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ABSTRACT

This study explored the potential of using Markov chain convergence diagnostics to predict the
prevalence and magnitude of biases due to undersampling in Monte Carlo eigenvalue and flux
tally estimates. Five metrics were applied to two models of pressurized water reactor fuel
assemblies and their potential for identifying undersampling biases was evaluated by comparing
the calculated test metrics with known biases in the tallies. Three of the five undersampling
metrics showed the potential to accurately predict the behavior of undersampling biases in the
responses examined in this study.

Key Words: Monte Carlo, tally biases, undersampling, convergence metrics, SCALE
1 INTRODUCTION

Monte Carlo methods for calculating the eigenvalues of fissile systems represent the fission
source by simulating multiple batches, or generations, of fission neutrons, where the fission sites
created during one generation serve as the birth sites for neutrons in the next generation. Failure
to simulate enough particles in each generation can result in a phenomenon known as
“undersampling,” where neutrons do not interact sufficiently with all regions in the problem
during each generation. This underrepresentation of regions in a model has been shown to impact
the accuracy of tally response and uncertainty estimates in Monte Carlo calculations [1] [2]. As
reported previously by Brown [1] and Perfetti and Rearden [3], and as shown in Figure 1,
undersampling can result in significant biases in Monte Carlo eigenvalue estimates (up to several
percent) and even larger biases in flux tally estimates (up to several tens of percent).

1.04075 1.05000
1.04070
s =Tds 5 8K
_ Loioes & %‘5’! 2 100000 ’.# * 9000
& 1.04060 5% B 095000 1
1.04055 T (90000
1.04050 ¥ g |
1.04045 2 0.85000
100 10,000 1,000,000 100 10,000 1,000,000
Particles per Generation Particles per Generation

Figure 1. Undersampling in eigenvalue estimates (left) and flux tally estimates in an axial segment of a
fuel pin (right) in an infinitely reflected model of a fuel assembly as a function of the number of particle
histories simulated per generation [3].
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The Organisation for Economic Co-operation and Development Nuclear Energy Agency
Working Party on Nuclear Criticality Safety’s Expert Group on Advanced Monte Carlo
Techniques (AMCT) was formed to advance the knowledge base regarding Monte Carlo
criticality calculations that rely on obtaining accurate flux and reaction rate estimates, such as
Monte Carlo depletion calculations for burnup credit applications [3] [4]. The long-term goal of
the AMCT collaboration is to understand the magnitude, prevalence, and impact of biases in
eigenvalue estimates, reaction rate tallies, and tally variance estimates and to create a set of best
practices to maximize the reliability of Monte Carlo calculations by mitigating the effect of
undersampling. In previous work in the AMCT collaboration, Perfetti and Rearden observed
significant biases in flux tally and fission rate estimates in models of pressurized water reactor
(PWR) fuel assemblies and spent fuel shipping casks [3]. The magnitude of these biases was
larger than those previously observed for eigenvalue estimates in similar systems and was
surprisingly prevalent in models of relatively simple systems (models of single, infinitely
reflected fuel assemblies). This study builds upon the previous work by Perfetti and Rearden by
investigating statistical metrics that can be implemented in Monte Carlo codes to predict the
occurrence of biases in Monte Carlo simulations. These metrics are applied to the previously
observed tally biases and are evaluated for their reliability at predicting the onset and magnitude
of undersampling biases in Monte Carlo eigenvalue and flux tally estimates.

2 TALLY CONVERGENCE METRICS

The goal of developing tally convergence metrics is to provide tools for Monte Carlo
analysts to ensure the fidelity of simulation results. Similarly to how Shannon Entropy is used to
verify fission source convergence [5], analysts might, for example, guarantee that a Monte Carlo
tally is accurate within a 1% undersampling bias so long as their convergence metric of choice is
smaller than some threshold value. When developing metrics to predict undersampling in Monte
Carlo simulations, one strives to satisfy two criteria: metrics should be able to diagnose
undersampling “on the fly” (i.e., while the calculation is still in progress), and they should be
universally applicable. Observing undersampling biases in Monte Carlo simulations traditionally
requires performing multiple simulations of the same model using different random seeds and
identifying differences in tally estimates that exceed the statistical uncertainty of the estimates.
This process is effective at identifying undersampling in longer-term investigative studies, such
as the AMCT collaboration, but it typically imposes a significant computational burden, both
because of the usually large runtimes associated with repeated Monte Carlo simulations of
complex systems and because the biases can be small and thus require a high degree of
convergence. Therefore, to effectively predict undersampling and to provide guidance to Monte
Carlo analysts in practical applications, metrics must be able to diagnose undersampling in a
single calculation, ideally on the fly, so that the simulation parameters can be adjusted (or
corrected) during simulations when a metric detects that responses of interest are being
significantly undersampled. Secondly, the wide range of Monte Carlo tally responses and the
even wider range of Monte Carlo applications demand that tally convergence metrics be
universally applicable. Metrics should be response- and system-independent; in other words,
they should be able to consistently predict the behavior of undersampling biases for various
Monte Carlo tally responses, such as eigenvalue, neutron flux, reaction rate, and sensitivity tally
estimates (all scored with and without energy bins), in systems with vastly different neutron
spectra.
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This study evaluated the potential of several tally convergence metrics by calculating them
for several Monte Carlo tally responses in the systems included in the AMCT study and
comparing them to the previously observed tally biases [3]. Described in more detail in Ref. [3],
the responses of interest spanned system eigenvalue estimates and energy-integrated flux tallies
in axial segments of PWR fuel pins. Two systems were examined in this study: an infinitely
reflected fuel assembly in a PWR (the R2 case) and an infinitely reflected PWR assembly in a
spent fuel shipping cask (the S2 case). Both systems were previously found to produce
significant (tens to hundreds of percent) flux tally biases, despite the relative geometric
simplicity of the infinitely reflected models [3].

In this study the magnitude of the undersampling biases was quantified by examining the
“fraction of undersampling,” or the fraction by which tallies differed from their reference values.
The reference value for each tally was obtained by performing multiple Monte Carlo simulations
with different random seeds and using 10,000 particle histories per generation for 10,000 active
generations, a value that was previously found to produce no observable flux tally biases [3]. As
shown in Figure 1, tally biases were observed by varying the number of particle histories
simulated in each generation while fixing the total number of active histories used in the
simulations at 100 million. Each case was simulated 30 times using different random number
seeds to estimate the true variance of the responses of interest. In this study, data points for the
convergence metrics were calculated using between 100 and 10,000 particle histories per
generation, resulting in a spectrum of data points for the same sets of tallies with various degrees
of undersampling. All calculations in this study were performed using the KENO Monte Carlo
code within the SCALE code package [6].

An ideal convergence metric will have a one-to-one relationship with the magnitude of the
undersampling bias observed in tallies in different systems, thereby allowing analysts to
anticipate the degree of undersampling that may occur for a tally estimate, given the value of its
convergence metric. This study examined the potential for the following five metrics to diagnose
and correlate to the magnitude of undersampling biases:

1. Contributing Particles per Generation (see Sect. 2.1)

2. The Heidelberger-Welch Relative Half-Width (RHW) (see Sect. 2.2)

3. The Geweke Z-Score (see Sect. 2.3)

4. The Gelman—Rubin Scale Reduction Factor (R,) Diagnostic (see Sect. 2.4)
5. Tally Entropy (see Sect. 2.5)

Three of the methods (the Heidelberger-Welch RHW, the Geweke Z-score, and the Gelman—
Rubin diagnostics) are commonly used for diagnosing the convergence of Markov chains [7];
two of the methods (the Contributing Particles per Generation and Tally Entropy) are new
convergence metrics that were developed in the course of this study.

2.1 Contributing Particles per Generation

The first tally convergence metric examined in this study was the Contributing Particles per
Generation metric, which simply describes the average number of particles within a single
generation that contribute nonzero scores to a tally estimate. Because undersampling occurs
when too few particles interact with the tally region and when too few particles are used to
sample the fission source of a system, the degree of undersampling observed in a tally should be
inversely proportional to the average number of particles that create tally scores in that region in
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each generation. Figure 2 shows the relationship between the fraction of undersampling and the

contributing particles per generation for each of the eigenvalues and flux tallies in the R2 and S2
cases. Tallies that produced biases containing more than 75% relative uncertainty were omitted
from Figure 2 and from all other figures in this study.
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Figure 2. Effectiveness of the Contributing Particles per Generation metric for predicting undersampling.

As shown in Figure 2 and as expected, the fraction of undersampling in the Monte Carlo
tallies generally decreased as the contributing particles per generation metric increased. While
this trend is more apparent over the entire span of the tally data, it is less apparent for the flux
tallies, especially those that saw ~10 contributing particles per generation. In this range the R2
flux tally data curves backward before decreasing and a significant portion of the S2 tallies
actually see an increased prevalence of undersampling as the number of contributing particles
per generation increased. Therefore, the Contributing Particles per Generation metric was
observed to predict undersampling with some general degree of accuracy, but it did not
effectively predict undersampling biases in all tallies.

2.2 Heidelberger-Welch Relative Half-Width

The Heidelberger-Welch RHW metric examines whether the sample size within a Markov
chain is sufficient to provide accurate estimates for the mean value of a parameter by testing
whether tally scores within the Markov chain vary significantly outside the margin of error of the
confidence interval, a, of the chain. The statistic for the Heidelberger-Welch RHW test is given

by [8]

Zeq_ $./n
RHW = “Ue/DN"n 7 (1)
6
where z(;_q ;) represents the Z-score (the number of standard deviations from the mean of

normally distributed data) of the 100(1- ar/2)™ percentile, n is the length of the Markov chain,
and 6,, and §,, are the estimated mean and variance, respectively, of the members in the chain.

Page 4 of 13



Metrics for Diagnosing Undersampling in Monte Carlo Tally Estimates

The SAS statistical package, a software suite that offers a plethora of statistical analysis tools,
uses a default RHW statistic of less than 0.1 to indicate a sufficiently sampled Markov chain [7].

In this application the elements of the Markov chain were assumed to be scores for a tally
that were produced by individual particle histories within a single generation; therefore, rejection
by the Heidelberger-Welch RHW test indicated that additional particle histories needed to be
simulated within each generation to produce an accurate estimate for the response of interest. An
a value of 0.05 was assumed in this study, and §,, was calculated assuming that particle scores
within a single generation were completely uncorrelated.
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Figure 3. Effectiveness of the Heidelberger-Welch RHW metric for predicting undersampling.

As shown in Figure 3, the RHW metric effectively predicted the onset an magnitude of
undersampling, and there appears to be a much stronger relationship between the RHW values
and the magnitude of the undersampling bias than was observed for the Contributing Particles
per Generation metric. The previously recommended SAS Heidelberger-Welch RHW acceptance
value (0.1) appeared too to be rather stringent in these cases, corresponding to an undersampling
bias of approximately 0.05%; ensuring a less than 1% undersampling bias in this application
required metric values of approximately 0.5 or less.

Several tallies with relatively small RHW values encountered larger undersampling biases
than were expected. This type II error will not be discussed in detail here, but was confined
almost entirely to the most severely undersampled flux tallies with the largest statistical
uncertainties — primarily those at the bottom of the S2 assembly. This behavior was also
observed for the Tally Entropy metrics (to a greater degree), and the Gelman—Rubin diagnostics
(to a lesser degree). These anomalous data points were filtered from the figures in this study
using the “less than 75% bias uncertainty” filtering that was mentioned previously. Some large
RHW scores also produced smaller biases than were expected, but this type I error is preferable
to type II error because it ensures that Monte Carlo analysts will err on the side of caution when
accounting for undersampling biases.
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2.3 Geweke Z-Score

The Geweke Z-Score tests for Markov chain convergence by examining whether the tally
contributions from the first half of the Markov chain differ significantly from those in the second
half [9]. This comparison treats each half of the Markov chain as an independent estimate of the
chain’s half-mean of the tally and computes a Z-score to test whether the two means are
equivalent. The Geweke Z-Score that is calculated is given by

6, -6,

Z =

)

where 6, and 6, represent the tally means from the first and second halves of the Markov chain,
respectively, §,, and §,,, represent the variance of the first and second halves of the Markov

chain, respectively, and n; and n, represent the number of samples in the first and second halves
of the Markov chain, respectively. In this application the Geweke Z-score was calculated by
comparing the nonzero tally scores produced from particle histories in the first half of the
generation to the scores from the second half; a second Geweke Z-score was also calculated by
including the particle histories that produced tally scores of zero, but this metric showed very
little correlation to the undersampling biases and is not discussed in detail in this study. As with
the Heidelberger-Welch RHW and all other metrics in this study, the variance of particle scores
within a single generation was assumed to be completely uncorrelated.
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Figure 4. Effectiveness of the Geweke Z-Score for predicting undersampling.

Figure 4, which shows the Geweke Z-Scores that were calculated for the R2 and S2
problems, indicates that the Geweke Z-Score was somewhat effective at predicting the
undersampling biases. The R2 and S2 flux tallies produced Geweke Z-Scores that showed some
broad correlation with the undersampling bias, but the eigenvalue estimates produced Z-Scores
that showed no (and sometimes inverse) correlation to the undersampling bias. The Geweke Z-
Score may be effective in predicting undersampling in the tally estimates with larger
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undersampling biases (more than 1%), but it could not effectively predict undersampling in
eigenvalue estimates and was therefore determined to be an ineffective metric for predicting the
onset and magnitude of undersampling biases.

2.4 Gelman-Rubin R, Diagnostic

Gelman—Rubin diagnostics assess convergence of Markov chains by splitting the chains into
subchains and testing whether the tally variance within the subchains differs significantly from
the variance between the subchains [10] [11]. In this application the master Markov chain was
the “chain” of tally scores created by particle histories within each single generation, and these
scores were split into three subchains, a common number of subchains when using Gelman—
Rubin convergence diagnostics [7]. The subchains of tally scores were used to calculate the
corrected Scale Reduction Factor (SRF), R., the Gelman—Rubin metric for assessing
convergence of Markov chains. A thorough description of how to calculate R, is available in
Ref. 11. In general, R, values that are close to 1.0 indicate Markov chain convergence, and in
practice R, values that are less than about 1.2 or 1.1 are considered acceptable [7] [11].

As shown in Figure 5, the Gelman—Rubin R, values that were calculated for the R2 and S2
case tallies were able to accurately predict the undersampling biases. In the figure the
undersampling bias grows rapidly for small R, values (<1.02), flattens into a plateau region for
R. values between 1.05 and 1.2, and then again grows rapidly. The historically recommended
minimum R, values for ensuring convergence (less than about 1.1 or 1.2) corresponded to an
undersampling bias of approximately 1%.
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Figure 5. Effectiveness of the Gelman—Rubin R, Diagnostic for predicting undersampling.

The Gelman—Rubin ﬁc has a minimum value of 1, and, as shown in Figure 6, subtracting 1
from the calculated R, values and plotting the results on a log scale gives further insight into the
behavior of the undersampling biases. This plot looks very similar to the Heidelberger-Welch
RHW data plotted in Figure 3, which is promising because it suggests that the two different
metrics are detecting the same (and hopefully true) trend in the undersampled tallies, and the
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relationship between the Gelman—Rubin (R, — 1) values and the undersampling bias is possibly
stronger than the relationship observed for the Heidelberger-Welch RHW.
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Figure 6. Effectiveness of the Gelman—Rubin R, — 1 Diagnostic for predicting undersampling.

2.5 Tally Entropy

The last metric examined in this study, Tally Entropy, is a new metric that was developed
using the information theory concept of Shannon Entropy. The Shannon Entropy, H, of an
information signal with N messages is defined as [12]

N
H== pan ), ©)

where p,, is the probability that a signal is received in the n™ message. Shannon Entropy has
been used previously by Brown and Ueki to detect unconverged fission sources in Monte Carlo
simulations [5]. In their application, Brown and Ueki calculated the Shannon Entropy of the
fission source by imposing a spatial mesh over the model and calculating the fraction of fission
sites that occur in each mesh interval (i.e., the probability that a fission site occurs in a mesh
interval). Shannon Entropy that has not yet converged to an average value indicates that the
fission source is still iterating toward the true distribution of fission sites in the problem and that
additional inactive generations should be simulated. Unfortunately, Shannon Entropy cannot be
used in this way to assess the convergence of Monte Carlo tallies because undersampled tallies
may produce falsely converged Shannon Entropy estimates that are different but
indistinguishable (a priori) from the entropy that would be produced by a converged set of tallies.
Therefore, in this work an alternative approach has been developed for using the concept of
Shannon Entropy to diagnose undersampling in Monte Carlo tally estimates.

The Shannon Entropy of a signal containing N messages can produce a minimum entropy of
zero and a maximum entropy of In (N); the signal will produce an entropy of zero if all of the
signal is received in only one of the N messages, and will produce maximum entropy when
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1. The number of messages in the signal, N, becomes very large and
2. Each message contributes an equal amount of information (p; = p, = py).

These two conditions happen to also be ideal for scoring unbiased Monte Carlo tally estimates:
each tally should receive scores from a large number of particle histories in each generation, and
each particle history should contribute a similarly sized score to the tally estimate. Therefore, the
Tally Entropy convergence metric predicts undersampling biases by calculating how much the
Shannon Entropy of the tally estimate differs from its maximum entropy. The entropy of each
tally is determined by calculating p,, which is the probability that the message (the particle
history) produces a signal (a tally score); p, is therefore interpreted as the fractional contribution
of the particle x to a tally estimate within generation j and is calculated by dividing the tally
score produced by particle x by the sum of the tally scores produced in generation j:

Tally Score of Particle x

= : 4
Px = Sum of all Tally Scores in Gen. j @)
After the p, values are calculated for the particles within a generation, the following
equation is used to calculate the entropy of the scores for tally i in the generation:
Ni,j
Hi,j = - Z Px ln(px) ’ )
Particle x

where N; ; is the number of particle histories in generation j that produced nonzero scores for
tally i. The Tally Entropy test statistic for tally i is then calculated by the following equation:

<ln(Ni,j)> - <Hi,j>
<ln(Ni,j)> ’

where the ( ) operator denotes the average of a value over all active generations.

Tally Entropy; = (6)

Figure 7 shows the tally entropy values that were calculated for the tallies in the R2 and S2
cases. Like the Heidelberger-Welch RHW and Gelman—Rubin diagnostics, the Tally Entropy
metric generally seems to predict the onset and magnitude of undersampling biases. When
plotted in a log-log scale, the Tally Entropy values scale much more linearly than the
Heidelberger-Welch RHW or Gelman—Rubin diagnostics, possibly indicating a more
straightforward relationship between the metric and the magnitude of the undersampling bias;
furthermore, the eigenvalue and flux tally data points show a greater degree of overlap for the
Tally Entropy metric than was observed for the other two metrics, indicating that it may be a
more tally-independent metric for diagnosing undersampling.
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Figure 7. Effectiveness of Tally Entropy for predicting undersampling.

3 METRIC-TO-METRIC COMPARISON

Having identified the Heidelberger-Welch RHW, the Gelman—Rubin R, and the Tally
Entropy diagnostics as potential metrics for predicting undersampling in Monte Carlo tally
estimates, this study then investigated whether or not the different metrics would agree on the
degree of undersampling present in a given tally. This was investigated by comparing the
convergence metrics that were produced for each tally data point, as plotted in Figure 8, and by
determining whether the metrics predict a similar degree of undersampling for each data point.
Figure 8 indicates that there is a strong one-to-one relationship between each of the tally
convergence metrics, which suggests that the three metrics agree on the incidence and magnitude
of the undersampling biases. The convergence metrics stray from this strong one-to-one
relationship for the eigenvalue estimates, and it is yet to be determined whether one metric is
superior at predicting undersampling for eigenvalue estimates.
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Figure 8. Correlation between undersampling metrics: Tally Entropy vs the (Gelman—Rubin R.) — 1 (upper
left), Tally Entropy vs the Heidelberger-Welch RHW (upper right), and the (Gelman—Rubin R,) — 1 vs the
Heidelberger-Welch RHW (bottom).

The Tally Entropy metric was developed using concepts from Information Theory, but it
lacks the mathematical rigor of the Heidelberger-Welch RHW or the Gelman—Rubin diagnostics,
which produce test statistics that can be tested on their statistical significance. The strong one-to-
one relationship between the these metrics and the Tally Entropy metric suggests that it may be
possible to subject the Tally Entropy metric to a statistical test and obtain a more mathematically
rigorous conclusion on whether undersampling has been observed.

4 CONCLUSIONS

This study explored the potential applicability of several statistical metrics for predicting the
occurrence and magnitude of undersampling biases in Monte Carlo eigenvalue and flux tally
estimates. This study examined the prevalence of undersampling biases in eigenvalue and
energy-integrated flux estimates in the models of fuel assemblies in PWRs and shipping cask
cases, and, of the five undersampling metrics that were examined, the Heidelberger-Welch
RHW, Gelman—Rubin R, and Tally Entropy metrics were observed to correlate strongly with
the observed undersampling biases. This study has demonstrated proof-of-principle for the use of
these metrics to predict undersampling. The next phase of this work (and of the AMCT study) is
to repeat this analysis for a much broader set of system responses (including reaction rate tallies,
multigroup flux estimates, and possibly sensitivity coefficient estimates) in a broad range of
applications to determine whether these metrics can truly predict the prevalence of
undersampling biases in Monte Carlo simulations.
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Based on the preliminary results observed in this study, to estimate tally responses with an
undersampling bias of less than 1%, it is recommended that Monte Carlo analysts ensure that the
undersampling metrics for the tallies fall below these threshold values:

* Heidelberger-Welch RHW < 0.50
¢ Gelmen-Rubin R, < 1.05
* Tally Entropy < 0.05
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