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ABSTRACT 

Several researchers have investigated radiologists’ visual scanning patterns with respect to features such as total time 
examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the 
complexity of the radiologists’ visual scanning pattern when viewing 4-view mammographic cases, as they typically do in 
clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while 
reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant).  The radiologists’ scanpaths across the 4 
mammographic views were mapped to a single 2-D image plane. Then, fractal analysis was applied on the composite 4-
view scanpaths. For each case, the complexity of each radiologist’s scanpath was measured using fractal dimension 
estimated with the box counting method. The association between the fractal dimension of the radiologists’ visual 
scanpath, case pathology, case density, and radiologist experience was evaluated using fixed effects ANOVA. ANOVA 
showed that the complexity of the radiologists’ visual search pattern in screening mammography is dependent on case 
specific attributes (breast parenchyma density and case pathology) as well as on reader attributes, namely experience 
level. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases. There is 
also substantial inter-observer variability which cannot be explained only by experience level. 

Keywords: visual perception, fractal analysis, mammography, gaze complexity, user modeling 
 

1. INTRODUCTION 

Breast cancer is the second leading form of cancer-related death affecting a large percentage of the female population. 
The mortality rate for this disease is largely dependent on early detection through the mammographic screening process 1.  
However, studies show that the mammographic screening process is susceptible to different types of error resulting in 
misdiagnosis, with 50% of misdiagnosis resulting from human visual error 2–5. Diagnostic error has received a lot of 
attention in recent years as members of the medical research community have focused on the visual processing and 
cognitive processes related to diagnostic decision making to better understand the causes of diagnostic error. In radiology, 
diagnostic errors can be attributed to visual search and recognition errors 6,7.  

For over half a century, a large number of studies have focused on the radiologists’ visual scan pattern during the image 
reading process. Findings from these studies indicate prevalence of errors in two broad areas: (1) how radiologists find 
what they are looking for (visual search); and (2) how radiologists interpret what they are looking at (image 
interpretation) 8–13. A large body of eye-tracking research has also focused on gaining a better understanding of the 
relationship between visual search and diagnostic decision by analyzing radiologists’ eye movements recorded during the 
diagnostic process 14–20. 



 

 

Resent research work has shown the efficacy of eye-tracking in diagnostic performance prediction 21. Voisin et al. 
conducted laboratory studies and applied machine learning techniques to predict error during the diagnostic 
characterization of mammographic lesions by combining features from radiologists’ gaze behavior, and textural image 
characteristics21. Tourassi et al. investigated the relationship between radiologists’ gaze, diagnostic decision, and image 
content of mammograms during mammographic cancer screening 22. Their results show that machine learning can be used 
to build user dependent models to predict radiologists’ medical errors by combining image content and gaze 
characteristics.  

In mammography, all gaze tracking studies have been based on single view mammograms. This is not consistent with 
clinical practice where radiologists navigate simultaneously 4 different mammographic views. Furthermore, observed 
visual search has been typically summarized using features such as total time examining a case, time to initial hit on true 
lesions, total dwell time assessing a specific lesion, number of hits, etc. Although informative, these features fail to 
capture the gaze path trajectory. The purpose of this study is two-fold. First, we aim to examine and model the complexity 
of the radiologists’ visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical 
practice. Second, we aimed to understand if and how the radiologists’ visual scanning pattern complexity is affected by 3 
factors: (i) breast parenchyma density, (ii) case pathology, and (iii) radiologists’ experience level.  

 

2. METHODS 

2.1. Experimental Protocol 

To perform this study, ten readers of variable experience levels were recruited to conduct blind review of 100 four-view 
screening mammograms of varying pathology (see Table 1). Three of the 10 study participants were experienced MQSA-
certified breast imagers while the remaining seven participants were radiology residents with at least one rotation in 
mammography (see Table 2).  

 

 
 

Table 1. Diagnostic cases 

Type No. of cases 

Normal 24 

Benign 26 

Malignant 50 

Total 100 

 

Table 2. Participating radiologists characteristics 

Type Experience No. of participants 

Radiologist > 10 yrs of practice 2 

Radiologist < 10 yrs of practice 1 

Resident > 2 mammo rotations 4 

Resident ≤ 2 mammo rotations 3 

Total  10 



 

 

Each reader was required to view 100 screen-film mammograms selected from the Digital Database of Screening 
Mammography (DDSM) 23. Of the DDSM case corpus used for this study 24 cases were normal, 26 included biopsy-
proven benign masses, and the 50 remaining cases included biopsy-proven malignant masses. The cancer cases did not 
include any benign lesions. Also, none of the study cases included calcifications. The radiologists were asked to report the 
location of any suspicious masses and corresponding BI-RADS rating as typically done in clinical practice.  

2.2. Eye-tracking Apparatus & Data Collection 

A customized graphical user interface was developed in-house for study participants to view each mammographic case 
and record their findings. Two medical grade monitors were used (dual-head 5MP mammo-grade Totoku LCD monitors 
calibrated to the DICOM display standard). The four views were displayed at low resolution (2 views per monitor) to fit 
the screen. The GUI provided the functionality of zooming in/outs, panning, and magnifying glass for detailed viewing of 
the mammographic views.  

During the reading session, each reader was outfitted with an H6 head-mounted eye-tracker, with a 60 Hz sampling rate, 
and eye-head integration from Applied Science Laboratories (ASL, Bedford, Massachusetts, USA). Readers were 
instructed to view each case until satisfied with the viewing phase. When the reader was ready to give a diagnostic 
opinion, the eye-tracking recording phase was halted until the reader completed and reported their findings. After 
completion, the reader was instructed to proceed with viewing the next case. Prior to the study, each reader was carefully 
calibrated using the 9-point calibration protocol provided by ASL. 

2.3. Data Analysis 

Since gaze data for each case was collected from 4 mammographic views spread across two monitors, the raw eye-
position data collected per case were mapped to a single two-dimensional image plane, maintaining the initial order in 
which the four views were presented during the reading session (i.e., LCC, RCC, LMLO, RMLO).  Fixations were 
computed using an algorithm developed by Nodine and Kundel 24, and scan paths were derived connecting the fixation 
data.  
 
For each case and reader viewing the case, his visual search scan path is a highly complex gaze network. We used fractal 
analysis to capture and model the complexity of these networks across cases and readers.  
Fractal dimension is a mathematical tool for objective measurement of complex structures or patterns that cannot be 
readily described and quantified by application of Euclidian geometry. The network formed by connecting fixations 
during a mammographic screening can be treated as a fractal pattern, the dimension (D) of which, for two-dimensional 
objects, is expressed by a non-integer between 1 and 2. We used the Minkowski–Bouligand box-counting method 25 to 
estimate the fractal dimension (D) of each reader’s gaze network for each examined case.  



 

 

The interaction between gaze complexity, case pathology, case density, and radiologist’s experience was evaluated using 
a four-factor fixed-effects ANOVA with 3 levels for case pathology (normal, benign, & malignant), 4 levels for case 

density (fatty, fibroglandular, heterogeneous, dense), 3 levels for experience levels (new trainee, advanced trainee, 
expert), and 10 individual readers. We repeated the same data analysis process (computing complexity using fractal 
analysis followed by ANOVA) while changing the order in which the gaze data were mapped on a two-dimensional 
image plane (RCC, RMLO, LMLO, LCC).  

 

3. RESULTS 

We observed that gaze networks generated during mammographic screening were complex and appeared to be unique to 
each case and each reader. However, using ANOVA analysis on the estimated fractal dimensions we aimed to determine 
if these networks show any dependency with case pathology, breast density or the reader’s experience level.  

The interaction between gaze complexity, case pathology, case density, and readers’s experience was evaluated using a 
four-factor fixed-effects ANOVA with 3 levels for case pathology (normal, benign, & malignant), 4 levels for case 
density (fatty, fibroglandular, heterogeneous, dense), 3 levels for experience levels (new trainee, advanced trainee, 
expert), and 10 individual readers. The results of the ANOVA tests for the two alternate mammographic view orderings 
are summarized in Table 3. 

ANOVA showed that all four factors are independent predictors of the radiologists’ visual scanning pattern complexity. 
This finding was consistent across both mammographic view orderings. None of the higher order effects were found to be 
significant. 

 
Figure 1. Example image showing the initial ordering (LCC RCC LMLO RMLO) 

 
Figure 2. Example image showing an alternate ordering (RCC RMLO LMLO LCC) 



 

 

 
 

Post-ANOVA t-tests with Bonferroni p-value adjustment were also performed (Table 4). Overall, the complexity of the 
readers’ visual search patterns were significantly different between normal cases and cases including mass lesions. 
However, the malignancy status of the lesions did not affect the complexity of the visual search pattern. In addition, gaze 
pattern complexity was found to be significantly different between fibroglandular and heterogeneous/dense 
mammograms. However, this finding was not consistent between the two view orderings. Finally, the gaze complexity 
pattern was found to be significantly different between new trainees and experts for both orderings. There were some 
significant differences between other experience level groups, however these differences were not consistently significant 
between the two orderings.  

 
Table 4. Pairwise Comparisons of Groups of Case Pathology, Breast Density, and Radiologists’ Experience Level 

Pair 1 Pair 2 
p-value 

Initial Ordering 

p-value 

Alternate Ordering 

Pathology – Normal Pathology - Benign 0.022 0.004 

Pathology – Normal Pathology - Malignant 2.4e-5 9.3e-6 

Pathology – Benign Pathology - Malignant 0.431 0.905 

Density – Fatty Density - Fibroglandular 0.604 0.600 

Density - Fatty  Density - Heterogeneous/Dense 0.842 1.000 

Density - Fibroglandular Density - Heterogeneous/Dense 0.027 0.230 

Experience - New Trainee Experience - Advanced Trainee 0.291 1.9e-4 

Experience - New Trainee Experience - Expert 0.001 0.001 

Experience - Advanced Trainee Experience - Expert 0.025 1.000 

Table 3. Multi-factor ANOVA for both Fractal Dimensions of Initial Ordering and Alternate Ordering 

Source DoF 
Initial Ordering Alternate Ordering 

F p > F F p > F 

Pathology 2 13.53 1.62e-6 16.23 1.19e-7 

Density 2 6.00 0.0026 3.91 0.0203 

Experience 2 9.59 7.53e-5 12.89 3.00e-6 

Individual 7 47.91 < 1e-15 63.59 < 1e-15 

Pathology : Density 4 1.50 0.1998 1.34 0.2519 

Pathology : Experience 4 0.93 0.4429 1.34 0.2515 

Density : Experience 4 0.78 0.5349 0.74 0.5626 

Pathology : Individual 14 1.64 0.0637 1.32 0.1865 

Density : Individual 14 0.44 0.9616 0.64 0.8366 

Pathology : Density : 
Experience 8 0.59 0.7860 0.63 0.7502 

Pathology : Density : 
Individual 28 0.66 0.9110 0.51 0.9847 

Total 999     



 

 

 
 Finally, statistical tests were performed to study the pairwise differences among the 10 readers (Table 5). Several 
significant pairwise differences were found suggesting that there was substantial inter-reader variability. 

 
Table 5. Pairwise Comparisons of Individual Readers (a) of Initial Ordering, and (b) of Alternate Ordering         

(N: New Trainee, A: Advanced Trainee, E: Expert). 

(a) 
 N1 N2 A1 A2 A3 A4 A5 E1 E2 

N2 <1e-3         
A1 1.000 <1e-3        
A2 0.216 0.212 0.096       
A3 <1e-3 1.000 <1e-3 0.032      
A4 1.000 <1e-3 1.000 0.909 <1e-3     
A5 1.000 <1e-3 1.000 0.014 <1e-3 1.000    
E1 <1e-3 1.000 <1e-3 0.001 1.000 <1e-3 <1e-3   
E2 1.000 <1e-3 1.000 1.000 <1e-3 1.000 1.000 <1e-3  
E3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 

(b) 
 N1 N2 A1 A2 A3 A4 A5 E1 E2 

N2 <1e-3         
A1 1.000 <1e-3        
A2 1.000 <1e-3 1.000       
A3 <1e-3 1.000 <1e-3 <1e-3      
A4 0.006 <1e-3 0.001 0.002 <1e-3     
A5 0.073 <1e-3 0.012 0.029 <1e-3 1.000    
E1 <1e-3 1.000 <1e-3 <1e-3 1.000 <1e-3 <1e-3   
E2 1.000 0.014 1.000 1.000 0.002 <1e-3 <1e-3 <1e-3  
E3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 <1e-3 

 

4. DISCUSSION 

In this study, we analyzed the gaze networks formed by the radiologists’ scan path during 4-view mammographic 
screening. We used fractal analysis to measure the complexity of these gaze networks. We also investigated two alternate 
ways of aggregating the gaze data collected from the 4 mammographic views to determine how the aggregation ordering 
impacts fractal analysis.  

The findings of this study which were consistent across the two alternative 4-view gaze aggregation ordering were: 

• Case pathology, case density, and radiologist’s experience are all independent predictors of radiologists’ visual 
search pattern complexity as measured by the fractal dimension. 

• The average fractal dimension of the visual search patterns for normal cases is statistically significantly different 
from those of benign and malignant cases. 

• The average fractal dimension of the visual search patterns of expert radiologists is statistically significantly 
different from that of new trainees. 

• There are notable individual differences among radiologists.  



 

 

In summary, our results demonstrate that the complexity of the visual search pattern in screening mammography 
measured by fractal analysis is dependent on case specific attributes (breast parenchyma density and case pathology) as 
well as on reader attributes, namely experience.  

5. CONCLUSION 

Visual search pattern complexity has been shown to have a significant dependency on case properties and radiologists’ 
experience level. Given this observation, the next step of this investigation is to determine the efficacy of visual search 
pattern as a predictor of diagnostic error. If we can reliably predict the risk of diagnostic error using gaze complexity, we 
could leverage these predictive models to develop automated training and decision support systems personalized to the 
individual radiologist’s needs. 
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