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Abstract—At the present, neutron sources cannot be fabricated
small and powerful enough in order to achieve high resolution
radiography while maintaining an adequate flux. One solution is
to employ computational imaging techniques such as a Magnified
Coded Source Imaging (CSI) system. A coded-mask is placed
between the neutron source and the object. The system resolution
is increased by reducing the size of the mask holes and the flux
is increased by increasing the size of the coded-mask and/or
the number of holes. One limitation of such system is that the
resolution of current state-of-the-art scintillator-based detectors
caps around 50µm. To overcome this challenge, the coded-
mask and object are magnified by making the distance from
the coded-mask to the object much smaller than the distance
from object to detector. In previous work, we have shown via
synthetic experiments that our least squares method outperforms
other methods in image quality and reconstruction precision
because of the modeling of the CSI system components. However,
the validation experiments were limited to simplistic neutron
sources. In this work, we aim to model the flux distribution
of a real neutron source and incorporate such a model in our
least squares computational system. We provide a full description
of the methodology used to characterize the neutron source and
validate the method with synthetic experiments.

I. INTRODUCTION

X-ray and neutron optics both lack ray focusing capabilities.
However, an X-ray source can be made small and powerful
enough to facilitate high-resolution imaging while providing
adequate flux. This is not yet possible for neutrons. One
remedy is to employ a computational imaging technique such
as coded source imaging (CSI) [1, 2, 3]. Evolved from coded
aperture imaging (CAI), where a coded-mask is placed in front
of the detector [4], for CSI the coded-mask is placed between
the neutron source and the object. As illustrated in Fig. 1,
a CSI system is at least composed of (from left to right)
a neutron source, the coded aperture mask, the object and
corresponding field-of-view aperture, and finally, the detector.
Similarly to the classical single pinhole imaging, CSI image
resolution is proportional to the size of the apertures of the
coded-mask (i.e., the smaller the apertures, the smaller the
features the system can resolve). However, in contrast with
the classical single pinhole approach, where neutron flux is
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Fig. 1. Coded source imaging system components and geometry. Observe
that the holes in the mask generate off-set projections of the object at the
detector.

inversely proportional to the size of the pinhole, for CSI, flux
is proportional to the size of the mask. Therefore, neutron flux
is kept constant for different aperture sizes in a CSI system.
On the other hand, the resolution of the CSI system is still
limited by the resolution of the detector. As an example, if
the distances from mask to object and object to detector are
equal (i.e., 1:1 magnification) and the coded-mask apertures
are perfectly registered with the detector pixels, the smallest
allowable size for the mask apertures is equal to the size of the
detector pixels. In general, it is not practical to achieve perfect
alignment between the coded-mask and detector, therefore,
more detector pixels are needed per mask holes to comply with
Nyquist sampling, which limits even further the size of the
mask apertures to at least twice the size of the detector pixels.
State-of-the-art scintillator-based detectors currently have a
resolution limit of about 50µ, therefore, in order to reach
resolutions of 10µ or greater, Bingham et al. proposed a coded
source system with magnifications above 10:1 [2].

In previous work, we have documented the advantages of a
model-based least squares algorithm over direct convolution as
well as blind deconvolution wrapped in a maximum-likelihood
framework for the reconstruction of coded source radiographs
[3]. We used simulated data experiments to show that the
least squares method outperformed the other methods with
respect to image quality and reconstruction precision because
of the modeling of the system components, such as the neutron
source, the distribution of flux through the detector pixels, the
system field-of-view, imperfections of the coded-mask, etc.
[3] However, in these experiments, the source modeling was
limited to uniform and Gaussian neutron sources which, as
shown in Fig. 2, do not represent real life neutron sources.
We argue that the greatest challenge associated with successful
reconstruction of real data from a complex source such as
the HFIR CG-1D is to precisely model the neutron rays flux
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Fig. 2. Illustration of neutron Sources: synthetic (a) uniform and (b) Gaussian
sources, and (c) actual HFIR CG1-D source imaged with a 2mm pinhole.

distribution at each coded-mask hole.

II. IMAGE RECONSTRUCTION

A. Deconvolution approach

CAI techniques apply to CSI, consequently, coded aper-
ture patterns such as Modified Uniformly Redundant Array
(MURA) and deconvolution reconstruction approaches [5] can
be seamlessly employed in CSI. Each MURA mask hole
generates an offset projection of the object at the detector.
If the projections do not overlap, the object radiograph is
reconstructed with the sum of all registered projections. In
general, CSI systems produce overlapping projections, which
require deconvolution for image reconstruction. This model
can be expressed as

P = O ∗A+ η, (1)

where P is the measured encoded radiograph, O is the object
to reconstruct, A is the MURA aperture mask, and η is
uncorrelated noise. Image reconstruction is then reduced to
an inverse problem, where we need to find O given P , A,
and a priori η. The typical reconstruction approach is direct
deconvolution by kernel G. That is,

Ô = P ∗G = (O ∗A+ η) ∗G = O + η ∗G. (2)

Note that this approach adds a noise component to the recon-
structed signals. The noise can be suppressed by exposing the
object for a second time using a complementary aperture mask
Ac, which satisfies Ac = ¬A and A ∗ G = Ac ∗ (−G) = δ;
with the exception that for both Ac and A the central aperture
remains closed or zero [6]. This method is known as the
mask-antimask approach. Then, the reconstructed object is
approximated by

Ô =
1

2
(PA − PAc) ∗G

=
1

2
(O ∗A+ η − (O ∗Ac + η)) ∗G

=
1

2
(O ∗ (A ∗G) +O ∗ (Ac ∗ −G))

= O.

(3)

This model holds if and only if the neutron illumination source
uniformly emits rays parallel to the imaging axis, A and Ac
are perfectly aligned, and the coded aperture masks are free of
manufacturing imperfections, and that the system point spread
function A ∗ G = δ [3]. Observe that these requirements
are not fulfilled in a magnification modality, where near-field

imaging and divergent rays are needed. In addition, the flux
distribution in actual neutron sources is far from ideal. As we
will describe shortly, a model-based iterative reconstruction
algorithm is better suited to address these challenges.

B. Model-based iterative reconstruction

SIRT is a well-known iterative algorithm for reconstruc-
tion of tomographic images from projections. Although our
problem is not tomographic, it is mathematically of a similar
nature. We use a modified version of SIRT called PSIRT
for which near-optimal relaxation can be achieved [7]. The
reconstruction is subjected to minimum norm based Tikhonov
regulatization [8].

Let A denote the system matrix which models the beamline
including the source flux variations, and let x and y denote
the vectors representing the unknown image and the acquired
coded source projection data, respectively. Reconstruction can
then be described as a matter of solving the least squares
problem

x∗ = argmin
x

‖Ax− y‖2R + β ‖x‖22 (4)

where R is a diagonal matrix of inverse row sums of A.
Hyperparameter β establishes the trade-off between the data
term (left norm) and the model term (right norm).

The regularized PSIRT algorithm solves (4) by means of
the iterative scheme

x(k+1) = (1− αβp)x(k) + αp A′R(y −Ax(k)) (5)

where p = 1/ ‖A‖1, i.e., p represents the inverse of the largest
column sum of A, and 0 < α < 2 is a user-defined relaxation
parameter. It can be shown that α = 2/(1 + 2βp) is near-
optimal in that when βp is small, it leads to two times speed-up
in terms of needing about half as many iterations to achieve the
same minimization of (4) as required without use of relaxation.

Moving toward the reconstruction of real coded neutron
radiographs, we have integrated a more complex mask model
to our least squares algorithm. This is required in order to
model the neutron source as viewed through the coded-mask
holes. The HFIR CG-1D imaging beamline has the neutron
particles travel through a system of guides where each mask
hole has a different view of the guide mirrors and a unique
non-uniform flux distribution. Therefore, a cell element aij of
A is given by

aij =

N∑
n=1

Ancn,i,jφn,i,j , i ∈ [1,M ], j ∈ [1, Q]

where M and Q are the number of detector and object pixels,
respectively, An is an element of the coded aperture (i.e., 1
if the mask is open and 0 otherwise), cn,i,j denotes an inter-
polation coefficient to adjust the contribution of neighboring
pixels in a discrete space, and φn,i,j is the neutron flux or the
probability of a neutron particle passing through mask hole
An, detector pixel i and object pixel j. Note that for a uniform
neutron source the flux term is constant φn,i,j = φ. For non-
uniform sources where all coded aperture mask holes have
an equivalent flux angular distribution (e.g., Gaussian source),



the flux term is redefined as φn,i,j = φi,j , where the tuple i, j
index the angular flux variation.

Note that it is impractical to empirically measure the flux
distribution for all the holes in a MURA mask–most coded-
masks contain hundreds and even thousands of holes. There-
fore, as we will explain shortly, our strategy is to estimate the
mask holes flux distribution from a limited set of empirical
measurements.

C. Multi-source modeling

In order to capture the flux variations of the HFIR source,
we sample it using a small diameter aperture from 500µm
to 2mm. We call this aperture the characterization aperture.
Since the view of the source depends on the placement of this
aperture, we compare three different configurations. The sim-
plest configuration consists of sampling just the central view,
which assumes φn,i,j = φi,j . The other two configurations are
based on bilinear interpolation of the four nearest views from
3× 3 and 5× 5 regular view grids, respectively.

Fig. 3. Side view illustration of source flux estimation from empirical
samples. The open beam radiographs for characterization apertures A and
B are at the same detector plane, they are shown at different depths for
illustration purposes. The bottom left figure illustrates a 3×3 characterization
configuration. Note that the outer characterization apertures are placed to
guarantee full enclosure of the source.

Fig. 3 illustrates the new flux model for a 3×3 configuration
as shown at the bottom left of the figure. The mask aperture
E is estimated from the characterization apertures at A, B, C,
and D (in the side view A and B are only shown). The flux
distribution is given by

φn,i,j = φn,θ =
∑

k∈{A,B,C,D}

wn,k × pk,θ,

where θ is the direction between detector and object pixels
i and j, respectively, weights wk sum to 1, wk is inversely
proportional to the distance between the mask aperture An
(e.g., E) and characterization aperture k (e.g., A, B, C, or D),
and pk,θ is the source normalized empirical flux with direction
θ as estimated with characterization aperture k. As shown in
Fig. 3, the rays traced for the characterization apertures have
the same direction θ as the ray for which we want to estimate

flux. Note that the same source characterization images can
be used for different mask and objects as long as the mask
position remains unchanged and the mask size fit inside the
outer characterization apertures.

III. SIMULATIONS AND RESULTS

(a) (b)

Fig. 4. (a) T object used in Monte Carlo simulations. The open region
has an expected attenuation coefficient of µ1 = 1.0. The T’s top and
bottom components have attenuation coefficients µ2 = 0.2 and µ3 = 0.4,
respectively. (b) Coded source projection of T object.

The new model was tested with Monte Carlo simulations
with the neutron ray tracing software McStas [9]. The HFIR
CG1-D beamline was modeled in McStas in order to obtain
a highly textured illumination pattern. The source characteri-
zation configurations were all centered at the beam axis (i.e.,
z-axis) and the selected aperture sizes were 500µm, 1mm, and
2mm. For the results below, we imaged the T object shown in
Fig. 4(a). The object was placed 1m from the mask and 4m
from the detector for an effective 5:1 object magnification. The
imaging was performed with a 61×61 MURA coded aperture
with 100µmm holes, a 2.0mm field-of-view aperture, and a
361×361 detector with 100µm. The coded source in Fig. 4(b)
was reconstructed with direct convolution and the improved
model-based iterative reconstruction algorithm.

As shown in Fig. 5(a), direct deconvolution reconstruction
with a single mask is negatively impacted by the nonuniform
illumination of the CG1-D source. The reconstructed image
suffer from illumination fluctuations and low contrast. On
the other hand, although the mask-antimask approach is not
artifact free, Fig. 5(b) shows that it suppresses most of the
near-field imaging issues of the single mask approach. How-
ever, recall that the mask-antimask approach requires a second
exposure with an accurately registered complementary mask.
Also, as we will show shortly, the mask-antimask approach
offers low separation between the reconstructed attenuation
values.

A. Results

We aim to produce image quality reconstructions compara-
ble to or better than that of the two-exposure mask-antimask
convolution-based approach (See Fig. 5(b)). After a qualitative
assessment of the results in Fig. 5, it is evident that PSIRT
outperform the single-mask convolution approach. However, it
is also clear that the contrast of PSIRT reconstructions is lower
than that of the two-exposure mask-antimask approach. This
was quantitatively confirmed with the attenuation distribution
(i.e., image pixel intensity histogram) of the reconstructed
object as shown in Fig. 5(c) and 5(l). The object’s expected
attenuation values µ1 (blue dot), µ2 (red dot), and µ3 (green
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Fig. 5. Direct deconvolution reconstruction with: (a) single mask and (b)
mask-antimask approaches. (PSIRT reconstruction for the following configu-
rations: (d) 1×1 0.5mm, (e) 1×1 1mm, (f) 1×1 2mm, (g) 3×3 0.5mm,
(h) 3× 3 1mm, (i) 3× 3 2mm, (j) 5× 5 0.5mm, and (k) 5× 5 1mm. (l)
Pixel intensity histogram of (k).

dot) are 1.0, 0.2, and 0.4, respectively. Note that the con-
volution approach better reconstruct the open area (i.e., µ1)
allowing better contrast between the open area and the T
object. Although PSIRT did not generate reconstructions with
better contrast for the T object, in general, there was a more
accurate reconstruction of the T object attenuation values µ1

and µ2.
Beside comparing PSIRT to the traditional approach, we

also want to select the best characterization aperture configura-
tion. For this, we employed the Contrast Discrimination Func-
tion (CDF) as a measurement of image quality. Fig. 6 shows

Fig. 6. CDF curves for reconstructed images.

the CDF curves for several multi-source PSIRT model con-
figurations and for the mask-antimask convolution approach
(i.e., smaller contrast sensitivity percentage is better). The
results show that there is a trade-off between characterization
aperture size and source sampling and image quality. Smaller
characterization apertures image the source better, but also
increases the complexity of the reconstruction given that the
optimization needs to solve for higher frequency features.
On the other hand, for large apertures important source flux
features are lost and consequently limiting the validity of the
PSIRT model. For the tested CSI setup, the best performance
was obtained from the 5 × 5 1mm characterization aperture
configuration.

IV. CONCLUSION

In order to perform magnified CSI on real sources, we have
incorporated a multi-source flux characterization feature to our
PSIRT least squares model. Our synthetic experiments show
that the new PSIRT model outperforms the single mask con-
volution approach, but it is outperformed contrast-wise by the
mask-antimask convolution approach. Nevertheless, the least
squares approach produced the most accurate attenuation value
reconstructions for the object of interest. We are currently
working on improving the contrast of the PSIRT reconstruction
by improving the least squares model. We have shown that
there is a trade-off between the number of characterization
sources, aperture size, and image quality. We need to further
study these trade-offs in search for a generalized CSI design
method.
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