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The goal of this research is to determine whether plasmon excitation can impact redox
potentials of molecules at or near nanopatrticle electrode surfaces and deduce the relationship
between plasmon-mediated electrochemical reactions and the nanoscale structure of the
nanoparticle electrodes. Two major accomplishments were made on this work while the Pl was
at the University of Texas:

1. Bulk electrochemical studies were performed using block copolymer templated nanoparticle
arrays to probe redox reactions on nanoparticle array electrodes.

2. Local electrochemical reactivity was probed using super-resolution imaging of single
nanoparticle aggregates, finding that “hot spots” were associated with specific redox properties
of molecular adsorbates.

The first of these accomplishments focuses on the spectral response of plasmon-mediated
electrochemistry, while the second deals with the spatial/structural response of plasmon-
assisted electrochemical reactions. Each of these accomplishments will be discussed in more
detail below.

Bulk electrochemical studies on nanoparticle arrays

Array development. Our first task was to create nanoparticle arrays that are (1)
inexpensive, (2) wide area, (3) reproducible, and (4) electrochemically addressable. We
developed a simple method based on block copolymer templates. Briefly, a poly(methyl
methyacrylate)-polystyrene (PMMA-PS) block copolymer is spin coated onto an indium tin oxide
(ITO) coated-glass slide and annealed at high temperatures, allowing the block copolymer to
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(A-D), as well as localized surface plasmon resonance (LSPR) spectra associated with arrays
with varying disk diameter, height, and metal (Figure 1D).
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then fabricated a series of nanoparticle arrays with

differing plasmon resonances, measured the Nile Blue SERS intensity as a function of potential
with both 532 nm and 642 nm excitation, and plotted the SERS half-wave and onset potentials
as a function of the array LSPR maximum. Figure 3 shows the results of the reduction and
oxidation onset potentials as a function of LSPR.

The data shows some interesting trends. First, the SERS reduction onset potential
shows a clear response to the plasmon resonance of the array, with the reduction potential
shifted towards more positive values when the LSPR of the array is centered around 670 nm.
Second, this LSPR-dependent reduction onset potential trend is observed with both red and
green excitation, although the magnitude of the shift is larger when the wavelength of the laser
is closer to the plasmon resonance of the array. A similar LSPR-dependent trend is not obvious
in the oxidation onset data, although a larger data set is needed to confirm the presence or
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Super-resolution imaging of local redox potentials on single nanoparticle aggregates.
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The next accomplishment involves using super-resolution SERS imaging of Nile Blue on noble
metal nanoparticle aggregates to map the spatial dependence of the electrochemical response
on plasmonic nanopatrticle electrodes. In these experiments, silver or gold nanoparticles are
prepared in solution and Nile Blue is either physisorbed or chemically attached to the
nanoparticle surface. Then, nanoparticles are aggregated through the addition of salt, and
dropcast onto ITO-coated coverslips. The samples are then mounted in an inverted optical
microscope and Nile Blue SERS is excited by either 532 nm or 642 nm laser excitation. The
resulting SERS from individual nanoparticle aggregates is imaged onto a CCD camera, where
each aggregate appears as a single diffraction-limited spot. To extract how the spatial origin of
the SERS emission is impacted by the changing in applied potential, we fit each diffraction-
limited spot to a 2-dimensional Gaussian, as shown in equation 1.
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In equation 1, z, is the background, Iy is the peak intensity of the diffraction-limited spot, s, are
the standard deviations of the Gaussian in x and y, and X, and y, are the centroid of the fit. We
approximate the position of the centroid (Xo, Yo) as the location of the emitter.
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behavior to site-specific redox
potentials, in which the potential at which a molecule is oxidized or reduced is directly related to
its position on the nanopatrticle aggregates surface.

To test this hypothesis, we performed correlated optical and structural studies, in which
samples were moved to a scanning electron microscope (SEM) following the optical
experiments. This allows us to compare the potential-dependent SERS centroids with the
actual structure of the nanoparticle aggregate. Figure 5 shows two examples of Nile Blue SERS
centroids, color-coded by the associated potential, and overlaid on the SEM images of the
corresponding nanoparticle aggregates.? In both examples, the centroid changes position as a
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function of the applied potential, as shown in the left column, in which all centroid positions are
shown. In the three rightmost columns of Figure 5, the centroid positions calculated when the
applied potential was within three representative 100 mV windows are shown. At the most
positive potentials, when all Nile Blue molecules are expected to be oxidized and therefore
emitting (column 2, pink data), the centroid positions converge to a single position, reflecting a
super-position of all of the active Nile Blue emitters. At intermediate potentials (green data,
column 3), the centroid is spread out over the nanoparticle, reflecting the changing populations
of Nile Blue molecules
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with strong
electromagnetic field enhancement in the junctions. Thus, these data suggest a relationship
between the redox potential of Nile Blue molecules and their location on the nanoparticle
surface, with molecules sitting at hot spots showing the most negative reduction and oxidation
potentials.

Conclusions.

The work performed at the University of Texas at Austin suggests both a spectral and spatial
dependence of electrochemical reactions on plasmonic nanoparticle electrodes. Understanding
how both variables impact observed electrochemical activity on these substrates will be the
focus of continued efforts at the Temple University in the remaining three years of this award.



