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ABSTRACT

Previously, we have shown the potential of using an individual’s visual search pattern as a possible biometric. That study
focused on viewing images displaying dot-patterns with different spatial relationships to determine which pattern can be
more effective in establishing the identity of an individual. In this follow-up study we investigated the temporal stability
of this biometric. We performed an experiment with 16 individuals asked to search for a predetermined feature of a
random-dot pattern as we tracked their eye movements. Each participant completed four testing sessions consisting of
two dot patterns repeated twice. One dot pattern displayed concentric circles shifted to the left or right side of the screen
overlaid with visual noise, and participants were asked which side the circles were centered on. The second dot-pattern
displayed a number of circles (between 0 and 4) scattered on the screen overlaid with visual noise, and participants were
asked how many circles they could identify. Each session contained 5 untracked tutorial questions and 50 tracked test
questions (200 total tracked questions per participant). To create each participant’s "fingerprint", we constructed a
Hidden Markov Model (HMM) from the gaze data representing the underlying visual search and cognitive process. The
accuracy of the derived HMM models was evaluated using cross-validation for various time-dependent train-test
conditions. Subject identification accuracy ranged from 17.6% to 41.8% for all conditions, which is significantly higher
than random guessing (1/16 = 6.25%). The results suggest that visual search pattern is a promising, temporally stable
personalized fingerprint of perceptual organization.
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1. INTRODUCTION

Physical and behavioral characteristics have been studied extensively as the basis for biometric systems for identification
or authentication of individuals [1,2]. With the continuous advancement and accessibility of eye-tracking technology,
there has been an increased interest in exploring gaze as the source of biometric information by studying different
aspects such gaze direction, velocity, etc. [3-10]. By observing how people pursue and achieve various visual tasks,
signal processing scientists can derive new biometrics. The quality of the gaze-based biometrics however is highly
dependent on several external and internal factors, such as the quality of the eye-tracker, the quality of the calibration
process, and the whether an individual’s behavioral trait changes over time and under different external conditions or
stressors. It is also unclear whether gaze is behavioral or physiological trait.

In our previous study we explored gaze velocity during visual search as a possible biometric. That study focused on
visual search tasks involving different spatial arrangements [11] to determine i) which task captures best the individual’s
visual search behavior, and ii) whether the behavior is consistent across tasks. The visual search pattern related to the law
of closure (i.e., “the mind completes shapes that are not whole*) was found to derive a particularly effective biometric.
However the previous study did not address the temporal stability of the biometric. To address this gap, we performed a
new study with more subjects, strict calibration protocols, and a temporally variable study design. Understanding better
the temporal stability of a gaze-based biometric and the factors that may influence its robustness are critical steps for
effective implementation and utilization of the biometric.



2. METHODS
2.1 Perceptual Organization Tasks

Perceptual organization tests based on the Gestalt grouping principles of similarity, continuation, proximity, and closure
[12] have been used before to study their potential as possible biomarkers for neurological disorders such as Alzheimer’s
disease [13]. Intrinsically, these tests encourage frequent visual processing for detection of various spatial cues, followed
by memorization and recognition of visual components by grouping and separation. In our previous study, we
investigated gaze tracking while individuals performed five perceptual organization tests to capture the uniqueness of the
detection and recognition process of these individuals. That study suggested that one test was particularly helpful in
deriving a fairly accurate biometric, producing significantly highest reader identification accuracy among the other five
tests.

This study focuses on this specific perceptual organization test to evaluate the temporal stability of the derived
biometrics. The test uses a spatial organization pattern known as the “the glass pattern test”. The glass pattern test
displayed a group of concentric circles made up of dots, illustrated in Figure 1(a). The circles were shifted to the left or
right side of the image. Noise was superimposed over the image to introduce distractors. The test asked the participant
which side of the image the circle was centered on. We also created a variant of the glass pattern test. Specifically, we
scattered between 0-4 circles of varying size and position across an image. Noise was superimposed over the image as
with the previous test. The participants were asked how many circles were displayed on the screen. Example of the Test
2 is shown in Figure 1(b). For each pattern we varied the task difficulty by adding or removing distractors. We
determined the test difficulties from a staircase-type pilot study we performed before the actual experiment.

(b)

Figure 1. Examples of stimulus patterns used in each of the two tests, (a) Test 1: glass patterns, (b) Test 2: a
variant of the glass patterns.

2.2 Eye-Tracking Data Collection

For eye-tracking data collection, we used the Mirametrix S2 remote eye-tracker [14] based on its accuracy, availability,
and ease of use. The Mirametrix S2 eye-tracker refreshed at 60 frames per second, which was considered reasonable for
our study. The eye-tracker was placed directly under the monitor and positioned such that it was able to capture the
subject’s gaze to any part of the monitor. The eye-tracker was placed about two feet from the subject, which was the
manufacturer’s recommended distance. To minimize any interference with gaze tracking, the overhead lights were
always turned off during tracking. We also carefully considered the eye-tracking process to maximize the accuracy of
our results. Before we began the testing, we calibrated the eye-tracker using the typical 9-point calibration pattern until a
precise calibration was achieved. Calibration was considered precise if the cursor correctly followed the subject’s gaze to
every section of the monitor. During the test, we constantly monitored the feedback from the eye-tracking system for any
possible errors and adjusted the eye-tracker accordingly [15]. Recruited participants repeated the calibration until three
consecutive acceptable calibrations were obtained. Calibration quality acceptance was determined by the following two



conditions: a) there exists more than seven out of nine valid calibration points, and b) the average calibration error was
less than 80 pixels. We dismissed participants whose calibrations could not satisfy the eligibility criteria within 10
calibration attempts.

2.3 Study Design

We scheduled four data collection sessions split into two morning and two afternoon sessions--a morning and afternoon
session for each test described in section 2.1. The sessions were scheduled as close to the beginning or end of the
participants’ workday as possible to help us investigate whether work overload is a confounding factor. We ordered the
sessions specifically so no participant would view the same test twice in a row. Only one morning session and one
afternoon session could be scheduled on the same day. This separated the participants into four testing groups depending
on which session order they desired:

° morning, afternoon, afternoon, morning
° morning, morning, afternoon, afternoon
° afternoon, afternoon, morning, morning
° afternoon, morning, morning, afternoon

We divided the study participants randomly following this counter-balanced design. Participants were guided to report
their tiredness before starting the session as scale level from 1 (not tired at all) to 5 (very tired).

For each one of the 2 tests, 50 different images of various difficulty levels were generated. Before starting each test, the
subjects reviewed 5-guided introductory questions consisting of obvious cases, mid-level, and difficult cases to
familiarize themselves with the tests as well as the graphical user interface. The study software was designed to collect a
good amount of valid eye gaze samples per each test pattern. In this paper, the software shows patterns to collect up to
200 valid eye gaze samples.

Sixteen subjects (8 males and 8 females) ranging from 19 yrs old to 47 yrs old were recruited for the study. The average
age of the female subjects was 27.1 (£11.1) and of male subjects was 21.4 (£2.3). Six out of the sixteen subjects had
corrected vision (glasses). Human subject recruitment and data collection were done according to a protocol approved by
the Oak Ridge Site-Wide Internal Review Board. All participants signed an informed consent form.

2.4 Data Analysis

Following the same data analytics methodology used in the previous study, we applied Hidden Markov Models (HMMs)
to analyze gaze velocity information. However, unlike the previous study where the number of hidden states of HMMs
was five for all subjects, we applied an adaptation rule to find the optimal number of hidden states for each human
subject to ensure better identification performance as well as avoid convergence failure. The number of optimal states
was determined empirically by monitoring the log-likelihood values of the HMMSs. Gaze velocities from 50 test patterns
were used to train HMMs using 2, 3, 4, and 5 states for each subject, to choose the HMM showing the highest Log-
likelihood.

We trained 16 HMMs, one per each subject, and computed the log-likelihood from each HMM for the test data. We
applied leave-one-case-out cross-validation sampling. That is, each case (i.e., gaze sequence) was excluded once to serve
as test case. The remaining cases were used to train 16 HMMs thus producing 16 user profiles, one for each subject. The
16 user profiles were applied to the test case. The test case was assigned to the subject whose HMM user profile gave the
most likely output. The RHmm software package [16] was used in this study.



3. RESULTS

Participants’ information and their eye tracker calibration errors as well as tiredness are reported in Table 1. Note that all
participants fulfilled 9 valid calibration points. It is observed that there is no difference on average calibration error
between morning sessions and afternoon sessions. In addition, the Pearson’s correlation between subjects’ tiredness and
average calibration error is 0.157, therefore, very weak evidence of correlation between gaze tracking calibration
performance and subjects’ tiredness. Likewise, the average calibration error for participants with (=32.63) and without
(=35.77) corrected vision was not significantly different. These findings suggest the gaze calibration process was done
very thoroughly in this study.

Table 1. Eye tracker calibration errors and participants’ tiredness per each session of the study.

Test 1 AM Test 1 PM Test 2 AM Test 2 PM

Gender | Age Vision | Tired Error Tired Error Tired Error Tired Error
Female 16 None 3 56.51 3 45.66 2 28.12 1 34.66
Female 18 Glasses 3 55.67 1 57.53 5 26.61 1 41.13
Female 20 None 2 23.83 2 48.82 4 61.08 1 34.18
Female 22 None 2 25.85 3 42.76 5 38.44 4 42.76
Female 22 None 2 27.88 1 36.30 1 33.24 5 65.87
Female 35 Glasses 1 22.97 1 30.42 3 28.76 1 24.40
Female 37 None 2 64.61 2 35.92 3 34.15 3 34.40
Female 47 Glasses 3 31.58 1 30.03 3 2533 2 28.80
Male 18 Glasses 3 17.87 2 51.51 3 24.67 3 28.40
Male 20 None 3 25.63 4 40.03 2 30.58 3 38.53
Male 21 None 1 26.70 2 51.51 2 41.78 1 28.45
Male 21 None 3 25.62 3 43.67 2 26.98 3 28.64
Male 21 None 2 21.98 3 24.15 3 34.29 4 25.31
Male 22 Glasses 1 19.85 1 46.64 1 48.43 1 39.12
Male 22 None 3 21.11 1 39.68 2 16.90 2 24.13
Male 26 Glasses 3 29.49 1 23.18 2 25.24 1 25.40
Average 23 | S | 19 | doo0 | 27 | Soer | 23| Sioas

Table 2 summarizes the identification accuracy for each test pattern and each cross-validation scheme investigated. We
explored two cross-validation scenarios. The first scenario, considered all gaze sequences collected for an individual as
one universal set to derive its biometric. The second scenario treats morning and evening data as separate tests for
training and testing. The second scenario aims to determine if biometric signatures change with time, even within the
same day. Please note that with 16 subjects, random guessing for subject identification would be 6.25% (=1/16).

In all experiments reported in Table 2, identification accuracy was statistically significantly higher than random guessing
(=0.0625). However, compared to our previously reported study, the identification accuracy for Test 1 was lower. This
difference most likely can be attributed to different subjects and more precise collection of gaze data. Also, identification
accuracy from the Leave One Out (LOO) experiment was significantly higher than that for the time-based data split
experiment. These findings suggest that we need further investigation of eye-gaze features to achieve robustness as well
as time-invariance.



Table 2. Identification accuracy with 95% confidence intervals

Test Pattern Cross-Validation Scheme Accuracy
AM Only 41.8% (38.3%~45.1%)
Leave One Out PM Only 36.6% (33.8%~39.8%)
Test 1 AM and PM 33.6% (31.4%~35.9%)
. Train AM — Test PM 17.6% (15.1%~20.4%)

Data Split -

Train PM — Test AM 21.5% (18.8%~24.4%)
AM Only 38.1% (34.6%~41.6%)
Leave One Out PM Only 37.6% (34.3%~40.8%)
Test 2 AM and PM 25.9% (23.8%~28.1%)

Data Split

Train AM — Test PM

17.6% (15.1%~20.1%)

Train PM — Test AM

23.8% (20.9%~26.8%)

Test 1 + Test 2

Leave One Out

AM Only 39.9% (37.6%~42.3%)
PM Only 37.1% (34.8%~39.4%)
AM and PM 29.8% (28.2%~31.3%)

Data Split

Train AM — Test PM

17.6% (15.1%~20.1%)

Train PM — Test AM

22.6% (19.9%~25.6%)

Table 2 shows the identification accuracy based on Test 2 was often inferior to that for Test 1 in LOO tests. Also, the
subjects’ average gaze velocity for test pattern 1 was consistently higher than that for test pattern 2, for morning and
afternoon reading sessions (Test 1 AM=49.4 pixels, Test 1 PM=39.4 npixels, Test 2 AM=53.3 pixels,
Test 2 PM=50.1 pixels). This result supports our previous study findings that higher identification accuracy correlates
with a lower average gaze velocity. Gaze data observed in the morning resulted in better identification accuracy
suggesting that visual fatigue may compromise somewhat the quality of the gaze-based biometric. However, the decline
in identification accuracy observed when using the data collected in late afternoon was not statistically significant.

In accordance to Table 1, Table 3 lists identification accuracy of LOO tests by sessions, along with average accuracy
values between female and male subjects, young and old subjects, and subjects with glasses and no glasses. Differences
between subgroups were not significant. Pearson’s correlation coefficient between the tiredness and identification
accuracy was 0.109. Likewise, correlation coefficient between the average calibration error and identification accuracy
was -0.005, resulting in very weak correlation or no correlation observed in between.

4. CONCLUSION

The follow up study performed in this paper consists mainly of repetition of tests with different subjects and different
time intervals between the eye tracking data collection sessions. Consistency of results regardless of gender, age and
vision condition demonstrated good potential that an individual’s gaze during perceptual organization visual search tasks
can be utilized as a biometric. However, lower performance in time-based data split pointed out the major challenge in
time-invariance to achieve a temporally robust user authentication system. The result that identification accuracy in
morning session is moderately higher than that in afternoon session gives some clue between fatigue and consistency of
eye gaze patterns. These findings will lead to more accurate personalized modeling and identification based on eye gaze,
as well as have implications in Radiology training and the development of personalized e-learning environments.



Table 3. Leave One Out test accuracy of identification of individual readers and their summations of groups by

gender, age, and vision conditions.
Gender Age Vision Test 1 AM Test 1 PM Test 2 AM Test 2 PM Average

Female 16 None 0.080 0.160 0.120 0.320 0.170
Female 18 Glasses 0.700 0.580 0.580 0.340 0.550
Female 20 None 0.100 0.240 0.260 0.240 0.210
Female 2 None 0.460 0.080 0.380 0.660 0.395
Female 2 None 0.260 0.260 0.440 0.160 0.280
Female 35 Glasses 0.120 0.360 0.140 0.320 0.235
Female 37 None 0.820 0.580 0.640 0.760 0.700
Female 47 Glasses 0.640 0.840 0.660 0.580 0.680
Male 18 Glasses 0.700 0.140 0.500 0.140 0.370
Male 20 None 0.100 0.060 0.060 0.180 0.100
Male 21 None 0.040 0.400 0.500 0.140 0.270
Male 21 None 0.940 0.740 0.280 0.660 0.655
Male 21 None 0.800 0.880 0.720 0.740 0.785
Male 2 Glasses 0.640 0.260 0.200 0.360 0.365
Male 2 None 0.100 0.040 0.360 0.040 0.135
Male 26 Glasses 0.180 0.240 0.260 0.380 0.265

Female Subjects 0.398 0.388 0.403 0.423 (0'325‘}%?4 "

Male Subjects 0.438 0.345 0.360 0.330 (0'32'335?)?41 5

Young (<21.5) Subjects 0.433 0.400 0378 0.345 (0'32535?)?43 5

0ld (>21.5) Subjects 0.403 0333 0.385 0.408 (0.3263,?)?430)

Subjects with glasses 0.497 0.403 0.390 0.353 (0'3(5)'7‘5‘ iy o)

Subjects without glasses 0.370 0.344 0376 0.390 (0'3253&12)
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