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Disassembly time of deuterium-cluster-fusion plasma
irradiated by an intense laser pulse

W. Bang?
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Abstract

Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an
intense laser pulse (>10*® W/cm?) produce DD fusion neutrons for a time interval determined by
the geometry of the resulting fusion plasma. We present an analytical solution of this time
interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape.
Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion
neutron yield and compare with an independent calculation of the yield using the concept of a
finite confinement time at a fixed plasma density. The calculated neutron yields agree
quantitatively with the available experimental data. Our one-dimensional simulations indicate
that one could expect a ten-fold increase in total neutron yield by magnetically confining a
10 keV deuterium fusion plasma for 10 ns.
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|. Introduction

Numerous studies have considered the dynamics of laser-cluster-fusion reactions [1-13],
and the explosion dynamics of individual clusters has been rigorously examined both
theoretically and experimentally [14-22]. Although less attention has been paid to the study of
the disassembly time of the plasma, an attempt had been made to measure the fusion burn time
[23]. Collectively, these studies have expanded our knowledge of the details of laser-cluster-

fusion experiments and have motivated the evolution of models of laser-cluster-fusion.

In Ref. [23], Zweiback et al. measured the fusion burn time using neutron time-of-flight
detectors with thin plastic scintillators. Not having an evolved fusion yield model as we have
now [24-26], their simulation predicted a fusion burn time of less than 100 ps, clearly at odds
with their measured burn time of ~500 ps. Given the proper selection and preparation of their
neutron diagnostics, this is too big of an error, which needs to be addressed in order to validate
the current laser-cluster-fusion yield model. While they attribute the discrepancy to the
insufficient time resolution of their neutron detectors [23], our simulations performed under the
reported experimental conditions suggest that their measurements were likely to be accurate

enough and explain where the discrepancy originates.

In previous theoretical and experimental works regarding laser-cluster-fusion
experiments, it has been proposed that the disassembly time of the resulting fusion plasma would
be on the order of ro/<v> [1,2,12,17,19,27], where Iy is the initial radius of the plasma (=
approximately equal to the radius of the incident intense (>10*® W/cm?) laser beam on the cluster
jet) and <v> is the mean speed of the energetic deuterium ions within the fusion plasma. In this
article, we examine the validity of this assumption by applying a more realistic fusion yield
model, one in which the number density of energetic deuterium ions drops as the cylindrical
fusion plasma expands in time. We show that one can derive an analytical solution of the

disassembly time, or the confinement time, which results in the same expected fusion neutron



yield assuming a constant number density of energetic deuterium ions. We also show the

comparison between the predictions of our model and the available experimental data.

I1. Laser-cluster-fusion model

In laser-cluster-fusion experiments using deuterium gas (or, alternatively, using
deuterated methane gas), intense (>10"° W/cm?) ultrashort laser pulses irradiate the target,
deuterium clusters. Deuterium clusters are 1-10 nm radius aggregates of deuterium molecules,
bound at liquid density by van der Waals forces. These clusters are produced by forcing cold
(80-100 K) deuterium gas under high backing pressure (~50 bar) through a supersonic nozzle
into a vacuum [28]. If the incident laser field is sufficiently intense [29,30], the laser-cluster
interaction leads to an explosion of the individual clusters generating energetic deuterium ions.
The resulting deuterium fusion plasma is intrinsically cylindrical in geometric shape [29]
because the incident focused laser beam is usually round and the laser pulse energy is not
depleted until it propagates several mm within the cluster jet at an average atomic number

density of 10'®-10"° cm™.

The so-called Coulomb explosion model has been successful in explaining how and how
much the ions gain energy from the laser pulse, and has shown both qualitative and quantitative
agreement with experiments [1,2,5,7,8,30]. According to this model, the electrons in a
deuterium cluster first absorb the laser pulse energy as the atoms are ionized. These electrons
further absorb the laser pulse energy through several absorption mechanisms [14], and escape
from the cluster on a time scale short compared with the ion motion. Consequently, the highly
charged clusters of deuterium ions at liquid density promptly explode by Coulomb repulsion,

creating a hot (multi-keV) deuterium plasma.



The resultant deuterium ions are so energetic that they generate nuclear fusion reactions
as they collide with each other within the plasma (beam-beam contribution). Nuclear fusion can
also occur when the energetic deuterium ions collide with cold deuterium atoms or ions in the
background cluster jet outside of the hot plasma (beam-target contribution) [6]. These fusion
reactions produce a burst of 2.45 MeV neutrons from D(d, *He)n reaction and 3.02 MeV protons
from the D(d, t)p reaction, whose pulse duration is determined by the geometric shape and size
of the hot deuterium fusion plasma. The expected total fusion neutron yield can be expressed as

[19,29]

t
Y= ffnlz) < GD(d, 3He)nv >kT av + Nionan < GD(d, 3He)n >kT/2 dl, (l)

where tq is the disassembly time of the fusion plasma, np is the number density of deuterium ions,
< Op@a, 3HeynV kT is the fusion reactivity for the D(d, ®He)n reaction at an ion temperature of
KT defined as two thirds of the average kinetic energy of the hot deuterium ions [29], dV is the
volume element of the fusion plasma, N, is the total number of energetic deuterium ions,
< Op(a, 3Heyn kT/2 approximates the velocity-averaged D(d, °He)n fusion cross-section
between hot ions in the plasma and cold atoms or ions in the background cluster jet, and dI

indicates integration over the dimension of the cluster jet.

The first term in Eq. (1) represents the beam-beam contribution, with the integration over
the volume of the plasma, while the second term represents the beam-target contribution, with
the integration over the length, |, of the cluster jet, where | varies from the initial radius of the
cylindrical plasma, ro, to the radius of the cluster jet, R. Given the near-Maxwellian velocity
distribution of the hot ions observed experimentally [19,29], one can calculate the fusion
reactivity and the velocity-averaged fusion cross-section using the known DD fusion cross-
sections [31]. The velocity-averaged fusion cross-section is evaluated at kT/2 because the energy
distribution of the hot ions is well fit by a Maxwellian with a temperature of kT and the cold

background atoms or ions can be considered stationary.



I11. Disassembly time of the plasma

The beam-beam contribution in Eg. (1) can be rewritten as
1 -
Yob = 5 [[ np (R, 6)? < g 3peyn? Skrie dVdt, 2)

where the number density of the energetic deuterium ions within the plasma, np(X,t), is no longer
assumed to be a fixed value in time, and becomes smaller as the plasma expands in time. In this
section, we aim to evaluate Eq. (2) with several assumptions and find an analytical solution for

the disassembly time of the plasma.

Figure 1 shows our model for the cylindrical fusion plasma at time t, where its radius
increases as a function of time as r(t)= ro + <v>t, and its length is expressed as L(t)=Lo + 2<v>t
with Lo being the initial length of the cylindrical plasma at t=0. We further assume that the
fusion plasma is spatially homogeneous, and np(x,t) and kT(x,t) are functions of time only. Then,
the average number density of energetic deuterium ions within the plasma at time t becomes
No(t)= Nion/V(t), where the volume of the cylindrical plasma at time t is V(t)=nr(t)’L(t). Note that

Nion remains nearly constant in time, and can be written as

Nion = an (t)av. 3)

Therefore, within the homogeneous cylindrical plasma, Eq. (2) is simplified as

Nion
22 [np(t) < 0p(g, 3Hey? k(e AL, (2a)

Ypp =

where KT(t) is the average temperature of the fusion plasma at time t. As the plasma expands in
time, the hot ions encounter cold background atoms and ions and transfer some of their kinetic
energy to the cold background. This energy transfer causes a drop in kT(t) as the plasma expands
in time, which can be estimated by calculating the stopping powers with a Monte Carlo
simulation code, SRIM [32,33]. In laser-cluster-fusion experiments where the overall density is

that of a gas (average atomic number density of 10'®-10'° cm™), these energy losses are usually



small (~5% in Ref. [25]). Unless the gas jet density is particularly high, one can assume that kT(t)
remains nearly constant in time. This assumption further simplifies Eq. (2a), and the beam-beam

contribution can be approximated as

Nion Nion
Ybb =~ T < GD(d, 3He)nv >kT fmdt, (2b)

where np(t) = Nigo/nr(t)L(t) was used. Inserting the expressions for r(t) and L(t), Eq. (2b)
becomes an explicit function of time,

Nio 1

2 o
~ n
Yop = 2 < 9p(d, 3HeynV ZkT fO (ro+ <v>t)2(Lo+2<v>t) dt, (2¢)
where the total yield is calculated integrating from t=0 to co.
For Lo # 2ro,
-1 1 1
I 1 = [ 2(50-r()? To—z7g (2-rp)2 : )
0 (ro+ <v>t)2(Lo+2<v>t) 20 L(rg+<v>t)  (ro+<v>t)2  (Lo+2<v>t)d
and the beam-beam contribution is
~ Nion® 1 11 Lo
Yop » o < 9D, 3HeynV kT 5,3 [(%"—To)ro (LZ_O_TO)Z ln(ZrO)]- (2d)

On the other hand, for a spatially homogeneous plasma, the first term in Eg. (1) can be

written as

2
Nion

nr02L0 !

()

ta 2 _ta
?an < Opia, eV Zhr AV =5 < Op(y 3peyn? Skt
where np= Nion/mro>Lo Was used.

Equating Eq. (2d) and (5), we have the analytical solution for the disassembly time,

réLg 1 1 Lo

= T - 51 . 6
2<v> [(TO_TO)TO (Lo ) n(Zro] 6)

ta




Defining the aspect ratio, a = Lo/(2ro) (#1), Eq. (6) can be written as

T a alna] — To
ta = <v>la-1  (a-1)21 7 7 <v>’ (7)

Indeed, the disassembly time of the fusion plasma is on the order of ro/<v>, where y is
defined as a function of the aspect ratio in Eg. (7) and ranges from 0 to 1. Figure 2 shows vy for
different aspect ratios varying from 0 to 10. In the limiting case when o approaches 1 (marked
as a dashed line, diameter=length), y becomes 0.5, which is confirmed by directly integrating Eq.
(2c) after substituting Lo with 2ro. When a approaches infinity (thin filament cases occurring in
most of the laser-cluster-fusion experiments), y becomes 1 and the disassembly time is simply

ro/<v>.

The physical meaning of ty is implicit in the two equations, Egs. (2d) and (5), used to
derive this time duration above. In Eqg. (5), the number density is assumed to be constant in time,
while the number density drops in Eq. (2d) as the plasma expands in time. In Eq. (5), nuclear
fusion only occurs for a time duration ty, whereas fusion occurs without any time limit in Eq.
(2d). Defining the disassembly time as in Eq. (7), we find that this time duration can be
considered as the confinement time during which the beam-beam nuclear fusion reactions occur
at a fixed density. Although this interpretation is physically incorrect, it simplifies the
calculation of the beam-beam contribution and results in the same neutron yield as long as the
confinement time is defined as in Eq. (7). Note that the disassembly time defined here applies to
the beam-beam contribution only, and the beam-target fusion reactions are not affected by this

calculation.

IVV. Comparison with available experimental data

Equation 2(c) gives the explicit analytical expression for the fusion neutron yields within

the plasma at each time step. Likewise, the beam-target contribution can be calculated for each



time step using the above model. For this calculation, we consider the volume swept by the hot
ions because only the hot ions that occupy the originally cold background region contribute to

the fusion yield during the time interval dt. The beam-target contribution is given by

o0 V(t)-V,
th ~ fo (Nion T)O)nD < O-D(d, 3He)n >m< v > dt, (8)
2

where Vo=nr¢’Lo is the volume of the plasma at t=0, and Nion(V(t)- Vo)/V(t) is the number of hot
deuterium ions in the cold background region responsible for the beam-target fusion reactions. It
is assumed that the number density of cold background gas is a fixed value in time, ~np
[19,28,34]. If any dimension of the cylindrical plasma exceeds the size of the cluster jet, the

fraction of the hot ions has to be adjusted accordingly.

Using Egs. (2a) and (8), we perform one-dimensional (1D) simulations calculating the
neutron yield as a function of time. In Fig. 3(a), we use the parameters reported in Ref. [23], and
calculate the fusion yield per each 10 ps time step. For this simulation, we assume half of the
laser pulse energy goes into the Kkinetic energy of the energetic deuterium ions, which is a valid
assumption that has been studied theoretically [4,11] and has been confirmed experimentally in
several laser-cluster-fusion experiments [13,29]. Thus, we obtain the following relation from the

energy conservation law,
Ejgser 3 3
BLoser = Ny (E kT) = (npmriLy) (E kT), 9)

where Ejasr IS the laser pulse energy and the average kinetic energy of the ions is 3kT/2. Ref. [23]
notes that Ejaser=0.12 J, Lo=2 mm, kT=8 keV, and np=2x10" cm™ from their measurements, and
the extent of their cluster jet is 2 mm [1]. Instead of using the laser focal size given in Ref. [23]
for ro, we use Eq. (9) and calculate Nign (=Ejaser/(3KT) =3.1x10™ ions) and ro (=16 pum). This is a
necessary step because the energy conservation law must be obeyed. Since the reported

deuterium number density is rather high, we consider the energy loss to the cold background



atoms in our 1D simulations, which indicates that the average plasma temperature drops from

8 keV to 5.2 keV as the plasma expands.

Figure 3(a) clearly shows that fusion neutrons are produced beyond several hundred ps,
in sharp contrast with the originally predicted fusion burn time of less than 100 ps from the 1D
simulation in Ref. [23]. Figure 3(b) shows the total neutron yield (black line), the beam-beam
contribution (blue line), and the beam-target contribution (red line) as a function of time from 0
to 2 ns. We find that the measured full-width-at-half-maximum (FWHM) fusion burn time of
~0.5 ns in Ref. [23] is in good agreement with our 1D simulation, where 73% of the total fusion
reactions occur during the first 0.5 ns. (Note that the area within the FWHM of a Gaussian
function is 76% of the total area.) The figure shows that the beam-target contribution becomes
dominant after about 0.1 ns. Owing to the limited size of the cluster jet (=2 mm), the beam-
target reactions stop contributing to the total fusion neutron yield after about 1.1 ns. Besides
matching the measured fusion burn time, the expected total neutron yield in Fig. 3(b) also agrees

with the measured neutron yield of 10* n/shot from the same experiment [23].

For an indirect but independent validation of the model, we performed 1D simulations
using the experimental conditions reported in recent laser-cluster-fusion experiments [24,26] on
the Texas Petawatt laser [35]. Then, we compared the predicted total neutron yield from our
model with the experimentally measured neutron yield in Refs. [24,26]. In Ref. [24], an 18 keV
deuterium plasma produced 1.9x10" neutrons in a single shot. The measured radius of the focal
spot was ry=0.64 mm, and the length of the plasma was Lo=5 mm. A Faraday cup measured the
number of energetic deuterium ions, Nio,=1.5x10'° ions, assuming an isotropic emission of the
ions, and the average number density of deuterium ions was calculated from the above values,
np=2.3x10" cm™. On this shot, 38% of the incident laser pulse energy (=172 J) went into the

kinetic energy of the energetic deuterium ions (Nionx3kT/2 = 65 J).



Figure 4(a) shows the neutron production rate (neutrons per 10 ps) from 0 to 1.5 ns.
Obviously, the fusion neutrons are continuously produced well beyond the first 1 ns. Figure 4(b)
shows the predicted total neutron yield (black line), the beam-beam contribution (blue lines), and
the beam-target contribution (red line) as a function of time from 0 to 5 ns. The black line shows
that neutrons are produced for about two nanoseconds under this experimental condition. The
predicted total neutron yield agreed well with the measured neutron yield indicated as a
horizontal dashed black line. The beam-beam contribution is dominant in this case owing to the

large volume of the fusion plasma combined with a relatively low np.

Though Ref. [26] already showed good quantitative agreement, we continued the
comparison for the rest of the shots reported in Fig. 5(b) of Ref. [26]. Instead of using ro/<v> for
the disassembly time as in Ref. [26], we used Eq. (7), which resulted in slightly better

quantitative agreement with the experimental data.

V. Application of the model — magnetically confined plasma

There have been efforts to confine the deuterium-cluster-fusion plasma magnetically for a
higher fusion yield [36-39]. It is estimated that a megagauss magnetic field could confine
~10 keV deuterium plasmas [36]. In this section, we assume a radially confined fusion plasma
for 7. The temperature of the fusion plasma is assumed to be lower than 20 keV because 18 keV
is the highest temperature observed with deuterium clusters to date [24,26]. Calculation of the
classical diffusion rate indicates insignificant diffusion in the radial direction, so the diffusion

effect was neglected in the simulation.

When the fusion plasma does not expand radially, the total neutron yield can be written

as below since the beam-target contribution during the confinement time, z, is minimal.

1
+2<v>t) ]

(10)

~ Nion® T
Yoonfinea = == < Opa, 3uem? >wr Jo 77

10



where nuclear fusion reactions occur during the confinement time only, and the number density

of deuterium ions drops as the plasma expands longitudinally in time.

Comparing Eq. (2d) and Eqg. (10), we find that the neutron yield from the beam-beam

fusion reactions is enhanced by the following ratio through magnetic confinement of the plasma.

Yconfined ~ Zln[l + 2<‘U>T]’ (11)
Ypb 14 Lo

where oy is a function of the aspect ratio only, which increases monotonically with the aspect
ratio as shown in Fig. 5(a). The aspect ratio, however, cannot increase indefinitely because the

size of the cluster jet limits Lo to be less than 2R (see Fig. 1) and the plasma has a finite volume.

Figure 5(b) shows the enhancement factor for =10 and =10 ns while the temperature of
the plasma varies from 0 to 20 keV. According to the plot, confining a 10 keV fusion plasma
with =10 for 10 ns results in an increase in the neutron yield from the beam-beam contribution
by twenty times. Since the beam-target contribution is comparable to the beam-beam
contribution in the unconfined ~10 keV plasma, one can expect a ten-fold increase in the overall

neutron yield via magnetic confinement.

It is interesting to note that extending the confinement time further from 10 ns to 100 ns
would only increase the neutron yield by about twice, as shown in Fig. 5(c). This is owing to the
rapid drop in the number density of deuterium ions as the plasma expands freely in the
longitudinal direction. Figure 5(d) shows the number density as a function of time for both the
radially confined case (solid black line) and the unconfined case (solid red line) with =10 at
kT=10 keV. The red line quickly drops from the initial number density of 10 cm™, and
becomes practically zero after about 1 ns. Although the number density drops much slowly in
the radially confined plasma, the density after the initial 10 ns is too low for efficient fusion
reactions, resulting in the low vyield enhancement seen in Fig. 5(c) with extending the

confinement time beyond 10 ns.
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The above analysis indicates that the magnetic confinement works most efficiently when
one expects a large aspect ratio (filament-like plasma). Since Ly has an upper limit of 2R, this
statement is equivalent to saying that it works best on a small-scale laser system where the laser
pulse energy is small (~1 J) and the volume of the resulting fusion plasma is small. For example,
a5 mm long 18 keV fusion plasma that is radially confined for 10 ns at np=2x10" cm™ produces
8x10° neutrons in a single shot with a 1 J laser pulse (0.5 J going into the kinetic energy of the

ions) according to our 1D simulation.

V1. Conclusions

We derived the analytical solution for the disassembly time of a symmetrically expanding
cylindrical fusion plasma considering the beam-beam contribution to the neutron yield. We
presented an analytical expression for the time-dependent beam-target contribution, and
combined both contributions to calculate the expected fusion neutron yield as a function of time.
Our 1D simulation for the neutron production rate correctly reproduced the measured fusion burn
time in Ref. [23]. The expected total neutron yields from our 1D simulations were in good
agreement with the experimentally measured neutron yields in Refs. [23,24,26]. Applying our
model, we investigated the effectiveness of the magnetic confinement of the cluster-fusion
plasma in the radial direction, and presented a simple relation showing the enhancement factor in

the fusion yield from the beam-beam contribution.

Since the model presented in this article assumed a spatially homogeneous cylindrical
plasma, one might expect some deviation from the model when the incident laser intensity is far
from flat-top or Gaussian. In such cases, a proper numerical 2D modeling would be necessary to

describe more complex interaction geometries.
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Figures

Supersonic nozzle
2R

Background gas

L(f)=Ly+ 2<v>t

FIG. 1. (Color online) Symmetrically expanding cylindrical fusion plasma model. The
cylindrical deuterium plasma with an initial radius ro (= radius of the incident intense (>10%
W/cm?) laser beam) and length Lo expands symmetrically in every direction at a speed <v>
determined by the plasma temperature. The geometric shape of the expanded plasma at time t is
approximated as cylindrical although the edges are smoothed out in time. The exit diameter (2R)
of the supersonic nozzle limits the initial size of the plasma.
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FIG. 3. (Color online) (a) Neutron production rate (number of neutrons produced during 10 ps
intervals, indicated as solid black circles) as a function of time from 0 to 1 ns. A dashed line at
0.5 ns indicates the measured fusion burn time (FWHM) in Ref. [23] under the same
experimental conditions. (b) The total neutron yield (black line), the beam-target contribution
(red line), and the beam-beam contribution (blue line) as a function of time from 0 to 2 ns.
About 73% of the total neutron yield is produced during the first 0.5 ns (indicated as a dashed
line), consistent with the experimentally measured FWHM fusion burn time of ~0.5 ns in Ref.
[23].
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FIG. 4. (Color online) (a) Neutron production rate (neutrons per 10 ps, indicated as solid black
circles) as a function of time from 0 to 1.5 ns. (b) The total fusion neutron yield (solid black line)
as a function of time from 0 to 5 ns. The solid blue line indicates the beam-beam contribution,
while the solid red line indicates the beam-target contribution. The beam-beam contribution is
larger than the beam-target contribution. A dashed black line is drawn to indicate the
experimentally measured neutron yield of 1.9x10" n/shot [24,26].
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FIG. 5. (Color online) (a) a/y as a function of the aspect ratio, a. A vertical dashed line is
drawn for a=10. (b) The yield enhancement factor, Y confined/ Yob, VS. plasma temperature from 0
to 20 keV. At 10 keV (indicated as a vertical dashed line), Y confined IS €Xpected to be twenty times
larger than the beam-beam fusion yield from an unconfined plasma. (c) The yield enhancement
factor for different confinement times varying from 0 to 100 ns. A vertical dashed line is drawn
for 10 ns confinement time. Note that the total neutron yield increases by about twice while the
confinement time increases from 10 ns to 100 ns. (d) The number density of the energetic
deuterium ions for the radially confined (solid black line) case and for the unconfined (solid red
line) case.
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