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The Case for SCO,, )
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EIA website: accessed April 2014: http://www.eia.gov/oiaf/aeo/




SCO, Recompression Brayton Cycle (RCBC) @ =

= SCO, is a highly recuperative cycle: projected capital costs
expect 50-80% of cycle cost due to heat exchangers

= Two recuperators, one chiller, and one primary heat
exchanger
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Type Examples

Potential SCO2 Brayton Impacts

Salt Scale (H20)
Qil Transport (002)

Precipitation

Particulate Fabrication Shavings
Chemical Reaction Coking
Corrosion Oxide Formation

Solidification Vent Line Freeze-up

1. Decreased heat exchanger performance.
2. Cleaning / replacement of heat exchangers.
3. Local thermodynamic property variation.

1. Erosion of surfaces and sharp corners.

2. Sedimentation of piping, headers.

3. Plugging of heat exchanger channels.

1. Reduced heat exchanger performance

2. Localized hot-spots from high emissivity.

1. Reduction of material thickness.

2. Spallation of weak oxide layers.

3. Reduced heat exchanger performance.

1. Blockage of vent lines and over- pressurlzatlon
of other system components.

2. Mechanical failure due to cold temperatures.

3. Stuck mechanisms from material shrinkage.
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Type Examples Potential SCO2 Brayton Impacts

1. Decreased heat exchanger performance.

Oﬁgjll!::ncsaggr(tl—('égé) 2. Cleaning / replacement of heat exchangers.
L 3. _Local thermodynamic property variation.
1. Erosion of surfaces and sharp corners.

Particulate Fabrication Shavings 2. Sedimentation of piping, headers.
e 3. _Plugging of heat exchanger channels.
Reduced heat exchanger performance
Localized hot-spots from high emissivity.
Reduction of material thickness.
Spallation of weak oxide layers.
Reduced heat exchanger performance.
-Blockage of vent lines and over-pressurization
of other system components.
Mechanical failure due to cold temperatures.

Stuck mechanisms from material shrinkage.

Precipitation

Chemical Reaction Coking

Corrosion Oxide Formation

=W MN 2N =

Solidification Vent Line Freeze-up

w N

More of this data has recently become available for a variety of
conditions (temperatures, pressures) and alloys (Ferritic-Martensitic,
Austenitic, and Nickel alloys) :

University of Wisconsin (Tan, Roman, Cao, Firouzdor), CEA
(Rouillard), and others
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Type Examples Potential SCO2 Brayton Impacts

1. Decreased heat exchanger performance.
Oﬁe'llltr:ncsagjir(tl—('ggé) 2. Cleaning/ replacement of heat exchangers.
3. Local thermodynamic property variation.
1. Erosion of surfaces and sharp corners.
Particulate Fabrication Shavings 2. Sedimentation of piping, headers.
3. Plugging of heat exchanger channels.
: : : 1. Reduced heat exchanger performance
_ChemicalReacton ~  Coking 2. Localized hot-spots from high emissivity.
1. Reduction of material thickness.

Corrosion Oxide Formation 2. Spallation of weak oxide layers.
L 3. Reduced heat exchanger performance.
1. Blockage of vent lines and over-pressurization

of other system components.
2. Mechanical failure due to cold temperatures.

3. Stuck mechanisms from material shrinkage.

Precipitation

Solidification Vent Line Freeze-up

10X Lens 1 mm




. . . . Sandia
Fouling Mechanisms and potential impacts (&&=

Type Examples Potential SCO2 Brayton Impacts

1. Decreased heat exchanger performance.

2. Cleaning / replacement of heat exchangers.

3. Local thermodynamic property variation.

1. Erosion of surfaces and sharp corners.
Particulate Fabrication Shavings 2. Sedimentation of piping, headers.

3. Plugging of heat exchanger channels.

: : : 1. Reduced heat exchanger performance
Chemical Reaction Coking 2. Localized hot-spots from high emissivity.

1. Reduction of material thickness.
Corrosion Oxide Formation 2. Spallation of weak oxide layers.
3. Reduced heat exchanger performance.

Salt Scale (H20)

Precipitation Qil Transport (CO2)

1. Blockage of vent lines and over- pressurlzatlon
of other system components.

2. Mechanical failure due to cold temperatures.

3. Stuck mechanisms from material shrinkage.

Solidification Vent Line Freeze-up




Precipitation: SCO, Inlet Fouling @&
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Product analysis ) S
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off hydrocarbon fouling




Turbine-alternator-compressor (TAC)

Tie Bolts (Pre-stressed) Low Pressure Rotor Cavity

» Lower pressure cavities within the TAC are
perfect place for saturated solutions to crash out

« Gram-sized samples were found in drain cavities
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Tar Analysis h) =,
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Analysis:

« Sequentially exposed to organic solvents: hexane, diethyl ether, toluene,
acetone, dimethylformamide, and dimethylsulfoxide

* Nuclear Magnetic Resonance Spectroscopy (NMR): hexane solution was
evaporated leaving behind colorless oily residue.
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Take away thoughts ) .

= Cleaning procedure of piping/components/wetted surfaces
= Historically it has been an alcohol wipe until clean
= Use of solvents such as hexane will be pursued

= Purity of CO,
= 99.85% grade CO, has been used in the past

= 99.95% grade CO, is being used currently, but there are still concerns
over impurity content

= Based on the number of fills and tests, hydrocarbon impurity of 5ppm
would contribute 22 grams over RCBC lifetime.




Conclusion )

= QObserved inlet fouling was observed on PCHE units

= Mixtures of stainless steel, dirt, and hydrocarbon

= Accumulation of a oil (hydrocarbon and silicone) was found in
the turbine-alternator-compressor shaft cavity

= Products accumulate relatively quickly; tens to hundreds of
hours

= Source of products are unclear, but could be due to
inadequate cleaning of wetted surfaces and impurities from
gas bottles.




Questions as we look forward ) s,

= Best O&M practice for PCHEs if plugging/fouling continues??

=  Hydraulic: water cleaning, high pressure water blasting, ultrasonic
cleaning?

= Abrasive: rodding, drilling, sandblasting, pigging and scraping,
turbining?

= Thermal: steam cleaning?
=  What is the “Right” CO, chemistry?

= Likely an optimally determined balance of materials needs between
the heat exchangers and turbomachinery.

= Qver time this will evolve as more operating experience is gained.




Questions? )




Heat Exchanger Fouling and Cleaning™

" Fouling and Cleaning is always a hot topic in Rankine plants.
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Stainless Steel Selection ) e,

MNi-Cr-Fa
ABCYS
*
mwit Add Ni lor corrosion Superduphex
ininiess siesls resistance in high-lemperature stainless steels
\ A . Add S or Sa
Add Cr, Mo for machinabiliity A Cr, Ni, Mo, N
| 309, 310, 314, 350 | re——
siamiss
steels
Add Cr and Ni for strength
No Ni, flerfitic  ang oxidation resistance A G o, s,
ower Mi
¢ /h'ﬂm"#""l
" Add Cu, Ti, Al
- reduce sonsibFaton Fe-18Cr-10Mi peeciphation pr-orervd
hardening
ﬁﬂd I-ln and N, lower Ni
Add Ti 1o Add Mo lor higher strength
EI -e- rEdUCE SANIERIGN pitting resistance
D
recuce Mo Ni addition,
",..DBHEIIIIIMH lower Cr,
Lt Add more Mo for martensitic Lmr S. high-N grades:
ping resistance 45655, 2418 MoN,
Rax 734
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stanless steels A o cOMosion
resislance

Asm International, H. C. (1990). ASM handbook. Materials Park, OH, ASM International.
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Corrosion Resistance of Nickel Alloys

Stainkess steels
Adicys 601,
617, 214, 45TM I
Add I
A fo _AddFe _ _ _ Alloys 825, G-3,
50 Cr-50Mi I G-30, 28, 20Cb-3,
alicy I 20Mo-4
Add C for ! Add Mo, Cu for
Tl ash Add Cr, Al lor ] resstance 1o chiorides.,
TESIBLANCH ootk ERON 1 i"’ Fisiucing mcics
resisiance
Alloy 630 | Atloys 800, 800, 802 |
el
Add Cr, lower C lor oxidizing Add Fe for economy,
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TESISIANCE carburization resistance
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ol DL oy fo ik
- ; Mi-15Cr-8Fe -temp. strength.
':"5;'?-53'5- chiorices, acids ddaBon reslstence
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for strength Add Mo for
regisiance
b s LCing
Alley X750 acids, halogens
Add Co, Mo, B, Zr, W, Cb Add Cu for resistance 10
for gas turtsne PRCUCING RIS, Soiwaler
requiraments
Alloys B,
B-2, B-10
Add _ o o Alloys 400,
Cu R-405, K-500

Asm International, H. C. (1990). ASM handbook. Materials Park, OH, ASM International.
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