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Abstract

Despite being increasingly easy to acquire, 3D data is
rarely used for face-based biometrics applications beyond
identification. Recent work in image-based demographic
biometrics has enjoyed much success, but these approaches
suffer from the well-known limitations of 2D representa-
tions, particularly variations in illumination, texture, and
pose, as well as a fundamental inability to describe 3D
shape.

This paper shows that simple 3D shape features in a
face-based coordinate system are capable of representing
many biometric attributes without problem-specific models
or specialized domain knowledge. The same feature vector
achieves impressive results for problems as diverse as age
estimation, gender classification, and race classification.

1. Introduction

The last twenty years have seen significant advances in
face recognition as well as increasing interest in less spe-
cific forms of face-based biometrics. In many ways it is
more difficult to infer information about a person (what
we are calling demographic biometrics) than to determine
their identity. Investigations into age estimation and gender
and race classification have been fruitful, but the proposed
methods are very specific to their particular domain. For
example, many age estimation algorithms rely on wrinkle
detection [10] and gender classifiers may use distances be-
tween specially designated landmarks [6].

With the increasing availability of 3D sensors it is nat-
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ural to consider 3D shape as an important component of
facial biometrics. 3D data not only captures information
that is unavailable in 2D images, but it is also insensitive to
many of the factors that make image-based biometrics dif-
ficult, such as pose, illumination, and color. 3D data has
been successfully used for face recognition [3][5], but very
few approaches to demographic biometrics have taken ad-
vantage of this rich set of features. This may be because
3D scans are rarely fine-grained enough to capture wrinkles
for age estimation, and cannot represent makeup for gen-
der recognition or skin pigmentation for race classification.
This paper shows, however, that color and texture informa-
tion are not required for good performance in these tasks.

The purpose of this paper is to show that 3D data can be
useful for biometrics applications beyond recognition. We
show that a very simple set of 3D-based features can be used
to learn much more than a person’s identity. The features
used in this paper are very straightforward—3D points are
projected into a face-based coordinate system [3] and then
transformed with Principal Component Analysis (PCA) in
the spirit of eigenfaces [13].

Unlike many approaches to biometrics these features are
not tuned to any specific experiment and no domain-specific
knowledge is used. Despite being very simple, the 3D fea-
tures have surprising discriminative power. Experiments in
Section 5 show that the exact same feature vector can be fed
into task-specific classifiers to achieve an age estimation
Mean Absolute Error (MAE) of 4.9 years, a gender classifi-
cation accuracy of 88.8%, and a race classification accuracy
of 99.9%.

A face-based coordinate system is also exceptionally
well-suited to intuitive analysis and visualization. As will
be explained in Section 3, the coordinate system describes
each point on a face in relation to a reference face. Figure 1
shows the effects of altering face shapes to more clearly il-
lustrate differences between groups. The top row shows the
differences between male and female Caucasians. The cen-
ter face is the overall average Caucasian face, and the faces
to the left and right of the center show the average female
and male faces, respectively. Notice that it is difficult to
identify the differences between the two groups using the
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Figure 1. Exploring differences within two pairs of demographic groups using exaggeration. In all cases, calculations were performed in
a face-based coordinate system and the results were backprojected to a 3D mesh. The demographic pairs are Caucasian male/Caucasian
female and young Tanzanian/young Caucasian. Overall average faces are shown in the center, group averages are shown next, and exag-
gerated faces are shown at the ends. Note that the exaggerated faces allow for an easier understanding of the differences between average

group faces.

average faces. The differences were exaggerated in the face-
based coordinate system, resulting in the faces at the ends
of the row. Here, the differences between male and female
faces become much more obvious. We can see, for exam-
ple, that female Caucasians tend to have more pronounced
cheekbones, and male Caucasians tend to have more promi-
nent eyebrows. The bottom row of Figure 1 is structured
similarly, except the two groups are young Caucasians and
young Tanzanians. Gender labels for the Tanzanian subjects
in the Spritz dataset (see Section 4.2) are not available, so
the gender differences between Tanzanian faces cannot be
explored.

This paper does not claim to have the best possible per-
formance in any individual demographic biometrics appli-
cation. Instead, it demonstrates that a modest set of 3D fea-
tures contains a promising amount of information. It is rea-
sonable to assume that performance on any particular classi-
fication task could be improved by incorporating 2D image
data, problem-specific models, or more sophisticated use of
the 3D data. We hope to convince the reader that 3D data in
a face-based coordinate system is a good starting point.

2. Related works

The literature related to demographic biometrics is vast,
encompassing 2D and 3D approaches to face recognition,
age estimation, and gender and race recognition. It is not
possible in this paper to present complete introductions to

all of the topics. Instead, we refer the reader to a few com-
prehensive surveys for a broad understanding of the issues
in each application. Zhang and Zhang [17] survey face
recognition, with an emphasis on 2D methods. Bowyer et
al. [4] survey face recognition using 2D and 3D data. Fu et
al. [7] survey race classification. Guo surveys gender clas-
sification and age estimation [8].

This work is closely related to one of the seminal ap-
proaches to face recognition: the eigenfaces of Turk and
Pentland [13]. In both cases classification is performed us-
ing PCA-based projections.

In the biometrics community, 3D data has most com-
monly been used for face recognition. Blanz and Vetter [2]
use a 3D morphable model for face recognition, but their
recognition strategy does not exclusively use 3D data. In-
stead, they use a combination of shape and texture coeffi-
cients from the morphable model. Russ et al. [11] align 3D
query faces with a reference face, project the points of the
reference face onto the query face, and apply PCA to the
resulting 3D points. This is the inspiration for this paper,
the primary difference being that we use the 3D signatures
of Boehnen et al. [3] instead of 3D points.

A method called 3D eigenfaces was proposed by Xu et
al. [15], which first aligns faces with an average face and
then uses a hierarchical procedure to fit a regular mesh to
the query face. PCA is applied to the z-coordinate of the
fitted mesh.



Drira et al. [5] are a good example of a more contem-
porary approach to 3D face recognition. They apply elastic
shape analysis to 3D curves that radially emanate from the
nose tip. They show strong performance on data with sig-
nificant occlusions and variation in expression and pose.

There are surprisingly few works applying 3D face shape
to biometric attributes other than identity. Hu et al. [9] es-
timate gender using 3D face information, but their features
are limited to the location of a handful of facial landmarks.

Xia et al. [14] perform age estimation from 3D data using
an approach that is similar to [5] in that they use features
derived from curves that radiate from the tip of the nose.
Unfortunately, the dataset used for their experiments has a
poor distribution across ages, and so is not well suited to age
estimation. [14] report a MAE of 3.15 years on the dataset,
but it should be noted that simply guessing that all subjects
are 21 years old will result in a MAE of only 3.7 years.

3. Correspondence Vectors (CVs)

This paper demonstrates that simple 3D features can be
applied to several forms of demographic biometrics and
lend themselves to an intuitive understanding of how these
biometrics are reflected in face shape. We avoid the com-
plex geometric reasoning of [5] and [14], but are interested
in features with more expressive potential than a few man-
ually defined landmarks [9]. We have found the 3D signa-
tures from Boehnen et al. [3] to be a fruitful compromise.
The term “3D signature” is intended to convey a sense of
individuality and is used in the context of face recognition.
We will use “Correspondence Vector (CV)” instead, empha-
sizing that the feature is a measure of the correspondence
between two faces.

A CV measures the distance between a query face and
a reference face, mapping points from a global coordinate
system to face-based coordinates. CVs enjoy three advan-
tages over features in a global coordinate system:

e The CV transforms a 3D vector (z, y, z) into a 1D vec-
tor (d), resulting in decreased computational complex-
ity and a simpler PCA calculation.

e CVs are easier to interpret. For example, if an element
of a CV has a value of -0.2, then the point is located
0.2 units behind the reference face. If the point is on a
cheek, it could contribute to a gaunt appearance. It is
much more difficult to associate an absolute 3D coor-
dinate, say (18.2, 29.0, 11.7), with any such attributes.

e CVs are easier to modify in meaningful ways. For ex-
ample, a 3D face can be warped to be “more male”
by taking the CV of the face and adding the difference
between an average male face and an overall average
face. This is shown in Figure 1.
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Figure 2. Schematic illustration of a CV with six elements.

3.1. Mesh alignment

Before measuring the distance between a query face
mesh and a reference face, it is first necessary to align
them. The Iterative Closest Point (ICP) algorithm [1] is a
commonly used approach to aligning point clouds. Given
a rough initial alignment, the algorithm moves the query
face in 3D space to minimize the distance between the two
faces. After registration, every vertex in the reference face
is projected along the surface normal and the signed dis-
tance to the query face is measured. This is illustrated in
Figure 2. [11] and [3] also discuss an alternative nearest
neighbor approach, but the distance along the normal is par-
ticularly well suited to a simple analysis of 3D shape. Please
refer to [3] for a more thorough discussion of reference face
alignment and the generation of CVs.

3.2. Principal components of CVs

In a manner similar to eigenfaces [13], we obtain image
features by applying PCA to CVs. As 1D vectors CVs nat-
urally lend themselves to PCA. The reference face used in
this work contains 15,130 vertices, which is a large num-
ber of features. Fortunately, there is much redundant in-
formation in a full CV, and the dimensionality can be dra-
matically reduced without sacrificing valuable relationships
within the data. As shown in Figure 3 only 100 Principal
Components (PCs) are required to explain 93% of the vari-
ance in the Weinberg dataset, which is described in Sec-
tion 4.1.

Figure 4 shows a graphical representation of the first
twelve PCs from the Weinberg dataset. The elements of
each PC are color-mapped with red indicating more positive
values and blue indicating more negative values. Since the
original CVs can be interpreted as a set of distances from
a standard reference face, the PCs have an intuitive mean-
ing in that the value of the PC at a specific point indicates
whether the point lies in front of or behind the reference
face. Regions where the PC is positive (red) valued will be
in front of the reference face whereas regions where the PC
is negative (blue) tend to be behind the reference face. A
yellow color indicates no change from the reference face.
Consider the first PC shown in Figure 4. A negative value
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Figure 4. First twelve PCs from the Weinberg dataset using the full
reference face.

for this component corresponds to a face in which the nose,
forehead, and chin protrude more than they do with an aver-
age face. Similarly a positive value for the 11th component
corresponds to a face that has more prominent eyebrows.

Figure 5 shows a graphical representation of the first
twelve PCs from the Spritz dataset, which is described
in Section 4.2. Note that the first PC is surrounded by
a positive (red) band. This band is strongly related to
overall scale, which is reasonable, considering that the
Spritz dataset is composed of children’s faces, which ex-
hibit greater variation in scale.

3.3. Reverse mapping CVs to faces

One of the most interesting characteristics of CVs is that
it is simple to recreate a face mesh given a CV. This is very
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Figure 5. First twelve PCs from the Spritz dataset using the full
reference face.

different from other biometrics algorithms that rely upon
statistics or complex curve analysis. To generate a face
mesh, it is only necessary to shift each point of the refer-
ence face the distance given by the CV in the direction of
the surface normal. The ability to map CVs to 3D faces
enables some interesting visualization and analysis as dis-
cussed in Sections 1, 5.2, and 5.3.

3.4. Reference Face Generation

For CVs to accurately describe a 3D shape, it is im-
portant for the reference face to be smooth. This ensures
that the surface normals represent the overall shape of the
reference face. It must also be constructed such that the
ICP algorithm can provide the best possible alignment of
faces. Reference faces are created using an iterated proce-
dure. First several face meshes are averaged to make an
initial reference face. Then CVs are calculated for a train-
ing set given the reference face. The CVs are averaged, and
the resulting mean CV is reverse mapped to create a new
reference face. This is repeated until convergence. Please
refer to [3] for more details.

4. Datasets

All 3D data used in this paper is provided by the Face-
Base Consortium, which is an NIH-supported initiative.
The data consists of two distinct datasets. One was con-
tributed by Dr. Seth Weinberg and contains 3D face meshes
of primarily Caucasian subjects. This will be referred to
as the Weinberg dataset. The other was contributed by Dr.
Richard Spritz and contains 3D face meshes of Tanzanian
subjects. This will be referred to as the Spritz dataset. Both
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Figure 6. Age distribution of the Weinberg dataset.

datasets are available at no cost through the NIH.
4.1. Weinberg dataset

The Weinberg dataset contains 2454 3D face meshes in
Wavefront (.obj) format. Metadata includes the age, race,
and gender of each subject. Alignment failed for 39 of the
meshes, so the remaining 2415 were used for experiments.
Each mesh covers at least half the skull from the tip of the
nose back to the ears. Subjects range in age from 3 to 40
with the distribution shown in Figure 6. 952 subjects are
male and 1502 subjects are female. The subjects are mostly
Caucasian.

Application of the CV generation method to faces in the
Weinberg dataset requires some preprocessing to obtain cor-
rect alignment. The faces were oriented such that they were
facing in the same direction as the reference face with the
tip of the nose placed at the origin.

4.2. Spritz dataset

The Spritz dataset contains 3605 3D face meshes in
Wavefront (.obj) format. No demographic data (other than
the fact that the country of residence is the United Repub-
lic of Tanzania) is provided. The subjects appear to range
in age from 3 to 17 years old, with most subjects between
8-12 years.

5. Experiments

In this section three sets of experiments are used to
demonstrate that CVs perform well on a variety of demo-
graphic biometrics tasks despite a complete lack of special-
ized features, models, or domain knowledge.

Because of their general nature it cannot be expected that
CVs should outperform the most current, specialized, and
complex biometrics algorithms. The purpose of these ex-
periments is to show that 3D facial structure is useful for
purposes other than face recognition and to encourage its
use in future research. We hope that CVs will be useful as a
baseline for more sophisticated algorithms.

On a desktop computer all preprocessing (ICP align-
ment, CV extraction, and PCA projection) takes approxi-
mately 8 seconds per face. However, once this processing
has been done the feature vector can be evaluated extremely
rapidly. One of the advantages of our general-purpose fea-
ture is that there is no need to extract new task-specific fea-
tures for each classification problem.

5.1. Age estimation

The first set of experiments explores the performance of
CVs on the task of age estimation. The Weinberg dataset
was randomly partitioned into a training set of 1932 sam-
ples and a testing set of 483 samples. A Support Vector Re-
gressor (SVR) was learned using the training set. Both Ra-
dial Basis Function (RBF) kernels and linear kernels were
used for the SVR. Values for C' (and -y in the case of a RBF
kernel) were selected using five-fold cross-validation on the
training set.

Results are shown in Table 1 with a varying number of
PCs. The value in the row labeled “number PCs” indicates
the number of PCs that were used in the experiment.

The mean age of the Weinberg dataset is 22.3 years. A
classifier that guesses the mean age will result in a Mean
Squared Error (MSE) of 82.3 years, or a MAE of 9.1 years.

The best performing classifier uses 200 PCs and a SVR
with a RBF kernel. It has a MSE of 23.5 years, or a MAE of
4.8 years. Note that the performance of classifiers decreases
slightly with more than 200 PCs. This indicates that all
relevant age-based information is captured in the first 200
PCs. This is consistent with the curve seen in Figure 3,
which shows that 200 PCs capture approximately 96% of
the variance in the dataset.

Age estimation results are shown partitioned by ground
truth age in Figure 7. The performance of the 3D features
is compared to a classifier that always guesses the average
age of the test set, which is 22.3 years. It can be seen that
the 3D features outperform the average age-based classifier,
except in the immediate vicinity of the mean age. The 3D
features show an unexpected decrease in performance in the
18-22 year age bin, but it is only 0.6 years worse than the
23-27 year age bin.

5.2. Gender classification

The second set of experiments applies CVs to gender
classification. The experimental setup is the same as in Sec-
tion 5.1, except Support Vector Machine (SVM) classifiers
are learned instead of SVRs. Because the genders are not
equally distributed in the dataset, a classifier that always
guesses female will have an accuracy of 61.2%.

Results are shown in Table 1. Classifiers have a peak
classification rate of 89.2%. It is somewhat surprising to
note that this result is from an SVM with a linear kernel,
and not an RBF kernel. As is the case with age estimation,



Age estimation performance (Mean Absolute Error, smaller is better)

number PCs | 1 2 3 4 5 10 | 20 | 50 | 100 | 200 | 300 | 400 | 500

RBF SVM 75|67 |67 |64|60|59|56|50|49 |48 |53 |54 |56

linear SVM | 80 | 74 | 6.8 | 6.7 | 62 | 60 | 58 | 53 |52 |54 |54 |56 | 58

Gender classification rate (%, larger is better)
number PCs | 1 2 3 4 5 10 20 50 100 | 200 | 300 | 400 | 500
RBF SVM 78.7 | 80.1 | 81.8 | 81.6 | 81.2 | 86.1 | 86.5 | 87.2 | 88.8 | 88.6 | 88.0 | 86.7 | 87.2
linear SVM | 78.7 | 80.7 | 79.7 | 79.9 | 81.0 | 86.3 | 85.1 | 87.4 | 88.4 | 89.2 | 87.2 | 87.2 | 85.5
Race classification rate (%, larger is better)

number PCs | 1 2 3 4 5 10 20 50 100 | 200 | 300 | 400 | 500
RBF SVM 93.1 | 929 | 94.6 | 99.0 | 99.4 | 99.6 | 99.8 | 999 | 99.9 | 99.0 | 989 | 99.1 | 99.1
linear SVM | 93.1 | 93.1 | 94.8 | 98.8 | 99.0 | 99.1 | 99.6 | 99.9 | 99.6 | 99.6 | 99.5 | 99.1 | 99.4

Table 1: Experimental results on the Weinberg and Spritz datasets.
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Figure 7. Age estimation performance. Results partitioned by age.
A linear SVM was used for classification using 200 PCs.

the best performing classifier uses 200 PCs.

It is important to remember that the data was not cu-
rated specifically for this experiment. Many experiments
in gender classification remove extra sources of variability
by only considering adult subjects. This experiment, on the
other hand, uses data from people as young as three years
old. Figure 8 shows how gender classification performance
varies with the subjects’ age. Note that the performance is
best among adults.

It has already been shown that a face-based coordi-
nate system is convenient for visualization in terms of 3D
meshes and heatmaps. In addition to visualizing CVs as
heatmaps, it is also possible to visually analyze the weights
of linear classifiers. Figure 9 compares the average CVs
of demographic groups to the weights of classifiers used to
identify them. Figure 9(a) shows the difference between
the average female and the average male as a heatmap. (b)
shows the weights of a linear female/male classifier. Notice
the differences in the nose. The classifier responds more
strongly (in a positive sense) to the protrusion of the tip
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Figure 8. Gender classification performance. Results partitioned
by age. An SVM with a RBF kernel was used for classification
with 200 PCs.

of the nose, and more strongly (in a negative sense) to the
width of the nose. From this we can see that the nose is
among the most discriminative parts of the face for gender
classification.

5.3. Race classification

The final set of experiments uses CVs for race classifica-
tion among young subjects. The experimental setup is the
same as in Section 5.2, except subjects from the Weinberg
dataset are used as examples of the “Caucasian” class and
the Spritz dataset is used as examples of the “Tanzanian”
class. Only subjects 15 years old and younger were used
from Weinberg dataset to approximately match the age dis-
tribution of the Spritz dataset.

3291 samples were randomly selected for testing and the
remaining 822 samples were used for testing. As was the
case for gender classification this is an especially challeng-
ing collection of data because the variation in face shape is
due to age as well as race.
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Figure 9. Comparing the average difference between demographic
groups to the weights of linear SVM classifiers. Values are shown
as a heatmap. (a) Difference between average CVs of female and
male Caucasian faces in the Weinberg dataset. (b) Weights of a
linear gender classifier. (c) Difference between average Tanzian
and Caucasian youths. (d) Weights of a linear race classifier.

Classifiers with an RBF kernel using either 50 or 100
PCs had a remarkable 99.9% race classification accuracy.

As before, note the slight decrease in performance with ad-
ditional PCs.

Figure 9(c) and (d) show the average CVs of young Tan-
zanians and the weights of a Tanzanian/Caucasian classi-
fier, respectively. Notice that here the breadth of the nose is
again a very important feature for discrimination.

6. Future work

CVs in a face-based coordinate system have been shown
to be an effective and general means of addressing several
biometrics problems. Just as image-based biometrics per-
formance can be improved by combining PCA projections
of images with other features [16] [12], CVs could con-
tribute a robust description of 3D shape to an ensemble of
more specialized features. We expect CVs to enhance the
performance of models with problem-specific features.

The general and compact nature of CVs make them well-
suited to large-scale face searches. It would be possible to
pre-calculate the PCA projections of CVs for a large num-
ber of face scans and then apply a custom query extremely
rapidly. A linear classifier could be constructed using la-
beled training data (say, Caucasian women over 40) and
then applied to the entire database with a single matrix mul-
tiplication.

7. Conclusions

This paper has shown that extremely simple 3D fea-
tures operating in a face-based coordinate system are gen-
eral enough that they can be applied to several demograph-
ics biometrics problems, yet are powerful enough to pro-
vide impressive results for each problem. These features
are easy to compute and lend themselves to intuitive and
semantically meaningful interpretation.
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