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ABSTRACT 

 

This study explored the impact of undersampling on the accuracy of tally estimates in Monte Carlo (MC) 

calculations. Steady-state MC simulations were performed for models of several critical systems with 

varying degrees of spatial and isotopic complexity, and the impact of undersampling on eigenvalue and 

fuel pin flux/fission estimates was examined. This study observed biases in MC eigenvalue estimates as 

large as several percent and biases in fuel pin flux/fission tally estimates that exceeded tens, and in some 

cases hundreds, of percent.  

 

This study also investigated five statistical metrics for predicting the occurrence of undersampling biases 

in MC simulations. Three of the metrics (the Heidelberger-Welch RHW, the Geweke Z-Score, and the 

Gelman-Rubin diagnostics) are commonly used for diagnosing the convergence of Markov chains, and 

two of the methods (the Contributing Particles per Generation and Tally Entropy) are new convergence 

metrics developed in the course of this study. These metrics were implemented in the KENO MC code 

within the SCALE code system and were evaluated for their reliability at predicting the onset and 

magnitude of undersampling biases in MC eigenvalue and flux tally estimates in two of the critical 

models. Of the five methods investigated, the Heidelberger-Welch RHW, the Gelman-Rubin diagnostics, 

and Tally Entropy produced test metrics that correlated strongly to the size of the observed undersampling 

biases, indicating their potential to effectively predict the size and prevalence of undersampling biases in 

MC simulations. 
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1. INTRODUCTION 

 

Monte Carlo (MC) methods for calculating the eigenvalues of fissile systems represent the fission source 

by simulating multiple batches, or generations, of fission neutrons, where the fission sites created during 

one generation serve as the birth sites for neutrons in the next generation. Failure to simulate enough 

particles in each generation can result in a phenomenon known as “undersampling,” where neutrons do 

not interact sufficiently with all regions in the problem during each generation. This underrepresentation 
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of regions in a model has been shown to impact the accuracy of tally response and uncertainty estimates 

in MC calculations [1] [2]. As reported previously by Brown [1] and Perfetti and Rearden [3], and as 

shown in Figure 1, undersampling can result in significant biases in MC eigenvalue estimates (up to 

several percent) when low numbers of particle histories are sampled within each generation. This effect is 

even greater for flux tally estimates, which produce biases that are as large as several tens, and in some 

cases hundreds, of percent. 

 

 
Figure 1. Undersampling in Eigenvalue Estimates (left) and Flux Tally Estimates in an Axial 

Segment of a Fuel Pin (right) in an Infinitely Reflected Model of a Fuel Assembly as a Function of 

the Number of Particle Histories Simulated per Generation [3]. 

 
The Organisation for Economic Co-operation and Development Nuclear Energy Agency Working Party 

on Nuclear Criticality Safety’s Expert Group on Advanced Monte Carlo Techniques (AMCT) was formed 

to advance the knowledge base regarding MC criticality calculations that rely on obtaining accurate flux 

and reaction rate estimates, such as MC depletion calculations for burnup credit applications [3] [4]. The 

long-term goal of the AMCT collaboration is to understand the magnitude and prevalence of biases in 

eigenvalue estimates, reaction rate tallies, and tally variance estimates and to create a set of best practices 

to maximize the reliability of MC calculations by mitigating the effect of undersampling. 

 

In previous work in the AMCT collaboration, Perfetti and Rearden observed significant biases in flux 

tally and fission rate estimates in models of pressurized water reactor (PWR) fuel assemblies and spent 

fuel shipping casks [3]. The magnitudes of these biases were larger than those previously observed for 

eigenvalue estimates in similar systems, and large-magnitude biases were surprisingly prevalent in 

models of relatively simple systems (models of single, infinitely reflected fuel assemblies). Models of 2D 

reactor and shipping cask systems produced biases in flux tally estimators that were on the order of 1%, 

but systems with axially dependent geometries encountered biases that were as large as tens or hundreds 

of percent. The observed biases disappeared once the simulations used at least 4000 particle histories per 

generation, although statistical noise made it difficult to be certain whether fuel pin flux tallies produced 

biased estimates. It is certainly reasonable to expect MC code users to use at least 4000 particle histories 

per generation to mitigate the effects of undersampling, but there is concern that tallies covering smaller 

regions of phase space, such as energy-dependent tallies, may require users to simulate many more 

particle histories to mitigate undersampling biases. Thus this study builds upon the previous work by 

Perfetti and Rearden by investigating statistical metrics that can be implemented in MC codes to detect 

the occurrence of biases in MC simulations. These metrics are applied to the previously observed tally 

biases and are evaluated for their reliability at predicting the onset and magnitude of undersampling 

biases in MC eigenvalue and flux tally estimates. 
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2. QUANTIFYING THE MAGNITUDE OF UNDERSAMPLING BIASES 

2.1. Benchmark Methodology 

The first stage of the benchmark collaboration sought to quantify the potential magnitude of 

undersampling biases in eigenvalue, flux, and fission-rate estimates, and, if possible, to identify systems 

or conditions that lead to the creation of these biases. To do that, the number of particles used in each 

generation (NPG) was varied from 100 to 1,000,000 for each of the benchmark models, with each 

variation using a total of 100 million active histories. Thirty repeated calculations were performed for 

each NPG case to allow for the calculation of the true variance of the eigenvalue and flux tally estimates, 

which allowed for an assessment of the accuracy of the predicted tally variance calculations. The true 

tally variances were calculated from the 𝑁 = 30 repeated calculations using the following equation: 

 𝜎𝑥
2 =

1

𝑁 − 1
∑ (𝑥𝑖 − 𝑥̅)2

𝑁

𝑖
 . (1) 

Each simulation in this study skipped 200 generations before beginning active tallies to ensure fission 

source convergence. As NPG increased for the cases, the total number of active generations simulated 

decreased proportionally such that each NPG realization simulated the same number of active histories. 

All simulations were performed using the KENO-VI MC code within the SCALE code package [5]. 

2.2. Benchmark Systems 

The cases for the study were divided into three stages of varying spatial complexity to determine how 

model complexity induces biases in reaction rate tallies. As described in Table I, six benchmark models 

were examined in this study: three models for reactor (R) configurations and three models for storage (S) 

configurations [3] [4]. 

 

Table I. AMCT critical benchmark model descriptions 

 

ID Configuration Geometry Isotopics Temperature 
Reaction Tally 

Locations 

R1 2D quarter core 

17 by 17 

bundles in 

quarter-core 

radial slice 

Uniform 20 gigawatt days 

(GWD)/metric ton of 

uranium (MTU) with 

equilibrium xenon 

Reactor: Uniform 

midplane 

Center and edge 

bundles 

R2 
3D core  

assembly 

17 by 17 bundle 

in infinite lattice 

18 axial zones; varying 

20 GWD/MTU with 

equilibrium xenon 

Reactor: 18 axial 

zones 

Top, midplane, 

and bottom 

R3 3D quarter core 

17 by 17 

bundles in 

quarter core 

18 axial zones; 

20 GWD/MTU with 

equilibrium xenon; 

uniform radially 

Reactor: Uniform 

radially, 18 axial 

zones 

Center and edge 

bundles; 

top, midplane, 

and bottom 

S1 2D storage cask 

17 by 17 

bundles in cask 

geometry radial 

slice 

Uniform 40 GWD/MTU 

with 5-year cooling time 

Uniform storage 

temperature 

Center and edge 

bundles 

S2 
3D storage cask  

assembly 

17 by 17 bundle 

in infinite lattice 

18 axial zones; 

40 GWD/MTU with 5-year 

cooling time 

Uniform storage 

temperature 

Top, midplane, 

and bottom 

S3 3D storage cask 

17 by 17 

bundles in full 

cask 

18 axial zones; 

40 GWD/MTU with 5-year 

cooling time; uniform 

radially 

Uniform storage 

temperature 

Center and edge 

bundles; 

top, midplane, 

and bottom 

 



Although the goal of this benchmark study was to understand how undersampling induces biases in MC 

simulations using continuous-energy physics, the simulations all used multigroup physics in order to 

minimize the large computational footprint of the study. Furthermore, the SCALE tool for performing 

problem-dependent Doppler-broadening temperature corrections for continuous-energy MC calculations 

was not available at the time of this work, but the SCALE physics package could perform temperature 

corrections for multigroup calculations [6]. The lack of full-fidelity continuous-energy physics was not 

expected to significantly affect the results of the study because undersampling of the physical regions in 

problems was anticipated to be the driving source of biases in the calculations. 

2.3. Observed Undersampling Biases 

This section presents a brief summary of the magnitude of the undersampling biases that were observed 

for the fuel pin fission rate and energy-integrated flux tallies. Readers who are interested in a more 

detailed summary of the behavior of undersampling biases in these systems should consult Perfetti and 

Rearden [3]. 

 

Because the fuel pin tally estimates in the benchmark systems varied by several orders of magnitude, the 

term “fraction of undersampling” was used to represent the size of the tally biases in a convenient and 

consistent way. The fraction of undersampling was obtained for each tally by taking the percent 

difference (in terms of percent-mille, or pcm) between the biased tally estimate and a reference tally 

estimate. Figure 2 shows the maximum fractions of undersampling that were observed for the fuel pin 

fission rate and energy-integrated flux tallies in each of the fuel pins that were examined for the 3D 

reactor (R3) and shipping cask (S3) systems. Data are given for fuel pins at varying axial levels in the R3 

and S3 systems, where axial level 1 is at the bottom of the system and axial level 18 is at the top. The 

energy-integrated flux and fission-rate biases are plotted together in Figure 2, indicating that there was a 

strong correlation between the magnitudes of the undersampling biases for these estimates. 
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Figure 2. Fractions of Undersampling for the Fission Rate and Flux Tallies in the 3D Reactor 

System (top) and the 3D Shipping Cask Cases (bottom). 

 
As shown in Figure 2, the observed undersampling biases depended strongly on the axial location of the 

fuel pin within the system, and there was less range in the biases for fuel pins in different radial positions 

within each axial level. Analysis of the other cases presented in Table I confirmed that the axial location 

of the fuel pin had a greater impact on the magnitude of the undersampling biases than the radial location 

of the fuel pin: the observed biases were on the order of several percent for the radially dependent systems 

(S1 and R1) but were as large as tens to hundreds of percent for tallies in the axially dependent, infinitely 

reflected single-assembly systems (S2 and R2). Several of these extremely undersampled tallies are 

visible in Figure 2 for the first and second axial levels of the shipping cask case. The fission rate for the 

fuel pins in those axial levels is approximately five orders of magnitude lower than the fission rate for the 

fuel at the top of the shipping cask, which results in very large undersampling biases. These 

undersampling biases are understandably large, given the low fission rates (and therefore low flux tally 

rates) in the fuel pins, which were so small that several of the thirty repeated simulations failed to 

transport a single particle into these regions. 

 

Although the maximum fractions of undersampling in Figure 2 were generally produced by the 

simulations that used only 100 particles histories per generation and the undersampling biases typically 

disappeared when the simulations used several thousand particle histories per generation, the potential for 

MC tally estimates in realistic systems to produce undersampling biases as large as tens to hundreds of 

percent is cause for concern regarding the reliability of MC calculations for those systems. Therefore, the 

next stage of this benchmark effort focuses on developing statistical metrics to detect if and when tally 

estimates are being undersampled. 

 

3. METRICS FOR PREDICTING UNDERSAMPLING BIAS 

 

The goal of developing tally convergence metrics is to provide tools for MC analysts to ensure the fidelity 

of simulation results. Analysts might, for example, guarantee that an MC tally is accurate within a 1% 

undersampling bias so long as their convergence metric of choice is smaller than some threshold value. 

When developing metrics to predict undersampling in MC simulations, one strives to satisfy two criteria: 

metrics should be able to diagnose undersampling “on the fly” (i.e., while the calculation is still in 

progress), and they should be universally applicable. Observing undersampling biases in MC simulations, 

as was performed in Section 2, traditionally requires performing multiple simulations of the same model 
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using different random seeds and identifying differences in tally estimates that exceed the statistical 

uncertainty of the estimates. That process is effective at identifying undersampling in longer-term 

investigative studies, such as the AMCT collaboration, but it typically imposes a significant 

computational burden. The simulations in this study usually required long runtimes to achieve the degree 

of tally convergence needed to identify biases, and they had to be repeated multiple times to obtain true 

tally variance estimates. Therefore, to effectively predict undersampling and to provide guidance to MC 

analysts in practical applications, metrics must be able to diagnose undersampling in a single calculation. 

Ideally the metrics would be evaluated to detect undersampling biases on the fly (i.e., while the 

simulation is still running), so that the simulation parameters can be adjusted if responses of interest are 

being undersampled. Secondly, the wide range of MC tally responses and the even wider range of MC 

applications demand that tally convergence metrics are universally applicable. Metrics should be able to 

consistently predict the behavior of undersampling biases for various MC tally responses, such as 

eigenvalue, fission rate, neutron flux, reaction rate, and sensitivity tally estimates (all scored with and 

without energy bins), in systems with vastly different spectra. 

 

This study evaluated the potential of several tally convergence metrics by calculating them for the 

eigenvalue and fuel pin flux tally responses in the systems included in the AMCT study and comparing 

them to the previously observed tally biases [3]. The responses of interest spanned system eigenvalue 

estimates and energy-integrated flux tallies in axial segments of PWR fuel pins (described in more detail 

in Ref. [3]). Two systems were examined in this phase of the study: an infinitely reflected fuel assembly 

in a PWR (the R2 case) and an infinitely reflected PWR assembly in a spent fuel shipping cask (the S2 

case). Both systems were previously found to produce significant (tens to hundreds of percent) flux tally 

biases, despite the relative geometric simplicity of the infinitely reflected models [3]. The fractions of 

undersampling for the eigenvalue and fuel pin flux estimates are plotted against the scores of various 

undersampling metrics in Figure 3 through Figure 8 to determine whether the metrics scores could 

effectively predict the onset and magnitude of the undersampling biases. The fission rate estimates were 

omitted from this analysis because of the strong correlation that was observed between their biases and 

the fuel pin flux estimate biases. 

 

An ideal convergence metric should have a one-to-one relationship with the magnitude of the 

undersampling bias observed in tallies in different systems, thereby allowing analysts to anticipate the 

degree of undersampling that may occur for a tally estimate, given the value of its convergence metric. 

This study examined the potential for the following five metrics to diagnose and correlate to the 

magnitude of undersampling biases: 

1. Contributing Particles per Generation (see Sect. 3.1); 

2. The Heidelberger-Welch Relative Half-Width (RHW) (see Sect. 3.2); 

3. The Geweke Z-Score (see Sect. 3.3); 

4. The Gelman-Rubin Scale Reduction Factor (𝑹̂𝒄) Diagnostic (see Sect. 3.4); and 

5. Tally Entropy (see Sect. 3.5). 

Three of the methods (the Heidelberger-Welch RHW, the Geweke Z-Score, and the Gelman–Rubin 

diagnostic) are commonly used for diagnosing the convergence of Markov chains [7]; two of the methods 

(the Contributing Particles per Generation and Tally Entropy) are new convergence metrics developed in 

the course of this study.  

3.1. Contributing Particles per Generation 

The first tally convergence metric examined in this study was the Contributing Particles per Generation 

metric, which simply describes the average number of particles within a single generation that contribute 

nonzero scores to a tally estimate. Because undersampling occurs when too few particles interact with the 

tally region and when too few particles are used to sample the fission source of a system, the degree of 



undersampling observed in a tally should be inversely proportional to the average number of particles that 

create tally scores in that region in each generation. Figure 3 shows the relationship between the fraction 

of undersampling and the contributing particles per generation for each of the eigenvalues and flux tallies 

in the R2 and S2 cases. Tallies that produced biases containing more than 75% relative uncertainty were 

omitted from Figure 3 and from all other figures in this study because tallies with uncertainty estimates 

that large clearly will not produce accurate tally estimates and do not require undersampling metrics to 

alert MC analysts to that fact. Furthermore, the high-uncertainty tallies received so few tally scores that 

they could not produce meaningful undersampling metric estimates. 

 

Figure 3. Effectiveness of the Contributing Particles per Generation Metric  

for Predicting Undersampling. 

 

As shown in Figure 3, the fraction of undersampling in the MC tallies generally decreased as the 

contributing particles-per-generation metric increased, as expected. Although that trend is more apparent 

over the entire span of the tally data, it is less apparent for the flux tallies, especially those that saw about 

10 contributing particles per generation. In that range, the R2 flux tally data curved backward before 

decreasing, and a significant portion of the S2 tallies saw an increased prevalence of undersampling as the 

number of contributing particles per generation increased. Therefore, the Contributing Particles per 

Generation metric was observed to predict undersampling with some general degree of accuracy, but it 

did not effectively predict undersampling biases in all tallies. 

3.2. Heidelberger-Welch Relative Half-Width 

The Heidelberger-Welch RHW metric [8] examines whether the sample size within a Markov chain is 

sufficient to provide accurate estimates for the mean value of a parameter by testing whether tally scores 

within the Markov chain vary significantly outside the margin of error of the confidence interval, 𝛼, of 

the chain. The statistic for the Heidelberger-Welch RHW test [8] is shown in Eq. (2), 

 𝑅𝐻𝑊 =
𝑧(1−𝛼 2⁄ )√𝑠̂𝑛 𝑛⁄

𝜃𝑛
, (2) 

where 𝑧(1−𝛼 2⁄ ) represents the Z-Score (the number of standard deviations from the mean of normally 

distributed data) of the 100(1- 𝛼/2)th percentile, 𝑛 is the length of the Markov chain, and 𝜃𝑛 and 𝑠̂𝑛 are 

the estimated mean and variance, respectively, of the members in the chain. The SAS statistical package, 



a software suite that offers a plethora of statistical analysis tools, uses a default RHW statistic of less than 

0.1 to indicate a sufficiently sampled Markov chain [7]. 

 

In this application, the elements of the Markov chain were assumed to be scores for a tally that were 

produced by individual particle histories within a single generation; therefore, rejection by the 

Heidelberger-Welch RHW test indicated that additional particle histories needed to be simulated within 

each generation to produce an accurate estimate for the response of interest. An 𝛼 value of 0.05 was 

assumed in this study, and 𝑠̂𝑛 was calculated assuming that particle scores within a single generation were 

completely uncorrelated. 

 

As shown in Figure 4, the RHW metric effectively predicted the onset and magnitude of undersampling, 

and there appeared to be a much stronger relationship between the RHW values and the magnitude of the 

undersampling bias than was observed for the Contributing Particles per Generation metric. The 

previously recommended SAS Heidelberger-Welch RHW acceptance value (0.1) appeared to be rather 

stringent in these cases, corresponding to an undersampling bias of approximately 0.05%. Ensuring less 

than a 1% undersampling bias for this application required metric values of approximately 0.5 or less. 

 

 

Figure 4. Effectiveness of the Heidelberger-Welch RHW Metric for Predicting Undersampling. 

 
Several tallies with relatively small RHW values encountered larger undersampling biases than were 

expected. This type II error was confined almost entirely to the most severely undersampled flux tallies 

with the largest statistical uncertainties, primarily those at the bottom of the S2 assembly. This behavior 

was also observed for the Tally Entropy metrics (to a greater degree) and the Gelman-Rubin diagnostics 

(to a lesser degree). Anomalous data points were filtered from the figures in this study using a “less than 

75% bias uncertainty” filtering. Some large RHW scores also produced smaller biases than were 

expected, but that type I error is preferable to a type II error because it ensures that MC analysts will err 

on the side of caution when accounting for undersampling biases. 

3.3. Geweke Z-Score 

The Geweke Z-Score tests for Markov chain convergence by examining whether the tally contributions 

from the first half of the Markov chain differ significantly from those in the second half [9]. This 

comparison treats each half of the Markov chain as an independent estimate of the chain’s half mean of 



the tally and computes a Z-Score to test whether the two means are equivalent. The Geweke Z-Score is 

calculated by 

 

𝑧 =
 𝜃1 − 𝜃2

√
𝑠̂𝑛1

𝑛1
+

𝑠̂𝑛2

𝑛2

 , 
(3) 

where 𝜃1 and 𝜃2 represent the tally means from the first and second halves of the Markov chain, 

respectively; 𝑠̂𝑛1
 and 𝑠̂𝑛2

 represent the variance of the first and second halves of the Markov chain, 

respectively; and 𝑛1 and 𝑛2 represent the number of samples in the first and second halves of the Markov 

chain, respectively. In this application, the Geweke Z-Score was calculated by comparing the nonzero 

tally scores produced from particle histories in the first half of the generation to the scores from the 

second half; a second Geweke Z-Score was also calculated by including the particle histories that 

produced tally scores of zero, but that metric showed very little correlation to the undersampling biases 

and is not discussed in detail in this study. As with the Heidelberger-Welch RHW and all other metrics in 

this study, the variance of particle scores within a single generation was assumed to be completely 

uncorrelated. 

 

Figure 5, which shows the Geweke Z-Scores that were calculated for the R2 and S2 problems, indicates 

that the Geweke Z-Score was somewhat effective at predicting the undersampling biases. The R2 and S2 

flux tallies produced Geweke Z-Scores that showed some broad correlation with the undersampling bias, 

but the eigenvalue estimates produced Z-scores that showed no correlation (or sometimes an inverse 

correlation) to the undersampling bias. The Geweke Z-score may be effective in predicting undersampling 

in the tally estimates with larger undersampling biases (more than 1%), but it could not effectively predict 

undersampling in eigenvalue estimates and was therefore determined to be an ineffective metric for 

predicting the onset and magnitude of undersampling biases. 

 

Figure 5. Effectiveness of the Geweke Z-Score for Predicting Undersampling. 

3.4. Gelman-Rubin 𝑹̂𝒄 Diagnostic 

Gelman-Rubin diagnostics assess convergence of Markov chains by splitting the chains into subchains 

and testing whether the tally variance within the subchains differs significantly from the variance between 

the subchains [10] [11]. In this application the master Markov chain was the “chain” of tally scores 



created by particle histories within each single generation, and the scores were split into three subchains. 

This is a common number of subchains to use when applying Gelman-Rubin convergence diagnostics [7]. 

The subchains of tally scores were used to calculate the corrected scale reduction factor (SRF), 𝑹̂𝒄, which 

is the Gelman-Rubin metric for assessing convergence of Markov chains. A thorough description of how 

to calculate 𝑹̂𝒄 is available in Reference [11]. In general, 𝑹̂𝒄 values that are close to 1.0 indicate Markov 

chain convergence, and in practice 𝑹̂𝒄 values that are less than about 1.2 or 1.1 are considered acceptable 

[7] [11].  

 

As shown in Figure 6, the Gelman-Rubin 𝑹̂𝒄 values that were calculated for the R2 and S2 case tallies 

were able to accurately predict the undersampling biases. In the figure the undersampling bias grows 

rapidly for small 𝑹̂𝒄 values (< 1.02), flattens into a plateau region for 𝑹̂𝒄 values between 1.05 and 1.2, 

and then again grows rapidly. The historically recommended minimum 𝑹̂𝒄 values for ensuring 

convergence (less than about 1.2) corresponded to an undersampling bias of approximately 1%. 

 

Figure 6. Effectiveness of the Gelman-Rubin 𝑹̂𝒄 Diagnostic for Predicting Undersampling. 

 

The Gelman-Rubin 𝑹̂𝒄 has a minimum value of 1, and, as shown in Figure 7, subtracting 1 from the 

calculated 𝑹̂𝒄 values and plotting the results on a log scale give further insight into the behavior of the 

undersampling biases and perhaps allow one to predict the behavior of undersampling biases for the full 

range of 𝑹̂𝒄 values. The plot looks very similar to the plot of the Heidelberger-Welch RHW data in 

Figure 3. The similarity is promising because it suggests that the two different metrics are detecting the 

same (and hopefully the true) trend in the undersampled tallies. 



 

Figure 7. Effectiveness of the Gelman–Rubin 𝑹̂𝒄 – 1 Diagnostic for Predicting Undersampling. 

3.5. Tally Entropy 

The last metric examined in this study, Tally Entropy, is a new metric that was developed using the 

information theory concept of Shannon Entropy. The Shannon Entropy, 𝐻, of an information signal with 

𝑁 messages is defined as [12]   

 𝐻 ≡ − ∑ 𝑝𝑛ln (𝑝𝑛)

𝑁

𝑛

, (4) 

where 𝑝𝑛 is the probability that a signal is received in the 𝑛th message. Shannon Entropy has been used 

previously by Brown and Ueki to detect unconverged fission sources in MC simulations [13]. In their 

application, Brown and Ueki calculated the Shannon Entropy of the fission source by imposing a spatial 

mesh over the model and calculating the fraction of fission sites that occur in each mesh interval (i.e., the 

probability that a fission site occurs in a mesh interval). Shannon Entropy that has not yet converged to an 

average value indicates that the fission source is still iterating toward the true distribution of fission sites 

in the problem and that additional inactive generations should be simulated. Unfortunately, Shannon 

Entropy cannot be used in this way to assess the convergence of MC tallies because undersampled tallies 

may produce falsely converged Shannon Entropy estimates that are different but indistinguishable (a 

priori) from the entropy that would be produced by a converged set of tallies. Therefore, in this work an 

alternative approach has been developed for using the concept of Shannon Entropy to diagnose 

undersampling in MC tally estimates. 

 

The Shannon Entropy of a signal containing 𝑁 messages can produce a minimum entropy of zero and a 

maximum entropy of 𝑙𝑛 (𝑁); the signal will produce an entropy of zero if all of the signal is received in 

only one of the 𝑁 messages and will produce maximum entropy when 

 

1. The number of messages in the signal, 𝑁, becomes very large and 

2. Each message contributes an equal amount of information (𝑝1 = 𝑝2 = 𝑝𝑛). 

These two conditions happen to also be ideal for scoring unbiased MC tally estimates: each tally should 

receive scores from a large number of particle histories in each generation, and each particle history 

should contribute a similarly sized score to the tally estimate. Therefore, the Tally Entropy convergence 



metric predicts undersampling biases by calculating how much the Shannon Entropy of the tally estimate 

differs from its maximum entropy. The entropy of each tally is determined by calculating 𝑝𝑥, which is the 

probability that the message (the particle history) produces a signal (a tally score); 𝑝𝑥 is therefore 

interpreted as the fractional contribution of the particle 𝑥 to a tally estimate within generation 𝑗 and is 

calculated by dividing the tally score produced by particle 𝑥 by the sum of the tally scores produced in 

generation 𝑗: 

 𝑝𝑥 =
𝑇𝑎𝑙𝑙𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑥

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑇𝑎𝑙𝑙𝑦 𝑆𝑐𝑜𝑟𝑒𝑠 𝑖𝑛 𝐺𝑒𝑛.  𝑗
 . (5) 

After the 𝑝𝑥 values are calculated for the particles within a generation, Eq. (6) is used to calculate the 

entropy of the scores for tally 𝑖 in the generation: 

 𝐻𝑖,𝑗 = − ∑ 𝑝𝑥 ln(𝑝𝑥)

𝑁𝑖,𝑗

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑥

 , (6) 

where 𝑁𝑖,𝑗 is the number of particle histories in generation 𝑗 that produced nonzero scores for tally 𝑖. The 

Tally Entropy test statistic for tally 𝑖 is then calculated by Eq. (7): 

 𝑇𝑎𝑙𝑙𝑦 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖 ≡  
〈ln(𝑁𝑖,𝑗)〉 − 〈𝐻𝑖,𝑗〉

〈ln(𝑁𝑖,𝑗)〉
 , (7) 

where the 〈 〉 operator denotes the average of a value over all active generations. 

 

Figure 8 shows the tally entropy values that were calculated for the tallies in the R2 and S2 cases. Like 

the Heidelberger-Welch RHW and Gelman-Rubin diagnostics, the Tally Entropy metric generally seems 

to predict the onset and magnitude of undersampling biases. When plotted in a log-log scale, the Tally 

Entropy values scale much more linearly than the Heidelberger-Welch RHW or Gelman-Rubin 

diagnostics, possibly indicating a more straightforward relationship between the metric and the magnitude 

of the undersampling bias. Furthermore, the eigenvalue and flux tally data points show a greater degree of 

overlap for the Tally Entropy metric than was observed for the other two metrics, indicating that it may be 

a more tally-independent metric for diagnosing undersampling. 

 

Figure 8. Effectiveness of Tally Entropy for Predicting Undersampling. 



4. CONCLUSIONS  

 

This study quantified the potential size of MC undersampling biases in fuel pin tally estimates for reactor 

and shipping cask systems and explored the potential applicability of several statistical metrics for 

predicting the prevalence and magnitude of undersampling biases in eigenvalue and fuel pin flux tally 

responses. Models of 2D reactor and shipping cask systems encountered biases in flux tally estimators 

that were on the order of 1%, but systems with axially dependent geometries encountered biases that were 

as large as tens or hundreds of percent. In all cases, observed biases disappeared or became statistically 

unobservable once the simulations used at least 4000 particle histories per generation. Of the five 

statistical metrics that were examined to predict the occurrence of undersampling, the Heidelberger-

Welch RHW, Gelman-Rubin R̂c, and Tally Entropy metrics were observed to correlate strongly with the 

observed undersampling biases. This study has demonstrated proof of principle for the use of these 

metrics to predict undersampling. The next phase of this work (and of the AMCT study) is to repeat this 

analysis for a much broader set of system responses (including reaction rate tallies, multigroup flux 

estimates, and possibly sensitivity coefficient estimates) for a wide range of applications to determine 

whether these metrics can truly predict the prevalence of undersampling biases in MC simulations. 

 

Based on the preliminary results observed in this study, MC analysts who seek to estimate tally responses 

with an undersampling bias of less than 1% are recommended to ensure that the undersampling metrics 

for the tallies fall below these threshold values: 

 

 Heidelberger–Welch RHW ≤ 0.50 

 Gelmen-Rubin R̂c ≤ 1.05 

 Tally Entropy ≤ 0.05 
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