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ABSTRACT

Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our
understanding of their environmental importance remains limited. Here we present an
investigation of abiotic nitrite (NO,) reduction by Fe(Il) or ‘chemodenitrification,” and its
relevance to the production of nitrous oxide (N,O), specifically focusing on dual (N and O)
isotope systematics under a variety of environmentally relevant conditions. We observe a range
of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8),
higher concentrations of Fe(Il) and in the presence of mineral surfaces. A clear non-linear
relationship between rate constant and kinetic isotope effects of NO, reduction was evident
(with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of
Fe(IT)-N reaction intermediates. N and O isotopic composition of product N,O also suggests a
complex network of parallel and/or competing pathways. Our findings suggest that NO;
reduction by Fe(II) may represent an important abiotic source of environmental N,O, especially
in iron-rich environments experiencing dynamic redox variations. This study provides a multi-
compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO;’
reduction and N,O formation, helping future studies constrain the relative roles of abiotic and

biological N>O production pathways.
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INTRODUCTION
Evidence is mounting for the environmental importance of interactions between iron (Fe)
and nitrogen (N) in biogeochemistry. For example, the reduction of Fe(Ill) coupled to the

1-3

oxidation of ammonium (‘feammox’) has been recently demonstrated in soils ~, while the

reduction of nitrate or nitrite coupled to the oxidation of Fe(Il) — or chemodenitrification — has
been demonstrated across studies of both soils and bacterial cultures and/or enrichments *°.
Despite the potential importance of these processes in the fate of nitrogen, our understanding of
their significance remains limited. In particular, a number of these reactions may be catalyzed
both chemically and biologically and the resulting nitrogenous products vary widely, including
ammonium (NHy"), nitric oxide (NO), nitrous oxide (N,O) and dinitrogen (N,). The relative
contribution of these reaction pathways, therefore, has wide implications for ecosystem function
(e.g., N retention/loss) and production of potent greenhouse gases. Furthermore, distinguising
between biologically and chemically catalyzed pathways has important implications for
geobiology, including an improved understanding of the evolution of iron and nitrogen based
metabolic systems and a mechanistic understanding of biologically mediated transformations of
nitrogen, iron and carbon across a host of modern and historical environments '°.

Natural abundance isotopes of nitrogen and oxygen have proven useful as tools for
disentanglng complex networks of environmental nitrogen transformations ''. In large part, these
efforts rely on information gained from environmental samples and/or from experimental

cultures grown under environmentally relevant conditions aimed at carefully constraining kinetic

isotope effects ("¢ and "¢, for N and O, respectively), as well as establishing the nature of

18,.15
€

coupling between isotope effects ("“e:’¢). Nevertheless, there remain important gaps in our

understanding, in particular with respect to important isotope effects involving key nitrogen
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intermediates including nitrite (NO;), nitric oxide (NO), nitrous oxide (N;O), and
hydroxylamine (NH,OH). For example, although the dual isotope systematics for biologically
mediated oxidative processes involving NO, have been characterized (e.g., NO,™ formation by
NH," oxidation '*) and NO,™ oxidation to NO;™ ", information on the dual isotope systematics of
reductive processes involving NO,", whether biological or abiotic, is more limited '*"”.

Specifically, there has been little investigation into the kinetic isotope effects of N and O
catalyzed by abiotic chemical reduction of NO,™ by Fe(II) — or ‘chemodenitrification”'”'*. These
types of reactions may represent an important control on the dual NOs;™ and NO, isotopic
composition in reducing environments high in iron but low in organic carbon (e.g., aquifers) as
well as in environments experiencing dynamic redox fluctuations (coastal sediments, estuaries,
rivers). Moreover, although abiotic reactions are thought to contribute significantly to the
production of the potent greenhouse gas N,O, little is known about the controls on the N and O
isotope composition of its production by these pathways, hindering their use in constraining
global sources of N,O. Thus, there is a need for a systematic investigation of N and O isotope
effects catalyzed by chemical reactions with Fe before they can be used to constrain
biological/abiotic interactions between N and Fe in the environment.

To this end, we investigated the stable N and O isotope dynamics of the abiotic reduction
of NO; by Fe(Ill) under a range of environmentally relevant conditions, including
characterization of the yield and isotopic composition of the product N,O. As more studies
suggest a potential for anaerobic (a)biotic nitrogen transformations coupled with iron cycling, the
N and O isotope effects determined here will aid in the application of dual isotopes of nitrite and

N;O for deciphering the underlying biogeochemical mechanisms controlling the fate of N across
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a host of environments including aquatic systems, aquifers, soils, sediments and wastewater

treatment plants.

MATERIALS AND METHODS

Nitrite reduction experiments

Batch experiments were conducted anaerobically under reaction conditions outlined in
Table S1 with 200 uM nitrite and aqueous Fe(Il) ranging from 0.5-8.9 mM in the presence and
absence of goethite at room temperature. Experiments varied three primary parameters: Fe(II)
concentration, solution pH, and the presence/absence of the iron-oxide goethite. All experiments
were initiated in anoxic HEPES buffer (30mM) adjusted to the desired pH using NaOH. 140 mL
of buffer was added to 160 mL serum bottles and purged with N, gas for 30 minutes to remove
any trace oxygen. Bottles were then transferred into an anaerobic glove box (5% Hy/ 95% N»),
where Fe(I) was added from a concentrated anoxic FeCl, stock solution (~1M). Bottles were
then pre-incubated by shaking for 3 days and any Fe precipitates were removed by filtration. In a
subset of bottles, the Fe(Ill) oxyhydroxide goethite (FeOOH) (as synthesized and fully
characterized previously — see ') was added to a final concentration of 250 uM Fe (in bottles
with ImM Fe(Il) ) and 1mM Fe (in bottles with 5 or 9mM Fe(Il)). Following nitrite addition,
bottles were sampled ~4 times within the first 6 hours and less frequently thereafter. Between
sampling time points, the crimp-sealed bottles were incubated on an orbital shaker at 150 rpm.
Samples were measured for Fe(Il) and nitrite concentration using standard spectrophotometric
methods (see Supplemental Materials). Subsamples were also measured for nitrite N and O

isotopes as described below. Finally, Sml samples of headspace gas composition were taken at
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the end of the experiment and injected into pre-evacuated headspace vials (20 ml) for N,O
concentration and isotopic composition analysis.

In addition to these batch incubations, a subset of these conditions was also run as a
parallel ‘N,O time-series’ experiment (pH 8, no mineral addition, Fe(Il) 1, 5 and 9mM), in which
headspace N,O measurements were made over time using the autosampler of the IRMS system.
For each condition, ten 20ml headspace vials were loaded with solutions as described above and
placed immediately onto the headspace purge and trap system coupled to the IRMS. The amount

and N and O isotopic composition of evolving N>O was monitored over time.

Isotopic Analyses

Nitrogen and oxygen isotope ratios of nitrite (where §'°N = [(lsRsample/ PRair)-1)*1000 in
units of %o, and R = "N/"*N and where 8'°0 = [(lgRsample/lgRVSMow)-l)*1000 in units of %o,
and '"*R = "*0/'°0) samples were measured by chemically converting 20 to 40 nmoles of NO, to
N,O using the azide method in 20ml headspace vials *°. The evolved N,O was purified and
collected on a modified TraceGas (IsoPrime, Inc.) purge and trap coupled with a Gilson
autosampler before isotopic analysis on an isotope ratio mass spectrometer (IsoPrime 100,
Elementar Inc.). Internal nitrite isotope standards (WILIS 10, 11 and 20) were run in parallel at 3
different sizes to correct for any variations in sample size and instrumental drift. Based on
calibrations against isotope standards USGS 32, 34 and 35 for 8N 2! and N23, N7373, and
N10129 for 8'*0 22, the values of internal standards WILIS 10, 11, and 20 are -1.7, +57.1, and -
7.8%0 for 8'°N and +13.2, +8.6 and +47.6%. for 8'°0, respectively. All isotopic values are
reported against the VSMOW (for 8'"0) or Air (for 8"°N) reference scales. Typical

reproducibility for 8"°N is £0.2%o and for 8'°0 is £0.2%o.
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Headspace N,O isotopic composition was measured in duplicate by direct comparison

against the N,O reference tank on the IRMS system. The composition of this tank (8'"°N™* = -

0.7%o0; 8'°0 = +39.1%o; site preference (SP) = -5.3%o, where SP = 8"°N(a) — 8"°N(p) and o and
refer to the central and outer N atoms in the linear N,O molecule, respectively) was calibrated
directly against aliquots of two previously calibrated N,O tanks from the Ostrom Lab at
Michigan State University. The molar amount of N,O in the headspace of each experimental
bottle was calculated using the linear relationship between IRMS peak area at m/z 44 and
injections of known amounts of N>O (derived from azide conversion of NO;"). Reported values
have been corrected for any size linearity of isotopic ratios (31/30, 45/44 and 46/44) by using a
series of reference tank subsamples injected into 20ml headspace vials using a gastight syringe.
Precision for replicate analyses of our reference gas analyzed as samples for "N is = 0.3%o, for

8!80 is +0.4%o and for SP is +0.8%o.

Mineral Analysis
The speciation of Fe was determined using synchrotron-based X-ray absorption

spectroscopy (XAS) » (see Supporting Information).

RESULTS AND DISCUSSION

Coupled Nitrite Reduction and Iron Oxidation
Reaction between ferrous Fe and nitrite led to complete removal of 200 uM nitrite under
a range of geochemical conditions that varied in initial Fe(Il) levels (~0.5-9 mM), pH (7, 8), and

in the presence or absence of the mineral sorbent goethite (Figure 1). These findings are
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consistent with previous studies demonstrating the ability of Fe(Il) to chemically reduce nitrite
over a large range of experimental conditions * ***°. Specifically, rapid reaction between high
levels of nitrite (~2-43 mM) and ferrous Fe (~5-43 mM) has been documented over a wide pH
range (4 to 8) '" 2%,

Despite complete loss of nitrite, production of ammonium was never observed and thus
nitrite was converted to gaseous products in all cases. Indeed, we observed production of N,O in
all experiments (see below); yet, not enough to account for all of the reduced NO; likely

pointing to N, as an additional product under our experimental pH range. As such, the primary

net reactions operative in our experiments are represented by the following equations:

4 Fe** + 2NO3 + 5H,0 — 4 FeOOH + N,Oy*+ 6H* [1]
1
3 Fe?* + NO; + 4H,0 — 3 FeOOH + 7 Na * 5H* [2]

In comparison to changes in NO;, only a small percentage of dissolved Fe (II) was
removed by Fe(Il) oxidation in the majority of incubations (Figure S1). Assuming the
stoichiometries of reactions R1 and R2, Fe(Il) was always well in excess of nitrite in our
experiments. An exception to this was the pH 8 experiment conducted at lower Fe(Il) <ImM,
where Fe(Il) was completely oxidized over 100 hours, along with the full removal of nitrite.
Consistent with the above reactions, the oxidation of Fe(II) led to rapid Fe(III) precipitation in all
conditions except for the lowest initial Fe(Il) level (0.5 mM) at pH 7. EXAFS spectral analyses
(Figure S2) identified these minerals as goethite, ferrihydrite, and magnetite, which were present
at varying proportions depending on conditions (Figure S3). At pH 7, dominant phases were

goethite and magnetite with relative contribution of magnetite increasing at higher Fe(Il) (Figure
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S3a). This trend was inversed at higher pH (pH 8), with goethite and ferrihydrite increasing as
Fe(Il) increased. Interestingly, incubations conducted with exogenous goethite added initially led
to the inhibition of magnetite formation under similar initial Fe(Il) levels (Figure S3b).
Ferrihydrite and goethite were also identified as secondary products in similar batch incubations
but with higher nitrite and aqueous Fe(II) levels at pH 7 '’. In contrast to our findings, however,
Jones and colleagues ' did not observe formation of magnetite, and instead found precipitation
of lepidocrocite particularly when nitrite was provided in excess of the initial aqueous Fe(II)
concentration. This variability in precipitation patterns is most likely due to differences in the
geochemical conditions of the incubations. In particular, when comparing pH 7 incubations the
initial aqueous Fe(II) to nitrite ratio in our incubations ranged from 3 to 44 in contrast to a ratio
of 0.13 to 4 in Jones et al (2015). These lower ratios are primarily due to the considerably lower
nitrite concentrations used in our incubations (200 uM versus 2.5-40 mM), leading to lower rates
of reaction and likely allowing for more extensive Fe(Il)-induced ripening and conversion of
ferrihydrite to magnetite.

Indeed, the rate of aqueous Fe(Il) loss and corresponding nitrite reduction varied as a
function of pH, initial aqueous Fe(II) concentration, and exogenous goethite addition (Figure 2,
Table S2). Initial reduction of nitrite by Fe(II) was linear with initial rates varying from 0.1 to 50

uM h™' at pH 7 and 5.9 to 160 uM h™" at pH 8. Corresponding Fe(II) loss, a combination of both

oxidation by nitrite and sorption/precipitation, exhibited initial rates ranging from 1 to 343 uM h’

"at pH 7 and 11 to 2300 uM h™' at pH 8 (see Figure S1). Our observed nitrite reduction and

Fe(Il) loss rates at pH 7 are generally comparable with previous studies using similar reaction

28, 30, 31

conditions (e.g., ), while lower than those rates documented at higher nitrite and Fe(II)

levels (albeit at lower Fe(I[):NO,; ' ?%). For the 4 different scenarios employed here (pH 7 and
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8, with/without goethite; Table S1), we observed a linear relationship between Fe(Il)
concentration and the first order rate constant (hr™") (Figure 2; Table S2), highlighting the role of
Fe(II) concentrations in regulating nitrite reduction rates.

Addition of goethite consistently led to higher reaction rates between Fe(Il) and nitrite at
both pH values and regardless of initial Fe(II) concentration (Figure 2; Table S2). Multiple
studies have shown that the presence Fe(Ill) oxyhydroxides and the sorption of Fe(II) to mineral
surfaces or ligands increases rates of nitrite reduction by Fe(Il), including reactions with 2-line

ferrihydrite, goethite, biogenic magnetite, lepidocrocite, green rust (GR), siderite and wiistite > **

3934 These studies consistently indicate faster kinetics for heterogeneous than homogenous
Fe(I)-nitrite reactions.

For the homogenous reaction conditions between aqueous Fe(Il) and nitrite (absence of
exogenous goethite), heterogeneous reactions likely also contributed to the observed reaction
rates. The rapid formation of Fe(IIl) minerals upon Fe(Il) and nitrite reaction provided a
secondary and presumably faster nitrite reduction pathway. Thus, heterogeneous reactions would

also be operative with ferrous Fe bound within magnetite (Figure S3) and/or Fe(Il) adsorbed onto

the secondary precipitates goethite and ferrihydrite.

Nitrite Isotope Systematics

The N and O stable isotope systematics of abiotic nitrite reduction can potentially be
useful for distinguishing among nitrite reduction mechanisms in the environment. Here, the 8'"°N
and 8'°0 of the remaining nitrite increased during the reaction in all incubations, reflecting
positive isotope effects for both N and O during nitrite reduction (Figure 3). Using a closed

system Rayleigh model, the '°N isotope effect for nitrite reduction by Fe(II) (hereafter, e

10



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

ranged from 6%o to 45%o, while the '*O isotope effect (hereafter, '*exir) ranged between 6%o and
33%o (Table 1). The ratio of “exr:'®enir, was often lower than 1 (Table 1, Figure S4), reflecting
a smaller isotope effect for oxygen compared to nitrogen. Oxygen isotopes of nitrite may also
readily equilibrate with water as a function of pH and temperature, with faster equilibration
occurring at lower pH and higher temperatures **. It is therefore possible that the observed
oxygen isotope effect of NO,™ reduction was influenced by oxygen isotope equilibration with
water. No difference in “en:'®enig Was observed between experiments at pH 7 and pH 8,
suggesting perhaps this factor was not important in our experiments (Table 1). However, given
the rapid consumption rates of our relatively small levels of NO; it is also possible that our
experiments were unable to catch the influence of this effect. Although, we would not predict
high rates of oxygen exchange at pH 8, the very high 8'*0 values under high extents of NO,
consumption would be particularly sensitive to even a small amount of isotopic exchange and
may contribute to slightly lower observed "*enir relative to that of “eir.

Although very little NO;™ isotope data exist for chemical reduction, our data exhibit a
wider range of “enr and 'exir values than other recent studies (e.g., ' *°). While “exr and
e varied from 6 to 45%o (Table 1) in our experiments, these values were consistent and
reproducible under similar experimental conditions. Indeed, differences in the isotope effects
correlate well with factors that directly influence reaction rate, including substrate concentration,
pH and interactions with minerals (Figure 3, Table 1). In particular, variations in nitrite isotopic
fractionation were inversely related to the reaction rate, with higher rates producing lower "¢
values (Figure 4).

In our experiments differences in isotope effects between heterogeneous and homogenous

reactions could not be explicitly addressed since even our ‘homogenous’ reactions exhibited

11
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rapid mineral formation (Figures S2-S3), promoting heterogeneous surface reactions. Even at the
lowest levels of mineral precipitation (pH 7) rates were also slower and it is therefore unclear
whether the lower isotope effect stemmed from lower overall reaction rate or from reduced
interaction with surface-bound Fe(Il). If we assume that the rapid reactions were mostly
catalyzed by interactions with surface associated Fe(Il) and that the slower reactions were less
influenced by surface-bound Fe(II), then it is possible that the heterogeneous reaction exhibits a
smaller isotope effect for this process, leading to the lower observed net isotope effects at high
reaction rates. Future studies should aim to tease apart the relative influence of rate versus
mechanism in order to better understand the reaction mechanism.

The observed kinetic isotope effects in the reacting NO, pool are governed by the
combination of chemical reactions (e.g., bond forming/breaking) occurring during nitrite
reduction. As such, changes in the relative proportions of different mechanisms/pathways
(including back reactions) can change the observed isotope effects of the NO,  (and other N
bearing intermediate) pools. While the net reaction results in the reduction of NO;™ to N>O (and
and/or N, (reactions [1] and [2] above)), the reaction proceeds through one or more nitrogenous
and likely Fe-bound nitrogen species (e.g., nitrosyl (Fe(NO)™ or dinitrosyl (Fe(NO),*")
intermediates, which may have limited stability under these reaction conditions > 7%
Specifically, we consider the involvement of an Fe(Il) intermediate and isotope fractionation
occurring at each of the reaction steps given below (reaction 3-5): the reduction of NO, to NO
[1], the complexation of NO with Fe(Il) [4] and the reduction of the Fe-NO complex to N,O (or

N») [5].

ks Fe’'+NO, +2H — Fe’'+ NO,, + H,0 [3]

12
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k, Fe’'+NO,, — (Fe(I[)-NO)?* [4]

1 1
k< (Fe(I)-NO)?*+ H" — Fe'* + 7N0 + 5H,0 [5]

While the forward reactions resulting in the formation of NO (ks in R3) or the formation
of a nitrosyl complex (ks in R4) may occur with a particular isotope effect, the backward
reactions (k3 or k4) may occur with distinctively different isotope effects. Indeed, recent
evidence indicates that the initial reduction of NO, to NO (R3) may largely be controlled by an
equilibrium reaction *°, in which case the forward/backward reactions give rise to an equilibrium
isotope effect. Additionally, NO,™ 8'®0 could be significantly affected by the incorporation of a
‘new’ O atom (from H,O) during the reverse reaction [3] in the reverse direction. The influence
of this type of pathway reversibility on isotope dynamics has been well documented in the

sulfate reduction system >°*

. Thus, we suggest that the relative ratio of forward to backward
reactions plays the key role in regulating our observed isotope effects in the reactant NO,™ pool.
Also, to the degree that the net reaction is multi-step and/or proceeds through multiple (and
likely transient) intermediate species and/or through parallel pathways (e.g., reaction R8a vs.

R8b), changes in the relative rates of each step will contribute to changes in the net isotope effect

observed in the NO,™ and product N,O pools.

Fe(II) + NO;” + H,O = FeOOH + NO + H' [6]
Fe(II) + NO + 2H,0 = NO" + FeOOH + 3H" [7]
2NO™ +2H" = N,0 + H,0 [8a]
2NO +4H" 2 N, + 2H,0 [8b]

13
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Likely, all of these factors contribute to our observed relationship between the kinetic

isotope effect and reaction rate (Figure 4).

Relationship between NO; reduction and N,O isotope dynamics

The final amount and N and O isotopic composition of the N>O accumulated in the batch
experiment bottles were measured, including the intramolecular nitrogen isotopic composition,
or site preference (SP). Complementary to these end product measurements, N,O formation and
isotopic composition was also monitored over time for a subset of these conditions (pH 8, no
goethite, and starting Fe(II) concentrations of 0.9, 4.7 and 9.1mM). The endpoint composition of
the N,O in these ‘time series’ experiments (Figure S5) was consistent with the endpoint
measurements of the batch experiment bottles (Figure S6). In general, lower amounts of N,O
accumulated under conditions promoting slower rates of nitrite reduction (not shown). Molar
yields of N,O (e.g., the percentage of NO, converted to N,O) ranged from ~11 to 52%,
reflecting considerable variation in the relative magnitudes of reaction mechanisms involved in
chemodenitrification. N and O isotopic composition of the final N,O ranged from -19.8 to -3.0%o
for 8" Nyoopuk and from +29.3 to +46.4%o for 8% Onao and were strongly correlated, with all but
one outlier clustering between -7.4 to -3.0%o0 and +38.4 to +46.4%o, respectively (Figure S6). The
single outlier N>O composition corresponds to the only case in which nitrite reduction was not
complete, reflecting N,O produced from only a partially reduced pool of NO;".

Comparison of the starting composition of the reactant NO, with the product N,O offers
important insights into reaction mechanisms. The elevated 8'*Onyo values relative to NO,,
relative to the starting NO;', reflect the influence of branching effects by the preferential removal

of '°O during reduction steps of both NO, and NO '®. Together with the strong correlation
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between the '"°N and 8'°0 of product N,O (Figure S6) this indicates a strong coupling of the
kinetic isotope effect on N and the combined kinetic and branching isotope effects on oxygen
during the formation of N,O. The final 8"°N of the accumulated N,O was on average ~8%o lower
than the 8"°N of the starting NO, , with higher N,O yields exhibiting smaller differences
(excluding the case in which NO," did not fully react — Figure 1).

As all of the reacted NO," was not accounted for in the product N,O, another N-bearing
pool must represent the mass balance complement to the N,O pool, having a higher '°N than the
starting NO,". Initial product N,O 8'"°N values during the time series experiments were lower
than the N isotope effects calculated from the NO;™ pool (Figure S5) reflecting production of a
separate N bearing pool. At high N,O yields (~30-50%), end point 8"°N values were on average
~4 to 8%o lower than starting NO,” 8'"°N values — and by mass balance imply production of an N-
bearing pool at least several permil higher than the starting NO,” 8'°N values. Jones and others '’
observed similar results, suggesting that isotopically heavier N must have accumulated in the NO
pool. Under similar reaction conditions (e.g. pH 7, very high NO, and Fe(Il)), Kampschreur and
colleagues *° observed complete recovery of NO, as NO and N,O — suggesting that the missing
mass balance complement to the N,O is likely to be found as NO. Under the higher pH
conditions of our time series experiment (pH 8), however, NO was only observed at low levels
(qualitatively observed as separate peaks while monitoring masses 30 and 31 on the IRMS
during N,O analyses) and only under low Fe(Il) conditions (0.9mM) suggesting that, while
possibly an important transient intermediate, gas phase NO did not appear to have been a
significant end product (< ~5%). A lack of observed NO accumulation under our higher Fe(II)
conditions also appears to highlight the role of Fe(Il) in providing the forward kinetic drive

(and/or complexation of NO) and likely promoting formation of Fe-bound nitrosyl species (as in
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reaction R4 above). In comparing the likelihood of an NO vs N, pool as the missing mass
balance complement of the low 8'"°N N,O, Jones and others (2015) suggested an NO product
pool having a higher 8'°N as a more parsimonious explanation since it is less reduced than N,O
(making the assumption that an N, pool derived from an N,O precursor should be isotopically
lower than the N,O). However, based on the apparently low observed accumulation of NO in our
time series measurements at pH 8, together with the assumption that a high 8N N, pool
deriving from N,O reduction would be unlikely, we suggest instead that the production of N, and
N,O may be occurring in parallel, competing reactions (as in R8a and R8b), under our
experimental conditions (with the production of N, having a smaller isotope effect than the
production of N,O). Alternatively, some proportion of NO may have remained bound in a
nitrosyliron complex under the higher dissolved Fe(Il) conditions. Indeed the difference in
proportion of end products is related to differences in the formation kinetics and stability of

36, 38

(di)nitrosyl intermediates, which are sensitive to pH . Either way, whether the missing N

pool is comprised of NO, as observed and inferred by others ' >

, or is comprised primarily of
N, as appears to be the case in our experiments, the N isotopic composition of the N,O offers a
useful perspective on the source of N and the isotope systematics of N,O release by
chemodenitrification.

The intramolecular "N site preference of the product N,O also reflects differences in the
governing reaction mechanisms. N,O SP values both from the batch experiments and the time
series measurements ranged from -0.4 to +26.0%0 with endpoint values correlating with final
concentration and yield of N,O (Figure 5). In our time series experiments, higher levels of Fe(II)

lead to more consistently elevated SP values starting ~ +14.5%o and increasing to ~ +26.0%eo

(Figure S5) — similar to previous observations of N,O SP by chemodenitrification falling
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between +10 and +22%o . In contrast, under lower Fe(II) conditions (~0.9mM) initial SP values
were as low as 0%o, although eventually increased to 26.0%o0 before reaching a final value of
15.2%o (Figure S5). Compared to 8" Nzopux and 8'*Onao, which reflect the combined influence
of both the composition of reactants (e.g., NO>") and the kinetic isotope effects associated with
the reaction pathways, SP is thought to be independent of the 8'°N of the N source and instead
reflect only formation pathway. Specifically, the combination of two NO precursor molecules to
form N,O in a singly catalyzed reaction should result in very little difference between the 8'°N of
the beta (outer) and alpha (inner) N atoms, such as is observed for nitric oxide reductases in

denitrifying bacteria ** *

. In contrast, mechanisms whereby combination of two NO molecules
proceeds via formation of an O-N=N-O intermediate favors breaking of '*N-O bond over a "’N-

O bond — and promotes the N enrichment of the alpha position (e.g., elevated SP value), as is

thought to occur during NH,OH decomposition and N>O production by ammonia oxidizing

46, 47 48-50

bacteria and denitrifying fungi . Elevated SP values (+35%0) have in fact also been
observed in chemical reactions involving NH,OH and NO, including in the presence of Fe
catalysts — although the decomposition of NH,OH may play the primary role rather than NO, *°.
Results of chemical reduction of NO, in experiments using other reductants (e.g.,
trimethylamine-borane) have also yielded elevated SP values — suggesting an important role for
an intermediate species **. Studies investigating reduction of NO,™ by either aqueous Fe(II) or
Fe(II)-containing primary minerals have also noted production of N,O having positive SP values
up to 22%o '°', although low SP values have also been reported '*. We suggest that the range of
SP values observed in field studies °! and in lab studies such as ours and those of others 7 '8,

reflects shifts in the balance of at least two mechanisms of N,O formation and specifically the

relative involvement of intermediate nitrosyl and dinitrosyl species (and the factors regulating
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their formation and stability; > ** ). Indeed, in our experiments, higher N,O yields correspond

with higher reduction rates and in turn higher concentrations of Fe(Il). Thus, in summary, the
high Fe(Il) conditions of our experiments apparently favor the formation of nitrosyl-iron
complexes as reaction intermediates and precursors for reactions yielding elevated SP values for
product N>O. On the other hand, lower levels of Fe(II) and the correspondingly slower reduction

of NO; apparently produce N,O having generally lower SP values (Figure 5; Figure S5).

Environmental Implications

Here we have shown that abiotic reduction of nitrite by Fe(Il) is rapid at environmentally
relevant pH and Fe(II) concentrations. Indeed, we demonstrate that factors regulating the rates of
this chemical process in the environment include reactant concentrations, surface interactions
and pH. Further, these factors appear to control the relative proportions of reaction pathways,
with strong implications for the isotopic evolution of reactant NO, as well as the isotopic
composition and yield of product N,O. Specifically, even though elevated levels of Fe(II)
increase reaction rate, the homogeneous reaction of NO;™ with aqueous Fe(II) is kinetically slow
under our experimental conditions compared to biological reduction (e.g., °%). Nevertheless, in
most natural environments at circumneutral pH, aqueous Fe(Il) is found adsorbed onto mineral
surfaces and/or bound as ligands. Thus, while the homogenous reaction of aqueous Fe(Il) with
NO; may be kinetically inhibited, the heterogeneous reaction will most likely drive
environmental chemodenitrification. In fact, our data also demonstrate dramatically increased
reactivity of NO, with surface associated Fe(II). In all cases exhibiting Fe-oxide formation, rates
of nitrite reduction were dramatically higher (Figure 2) as well as corresponding yields of N,O.

Thus, under redox conditions promoting production of Fe(Il) and conditions enabling sorption of
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Fe onto mineral surfaces (e.g., soils, porewaters, permeable sediments, riparian zones), the
kinetic drive for abiotic NO;  reduction by Fe(Il) is substantial — as is the potential for its
significance as an abiotic source of N>O to the atmosphere. Notably, recent work with a culture
of nitrate-reducing iron oxidizing bacteria also suggests that anaerobic Fe oxidation actually
occurs as a chemical side reaction upon the intracellular production of NO, and Fe oxides,
raising the possibility that anaerobic Fe oxidation by other nitrate reducing microbes may also
stem primarily from chemical interactions rather than direct enzymatic catalysis > .

The sensitivity of the nitrite isotope effects and the product N,O to reaction conditions
will complicate interpretation of natural abundance isotope values for detecting reactions with
Fe(Il). Accordingly, environmental studies will need to fully account for factors including pH
and Fe(Il) concentrations/fluxes, abundance and form of Fe-bearing minerals, and
concentrations/fluxes of nitrite. Constraining pH will be especially crucial to account for
potential oxygen isotope exchange with water, which is rapid at pH values < 7 **. Many of the
ecosystems in which nitrite accumulation may be important such as groundwater, estuaries and
coastal sediments may also exhibit dynamic changes in pH (during tidal flushing of an estuary,
or a storm runoff event, for example). Currently, rates of nitrite-water oxygen isotope
equilibration have only been quantified in seawater **. Thus, in order to fully exploit NOy
oxygen isotopes in other ecosystems, future work on exchange rates across a range of salinity
will be necessary.

With this improved understanding of controls on N,O production by abiotic nitrite
reduction, future studies should focus on establishing the importance of chemodenitrification in
the environment especially under environmental conditions in which it may outcompete

biological nitrite reduction. For example, in environments exhibiting rapidly fluctuating redox
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conditions, such as estuarine sediments and permeable coastal and shelf sediments, high fluxes
of Fe(Il) released by iron-reducing bacteria and/or by abiotic reduction by sulfur intermediates
are often closely juxtaposed with elevated nitrogen concentrations in overlying water. Such
conditions could represent prime hotspots for abiotic reactions between NO, and Fe(Il) and the

abiotic formation of N,O.
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Table 1. Observed N and O isotope effects for abiotic reduction of nitrite by Fe(II). In some

cases reactions were too fast for reliable measurement of NO;™ isotopes. ND = not enough nitrite

detected.

pH  Starting  Goethite 3¢ 18¢ 8. 15

[Fe(I)] (%0) (%o0)

(mM)
7 0.5 No 33.9424.8 24.8+15.9 0.7
7 4.7 No 25.1£2.5 18.1+£2.1 0.7
7 8.4 No 6.1£1.0 7.8+0.2 1.3
8 0.6 No 22.6+1.0 14.4+1.6 0.6
8 4.2 No 6.6+1.1 5.7£1.3 0.9
8 6.3 No N.D. N.D. N.D.
7 0.8 Yes 44 8+9.7 33.0+8.3 0.7
7 4.8 Yes 11.8+0.6 11.240.3 0.9
7 7.9 Yes 59 5.2 0.9
8 1.0 Yes 15.1+0.5 11.2+0.6 0.7
8 4.5 Yes N.D. N.D. N.D.
8 8.9 Yes N.D. N.D. N.D.
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Figure 1. Reaction of nitrite with aqueous Fe(II) as a function of time. Rates of nitrite
reduction were faster at higher Fe(II) concentrations, higher pH and in the presence of exogenous

goethite. Note the time scale change at higher iron and high pH.
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Figure 2. Pseudo-first order rate constants (with respect to NO;") varied linearly with starting
Fe(II) concentration, with faster rates at higher pH and in the presence of an FeOOH (goethite)
mineral surface. Rate constants were calculated assuming a pseudo-first order rate with Fe(II) in

excess of nitrite, and exponential fitting of nitrite concentration over time.
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(left). Dotted lines indicate experiments containing amended goethite.
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likely reflect complex shifts in reaction mechanisms, pathways and intermediates.
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Figure 5. Site preference as related to the N,O yield from reduction of NO,™ by Fe(II). Changes
in SP reflect differences in N,O production mechanisms and likely reflect the formation and
reactivity of nitrosyl-iron intermediates.
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METHODS

Chemical Analyses
Nitrite

Nitrite concentration was measured using the Greiss-Islovay spectrophotometric method .
Reactions were prepared in lcm cuvettes in the glove box and diluted as needed with anoxic
HEPES buffer. NaNO, standards of 0, 25, 50, 250 uM were run in parallel. All samples and
standards received 100 uL sulfanilamide (SAN) and 100 uL naphthyl ethylene diamine (NED).

Absorbance was recorded at a wavelength of 543 nm.

Fe(Il)

Fe(Il) concentration measurements were made using ferrozine . All reactions were
conducted within the glove box followed by immediate measurement on the spectrophotometer
at 562 nm. Reactions were done in 1cm cuvettes with 2.7 mL of ferrozine, and 0.3 mL of sample.

At higher Fe concentrations samples were diluted as necessary with anoxic HEPES buffer.



Mineral Analysis

The speciation of Fe was determined using synchrotron-based X-ray absorption
spectroscopy (XAS) * (see Supporting Information). Samples were anaerobically mounted on a
Teflon plate and sealed with Kapton polymide film to prevent moisture loss and oxidation while
minimizing X-ray absorption. XAS was performed at the Stanford Synchrotron Radiation
Lightsource (SSRL) on beamline 11-2 using a He-purged sample chamber. Spectra were
acquired from -200 to approximately 1000 eV around the K-edge of Fe (7111 eV). The
mineralogical composition of the sediments was obtained using the extended region of the XAS
spectra (EXAFS region). Percentages of various Fe phases were determined by linear
combination fitting (LCF) of &’-weighted EXAFS (LC-EXAFS) spectra with a set of reference

standards as described in detail previously * using the fitting program SIXPack *.
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determination of nitrite in natural waters. Analytica Chimica Acta 1990, 232, 345-349.

2. Stookey, L. L, Ferrozine - A New Spectrophotometric Reagent for Iron. Analytical
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ferrihydrite under advective flow Geochimica et Cosmochimica Acta 2003, 67, (16),
2977-2992.

4. Webb, S. M., SIXPack a graphical user interface for XAS analysis using IFEFFIT. Physica
Scripta 2005, T115.



Supplementary Figures and Tables

Table S1. Experimental conditions for each incubation.

pH Starting Starting Goethite
[NO;] [FedI)] added

uM)  (mM)
7 200 0.5 No
7 200 4.7 No
7 200 8.4 No
8 200 0.6 No
8 200 4.2 No
8 200 6.3 No
7 200 0.8 Yes
7 200 4.8 Yes
7 200 7.9 Yes
8 200 1.0 Yes
8 200 4.5 Yes
8 200 8.9 Yes




Table S2. First-order rate constants for nitrite reduction at pH 7 and pH 8

pH Starting Goethite ki Initial
[Fe(Il)]  added (h™) Rate
(mM) (LM h™)

7 0.5 No 0.0007 0.1

7 4.7 No 0.02 4.0

7 8.4 No 0.10 19

8 0.6 No 0.03 5.9

8 4.2 No 0.23 41

8 6.3 No 0.35 60

7 0.8 Yes 0.005 1.0

7 4.8 Yes 0.15 28

7 7.9 Yes 0.29 50

8 1.0 Yes 0.05 9.8

8 4.5 Yes 0.69 99

8 8.9 Yes 1.68 160
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Figure S1. Dissolved Fe(II) concentration as a function of time, shown in panels by pH and
Fe(Il) concentration (note the time scale change at higher iron and high pH). Circles refer to

experiments in which incubations were amended with goethite. A change in the aqueous Fe(II)



levels in the goethite incubation at the highest Fe(II) concentration at pH 8 was not observed,

likely due to the rapid and extensive sequestration of Fe(Il) within the solid phase.
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Figure S2. k’-weighted EXAFS spectra (dotted black line) and linear combination fits (solid
gray line) for the mineral percentage shown in Figure S2 obtained for incubations containing 200
uM nitrite, ferrous Fe(Il) (~1, 5, or 9 mM) at pH 7 or 8 and in the presence (+) or absence (-) of
goethite.
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Figure S3. Summary of the final secondary minerals formed at the end of the Fe(II)-nitrite

incubations. Mineral proportions were obtained via linear combination EXAFS shown in Figure
S2.
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Figure S5. Time series N,O experiments illustrating the evolution of N,O in the sample
vials over the course of the time course of the reaction. Higher Fe(II) concentrations
resulted in faster reactions, higher N,O yields (not shown) and higher 8'"°N (top), '*0
(middle) and site preference values (bottom) in comparison to reactions at ~1mM Fe(II).



4 O pH7

4 O pH7 +Gt 0
H pH8

4 ® pH8 +Gt S

w w

3"°0- N,O (%0)
w w
O N A O 0O O N DN

Lo be o b b byaa b baaalg
S
L LI LN LA LN LN LR R

w

20 -16 -12 -8 -4
8"°N- N,O (%o)

Figure S6. The dual N and O isotopic composition of N,O produced during nitrite reduction by
Fe(II). The single outlier having the lowest 8"°N and 8'°0 represents N,O produced from a
partially consumed NO," pool, while all others reflect N,O produced after complete NO,
reduction.
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