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ABSTRACT   

Previously, we have shown the potential of using an individual’s visual search pattern as a possible biometric. That study 
focused on viewing images displaying dot-patterns with different spatial relationships to determine which pattern can be 
more effective in establishing the identity of an individual. In this follow-up study we investigated the temporal stability 
of this biometric. We performed an experiment with 16 individuals asked to search for a predetermined feature of a 
random-dot pattern as we tracked their eye movements. Each participant completed four testing sessions consisting of 
two dot patterns repeated twice. One dot pattern displayed concentric circles shifted to the left or right side of the screen 
overlaid with visual noise, and participants were asked which side the circles were centered on. The second dot-pattern 
displayed a number of circles (between 0 and 4) scattered on the screen overlaid with visual noise, and participants were 
asked how many circles they could identify. Each session contained 5 untracked tutorial questions and 50 tracked test 
questions (200 total tracked questions per participant). To create each participant’s "fingerprint", we constructed a 
Hidden Markov Model (HMM) from the gaze data representing the underlying visual search and cognitive process. The 
accuracy of the derived HMM models was evaluated using cross-validation for various time-dependent train-test 
conditions. Subject identification accuracy ranged from 17.6% to 41.8% for all conditions, which is significantly higher 
than random guessing (1/16 = 6.25%). The results suggest that visual search pattern is a promising, temporally stable 
personalized fingerprint of perceptual organization. 
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1. INTRODUCTION  
Physical and behavioral characteristics have been studied extensively as the basis for biometric systems for identification 
or authentication of individuals [1,2]. With the continuous advancement and accessibility of eye-tracking technology, 
there has been an increased interest in exploring gaze as the source of biometric information by studying different 
aspects such gaze direction, velocity, etc. [3-10]. By observing how people pursue and achieve various visual tasks, 
signal processing scientists can derive new biometrics. The quality of the gaze-based biometrics however is highly 
dependent on several external and internal factors, such as the quality of the eye-tracker, the quality of the calibration 
process, and the whether an individual’s behavioral trait changes over time and under different external conditions or 
stressors. It is also unclear whether gaze is behavioral or physiological trait. 

In our previous study we explored gaze velocity during visual search as a possible biometric. That study focused on 
visual search tasks involving different spatial arrangements [11] to determine i) which task captures best the individual’s 
visual search behavior, and ii) whether the behavior is consistent across tasks. The visual search pattern related to the law 
of closure (i.e., “the mind completes shapes that are not whole“) was found to derive a particularly effective biometric. 
However the previous study did not address the temporal stability of the biometric. To address this gap, we performed a 
new study with more subjects, strict calibration protocols, and a temporally variable study design. Understanding better 
the temporal stability of a gaze-based biometric and the factors that may influence its robustness are critical steps for 
effective implementation and utilization of the biometric. 

 



 
 

 
 

2. METHODS 
2.1 Perceptual Organization Tasks  

Perceptual organization tests based on the Gestalt grouping principles of similarity, continuation, proximity, and closure 
[12] have been used before to study their potential as possible biomarkers for neurological disorders such as Alzheimer’s 
disease [13]. Intrinsically, these tests encourage frequent visual processing for detection of various spatial cues, followed 
by memorization and recognition of visual components by grouping and separation. In our previous study, we 
investigated gaze tracking while individuals performed five perceptual organization tests to capture the uniqueness of the 
detection and recognition process of these individuals. That study suggested that one test was particularly helpful in 
deriving a fairly accurate biometric, producing significantly highest reader identification accuracy among the other five 
tests.  

This study focuses on this specific perceptual organization test to evaluate the temporal stability of the derived 
biometrics.  The test uses a spatial organization pattern known as the “the glass pattern test”. The glass pattern test 
displayed a group of concentric circles made up of dots, illustrated in Figure 1(a). The circles were shifted to the left or 
right side of the image. Noise was superimposed over the image to introduce distractors. The test asked the participant 
which side of the image the circle was centered on. We also created a variant of the glass pattern test. Specifically, we 
scattered between 0-4 circles of varying size and position across an image. Noise was superimposed over the image as 
with the previous test. The participants were asked how many circles were displayed on the screen. Example of the Test 
2 is shown in Figure 1(b). For each pattern we varied the task difficulty by adding or removing distractors. We 
determined the test difficulties from a staircase-type pilot study we performed before the actual experiment. 

 

 
(a) 

 
(b) 

Figure 1. Examples of stimulus patterns used in each of the two tests, (a) Test 1: glass patterns, (b) Test 2: a 
variant of the glass patterns. 

 

2.2 Eye-Tracking Data Collection 

For eye-tracking data collection, we used the Mirametrix S2 remote eye-tracker [14] based on its accuracy, availability, 
and ease of use. The Mirametrix S2 eye-tracker refreshed at 60 frames per second, which was considered reasonable for 
our study. The eye-tracker was placed directly under the monitor and positioned such that it was able to capture the 
subject’s gaze to any part of the monitor. The eye-tracker was placed about two feet from the subject, which was the 
manufacturer’s recommended distance. To minimize any interference with gaze tracking, the overhead lights were 
always turned off during tracking. We also carefully considered the eye-tracking process to maximize the accuracy of 
our results. Before we began the testing, we calibrated the eye-tracker using the typical 9-point calibration pattern until a 
precise calibration was achieved. Calibration was considered precise if the cursor correctly followed the subject’s gaze to 
every section of the monitor. During the test, we constantly monitored the feedback from the eye-tracking system for any 
possible errors and adjusted the eye-tracker accordingly [15]. Recruited participants repeated the calibration until three 
consecutive acceptable calibrations were obtained. Calibration quality acceptance was determined by the following two 



 
 

 
 

conditions: a) there exists more than seven out of nine valid calibration points, and b) the average calibration error was 
less than 80 pixels. We dismissed participants whose calibrations could not satisfy the eligibility criteria within 10 
calibration attempts. 

2.3 Study Design 

We scheduled four data collection sessions split into two morning and two afternoon sessions--a morning and afternoon 
session for each test described in section 2.1. The sessions were scheduled as close to the beginning or end of the 
participants’ workday as possible to help us investigate whether work overload is a confounding factor. We ordered the 
sessions specifically so no participant would view the same test twice in a row. Only one morning session and one 
afternoon session could be scheduled on the same day. This separated the participants into four testing groups depending 
on which session order they desired: 

● morning, afternoon, afternoon, morning 

● morning, morning, afternoon, afternoon 

● afternoon, afternoon, morning, morning 

● afternoon, morning, morning, afternoon 

We divided the study participants randomly following this counter-balanced design. Participants were guided to report 
their tiredness before starting the session as scale level from 1 (not tired at all) to 5 (very tired).  

For each one of the 2 tests, 50 different images of various difficulty levels were generated. Before starting each test, the 
subjects reviewed 5-guided introductory questions consisting of obvious cases, mid-level, and difficult cases to 
familiarize themselves with the tests as well as the graphical user interface. The study software was designed to collect a 
good amount of valid eye gaze samples per each test pattern. In this paper, the software shows patterns to collect up to 
200 valid eye gaze samples. 

Sixteen subjects (8 males and 8 females) ranging from 19 yrs old to 47 yrs old were recruited for the study. The average 
age of the female subjects was 27.1 (±11.1) and of male subjects was 21.4 (±2.3). Six out of the sixteen subjects had 
corrected vision (glasses). Human subject recruitment and data collection were done according to a protocol approved by 
the Oak Ridge Site-Wide Internal Review Board. All participants signed an informed consent form.  

 

2.4 Data Analysis 

Following the same data analytics methodology used in the previous study, we applied Hidden Markov Models (HMMs) 
to analyze gaze velocity information. However, unlike the previous study where the number of hidden states of HMMs 
was five for all subjects, we applied an adaptation rule to find the optimal number of hidden states for each human 
subject to ensure better identification performance as well as avoid convergence failure. The number of optimal states 
was determined empirically by monitoring the log-likelihood values of the HMMs. Gaze velocities from 50 test patterns 
were used to train HMMs using 2, 3, 4, and 5 states for each subject, to choose the HMM showing the highest Log-
likelihood. 

We trained 16 HMMs, one per each subject, and computed the log-likelihood from each HMM for the test data. We 
applied leave-one-case-out cross-validation sampling. That is, each case (i.e., gaze sequence) was excluded once to serve 
as test case. The remaining cases were used to train 16 HMMs thus producing 16 user profiles, one for each subject. The 
16 user profiles were applied to the test case. The test case was assigned to the subject whose HMM user profile gave the 
most likely output. The RHmm software package [16] was used in this study. 

  



 
 

 
 

3. RESULTS 
Participants’ information and their eye tracker calibration errors as well as tiredness are reported in Table 1. Note that all 
participants fulfilled 9 valid calibration points. It is observed that there is no difference on average calibration error 
between morning sessions and afternoon sessions. In addition, the Pearson’s correlation between subjects’ tiredness and 
average calibration error is 0.157, therefore, very weak evidence of correlation between gaze tracking calibration 
performance and subjects’ tiredness. Likewise, the average calibration error for participants with (=32.63) and without 
(=35.77) corrected vision was not significantly different. These findings suggest the gaze calibration process was done 
very thoroughly in this study.  

 

Table 1.  Eye tracker calibration errors and participants’ tiredness per each session of the study. 

   Test 1 AM Test 1 PM Test 2 AM Test 2 PM 

Gender Age Vision Tired Error Tired Error Tired Error Tired Error 

Female 16 None 3 56.51 3 45.66 2 28.12 1 34.66 

Female 18 Glasses 3 55.67 1 57.53 5 26.61 1 41.13 

Female 20 None 2 23.83 2 48.82 4 61.08 1 34.18 

Female 22 None 2 25.85 3 42.76 5 38.44 4 42.76 

Female 22 None 2 27.88 1 36.30 1 33.24 5 65.87 

Female 35 Glasses 1 22.97 1 30.42 3 28.76 1 24.40 

Female 37 None 2 64.61 2 35.92 3 34.15 3 34.40 

Female 47 Glasses 3 31.58 1 30.03 3 25.33 2 28.80 

Male 18 Glasses 3 17.87 2 51.51 3 24.67 3 28.40 

Male 20 None 3 25.63 4 40.03 2 30.58 3 38.53 

Male 21 None 1 26.70 2 51.51 2 41.78 1 28.45 

Male 21 None 3 25.62 3 43.67 2 26.98 3 28.64 

Male 21 None 2 21.98 3 24.15 3 34.29 4 25.31 

Male 22 Glasses 1 19.85 1 46.64 1 48.43 1 39.12 

Male 22 None 3 21.11 1 39.68 2 16.90 2 24.13 

Male 26 Glasses 3 29.49 1 23.18 2 25.24 1 25.40 

Average 2.3 31.07 
±14.37 1.9 40.49 

±10.00 2.7 32.79 
±10.67 2.3 34.01 

±10.48 

 

Table 2 summarizes the identification accuracy for each test pattern and each cross-validation scheme investigated. We 
explored two cross-validation scenarios. The first scenario, considered all gaze sequences collected for an individual as 
one universal set to derive its biometric. The second scenario treats morning and evening data as separate tests for 
training and testing. The second scenario aims to determine if biometric signatures change with time, even within the 
same day. Please note that with 16 subjects, random guessing for subject identification would be 6.25% (=1/16).  

In all experiments reported in Table 2, identification accuracy was statistically significantly higher than random guessing 
(=0.0625). However, compared to our previously reported study, the identification accuracy for Test 1 was lower. This 
difference most likely can be attributed to different subjects and more precise collection of gaze data. Also, identification 
accuracy from the Leave One Out (LOO) experiment was significantly higher than that for the time-based data split 
experiment. These findings suggest that we need further investigation of eye-gaze features to achieve robustness as well 
as time-invariance. 



 
 

 
 

 

Table 2. Identification accuracy with 95% confidence intervals 
Test Pattern Cross-Validation Scheme Accuracy 

Test 1 
Leave One Out 

AM Only 41.8% (38.3%~45.1%) 
PM Only 36.6% (33.8%~39.8%) 

AM and PM 33.6% (31.4%~35.9%) 

Data Split 
Train AM – Test PM 17.6% (15.1%~20.4%) 
Train PM – Test AM 21.5% (18.8%~24.4%) 

Test 2 
Leave One Out 

AM Only 38.1% (34.6%~41.6%) 
PM Only 37.6% (34.3%~40.8%) 

AM and PM 25.9% (23.8%~28.1%) 

Data Split 
Train AM – Test PM 17.6% (15.1%~20.1%) 
Train PM – Test AM 23.8% (20.9%~26.8%) 

Test 1 + Test 2 
Leave One Out 

AM Only 39.9% (37.6%~42.3%) 
PM Only 37.1% (34.8%~39.4%) 

AM and PM 29.8% (28.2%~31.3%) 

Data Split 
Train AM – Test PM 17.6% (15.1%~20.1%) 
Train PM – Test AM 22.6% (19.9%~25.6%) 

 

Table 2 shows the identification accuracy based on Test 2 was often inferior to that for Test 1 in LOO tests. Also, the 
subjects’ average gaze velocity for test pattern 1 was consistently higher than that for test pattern 2, for morning and 
afternoon reading sessions (Test_1_AM=49.4 pixels, Test_1_PM=39.4 pixels, Test_2_AM=53.3 pixels, 
Test_2_PM=50.1 pixels). This result supports our previous study findings that higher identification accuracy correlates 
with a lower average gaze velocity. Gaze data observed in the morning resulted in better identification accuracy 
suggesting that visual fatigue may compromise somewhat the quality of the gaze-based biometric. However, the decline 
in identification accuracy observed when using the data collected in late afternoon was not statistically significant. 

In accordance to Table 1, Table 3 lists identification accuracy of LOO tests by sessions, along with average accuracy 
values between female and male subjects, young and old subjects, and subjects with glasses and no glasses. Differences 
between subgroups were not significant. Pearson’s correlation coefficient between the tiredness and identification 
accuracy was 0.109. Likewise, correlation coefficient between the average calibration error and identification accuracy 
was -0.005, resulting in very weak correlation or no correlation observed in between. 

 

4. CONCLUSION 
The follow up study performed in this paper consists mainly of repetition of tests with different subjects and different 
time intervals between the eye tracking data collection sessions. Consistency of results regardless of gender, age and 
vision condition demonstrated good potential that an individual’s gaze during perceptual organization visual search tasks 
can be utilized as a biometric. However, lower performance in time-based data split pointed out the major challenge in 
time-invariance to achieve a temporally robust user authentication system. The result that identification accuracy in 
morning session is moderately higher than that in afternoon session gives some clue between fatigue and consistency of 
eye gaze patterns. These findings will lead to more accurate personalized modeling and identification based on eye gaze, 
as well as have implications in Radiology training and the development of personalized e-learning environments. 

 

 



 
 

 
 

Table 3. Leave One Out test accuracy of identification of individual readers and their summations of groups by 
gender, age, and vision conditions. 

Gender Age Vision Test 1 AM Test 1 PM Test 2 AM Test 2 PM Average 

Female 16 None 0.080 0.160 0.120 0.320 0.170 

Female 18 Glasses 0.700 0.580 0.580 0.340 0.550 

Female 20 None 0.100 0.240 0.260 0.240 0.210 

Female 22 None 0.460 0.080 0.380 0.660 0.395 

Female 22 None 0.260 0.260 0.440 0.160 0.280 

Female 35 Glasses 0.120 0.360 0.140 0.320 0.235 

Female 37 None 0.820 0.580 0.640 0.760 0.700 

Female 47 Glasses 0.640 0.840 0.660 0.580 0.680 

Male 18 Glasses 0.700 0.140 0.500 0.140 0.370 

Male 20 None 0.100 0.060 0.060 0.180 0.100 

Male 21 None 0.040 0.400 0.500 0.140 0.270 

Male 21 None 0.940 0.740 0.280 0.660 0.655 

Male 21 None 0.800 0.880 0.720 0.740 0.785 

Male 22 Glasses 0.640 0.260 0.200 0.360 0.365 

Male 22 None 0.100 0.040 0.360 0.040 0.135 

Male 26 Glasses 0.180 0.240 0.260 0.380 0.265 

Female Subjects 0.398 0.388 0.403 0.423 0.403 
(0.355, 0.448) 

Male Subjects 0.438 0.345 0.360 0.330 0.368 
(0.323, 0.413) 

Young (<21.5) Subjects 0.433 0.400 0.378 0.345 0.389 
(0.338, 0.435) 

Old (>21.5) Subjects 0.403 0.333 0.385 0.408 0.382 
(0.330, 0.430) 

Subjects with glasses 0.497 0.403 0.390 0.353 0.411 
(0.357, 0.467) 

Subjects without glasses 0.370 0.344 0.376 0.390 0.370 
(0.328, 0.412) 
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