied
outside the realm of gamma spectroscopy to the domain of TL CGCD. Here the peaks may be strongly
asymmetric (non-normal) as for example in glow peaks for first-order kinetics. The traces are of light
intensity measured as a current flow in the photomultiplier tube as a function of temperature increasing at
a constant rate. The noise structure is therefore quite different from a nuclear counting experiment. The
shapes and widths of the contributory peaks are fixed by solid-state effects rather than by a smoothly
varying and predictable resolution function. Additionally there is no continuum background term
included in the fits. In this case nj, the number of background bins, would be set to zero and the entire
area under the glow peak would appear in the denominator. The suitability of various TL GCD functions
when tested against noise free synthetic data can yield FOM (which is equivalent to IFOM in this case)
values that are extremely small — close to zero — which is unrepresentative of real data. But the point we
wish to emphasize is that IFOM and the numerical values used to judge the quality of a fit were
developed in one application space and it is far from clear how the function will perform or be interpreted
in another. For now we will focus our discussion and development on the revision of FOM in gamma
spectroscopy analysis.

A gamma-ray peak is defined as a Gaussian with various tailing functions and in principle extends many
full width half-maxima on either side of the centroid, and so deciding how to partition a region of interest
in peak channels and continuum channels seems to us unnatural. The situation is worse for X-ray peaks,
which are predominantly Voigtian in shape extending even further (a good reference is [5]).

If chi-square is not universally a good metric, one must question the underlying assumptions of the least
squares fitting process. Because, if chi-square cannot be trusted, how is one to reliably estimate



uncertainties on the fitted parameters, in particular in the area of the peaks of interest. IFOM does not
help us decide whether the peak area is well defined or not, or whether a weak peak can be detected or
not. Other tests are needed for this. Misra and Eddy [2] see a problem when the continuum is weak, for
example, since fluctuations can make the goodness-of-fit appear large. Here one must make the
distinction between what is statistically significant and what is important from an assay point of view. If
the continuum is small in comparison to the strength of the peak we need not be too concerned about how
well (either in an absolute or a fractional sense) we estimate it since the impact on the net peak area will
be relatively unimportant. In the other extreme, when a weak peak is present on a strong background,
fitting the background well becomes critical. In this case having a criterion that emphasizes the peak
region may be detrimental. Perhaps a criterion which is either neutral or changes with peak significance
would be in order. Further, it is well known that the continuum under a peak is influenced by the counts
in the peak at all higher energies, and so it is again unclear how one is to parse a ROI between peak
channels and continuum channels.

In cases where a ROI contains multiple overlapping peaks it is not clear how the IFOM formula can be
applied since it is cast in the context of a single isolated peak. Indeed for a simple well isolated peak on a
smooth continuum, simpler methods than curve fitting might yield satisfactory results and be simpler to
give statistical meaning to — for instance a summation across a peak ROI corrected for continuum using
an average counts per channel formed from regions below and above the peak. In other words, it is
usually when we do not have this simple situation that curve fitting is invoked, the common case being
the deconvolution of a complex spectral region. Hence how to evaluate IFOM for the multiple peak case
is an important issue although it is not covered in [2].

The concerns over the background continuum being small, we feel, are partially misrepresented in [2]
because the statistical foundations of chi-square minimization require that the number of counts per
channel be such that each channel can be considered to constitute an independent experiment following
Gaussian statistics. Thus, the discussion in [2] is certainly not about the problem of small numbers (“just
a few counts”), or the issue that the net peak area may by chance appear negative near or below the
detection limit.

In [1] it is stated that narrow peaks might lead to an abnormally large chi-squared value. However we
find this statement in need of qualification. In general there are no narrow peaks. Real peaks in a
spectrum are expected to have a width that varies in a predictable way with energy (so called energy
resolution of a detector). Indeed this provides a means to identify true spectral features from random
features. Knowing this the spectroscopic system is normally set up so that the peaks of interest are
covered by a reasonable number of channels. On this reasoning we suggest that instead of n, a more
natural definition of number of channels in the peak for use in IFOM would be a multiple of the full width
half maximum expressed in channels or a similar metric of peak resolution.

IFOM is a scaled sum of absolute deviations, rather than a sum of standardized deviations squared as is
the case for chi-square. There is merit in having a linear absolute metric as opposed to a metric that
involves the square since occasional outliers, which can give a large contribution, are deemphasized.
However, it seems to us that a deviation only has meaning in comparison to the associated uncertainty.
The ratio A,/n, may be interpreted as the mean number of counts per channel across the peak. To the
extent that peaks tend to be approximately symmetric this quantity can be used to map out the distribution



of peak counts over the channels and has in some sense a meaning from peak to peak. For a Gaussian

profile we have
A, =~ |Z—HR 2
P o lnE@) 7 @)

where H is the peak height and R is full width half-maximum. Thus if we replace n, by a multiple of R

as we suggest, we find that the ratio A,/n, simply becomes proportional to H, which is a discrete
representation of a Gaussian peak placed symmetrically about the centroid and could be said to be the
number of counts per channel in the peak channel. A variant on the IFOM that retains the same meaning
would then become

vrom =1y, 2 3

In this form several shortcomings are evident. When n becomes large such that the presence of the peak
becomes almost irrelevant, how should one interpret VFOM? If the background were flat but subject to
Gaussian fluctuations in the number of counts per channel, then a statistical interpretation could be
brought to bear but it would have little to say about whether the peak information derived from the fit had
meaning (statistical significance) or not. Practical considerations would probably limit the value of n so
that the region fitted did not encroach on neighboring peaks and good practice would define it
additionally in terms of R. Another problem arises when the supposed peak is weak or absent such that H
is small or zero or in the case of an unconstrained fit perhaps even negative. How is one to make sense of
VFOM in this case? Of course other tests may be applied in addition to address the question of whether a
peak is present or not. We note again that real peaks in a high-resolution spectrometer gamma-spectrum
are not purely Gaussian and so the above discussion is only approximate.

To alleviate the objections just raised in relation to VFOM, we consider a Simple FOM, SFOM, as an
indication of whether a fit to a spectrum is reasonable across the whole range. Provided the number of
counts per channel exceeds about 20 we may take the Poisson counting uncertainty on the number of
counts in a given bin to be well represented by a Gaussian probability distribution with a variance equal to
the number of counts in the channel. Thus, we propose the following

1 |4yl
SFOM :; ?zlﬁ (4)
where the target peak is approximately centered in the group of n channels and # is chosen to be a
multiple of R.

SFOM can be readily applied to complex multiplets sat on a significant pedestal whereas, as already
mentioned, in the case of IFOM it is unclear how to do this for what is both a common and essential case.
As an example in the analysis of passive gamma-ray spectra from U and/or Pu for the purpose of
determining the relative isotopic composition of the gamma emitting nuclides, the 100 keV region may
contain 7-13 overlapping peaks, say, that must be individually intensity quantified. The background
continuum function depends on regions above and below the multiplet region and also on the counts per
channel across the multiplet zone. The quality of the result depends critically on how well the continuum



is represented. In such cases it is a mistake to only emphasize the peak area as IFOM does and a more
global metric such as SFOM would seem to be a better choice.

Another thought emerges if we agree with [1] and [2] that the denominator should be more like a “number
of counts” as in VFOM, rather than the root number of counts per channel as in SFOM, and one wants to
devise a global GOF metric that covers the entire region of the fit including the continuum and multiple
peaks. Namely the quantity y;, the mean number of counts per channel across the n channels covered by
the fit, would be a reasonable choice retaining the character of IFOM. So the Modified FOM becomes, in
this case

1 1
MFOM = = ¥i_1|4yil = 2 X4yl (5)

where A = Y[_, y; is the area of the spectral region fitted, and evaluated from the raw data rather than
from the fitted parameters (in contrast to [FOM which uses 4,).

MFOM has the advantage that it treats a region with one or multiple peaks exactly the same. It works for
a single peak irrespective of peak size - that is it overcomes the objection about what to do when the peak
is weak compared to the continuum, i.e., when what you are really doing is fitting the background.
MFOM is a modification of FOM and IFOM that is motivated by our discussion of TL GCD function
fitting.

In the next section, we perform a simulation study to understand the behavior of the FOMs proposed
above in addition to criteria taken from the Poisson regression literature. In particular, we consider the
Neyman chi-square (the FOM), Pearson chi-square, deviance, Akaike Information Criterion (AIC), bias-
corrected AIC (AICC), Bayesian Information Criterion (BIC), and our proposed bootstrap FOM (BFOM).
Most of these criteria can be found in [6]. Before we continue on with the simulation study, we briefly
introduce our proposed BFOM.

Suppose we have observed data and a proposed spectral form we wish to fit. After we fit our model to the
data, we calculate the residuals from the fit (i.e., observed spectrum minus estimated spectrum). These
are then compared to bootstrap residuals, generated using the following algorithm:

Using the fitted model, simulate spectral data.

With the new simulated data, refit the proposed model.
Calculate the residuals for the simulated data.
Repeated steps 1-3 a large number of times.

A e

Plot the observed residuals along with the simulated residuals.

The BFOM is simply the fraction of energy bins whose simulated residuals do not contain the observed
residuals.

3. NUMERICAL EXAMPLES

We present results of a simulation study conducted to examine the behavior of the criteria introduced in
Section 2. We consider three configurations. The first (Configuration A) involves a mixture of two
Gaussian peaks, where the dominant peak masks the secondary peak. In particular, the dominant peak is
centered at 185.72 keV with scale parameter 5 keV and amplitude 2.2 counts/second. The secondary



peak is centered at 190.72 keV (185.72 keV + 5 keV) with scale parameter (4/3)*5 keV and amplitude
(2/3)*2.2 counts/second. The Gaussian peaks in this and subsequent configurations have the following
form,

1 (E-E
si(B) = Aexp =3 (52) ]
where A, Ej and o are the amplitude, center and scale of the associated peak. Both peaks have an additive
GAMANAL tail of the following form,

P; (E—Eq)?
$2(B) = Py explPy( — Eo)] (1 - exp |- 2 (E2)']),
where Ej and o are the center and scale of the associated peak. The parameters P;, P, and P; take the
values 0.5%2.2, 0.1, and 0.5 for the dominant peak and (1/3)*2.2, 0.1, and 0.5 for the secondary peak. The
background is a composition of complementary error and linear background functions. The
complementary error background has the following form,

_1 E-E,
b (E) = > P, erfc (ﬁPz U),
where E, and o are the center and scale of the associated peak and erfc(+) is the complementary error
function. This background is associated with the dominant peak in this scenario, with the parameters P;
and P, taking the values 0.25 and 1. The linear background has the following form,

b,(E) = ¢y + ¢4 E,

with the parameters cq and ¢, taking the values -0.05 and 0.001. The source function is defined as the
sum of the functions s;(E) and s, (E) across both peaks, and the background function is defined as the
sum of the functions b, (E) and b, (E).

Simulation data were generated from the count rate spectrum defined above under a total of 9 scenarios,
specified as a cross between the number of channels (3 levels: 50, 100, and 150 spread evenly in the
interval [150 keV, 250 keV]) at which counts are observed, and the amount of time each channel is
observed (3 levels: time required to achieve 10%, 5%, and 2.5% relative standard deviation in expected
counts at peak maximum). In all, 45 count datasets were generated, representing 5 independent replicates
of these 9 scenarios. Figure 1 shows data generated from one of the replicates for all 9 scenarios.

Three candidate statistical models were fit to each dataset by minimizing the Neyman chi-square statistic
with respect to the free parameters. The first source model assumes a single Gaussian peak with
GAMANAL tailing, the second assumes two Gaussian peaks each with GAMANAL tailing (form of the
true model), and the third assumes three Gaussian peaks each with GAMANAL tailing. The background
is taken universally to be the sum of complementary error and linear functions as specified in the
definition of the true spectrum above. These three candidate statistical models have 10, 16, and 22 free
parameters, respectively. Table 1 shows the number of analyses (out of 45 total) that each of the three
candidate statistical models produced the best (smallest) value for the criteria considered.
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Figure 1. Configuration A: Count rate data (solid circles) superimposed on spectrum (long dashed
lines), with source (short dashed lines) and background (solid line) components plotted. One standard
deviation uncertainty in observed count rate is plotted at each channel.



Non-integer values in this table appear for the BFOM criterion as a result of ties among two or more
models for the smallest BFOM error rate.

Table 1. Configuration A: Number of analyses each statistical model produced the smallest value of
each criterion.

Criterion 1-peak Model | 2-peak Model | 3-peak Model
Neyman Chi-Square 5 37 3
Pearson Chi-Square 6 36 3

Deviance 5 37 3

IFOM 0 13 32
VFOM 0 11 34
SFOM 0 10 35
MFOM 0 9 36
AIC 11 34 0
AICC 18 27 0
BIC 24 21 0
BFOM 72/3 151/6 22 1/6

For Configuration A, the chi-square criteria (Neyman, Pearson, and Deviance) do the best job of picking
the correct model. These criteria incorporate a model complexity penalty in the sense that more complex
models have fewer degrees of freedom for a given dataset. This generally helps these criteria avoid
selecting overfit models. Similarly, the information criteria (AIC, AICC, and BIC) either choose the
correct model or err on the side of underfitting. The BIC prefers the underfit model with a higher
frequency than AIC or AICC, as its model complexity penalty (based on the number of free parameters
and sample size) is larger. On the other hand, the proposed figures of merit IFOM, VFOM, SFOM, and
MFOM) strongly prefer the overfit model. This is likely due to the fact that these criteria do not penalize
for model complexity, allowing more complex models to potentially achieve a better fit to the data by
modeling random noise with their additional flexibility. As we will see with Configuration B, the
strength of BFOM is in its ability to detect severely underfit models. In this configuration, Figure 1
visually indicates the presence of one peak, rendering the 1-peak model a potentially viable candidate for
data analysis. As a result, BFOM does not detect underfit in almost 20% of the data analyses.

The second configuration (Configuration B) also consists of a mixture of two Gaussian peaks. Both the
dominant peak and its GAMANAL tail are specified as in Configuration A, while the secondary peak is
centered at 200.72 keV (185.72 keV + 3*5 keV) with scale parameter (5/3)*5 keV and amplitude
(1/3)*2.2 counts/second. In this configuration, the secondary peak does not have a GAMANAL tail. The
source function is defined as the sum of the functions s; (E) and s, (E) for the dominant peak and s; (E)
for the secondary peak. The background function for this configuration is identical to that defined for
Configuration A.

Five independent replicates of the same 9 scenarios as in Configuration A resulted again in 45 total count
datasets. Figure 2 shows data generated from one of the replicates for all 9 scenarios. In this
configuration, the presence of a second peak is visually more obvious than it was for Configuration A.

Three candidate statistical models were fit to each dataset by minimizing the Neyman chi-square statistic
with respect to the free parameters. These models are identical to those utilized in Configuration A,
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except a GAMANAL tail is only associated with a single peak. These three candidate statistical models
have 10, 13, and 16 free parameters, respectively. Table 2 shows the number of analyses (out of 45 total)
that each of the three candidate statistical models produced the best (smallest) value for the criteria

considered.

Table 2. Configuration B: Number of analyses each statistical model produced the smallest value of
each criterion.

Criterion 1-peak Model | 2-peak Model | 3-peak Model
Neyman Chi-Square 1 38 6
Pearson Chi-Square 1 40 4

Deviance 1 39 5

IFOM 0 20 25
VFOM 5 21 19
SFOM 1 19 25
MFOM 1 23 21
AIC 2 41 2
AICC 4 41 0
BIC 9 36 0
BFOM 42/3 20 1/6 20 1/6

These results are similar to those observed from Configuration A, although the correct model is now
selected at a higher frequency for every criterion. This is due to the more obvious presence of a second
peak. As before, the larger model complexity penalty causes BIC to select an underfit model more often
than for any other criterion, but this only occurs for datasets generated with the largest (10%) relative
standard deviation at peak maximum when underfitting is more plausible. The proposed figures of merit
(IFOM, VFOM, SFOM, and MFOM) again prefer the overfit model more often than do the other criteria.

In this configuration, the BFOM is better able to distinguish the underfit model, selecting it in only
approximately 10% of the analyses. Figure 3 shows the results of BFOM when the 1-peak model (left
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Figure 3. Range of BFOM residuals (vertical lines) from fitting 1-peak (left) and correct 2-peak (right)
models, with observed count data residuals (red circles) superimposed.
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panel) and (correct) 2-peak model (right panel) are fit to the count data from one of the replications of the
150 channel, 2.5% relative standard deviation at peak maximum scenario. The observed count data
residuals fall within the range of the BFOM residuals at most channels when the correct 2-peak model is
fit to these count data, while this is clearly not the case for the fitted 1-peak model. Not only do the
observed count data residuals fall outside the range of the BFOM residuals at a higher number of
channels, but the former also demonstrate a periodic type of behavior often observed when “non-
negligible” peak(s) are missing from the fitted statistical model.

The final configuration (Configuration C) is an approximate representation of a portion of the 235U
spectrum. This spectrum contains a mixture of 5 Gaussian peaks having centers, scales, and amplitudes
given in Table 3.

Table 3. Centers, scales, and amplitudes for 5 Gaussian peak representation of 235U spectrum.

Center | Scale | Amplitude

(keV) | (keV) | (counts/sec)
Peak 1 | 143.76 6 0.24
Peak 2 | 163.33 6 0.15
Peak 3 | 185.72 5 2.20
Peak 4 | 202.12 | 7.5 0.05
Peak 5 | 20532 | 7.5 0.23

The source function is the sum of the contributions to count rate due to each of the five peaks. Peak 3 is
the dominant peak, while we expect Peak 4 to be difficult to detect due to its relatively large scale and
small amplitude compared against the background. The background is a composition of sigmoid and
constant background functions. The sigmoid background has the following form,

Py
E-Eg ) s
0.75w Py

b1 (E) - 1+exp(

where £y and w = g,/8log 2 are the center and FWHM (corresponding to scale o) of the associated
Gaussian peak. This background is associated with the dominant peak in this scenario, with the
parameters P; and P, taking the values 0.25 and 1. The constant background has the following form,

bZ(E) = Co,

with the parameter ¢, taking the value 0.15. The background function is defined as the sum of the
functions b, (E) and b, (E).

Five independent replicates of 9 scenarios similar to those covered in the previous two configurations
resulted again in 45 total count datasets. The only difference for this configuration is the number of
channels at which counts are observed (3 levels: 200, 250, and 300 spread evenly in the interval [110
keV, 250 keV]). Figure 4 shows data generated from one of the replicates for all 9 scenarios.

Six candidate statistical models were fit to each dataset by minimizing the Neyman chi-square statistic
with respect to the free parameters. The first source model assumes three Gaussian peaks, the second
assumes four Gaussian peaks, the third assumes five Gaussian peaks (form of the true model), and the
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Figure 4. Configuration C: Count rate data (solid circles) superimposed on spectrum (long dashed
lines) with source (short dashed lines) and background (solid line) components plotted. One standard
deviation uncertainty in observed count rate is plotted at each channel.
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fourth assumes six Gaussian peaks. The background for these four source models is taken to be the sum
of sigmoid and constant functions as specified in the definition of the true spectrum above. The fifth
source model assumes four Gaussian peaks, and the sixth source model assumes five Gaussian peaks. The
background for these last two source models is taken to be the sum of complementary error and constant
functions, where the complementary error background is defined previously in the discussion of
Configuration A. These six candidate statistical models have 12, 15, 18, 21, 15, and 18 free parameters,
respectively. Table 4 shows the number of analyses (out of 45 total) that each of the six candidate
statistical models produced the best (smallest) value for the criteria considered.

Table 4. Configuration C: Number of analyses each statistical model produced the smallest value of
each criterion. S (sigmoid) and CE (complementary error) indicate background model components.

Criterion 3-peak 4-peak 5-peak 6-peak 4-peak 5-peak
Model Model Model Model Model Model
S S S S CE CE
Neyman Chi- 0 19 1 1 24 0
Square
Pearson Chi- | 22 2 0 20 0
Square
Deviance 0 23 2 1 19 0
IFOM 0 11 9 16 2 7
VFOM 0 3 6 22 2 12
SFOM 0 7 8 12 2 16
MFOM 0 6 8 13 2 16
AIC 1 22 1 0 21 0
AICC 1 22 1 0 21 0
BIC 8 20 0 0 17 0
BFOM 37/12 7.7 81/3 8 29/30 8 13/60 8.2

Qualitatively these results are very similar to those observed for Configuration B. As before, BIC selects
the underfit 3-peak model far more often than any other criterion, but again this only occurs for datasets
generated with the largest (10%) relative standard deviation at peak maximum when an underfit model is
more plausible. The proposed figures of merit IFOM and VFOM again prefer the overfit (6-peak) model.
Interestingly, SFOM and MFOM prefer the 5-peak model with the wrong background (complementary
error vs. sigmoid) but with the overfit model a close second. The chi-square and information criteria
clearly favor a 4-peak model, but have difficulty distinguishing the (correct) sigmoid and (incorrect)
complementary error backgrounds. As previously mentioned, Peak 4 is extremely difficult to detect above
the background in this configuration, and these results confirm the difficulty of doing so given the
assumed precision in the generated datasets. BFOM successfully detects underfitting in the 3-peak model,
but otherwise has difficulty distinguishing among the remaining models.

Two additional scenarios in configuration C are considered in which highly precise data are available.
Specifically, suppose five independent replicates of data at 1% and 0.1% relative standard deviation at
peak maximum are collected at 700 channels evenly spaced between 110 keV and 250 keV. Table §
shows the number of analyses (out of 5 total in each additional scenario) that each of the six candidate
statistical models produced the best (smallest) value for the criteria considered.
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Table 5. Configuration C: Number of analyses each statistical model produced the smallest value of
each criterion (1% and 0.1% relative standard deviation at peak maximum). S (sigmoid) and CE
(complementary error) indicate background model components.

Criterion 3-peak 4-peak 5-peak 6-peak 4-peak 5-peak
Model Model Model Model Model Model

S S S S CE CE
Neyman Chi- 0 3 0 0 2 0
Square 0 0 5 0 0 0
Pearson Chi- 0 3 0 0 2 0
Square 0 0 5 0 0 0
Deviance 0 3 0 0 2 0
0 0 5 0 0 0
IFOM 0 1 3 1 0 0
0 1 3 1 0 0
VFOM 0 0 4 1 0 0
0 1 3 1 0 0
SFOM 0 0 4 1 0 0
0 0 4 1 0 0
MFOM 0 0 4 1 0 0
0 1 3 1 0 0
AlIC 0 3 0 0 2 0
0 0 5 0 0 0
AICC 0 3 0 0 2 0
0 0 5 0 0 0
BIC 0 3 0 0 2 0
0 4 1 0 0 0

BFOM 0 1.45 1.2 0.45 0.45 1.45
0 1 2 2 0 0

The proposed figures of merit (IFOM, VFOM, SFOM, and MFOM) select the correct model for a
plurality of replications in both highly precise data scenarios. The chi-square and information criteria still
prefer the 4-peak models in the 1% scenario, but with the exception of BIC they shift to identifying the
correct model in the 0.1% scenario. BIC prefers a 4-peak model in both scenarios, although it is able to
better identify the correct functional form of the background in the 0.1% scenario. The data is sufficiently
precise in both scenarios to rule out the underfit 3-peak model, and in the 0.1% scenario to rule out both
models possessing complementary error background components. Figure 5 plots BFOM residuals in the
0.1% scenario for the (incorrect) 5-peak model with complementary error background component (left
panel) and for the correct 5-peak model (right panel). Note the identifiable regular patterns in the
observed residuals when fitting the incorrect model.

The above analyses highlight the fact that extreme precision in the observed count data may be necessary
to reliably identify the correct model, particularly in configurations where one or more peaks are masked
by more dominant peaks as in configurations A and C. It appears that the proposed figures of merit
(IFOM, VFOM, SFOM, and MFOM) shift from preferring an overfit model to identifying the correct
model once sufficient precision in the observed count data has been attained. On the other hand, due to
the masking of Peak 4 in this configuration, the chi-square and information criteria shift from preferring
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an underfit model to identifying the correct model as observed count data precision increases. This trend
appears to be substantially slower for BIC due to its larger model complexity penalty relative to the other
information criteria.

Residuals
Residuals

150 00 250 50
Channels Channels

Figure 5. Range of BFOM residuals (vertical lines) from fitting (incorrect) 5-peak model with
complementary error background component (left) and correct 5-peak model (right), with observed count
data residuals (red circles) superimposed.

4. CONCLUSION

The simulation study of the previous section emphasizes the point that selection of criteria for
establishing goodness-of-fit of a model spectrum to count data is a challenging endeavor. None of the
criteria considered perform universally better than all others across the quality range in the count data
generated.

For count data having relative standard deviation at peak maximum in the range 2.5% - 10%, the
proposed FOMs (IFOM, VFOM, SFOM, and MFOM) tend to prefer models that are overfit (too many
parameters) relative to the correct model. The extra degrees of freedom are apparently used to model
random noise in order to reduce the FOM value, as none of these FOMs possess a model complexity
penalty that would provide a counterbalance to this behavior. On the other hand, the information criteria
(particularly BIC) may prefer models that are underfit (too few parameters) when individual peak(s) are
difficult to detect relative to background. This behavior results from their model complexity penalties
overriding goodness-of-fit when the data are too noisy to infer real peak(s) relative to background.

All the criteria investigated converge to identifying the correct model in the scenarios for which the count
data have relative standard deviation at peak maximum in the range 0.1% - 1%, although in the case of
BIC the larger model complexity penalty still results in preferring an underfit model as best.

The BFOM can be useful for detecting incorrect models by producing a high error rate (fraction of
observed residuals outside the range of simulated residuals) and by examination of observed and BFOM
residual plots. In the latter, incorrect models often result in observed residuals that exhibit noticeable
patterns rather than the expected random noise under the correct model. BFOM is not helpful for
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detecting overfit models that have as a special case the correct model, as it does not possess a model
complexity penalty as is the case with the proposed FOMs.

It remains an open question to identify criteria that perform universally well across a broad range in
quality of the observed count data.
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