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ABSTRACT

This study explored the impact of undersampling on the accuracy of tally estimates in Monte Carlo (MC)
calculations. Steady-state MC simulations were performed for models of several critical systems with
varying degrees of spatial and isotopic complexity, and the impact of undersampling on eigenvalue and
fuel pin flux/fission estimates was examined. This study observed biases in MC eigenvalue estimates as
large as several percent and biases in fuel pin flux/fission tally estimates that exceeded tens, and in some
cases hundreds, of percent.

This study also investigated five statistical metrics for predicting the occurrence of undersampling biases
in MC simulations. Three of the metrics (the Heidelberger-Welch RHW, the Geweke Z-Score, and the
Gelman-Rubin diagnostics) are commonly used for diagnosing the convergence of Markov chains, and
two of the methods (the Contributing Particles per Generation and Tally Entropy) are new convergence
metrics developed in the course of this study. These metrics were implemented in the KENO MC code
within the SCALE code system and were evaluated for their reliability at predicting the onset and
magnitude of undersampling biases in MC eigenvalue and flux tally estimates in two of the critical
models. Of the five methods investigated, the Heidelberger-Welch RHW, the Gelman-Rubin diagnostics,
and Tally Entropy produced test metrics that correlated strongly to the size of the observed undersampling
biases, indicating their potential to effectively predict the size and prevalence of undersampling biases in
MC simulations.
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1. INTRODUCTION

Monte Carlo (MC) methods for calculating the eigenvalues of fissile systems represent the fission source
by simulating multiple batches, or generations, of fission neutrons, where the fission sites created during
one generation serve as the birth sites for neutrons in the next generation. Failure to simulate enough
particles in each generation can result in a phenomenon known as “undersampling,” where neutrons do
not interact sufficiently with all regions in the problem during each generation. This underrepresentation
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of regions in a model has been shown to impact the accuracy of tally response and uncertainty estimates
in MC calculations [1] [2]. As reported previously by Brown [1] and Perfetti and Rearden [3], and as
shown in Figure 1, undersampling can result in significant biases in MC eigenvalue estimates (up to
several percent) when low numbers of particle histories are sampled within each generation. This effect is
even greater for flux tally estimates, which produce biases that are as large as several tens, and in some
cases hundreds, of percent.
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Figure 1. Undersampling in Eigenvalue Estimates (left) and Flux Tally Estimates in an Axial
Segment of a Fuel Pin (right) in an Infinitely Reflected Model of a Fuel Assembly as a Function of
the Number of Particle Histories Simulated per Generation [3].

The Organisation for Economic Co-operation and Development Nuclear Energy Agency Working Party
on Nuclear Criticality Safety’s Expert Group on Advanced Monte Carlo Techniques (AMCT) was formed
to advance the knowledge base regarding MC criticality calculations that rely on obtaining accurate flux
and reaction rate estimates, such as MC depletion calculations for burnup credit applications [3] [4]. The
long-term goal of the AMCT collaboration is to understand the magnitude and prevalence of biases in
eigenvalue estimates, reaction rate tallies, and tally variance estimates and to create a set of best practices
to maximize the reliability of MC calculations by mitigating the effect of undersampling.

In previous work in the AMCT collaboration, Perfetti and Rearden observed significant biases in flux
tally and fission rate estimates in models of pressurized water reactor (PWR) fuel assemblies and spent
fuel shipping casks [3]. The magnitudes of these biases were larger than those previously observed for
eigenvalue estimates in similar systems, and large-magnitude biases were surprisingly prevalent in
models of relatively simple systems (models of single, infinitely reflected fuel assemblies). Models of 2D
reactor and shipping cask systems produced biases in flux tally estimators that were on the order of 1%,
but systems with axially dependent geometries encountered biases that were as large as tens or hundreds
of percent. The observed biases disappeared once the simulations used at least 4000 particle histories per
generation, although statistical noise made it difficult to be certain whether fuel pin flux tallies produced
biased estimates. It is certainly reasonable to expect MC code users to use at least 4000 particle histories
per generation to mitigate the effects of undersampling, but there is concern that tallies covering smaller
regions of phase space, such as energy-dependent tallies, may require users to simulate many more
particle histories to mitigate undersampling biases. Thus this study builds upon the previous work by
Perfetti and Rearden by investigating statistical metrics that can be implemented in MC codes to detect
the occurrence of biases in MC simulations. These metrics are applied to the previously observed tally
biases and are evaluated for their reliability at predicting the onset and magnitude of undersampling
biases in MC eigenvalue and flux tally estimates.



2. QUANTIFYING THE MAGNITUDE OF UNDERSAMPLING BIASES

2.1. Benchmark Methodology

The first stage of the benchmark collaboration sought to quantify the potential magnitude of
undersampling biases in eigenvalue, flux, and fission-rate estimates, and, if possible, to identify systems
or conditions that lead to the creation of these biases. To do that, the number of particles used in each
generation (NPG) was varied from 100 to 1,000,000 for each of the benchmark models, with each
variation using a total of 100 million active histories. Thirty repeated calculations were performed for
each NPG case to allow for the calculation of the true variance of the eigenvalue and flux tally estimates,
which allowed for an assessment of the accuracy of the predicted tally variance calculations. The true
tally variances were calculated from the N = 30 repeated calculations using the following equation:
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Each simulation in this study skipped 200 generations before beginning active tallies to ensure fission
source convergence. As NPG increased for the cases, the total number of active generations simulated
decreased proportionally such that each NPG realization simulated the same number of active histories.
All simulations were performed using the KENO-VI MC code within the SCALE code package [5].

2.2. Benchmark Systems

The cases for the study were divided into three stages of varying spatial complexity to determine how
model complexity induces biases in reaction rate tallies. As described in Table I, six benchmark models
were examined in this study: three models for reactor (R) configurations and three models for storage (S)
configurations [3] [4].

Table I. AMCT critical benchmark model descriptions

ID Configuration Geometry Isotopics Temperature Reactloq Tally
Locations
17 by 17 Uniform 20 gigawatt days
R1 2D quarter core bundles in (GWD)/metric ton of Reactor: Uniform Center and edge
g quarter-core uranium (MTU) with midplane bundles
radial slice equilibrium xenon
3D core 17 by 17 bundle 18 axial zones; varying Reactor: 18 axial Top, midplane,
R2 A - 20 GWD/MTU with
assembly in infinite lattice A zones and bottom
equilibrium xenon
18 axial zones; s Center and edge
17by 17 20 GWD/MTU with Reactor: Uniform bundles;
R3 3D quarter core bundles in A ) radially, 18 axial .
equilibrium xenon; top, midplane,
quarter core - - zones
uniform radially and bottom
17 by 17
bundles in cask Uniform 40 GWD/MTU Uniform storage Center and edge
S1 2D storage cask - . o
geometry radial with 5-year cooling time temperature bundles
slice
18 axial zones; . .
$2 3D storage cask _17_by_ 1_7 bun(_jle 40 GWD/MTU with 5-year Uniform storage Top, midplane,
assembly in infinite lattice Lo temperature and bottom
cooling time
17 by 17 18 axial zones; Center and edge
Y 40 GWD/MTU with 5-year Uniform storage bundles;
S3 3D storage cask bundles in full L .
cooling time; uniform temperature top, midplane,
cask -
radially and bottom




Although the goal of this benchmark study was to understand how undersampling induces biases in MC
simulations using continuous-energy physics, the simulations all used multigroup physics in order to
minimize the large computational footprint of the study. Furthermore, the SCALE tool for performing
problem-dependent Doppler-broadening temperature corrections for continuous-energy MC calculations
was not available at the time of this work, but the SCALE physics package could perform temperature
corrections for multigroup calculations [6]. The lack of full-fidelity continuous-energy physics was not
expected to significantly affect the results of the study because undersampling of the physical regions in
problems was anticipated to be the driving source of biases in the calculations.

2.3. Observed Undersampling Biases

This section presents a brief summary of the magnitude of the undersampling biases that were observed
for the fuel pin fission rate and energy-integrated flux tallies. Readers who are interested in a more
detailed summary of the behavior of undersampling biases in these systems should consult Perfetti and
Rearden [3].

Because the fuel pin tally estimates in the benchmark systems varied by several orders of magnitude, the
term “fraction of undersampling” was used to represent the size of the tally biases in a convenient and
consistent way. The fraction of undersampling was obtained for each tally by taking the percent
difference (in terms of percent-mille, or pcm) between the biased tally estimate and a reference tally
estimate. Figure 2 shows the maximum fractions of undersampling that were observed for the fuel pin
fission rate and energy-integrated flux tallies in each of the fuel pins that were examined for the 3D
reactor (R3) and shipping cask (S3) systems. Data are given for fuel pins at varying axial levels in the R3
and S3 systems, where axial level 1 is at the bottom of the system and axial level 18 is at the top. The
energy-integrated flux and fission-rate biases are plotted together in Figure 2, indicating that there was a
strong correlation between the magnitudes of the undersampling biases for these estimates.
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Figure 2. Fractions of Undersampling for the Fission Rate and Flux Tallies in the 3D Reactor
System (top) and the 3D Shipping Cask Cases (bottom).

As shown in Figure 2, the observed undersampling biases depended strongly on the axial location of the
fuel pin within the system, and there was less range in the biases for fuel pins in different radial positions
within each axial level. Analysis of the other cases presented in Table | confirmed that the axial location
of the fuel pin had a greater impact on the magnitude of the undersampling biases than the radial location
of the fuel pin: the observed biases were on the order of several percent for the radially dependent systems
(S1 and R1) but were as large as tens to hundreds of percent for tallies in the axially dependent, infinitely
reflected single-assembly systems (S2 and R2). Several of these extremely undersampled tallies are
visible in Figure 2 for the first and second axial levels of the shipping cask case. The fission rate for the
fuel pins in those axial levels is approximately five orders of magnitude lower than the fission rate for the
fuel at the top of the shipping cask, which results in very large undersampling biases. These
undersampling biases are understandably large, given the low fission rates (and therefore low flux tally
rates) in the fuel pins, which were so small that several of the thirty repeated simulations failed to
transport a single particle into these regions.

Although the maximum fractions of undersampling in Figure 2 were generally produced by the
simulations that used only 100 particles histories per generation and the undersampling biases typically
disappeared when the simulations used several thousand particle histories per generation, the potential for
MC tally estimates in realistic systems to produce undersampling biases as large as tens to hundreds of
percent is cause for concern regarding the reliability of MC calculations for those systems. Therefore, the
next stage of this benchmark effort focuses on developing statistical metrics to detect if and when tally
estimates are being undersampled.

3. METRICS FOR PREDICTING UNDERSAMPLING BIAS

The goal of developing tally convergence metrics is to provide tools for MC analysts to ensure the fidelity
of simulation results. Analysts might, for example, guarantee that an MC tally is accurate within a 1%
undersampling bias so long as their convergence metric of choice is smaller than some threshold value.
When developing metrics to predict undersampling in MC simulations, one strives to satisfy two criteria:
metrics should be able to diagnose undersampling “on the fly” (i.e., while the calculation is still in
progress), and they should be universally applicable. Observing undersampling biases in MC simulations,
as was performed in Section 2, traditionally requires performing multiple simulations of the same model



using different random seeds and identifying differences in tally estimates that exceed the statistical
uncertainty of the estimates. That process is effective at identifying undersampling in longer-term
investigative studies, such as the AMCT collaboration, but it typically imposes a significant
computational burden. The simulations in this study usually required long runtimes to achieve the degree
of tally convergence needed to identify biases, and they had to be repeated multiple times to obtain true
tally variance estimates. Therefore, to effectively predict undersampling and to provide guidance to MC
analysts in practical applications, metrics must be able to diagnose undersampling in a single calculation.
Ideally the metrics would be evaluated to detect undersampling biases on the fly (i.e., while the
simulation is still running), so that the simulation parameters can be adjusted if responses of interest are
being undersampled. Secondly, the wide range of MC tally responses and the even wider range of MC
applications demand that tally convergence metrics are universally applicable. Metrics should be able to
consistently predict the behavior of undersampling biases for various MC tally responses, such as
eigenvalue, fission rate, neutron flux, reaction rate, and sensitivity tally estimates (all scored with and
without energy bins), in systems with vastly different spectra.

This study evaluated the potential of several tally convergence metrics by calculating them for the
eigenvalue and fuel pin flux tally responses in the systems included in the AMCT study and comparing
them to the previously observed tally biases [3]. The responses of interest spanned system eigenvalue
estimates and energy-integrated flux tallies in axial segments of PWR fuel pins (described in more detail
in Ref. [3]). Two systems were examined in this phase of the study: an infinitely reflected fuel assembly
in a PWR (the R2 case) and an infinitely reflected PWR assembly in a spent fuel shipping cask (the S2
case). Both systems were previously found to produce significant (tens to hundreds of percent) flux tally
biases, despite the relative geometric simplicity of the infinitely reflected models [3]. The fractions of
undersampling for the eigenvalue and fuel pin flux estimates are plotted against the scores of various
undersampling metrics in Figure 3 through Figure 8 to determine whether the metrics scores could
effectively predict the onset and magnitude of the undersampling biases. The fission rate estimates were
omitted from this analysis because of the strong correlation that was observed between their biases and
the fuel pin flux estimate biases.

An ideal convergence metric should have a one-to-one relationship with the magnitude of the
undersampling bias observed in tallies in different systems, thereby allowing analysts to anticipate the
degree of undersampling that may occur for a tally estimate, given the value of its convergence metric.
This study examined the potential for the following five metrics to diagnose and correlate to the
magnitude of undersampling biases:

1. Contributing Particles per Generation (see Sect. 3.1);
2. The Heidelberger-Welch Relative Half-Width (RHW) (see Sect. 3.2);
3. The Geweke Z-Score (see Sect. 3.3);

4. The Gelman-Rubin Scale Reduction Factor (T? ¢) Diagnostic (see Sect. 3.4); and
5. Tally Entropy (see Sect. 3.5).

Three of the methods (the Heidelberger-Welch RHW, the Geweke Z-Score, and the Gelman—Rubin
diagnostic) are commonly used for diagnosing the convergence of Markov chains [7]; two of the methods
(the Contributing Particles per Generation and Tally Entropy) are new convergence metrics developed in
the course of this study.

3.1. Contributing Particles per Generation

The first tally convergence metric examined in this study was the Contributing Particles per Generation
metric, which simply describes the average number of particles within a single generation that contribute
nonzero scores to a tally estimate. Because undersampling occurs when too few particles interact with the
tally region and when too few particles are used to sample the fission source of a system, the degree of



undersampling observed in a tally should be inversely proportional to the average number of particles that
create tally scores in that region in each generation. Figure 3 shows the relationship between the fraction
of undersampling and the contributing particles per generation for each of the eigenvalues and flux tallies
in the R2 and S2 cases. Tallies that produced biases containing more than 75% relative uncertainty were
omitted from Figure 3 and from all other figures in this study because tallies with uncertainty estimates
that large clearly will not produce accurate tally estimates and do not require undersampling metrics to
alert MC analysts to that fact. Furthermore, the high-uncertainty tallies received so few tally scores that
they could not produce meaningful undersampling metric estimates.
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Figure 3. Effectiveness of the Contributing Particles per Generation Metric
for Predicting Undersampling.

As shown in Figure 3, the fraction of undersampling in the MC tallies generally decreased as the
contributing particles-per-generation metric increased, as expected. Although that trend is more apparent
over the entire span of the tally data, it is less apparent for the flux tallies, especially those that saw about
10 contributing particles per generation. In that range, the R2 flux tally data curved backward before
decreasing, and a significant portion of the S2 tallies saw an increased prevalence of undersampling as the
number of contributing particles per generation increased. Therefore, the Contributing Particles per
Generation metric was observed to predict undersampling with some general degree of accuracy, but it
did not effectively predict undersampling biases in all tallies.

3.2. Heidelberger-Welch Relative Half-Width

The Heidelberger-Welch RHW metric [8] examines whether the sample size within a Markov chain is
sufficient to provide accurate estimates for the mean value of a parameter by testing whether tally scores

within the Markov chain vary significantly outside the margin of error of the confidence interval, a, of
the chain. The statistic for the Heidelberger-Welch RHW test [8] is shown in Eq. (2),

Z(1-a/2) §n/n (2)
0, '
where z(;_q/2) represents the Z-Score (the number of standard deviations from the mean of normally

distributed data) of the 100(1- a/2)" percentile, n is the length of the Markov chain, and 8,, and $,, are
the estimated mean and variance, respectively, of the members in the chain. The SAS statistical package,

RHW =




a software suite that offers a plethora of statistical analysis tools, uses a default RHW statistic of less than
0.1 to indicate a sufficiently sampled Markov chain [7].

In this application, the elements of the Markov chain were assumed to be scores for a tally that were
produced by individual particle histories within a single generation; therefore, rejection by the
Heidelberger-Welch RHW test indicated that additional particle histories needed to be simulated within
each generation to produce an accurate estimate for the response of interest. An a value of 0.05 was
assumed in this study, and §,, was calculated assuming that particle scores within a single generation were
completely uncorrelated.

As shown in Figure 4, the RHW metric effectively predicted the onset and magnitude of undersampling,
and there appeared to be a much stronger relationship between the RHW values and the magnitude of the
undersampling bias than was observed for the Contributing Particles per Generation metric. The
previously recommended SAS Heidelberger-Welch RHW acceptance value (0.1) appeared to be rather
stringent in these cases, corresponding to an undersampling bias of approximately 0.05%. Ensuring less
than a 1% undersampling bias for this application required metric values of approximately 0.5 or less.
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Figure 4. Effectiveness of the Heidelberger-Welch RHW Metric for Predicting Undersampling.

Several tallies with relatively small RHW values encountered larger undersampling biases than were
expected. This type Il error was confined almost entirely to the most severely undersampled flux tallies
with the largest statistical uncertainties, primarily those at the bottom of the S2 assembly. This behavior
was also observed for the Tally Entropy metrics (to a greater degree) and the Gelman-Rubin diagnostics
(to a lesser degree). Anomalous data points were filtered from the figures in this study using a “less than
75% bias uncertainty” filtering. Some large RHW scores also produced smaller biases than were
expected, but that type I error is preferable to a type Il error because it ensures that MC analysts will err
on the side of caution when accounting for undersampling biases.

3.3. Geweke Z-Score

The Geweke Z-Score tests for Markov chain convergence by examining whether the tally contributions
from the first half of the Markov chain differ significantly from those in the second half [9]. This
comparison treats each half of the Markov chain as an independent estimate of the chain’s half mean of



the tally and computes a Z-Score to test whether the two means are equivalent. The Geweke Z-Score is
calculated by

6, — 6,

@)

where 6, and 8, represent the tally means from the first and second halves of the Markov chain,
respectively; $,, and $,,, represent the variance of the first and second halves of the Markov chain,

respectively; and n; and n, represent the number of samples in the first and second halves of the Markov
chain, respectively. In this application, the Geweke Z-Score was calculated by comparing the nonzero
tally scores produced from particle histories in the first half of the generation to the scores from the
second half; a second Geweke Z-Score was also calculated by including the particle histories that
produced tally scores of zero, but that metric showed very little correlation to the undersampling biases
and is not discussed in detail in this study. As with the Heidelberger-Welch RHW and all other metrics in
this study, the variance of particle scores within a single generation was assumed to be completely
uncorrelated.

Figure 5, which shows the Geweke Z-Scores that were calculated for the R2 and S2 problems, indicates
that the Geweke Z-Score was somewhat effective at predicting the undersampling biases. The R2 and S2
flux tallies produced Geweke Z-Scores that showed some broad correlation with the undersampling bias,
but the eigenvalue estimates produced Z-scores that showed no correlation (or sometimes an inverse
correlation) to the undersampling bias. The Geweke Z-score may be effective in predicting undersampling
in the tally estimates with larger undersampling biases (more than 1%), but it could not effectively predict
undersampling in eigenvalue estimates and was therefore determined to be an ineffective metric for
predicting the onset and magnitude of undersampling biases.
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Figure 5. Effectiveness of the Geweke Z-Score for Predicting Undersampling.

3.4. Gelman-Rubin R, Diagnostic

Gelman-Rubin diagnostics assess convergence of Markov chains by splitting the chains into subchains
and testing whether the tally variance within the subchains differs significantly from the variance between
the subchains [10] [11]. In this application the master Markov chain was the “chain” of tally scores



created by particle histories within each single generation, and the scores were split into three subchains.
This is a common number of subchains to use when applying Gelman-Rubin convergence diagnostics [7].

The subchains of tally scores were used to calculate the corrected scale reduction factor (SRF), R, which
is the Gelman-Rubin metric for assessing convergence of Markov chains. A thorough description of how

to calculate I’?C is available in Reference [11]. In general, IA'\'C values that are close to 1.0 indicate Markov
chain convergence, and in practice R, values that are less than about 1.2 or 1.1 are considered acceptable

(7] [11].

As shown in Figure 6, the Gelman-Rubin R, values that were calculated for the R2 and S2 case tallies
were able to accurately predict the undersampling biases. In the figure the undersampling bias grows

rapidly for small IT'C values (< 1.02), flattens into a plateau region for IA'\'C values between 1.05 and 1.2,

and then again grows rapidly. The historically recommended minimum IA'\'C values for ensuring
convergence (less than about 1.2) corresponded to an undersampling bias of approximately 1%.
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Figure 6. Effectiveness of the Gelman-Rubin R, Diagnostic for Predicting Undersampling.

The Gelman-Rubin T?C has a minimum value of 1, and, as shown in Figure 7, subtracting 1 from the
calculated R, values and plotting the results on a log scale give further insight into the behavior of the
undersampling biases and perhaps allow one to predict the behavior of undersampling biases for the full
range of R, values. The plot looks very similar to the plot of the Heidelberger-Welch RHW data in
Figure 3. The similarity is promising because it suggests that the two different metrics are detecting the
same (and hopefully the true) trend in the undersampled tallies.
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3.5. Tally Entropy

The last metric examined in this study, Tally Entropy, is a new metric that was developed using the
information theory concept of Shannon Entropy. The Shannon Entropy, H, of an information signal with
N messages is defined as [12]

N
H= = padn(n), (4)

where p,, is the probability that a signal is received in the n'" message. Shannon Entropy has been used
previously by Brown and Ueki to detect unconverged fission sources in MC simulations [13]. In their
application, Brown and Ueki calculated the Shannon Entropy of the fission source by imposing a spatial
mesh over the model and calculating the fraction of fission sites that occur in each mesh interval (i.e., the
probability that a fission site occurs in a mesh interval). Shannon Entropy that has not yet converged to an
average value indicates that the fission source is still iterating toward the true distribution of fission sites
in the problem and that additional inactive generations should be simulated. Unfortunately, Shannon
Entropy cannot be used in this way to assess the convergence of MC tallies because undersampled tallies
may produce falsely converged Shannon Entropy estimates that are different but indistinguishable (a
priori) from the entropy that would be produced by a converged set of tallies. Therefore, in this work an
alternative approach has been developed for using the concept of Shannon Entropy to diagnose
undersampling in MC tally estimates.

The Shannon Entropy of a signal containing N messages can produce a minimum entropy of zero and a
maximum entropy of [n(N); the signal will produce an entropy of zero if all of the signal is received in
only one of the N messages and will produce maximum entropy when

1. The number of messages in the signal, N, becomes very large and
2. Each message contributes an equal amount of information (p; = p, = pp)-

These two conditions happen to also be ideal for scoring unbiased MC tally estimates: each tally should
receive scores from a large number of particle histories in each generation, and each particle history
should contribute a similarly sized score to the tally estimate. Therefore, the Tally Entropy convergence



metric predicts undersampling biases by calculating how much the Shannon Entropy of the tally estimate
differs from its maximum entropy. The entropy of each tally is determined by calculating p,., which is the
probability that the message (the particle history) produces a signal (a tally score); p, is therefore
interpreted as the fractional contribution of the particle x to a tally estimate within generation j and is
calculated by dividing the tally score produced by particle x by the sum of the tally scores produced in
generation j:

Tally Score of Particle x )

Px = Sumof all Tally Scores in Gen. j '

After the p, values are calculated for the particles within a generation, Eq. (6) is used to calculate the
entropy of the scores for tally i in the generation:

Ni,j

Hy;=— Z Px In(py) , (6

Particle x

where N; ; is the number of particle histories in generation j that produced nonzero scores for tally i. The
Tally Entropy test statistic for tally i is then calculated by Eq. (7):

<1n(Ni,j)> —(H;;)
<11’1(Nl,])>

where the () operator denotes the average of a value over all active generations.

Tally Entropy; = , (7

Figure 8 shows the tally entropy values that were calculated for the tallies in the R2 and S2 cases. Like
the Heidelberger-Welch RHW and Gelman-Rubin diagnostics, the Tally Entropy metric generally seems
to predict the onset and magnitude of undersampling biases. When plotted in a log-log scale, the Tally
Entropy values scale much more linearly than the Heidelberger-Welch RHW or Gelman-Rubin
diagnostics, possibly indicating a more straightforward relationship between the metric and the magnitude
of the undersampling bias. Furthermore, the eigenvalue and flux tally data points show a greater degree of
overlap for the Tally Entropy metric than was observed for the other two metrics, indicating that it may be
a more tally-independent metric for diagnosing undersampling.
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Figure 8. Effectiveness of Tally Entropy for Predicting Undersampling.



4. CONCLUSIONS

This study quantified the potential size of MC undersampling biases in fuel pin tally estimates for reactor
and shipping cask systems and explored the potential applicability of several statistical metrics for
predicting the prevalence and magnitude of undersampling biases in eigenvalue and fuel pin flux tally
responses. Models of 2D reactor and shipping cask systems encountered biases in flux tally estimators
that were on the order of 1%, but systems with axially dependent geometries encountered biases that were
as large as tens or hundreds of percent. In all cases, observed biases disappeared or became statistically
unobservable once the simulations used at least 4000 particle histories per generation. Of the five
statistical metrics that were examined to predict the occurrence of undersampling, the Heidelberger-

Welch RHW, Gelman-Rubin ﬁc, and Tally Entropy metrics were observed to correlate strongly with the
observed undersampling biases. This study has demonstrated proof of principle for the use of these
metrics to predict undersampling. The next phase of this work (and of the AMCT study) is to repeat this
analysis for a much broader set of system responses (including reaction rate tallies, multigroup flux
estimates, and possibly sensitivity coefficient estimates) for a wide range of applications to determine
whether these metrics can truly predict the prevalence of undersampling biases in MC simulations.

Based on the preliminary results observed in this study, MC analysts who seek to estimate tally responses
with an undersampling bias of less than 1% are recommended to ensure that the undersampling metrics
for the tallies fall below these threshold values:

e Heidelberger—Welch RHW < 0.50
e Gelmen-Rubin R, < 1.05
o Tally Entropy < 0.05
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