
DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 1 of 34

Final Report for DOE/EERE

Project Title: Software-Defined Solutions for Managing Energy Use in
Small to Medium Sized Commercial Buildings

Covering Period: December 7, 2013 – October 31, 2014
Approved Project Period:November 1, 2013 – October 31, 2014
Submission Date: Initial submission January 30, 2015, revised June 22, 2015,

revised August 28, 2015, final submission September 10,
2015

Recipient: University of California
 University of California, Berkeley

California Institute for Energy and Environment
2087 Addison Street, 2nd Floor
Berkeley, CA 94704

Website (if available) http://i4energy.org/
Award Number: DE-EE0006351
Working Partners: UC Davis
 Lawrence Berkeley National Laboratory
Cost-Sharing Partners: Building Robotics

PI: Dr. Carl Blumstein
 Director, California Institute for Energy and Environment

Phone: 510-643-1440
Fax: 510-643-9324
Email: blumstei@berkeley.edu

Submitted by: Dr. Therese Peffer
(if other than PI) Title: Academic Coordinator

Phone: 510-289-4278
Fax: 510-643-9324
Email: therese.peffer@uc-ciee.org

DOE Project Team: DOE Contracting Officer - Michael Buck

DOE Project Officer - Jim Payne
Project Engineer - Michael Wofsey

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 2 of 34

Acknowledgment
This material is based upon work supported by the Department of Energy under Award Number
DE-EE0006351

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 3 of 34

Acronyms and Terms
API Application Program Interface is a set of routines, protocols,

and tools for building software applications that is typically
proprietary and specific to each type of device.

BAS Building Automation System is the automatic centralized
control of a commercial building’s heating, ventilation and air
conditioning system as well as lighting.

BOSS Building Operating System Services is a UC Berkeley
software platform for managing building services

BOSSWAVE Building Operating System Services Wide Area Verification
Exchange is a UC Berkeley developed software that provides
decentralized Web of Trust authentication and authorization
security for data exchange

HVAC Heating, Ventilation, and Air-Conditioning equipment
REST REpresentational State Transfer is the software architecture

style consisting of guidelines and best practices for developing
web services. RESTful systems communicate over
the Hypertext Transfer Protocol with the same HTTP
verbs (GET, POST, PUT, DELETE, etc.) used by web
browsers to retrieve web pages and send data to remote servers

RTU Roof top unit, packaged HVAC unit typically installed on the
roofs of buildings.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 4 of 34

Table of Contents
Acronyms and Terms .. 3	

Introduction ... 5	

Project Objective ... 5	

Team ... 6	

Background ... 6	

Task by Task Description ... 8	

Task 1: Integrated platform with software tools, user interface, and hardware devices. 8	

Sample driver .. 9	

Choice of Information Bus .. 10	

Building System Services ... 11	

Sample service .. 12	

Task 2: Market delivery strategy .. 23	

Task 3: Testing and Demonstration .. 24	

Deployment ... 26	

Publications/Presentations/Travel ... 31	

Conclusion .. 31	

Appendix A: Access to OpenBAS code ... 33	

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 5 of 34

Introduction
Much American business is conducted in buildings with less than 50,000 square feet of floor
area—about 90% of the commercial buildings in the US which represent about half of the
commercial floor area. These buildings—accommodating retail stores, banks, grocery stores,
drugstores, restaurants, offices; often in the same structure—also account for much of the
nation’s energy use. Unlike their larger brothers, they are rarely equipped with a building
automation system (BAS) to manage heating, cooling, lighting, and other energy-consuming
operations. Why? This has not been an attractive market for mainstream building controls
companies to enter. Uses of these smaller buildings are diverse and changing, as are the types of
ownership, operation, and financing. In addition, these buildings are often provided with heating,
ventilation, and air conditioning (HVAC) by small multiple packaged rooftop top units (RTUs),
rather than large central systems. These systems vary in age, complexity, and controllability.
Energy uses in these buildings are at the same time too simple, too dispersed and too diverse — a
less-than-streamlined infrastructure that makes applications of traditional BAS not cost-effective
and energy management a challenge. Also, these businesses rarely have the facilities manager
that a mainstream BAS is designed around, to engage with the controls at a high technical level
in keeping an eye on energy use and minimizing waste.

Figure 1: A typical medium-sized building with roof top unit (RTU) heating, ventilation, and air conditioning
systems.

Project Objective
The Project uses state-of-the-art computer science to extend the benefits of Building Automation
Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized
commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS,
uses an open-source and open software architecture platform, user interface, and plug-and-play
control devices to facilitate adoption of energy efficiency strategies in the commercial building
sector throughout the United States.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 6 of 34

At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat,
lighting controller, and general controller—that are easily “discovered” by the platform in a
plug-and-play fashion. The user interface showcases the platform and provides the control
system set-up, system status display and means of automatically mapping the control points in
the system.

Team
University of California, Berkeley researchers led the team, with Carl Blumstein as the PI at the
helm; the team included researchers from Lawrence Berkeley National Laboratory (LBNL) and
UC Davis. The Software Defined Buildings group at UC Berkeley, led by Professor David
Culler, led the software platform development. The Western Cooling Efficiency Center at UC
Davis, led by Professor Mark Modera, drove the thermostat control development and algorithm
development, aided by Professor Dave Auslander of UC Berkeley, Mechanical Engineering.
Alan Meier and Rich Brown of LBNL led the lighting control development. Stephen Dawson-
Haggerty of Building Robotics supported the platform development and initiated the auto
discovery service development.

Background
OpenBAS is the “software-defined building” with a flexible multi-service open source software
architecture developed at UC Berkeley that dramatically reduces the effort to add new
functions/applications and supports sensor and actuator access, access management, metadata,
archiving, and discovery, as well as multiple simultaneously executing programs. The primary
innovation is the open software architecture compared to proprietary “closed” BAS. Typical
services in buildings are vendor-specific; in large buildings, these systems might be networked, but
typically communicate using different protocols. For example, an HVAC system has its own user
interface, schedule, data management, sensors and actuators. In turn, the lighting system has a
schedule, occupancy and lighting sensors, and controls. Likewise, a security system may have a
separate set of occupancy sensors, schedule, and user interface. These are often termed stove-pipe,
siloed, or vertically integrated.

Figure 2: Proprietary building services typically cannot communicate with each other, showing a vertical
integration.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 7 of 34

By contrast, the OpenBAS platform is open-source (publicly available) through the BSD 2-
Clause license and has an open software architecture, constructed from horizontal layers. This
architecture allows various system components, no matter what protocol each uses, the ability to
communicate, thus improving operations and reducing redundancy. For example, a single
schedule can control HVAC, lighting, and plug-loads. An occupancy sensor for the lighting
system may be used to control the HVAC system. Networked thermostats can allow optimization
strategies to reduce energy consumption while still providing comfort and fresh air. Third party
vendors of both hardware devices and software applications can connect their wares to the
platform, regardless of the physical interface, maximizing its effectiveness and market value.
For example, to connect new hardware requires both a physical (e.g., wired or wireless) and
logical connection (e.g., translates and manages data to be useful to applications, such as an
Application Programming Interface (API)). Each hardware device, whether a new sensor or
actuator requires a sMAP driver to interface with the OpenBAS platform. The platform was
deliberately designed to ensure that drivers would be simple and easy to write initially, and
eventually become part of the hardware itself. Likewise, a software product vendor, such as a
dashboard or diagnostics application, can easily view and query the database or write simple
control scripts to actuate hardware. This creates an industrial ecosystem for innovation and rich
application development. The layers provide modularity; the horizontal nature speaks to
integration and interoperability of various devices and systems.

Figure 3 below shows the layered architecture, and highlights the required software platform, user
interface, three software tools (system set-up, status display, and auto-mapping), and three
hardware devices (thermostat, lighting controller, and general controller). The OpenBAS
architecture is horizontal, layered, and open, providing a modularity that allows nimble
adaptation to changes at all layers. The bottom layer contains interfaces to physical devices,
typically sensors and actuators. The middle layer links the sensors and actuators with the top
(application) layer through the sMAP (simple Monitoring and Actuation Profile) interface and
services. sMAP makes diverse sources of physical data available for applications such as control,
visualization, and fault detection, and is agnostic to physical interface (e.g., WiFi, ZWave,
ZigBee, Ethernet). sMAP drivers allow sensors to “publish” data to services and applications via
the database and allow applications to “publish” commands to actuators. The platform supports
multiple simultaneously executing programs. Various new components can be automatically
discovered and added to the network.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 8 of 34

Figure 3: The OpenBAS layered architecture, consisting of Hardware devices, a Hardware Presentation
Layer, Building System Services layer, and an Application layer.

The platform was developed and tested in a laboratory setting, in a bench-top setting (Plexiglass
two-zone structure), and in a 7500 sf floor of a building in Berkeley, California.

Task by Task Description

Task 1: Integrated platform with software tools, user interface, and hardware
devices.
Subtask 1.1: Develop open architecture software platform prototype (BOSS) for small to
medium commercial buildings.

The Software Defined Buildings research group at UC Berkeley expanded and refined the BOSS
platform built on the sMAP open source information infrastructure for buildings and grids.

Initially developed by Dawson-Haggerty, sMAP (http://code.google.com/p/smap-data) is 1) a
universal information representation for physical data (self-describing, compact JSON schema,
transportable over UDP/TCP, with integrated metadata; 2) software architecture for physical data
processing and actuation (Real-time and archival data, time-series DB and adapters/drivers for
legacy and direct streams); 3) subscription, syndication, distillates and query processing,

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 9 of 34

visualization interface; and 4) a resource-oriented web-service framework for embedded
applications.

Figure 4: Simple Monitoring and Actuation Profile allows data aggregation from various sources.

The hardware presentation layer, shown in Figure 3, includes drivers for the OpenBAS
demonstration devices (network thermostats, lighting control, general control), along with more
than fifty other open source drivers (in
https://github.com/SoftwareDefinedBuildings/smap/tree/master/python/smap/drivers) for energy
metering, demand response notification, BACnet, Modbus, commercial BMS systems, weather
metering, thermal monitoring, air quality monitoring, and so on. We have also developed a
family of virtual sensor and actuator drivers to (1) allow for development and prototyping of
higher level services and application in a stand-alone environment and (2) connect OpenBAS
with simulators and other analytical tools.

Sample driver
To offer an example of how simple it is to create drivers for available commercial devices in our
OpenBAS platform, below we provide a sample thermostat driver. A driver class contains three
methods: setup, start, and read.

• Typically setup collects configuration parameters and initializes driver state. Here it
provides a mapping of all the points offered by the device and creates a timeseries for
each of these points. These become resources in the RESTful webservice associated with
the config file declaring the driver interface to a particular physical device.

• The start method declares how this driver is to be scheduled; here, periodically.
• The read method accesses the hardware device and publishes the result to a stream,

whereupon it can be utilized in a manner consistent with all other streams. For the CT80
the device access is fairly trivial because it is a networked device with an REST API,
although even here the device presents its humidity sensor quite differently from its
temperature sensor. In generaly, the driver can provide a systematic interface for a
variety of particular products. For the numerous legacy devices of interest, the read

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 10 of 34

method is used to access the underlying hardware resource, whether it be a serial port,
BACnet, Modbus, or one of the many other forms of connection in the market.

class	
 CT80(SmapDriver):	

	
 	
 	
 	
 def	
 setup(self,	
 opts):	

	
 	
 	
 	
 	
 	
 	
 	
 self.tz	
 =	
 opts.get('Timezone',	
 'America/Los_Angeles')	

	
 	
 	
 	
 	
 	
 	
 	
 self.rate	
 =	
 float(opts.get('Rate',	
 1))	

	
 	
 	
 	
 	
 	
 	
 	
 self.ip	
 =	
 opts.get('ip',	
 None)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 self.points0	
 =	
 [

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {"name":	
 "temp",	
 "unit":	
 "F",	
 "data_type":	
 "double"},	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {"name":	
 "tmode",	
 "unit":	
 "Mode",	
 "data_type":	
 "long"},	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {"name":	
 "fmode",	
 "unit":	
 "Mode",	
 "data_type":	
 "long"},	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {"name":	
 "override",	
 "unit":	
 "Mode",	
 "data_type":	
 "long"},	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {"name":	
 "hold",	
 "unit":	
 "Mode",	
 "data_type":	
 "long"},	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {"name":	
 "t_heat",	
 "unit":	
 "F",	
 "data_type":	
 "double"},	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {"name":	
 "program_mode",	
 "unit":	
 "Mode",	
 "data_type":	
 "long"}	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
]	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 p	
 in	
 self.points0:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 self.add_timeseries('/'	
 +	
 p["name"],	
 p["unit"],	
 data_type=p["data_type"],	

timezone=self.tz)	

	

	
 	
 	
 	
 	
 	
 	
 	
 #	
 points	
 not	
 in	
 the	
 root	
 resource	

	
 	
 	
 	
 	
 	
 	
 	
 self.add_timeseries('/humidity',	
 '%RH',	
 data_type="double")	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 def	
 start(self):	

	
 	
 	
 	
 	
 	
 	
 	
 #	
 call	
 self.read	
 every	
 self.rate	
 seconds	

	
 	
 	
 	
 	
 	
 	
 	
 periodicSequentialCall(self.read).start(self.rate)	

	

	
 	
 	
 	
 def	
 read(self):	

	
 	
 	
 	
 	
 	
 	
 	
 r	
 =	
 requests.get('http://'	
 +	
 self.ip	
 +	
 "/tstat")	

	
 	
 	
 	
 	
 	
 	
 	
 vals	
 =	
 json.loads(r.text)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 p	
 in	
 self.points0:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 self.add('/'	
 +	
 p["name"],	
 vals[p["name"]])	

	

	
 	
 	
 	
 	
 	
 	
 	
 r	
 =	
 requests.get(url	
 +	
 '/humidity')	

	
 	
 	
 	
 	
 	
 	
 	
 val	
 =	
 json.loads(r.text)	

	
 	
 	
 	
 	
 	
 	
 	
 self.add('/humidity',	
 val['humidity'])	

Choice of Information Bus
A critical area of investigation in the OpenBAS project has been the requirements of the
information bus connecting the Hardware Presentation Layer to the Building Systems Services
tier. The sMAP infrastructure provides an intentionally “lean” information bus. Collections of
devices (interfaced through drivers) present themselves as a REST web services resource
hierarchy, called an sMAP source. That is, each resource presents itself as a Uniform Resource
Identifier (URI) (i.e., http(s)://<hostname>:<port>/<resource path>) with properties and
metadata presented at each resource in the tree, inherited down the path as defined by the
configuration (.ini) file for the sMAP source.

Resources, services, and applications can access a resource directly through its URI. Sources
also can report to one or more archivers through a subscription UUID. The sMAP archiver, as
part of the service tier, provides syndication and publication through its republish API. This
allows resources to subscribe to events on sets of streams identified declaratively through a fully
general ‘where clause’ in the sMAP query language. Such restrictions provide the full generality

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 11 of 34

of the resource metadata in constructing relationships among services and streams, but provide
clear accountability and tracking of the flows of information for reliability.

In particular, in the embedded systems context, we found that heavy-weight pub/sub
infrastructures developed for the Enterprise provided little utility and introduced a great deal of
complexity. For example, XMPP is designed to carry payloads such as videos, audio streams,
and video game avatars and interactions, whereas what is required in OpenBAS is temperature
readings, control actions and other “tiny” notifications. Furthermore, message brokers, such as
ZeroMQ, provide a low-level socket-like interface with the connections between endpoints being
facilitated by a broker based on a complex match on an intermediate topics namespace. While
extremely general, these permit arbitrary interactions, utilize none of the natural structure of the
building automation setting, and have no built-in connections to data historians, real-time
control, and visualization, which are so inherent to OpenBAS.

In earlier stages of the project we carried out an integration into sMAP of a recent, open source
pub/sub infrastructure designed for embedded systems, MQTT, which is being utilized within the
building systems industry. In this approach, the resources paths provided by the sMAP
framework become natural topics for the broker to manage, while also providing a reporting
connection to the historian. In this context, we worked on the Authorization and Authentication
Service, using a distributed system for transferring trust (using dot = declaration of trust), or
trusted subsystems. We have termed this the BOSS Wide Area Verifed Exchange
(BOSSWAVE). Simple ubiquitous security such as SSL provides a means of encrypting traffic
between a user and a server. However, SSL does not provide protection if the server is
compromised, as for example in Target Corporation’s security breach. BOSSWAVE seeks to
manage keys so that every transaction can be verified. It is a distributed key management scheme
so that anyone can verify a requestor.

In developing the OpenBAS demonstration application, UI, and status, we have sought to
maintain austere simplicity. Thus, we have set aside, as least for this stage of the project, general
purpose pub/sub brokers and built the complete, integrated HVAC, lighting, and general control
directly on the syndication capabilities on the sMAP archiver. This reduces overall code
complexity and dependencies while providing the simple, accountable structure more familiar to
the building systems industry.

Building System Services
The OpenBAS Building System Services tier provides a family of services (i.e., continually
running, monitorable computational processes) that operate upon the driver services in support of
applications. A prime example is the Discovery service. This includes a hardware-level driver to
provide notification of connection events of new physical hardware devices, but its main
function is to recognize the particular device that has been attached to the Building Area
Network and configure that device for use in the particular site. Further detail on the discovery
service is provided in Subtask 1.3, page 9. We have developed several other services to support
the OpenBAS platform, including controller services, scheduler services and others. These
services use the same execution container as drivers to provide continuous, monitored operation,
but operate logically at a higher level.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 12 of 34

Sample service
A redacted illustration of such a controller service is shown below to indicate how simple these
are to create. This one could be instantiated with a configuration clause such as the following,
which has the controller and the archiver running on the same host, which could be local to the
premises or remote:

[/control]	

type=coolControllerService.Controller	

deadband=2	

rate=1	

archiver_url=http://localhost:8079	

zonepath	
 =	
 /room/airtemp	

zonesiteid	
 =	
 	
 2c8ed966-­‐146a-­‐11e4-­‐9e46-­‐000c29b778da	

To connect the coolControllerService to the /room/airtemp resource at a particular site while
configuring its initial state:

class	
 Controller(driver.SmapDriver):	

	
 	
 	
 	
 def	
 setup(self,	
 opts):	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 configure	
 the	
 controller	
 service	

	
 <	
 collect	
 args	
 from	
 config	
 and	
 initialize	
 controller	
 state	
 –	
 removed	
 >	

	
 	
 	
 	
 	
 	
 	
 	
 #	
 subscribe	
 to	
 zone	
 air	
 temperature	

	
 	
 	
 	
 	
 	
 	
 	
 self.roomclient	
 =	
 RepublishClient(self.archiver_url,	
 self.controlcb,	

	
 	
 restrict=”Path={}	
 and	
 Metadata/Site/id	
 =	
 {}”.format(path,siteid)	

	
 	
 	
 	
 	
 	
 	
 	
 #	
 create	
 timeseries	
 for	
 contoller	
 actions	

	
 	
 	
 	
 	
 	
 	
 	
 self.add_timeseries('/cool',	
 'On/Off',	
 data_type='long')	

	

	
 	
 	
 	
 def	
 start(self):	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 start	
 the	
 controller	
 service	

	
 	
 	
 	
 	
 	
 	
 	
 self.roomclient.connect()	

	
 	
 	
 	
 	
 	
 	
 	
 periodicSequentialCall(self.read).start(self.rate)	

	

	
 	
 	
 	
 #	
 Periodically	
 schedule	
 controller:	
 take	
 action,	
 update	
 state,	
 publish	
 event	

	
 	
 	
 	
 def	
 read(self):	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (self.cur_temp	
 >	
 self.sp	
 +	
 self.db)	
 :	
 self.state	
 =	
 1	
 	
 #	
 cool	
 on	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (self.cur_temp	
 <	
 self.sp	
 -­‐	
 self.db)	
 :	
 self.state	
 =	
 0	
 	
 #	
 cool	
 off	

	
 	
 	
 	
 	
 	
 	
 	
 #	
 otherwise	
 float	
 in	
 the	
 current	
 state,	
 cooling	
 or	
 not	
 until	
 deadband	
 is	
 crossed	

	
 	
 	
 	
 	
 	
 	
 	
 self.add('/cool',	
 self.state)	
 #	
 publish	
 the	
 state	
 even	
 when	
 no	
 change	

	

	
 	
 	
 	
 #	
 Handle	
 temperature	
 reporting	
 event,	
 here	
 just	
 report	
 state	

	
 	
 	
 	
 def	
 controlcb(self,	
 _,	
 data):	

	
 	
 	
 	
 	
 	
 	
 	
 mostrecent	
 =	
 data[-­‐1][-­‐1]	

	
 	
 	
 	
 	
 	
 	
 	
 self.cur_temp	
 =	
 mostrecent[1]	

The setup method within the Controller class of the coolControllerService module subscribes
to the /room/airtemp resource (specifically, temperature resource declared the configuration).
The start method initates the connection this subscription and schedules the read method

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 13 of 34

periodically. In this example, controlcb (the event call back) will be invoked whenever a
new temperature value is published to the /room/airtemp stream. Here, we simply update the
controller state with the most recent temperature reading for use in the next control epoch. A
periodic control strategy is used which publishes an event to the /control/cool stream based on
whether the temperature in the room has moved outside the deadband around the setpoint.

The main point here is that the control algorithm is clearly described in a few lines of
understandable code. The OpenBAS framework provides all the rest as described above—the
configuration and the orchestration and management of data flow (e.g., initiation of connection,
scheduling the reading of data, invoking controller).

Note that here we have essentially implemented a virtual thermostat for an air conditioner. It
could be much more sophisticated, say controlling both heating and cooling, implementing a PID
(Proportional-Integrative-Derivative) control loop or MPC (Model Predictive Control).
Moreover, if this were a virtual thermostat controlling one or more networked thermostats, each
providing an internal RTU (RoofTop Unit) controller, the event stream would be setpoints
published to those themostats. Such a controller could adjust for differing requirements in
different zones or relative offsets among zones or integrate multiple temperature sources into the
higher level controller loop.

Other services in the middle Building System Services tier include schedulers, such as one that
maintains a day-by-day weekly schedule to specify operations of multiple thermostats, lighting
groups, and general control state for morning, daytime, evening, and night epoch on various
classes of days, e.g., weekdays, weekends, and holidays. Sophisticated schedules can be created
that integrate multiple systems. Other services provide analytics, model building, energy
analysis and so forth.

We implemented version control of configuration files as a fail safe for future improvement
upgrades.

The OpenBAS sMAP system has been fully integrated into the Ubuntu and Debian package
manager. On a standard installation, the entire server infrastructure is downloaded and built
through a simple administrative action:
 sudo add-apt-repository ppa:cal-sdb/smap
followed by some straightforward setup.

Subtask 1.2: Procure Off-The-Shelf hardware devices; develop interface to BOSS
The LBNL, UC Davis, and UC Berkeley teams completed the lists of OpenBAS-appropriate
hardware devices (lighting control, thermostats, and plug load controls respectively), functions
and physical/logical interfaces. The criteria were: appropriate functionality, commercially
available, reasonable cost, and open communication protocol (e.g., available API or other means
of communicating with the device such as a web interface).

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 14 of 34

Two thermostats were procured: Radio Thermostat of America CT80 (WiFi interface) and
Proliphix IMT550c (Ethernet).

Several lighting controllers were obtained as well: Phillips HUE and TCP lighting (controlled
light bulbs) and the Enlighted System (uses an Energy Manager connected to a gateway that
wirelessly transmits to a controller/occupancy sensor physically connected to lighting control for
LED fixture or fluorescent ballast). We also obtained parts of the EnOcean Alliance system:
WattStopper wireless light switches and occupancy sensors and Terralux LED lamp replacement
for pin CFL hanging pendant fixtures. EnOcean uses a proprietary gateway, which is a simple
USB stick that communicates to devices at 902 MHz. All lighting controls use proprietary
gateways; however, both EnOcean and Enlighted provided APIs for their gateways, allowing
OpenBAS easy access for sensing and control.

The three plug load controllers we worked with were the WiFi-enabled VisibleEnergy plugstrip
and monostrip (single outlet), the Ethernet-enabled Raritan and Echola Power Distribution Units
(monitor and plugstrip).

The team wrote sMAP drivers for the RTA CT80, the Proliphix IMT550c, Phillips Hue, TCP
lighting, LabJack (controlled an LED light strip and received temperature/humidity data), a
VisibleEnergy plugstrip and monostrip. In addition, we worked with Enlighted, who made the
API available to us, and wrote drivers for Enlighted and Enocean WattStopper and Terralux.

Table 1: List of hardware devices that interfaced with the platform through sMAP drivers.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 15 of 34

We also explored how these devices will be controlled by the OpenBAS platform. In general the
devices as interfaced with the OpenBAS platform met the general test specifications and
capabilities of the FOA. For example, typical of thermostatic control, the commands to turn on
HEAT, COOL for thermostats are NOT directly accessible from outside the thermostat itself.
The setpoints are used to control the thermostat, whether on the device itself or through the
OpenBAS platform.

Subtask 1.3: Develop software tools (system setup, status display, and auto-
mapping/discovery)

Discovery
Building Robotics and UC Berkeley wrote the initial Discovery service, which automatically
detects new devices on the network, finds and installs the appropriate sMAP driver, and
configures it to that particular installation. UC Berkeley continued to develop this service
further. This discovery service is similar to “plug and play” as it appears in various forms in
consumer markets, such as plugging in a new hardware device into a PC or laptop. However, in
recognition of the state of the industry relevant to OpenBAS and the product development
lifecycles, it does not depend on vendor products implementing a particular discovery standard.
The discovery service receives notification of an attachment of a new device, it probes the device
using a collection of detection scripts to identify what it is; once identified, the service pulls in
the appropriate driver for the device, creates the configuration file integrating the driver and the
particular site, and creates an sMAP source.

The Discovery service has two repositories: detectors (small pieces of script that indicate a type
of device, typical of plug and play) and sMAP drivers (continually running processes) that are
cached on the local OpenBAS server. First, the specific hardware (e.g., an RTA CT80
thermostat) is connected (Step 1) to the OpenBAS Building Area Network (BAN), which may be
dedicated or the existing building Local Area Network (LAN). It may include Ethernet, WiFi, or
various other links. (If WiFi, vendor-provided methods are used to join, for eample, WiFi
thermostats typically present themselves as a WiFi access point to allow an installer to connect
over a smartphone or laptop and add it to a desired SSID.)

The Discovery service is constantly monitoring the BAN, and (Step 2) sees the device on the
network (using DHCP logs, or Bonjour, Apple’s version of Zeroconf
(http://en.wikipedia.org/wiki/Bonjour_software)), and runs through the nmap scripts in the
detector repository to “discover” what the device is, locate its driver, and configure it. The
matching script produces an sMAP “.ini” file (Step 3), a description of a web resource that
identifies the driver and all the metadata associated with configuring it. The appropriate sMAP
driver for the device is auto-loaded; that is, an instance of the driver is loaded from the cache
onto the local OpenBAS server.

We conducted a functional test in the lab as well as in the field and successfully loaded
appropriate drivers on several devices.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 16 of 34

Figure 5: A schematic of the Discovery service.

Status Display

A simple user interface and application was created for the integrated control of HVAC, building
lighting, and general control, such as a plug load, including task lighting and personal
environments (e.g. space heaters, and independent monitoring networks), as well as zone
control/display and whole building control/display. The user interface shown in the next
subsection below in Figure 9 displays many types of information. The pane in the upper left
portion shows the whole building energy from the interval meter. The middle left displays the
schedule and current period. The bottom left shows personal devices controlled by a general plug
load controller, such as task lamp, computer monitor or fan. The middle portion of the interface
displays the status, current temperature and setpoints for the thermostats. The right pane displays
lighting control, with indication of whether the light is on or off. Each device has a drill-down
window which provides even more information.

The user interface also shows the status of each device: whether it has been automapped or
configured (e.g., has had added information by the user) or not. One can see the actual driver
code, and see the “health” of each device (e.g., when the system last detected the device on the
network).

Step 2

Step 3

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 17 of 34

Figure 6: Status of each device.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 18 of 34

Configuration and setup

The first step of the initial configuration and system setup of the OpenBAS platform is installing
the devices, whether thermostats, lighting controls, or general controls. Once the device is
installed, it is discovered by the system. The discovery automatically loads the appropriate driver
and populates the user interface with information about the device (see figure below). The user is
thus prompted to add information about the device.

Figure 7: Automapping each device provides a prepopulated field for the user to add additional information.

The user can also locate the device on an imported plan of the building as shown below.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 19 of 34

Figure 8: Configuration of devices shown on an imported plan of the building.

Part of the initial configuration and system setup of the OpenBAS platform typically involves
defining a programmable schedule that dictates the behavior (on/off) of the subsystem
components: thermostats, lighting controllers, and general load controllers. The Schedule part of
the user interface shown below provides a graphical interface for constructing and monitoring
schedules. This illustrates the transactional nature of our OpenBAS: initiation of a schedule
supercedes the configured state of the integrated systems, which are restored upon termination of
the schedule. While the schedule is running, the control pane provides visualization and can
provide manual overrides of the current epoch in the schedule. The Master Schedule can provide
a schedule for all devices and zones; however, each device can have a separate schedule that is
not overruled by the Master. For example, in the test building, the server room is not occupied,

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 20 of 34

and so its schedule does not change with occupancy the way the rest of the building schedule
changes. In addition, occupants may override the Master schedule on a temporary basis.

Another configuration tool developed is a two-dimensional graphic tool that allows one to create
“blocks” or zones that can represent spaces in a building. These blocks can be associated with
various hardware controllers or sensors, and may be used for the initial installation of the
platform in a building.

Subtask 1.4: Develop simple user interface

We developed a simple user interface for integrated control through a web browser. This
demonstrated end-to-end and integrated functionality of our OpenBAS. We explored using
Unity, a gaming development software tool, as a user interface to this platform. This tool allowed
the creation of a 3-D representation of a building and provided both a means of controlling
hardware and also a simulation tool to visualize thermal and lighting properties in accelerated
time.

In the final user interface, we prototyped and evaluated open source web frameworks for
providing dynamic, interactive user interfaces. The interface described below is created using
the Flask open source micro-framework, as this is better suited to embedded settings than more
traditional frameworks such as Rails and Django, AJAX and javascript. Based on this
experience and the requirements of consistent integration of actuation, visualization, and UIs we
have prototyped a redesign of key portions of this in the open source Meteor framework
(https://www.meteor.com/) with the node.js event-based tools for server and client side
integrated scripting.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 21 of 34

Figure 9: User interface for the building in Berkeley, showing live data from whole building meter,
temperature, setpoint, lighting control and general control.

The following figure shows the additional display and control by selecting one of the devices, in
this case the thermostat in the open plan portion of the building.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 22 of 34

Figure 10: Drilling down into more detail of the open plan thermostat.

A plotting tool was added to show trend data from various devices. For example, the following
figure shows the indoor temperature, the HVAC status (e.g., on or off) and the whole building
power consumption.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 23 of 34

Figure 11: Plotting tool showing trended data, such as current temperature, HVAC state, and whole building
power consumption.

Task 2: Market delivery strategy
Subtask 2.1 Initial market delivery strategy plan
The ultimate success of this technology is not merely low-cost functionality, but also eventually
success in the market: market penetration (commercial building owners/tenants using the
platform and saving energy; building occupants and managers alike able to easily use the
platform), hardware device manufacturers providing an easy interface to their devices (such as
providing access to their APIs), and software developers easily able to add applications (whether
visualization, analysis, advanced controls) to the platform.

We initiated conversations with likely Primary Vendors (New BAS Vendors):

• Building Energy Engineering (retro-commissioning) Company
– Quantum Energy Services & Technologies, Inc. (QuEST) currently using

networked thermostats; interested in open data, ease of data mgmt
• Energy Utility (Catalyst) / Demand Response Controls Vendor

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 24 of 34

– Sacramento Municipal Utility District is interested in combining OpenBAS and
GridLinks for commercial DR

• Lighting Controls Vendor
– EnOcean very interested in OpenBAS as platform for products

• Energy-Intensive Process (refrigeration) Control Vendor
– CloudFridge currently using sMAP, interested in using openBAS for secure

cloud-based applications, such as comm refrig optimization

We also identified other likely primary vendors:

• Physical Security (alarm) Company
• Contemporary Information Technology (IT) Business Ventures
• Communications (Cable, DSL, Phone) Companies
• Building Maintenance Companies (e.g., Takenaka)
• Other Energy Service Companies
• HVAC Service Companies
• Existing BAS Vendors

Finally, we identified other desirable partnerships and discussions:

• Other Energy Management App Developers (e.g., Visible Energy)
• Rooftop HVAC Package Unit Manufacturers (e.g., Daikon)
• Rooftop HVAC Package Unit Retrofit Vendors (e.g., Catalyst)

These were outlined in the Market delivery strategy report.

Task 3: Testing and Demonstration

Subtask 3.1 Testing and Demonstration of working prototype
Initial testing in the lab included setting up BOSS/OpenBAS on a Linux device, a miniature
computer called a FitPC and a Wireless Access point (router) to make a Building Area Network
in 410 Soda Hall at UC Berkeley (February 2014). The equipment tested were a RTA thermostat,
Prophilix thermostat, HUE lamp, and LED strip light. All devices connected to the network, and
had an sMAP source (instance of driver). We were able to show device interaction through a
simple web interface, e.g., Change temperature setpoint on one thermostat automatically changes
the setpoint on the other, and graphic display of room temperature using LED strips.

Team members set up several thermostats connected to LED lights to be used as a testbed at UC
Davis; also they set up sMAP on a computer at UC Davis. The LBNL team developed a similar
testbed at LBNL for testing Enlighted and other lighting controls.

In April, the Berkeley team developed a lab-scale testbed in 410 Soda Hall, consisting of a
Plexiglass “building” with two zones and several hardware devices, shown below.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 25 of 34

Figure 12: Lab-scale test bed for OpenBAS demonstration of integrated HVAC, lighting, and general control.

The schematic scheme is shown in the figure below. We demonstrated the interaction of a
thermostat, two lighting systems (an overall building light (HUE) and a task light (TCP
lighting)), two temperature sensors, and general controls (fan, heat lamp, space heater) with the
platform, including a web-based user interface for control and status display. This testbed
allowed us to show integrated thermal, lighting, and general control with a preliminary user
interface, that indicates status display, and control schedule. Another key element is the managed
relationship of manual, schedule, and override control.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 26 of 34

Figure 13: A schematic of the lab-scale test bed.

We also tested the scaling of OpenBAS down to “motes”, such as wireless embedded
microcontrollers. OpenBAS drivers were ported to a Raspberry Pi and successfully tested.

Deployment
The real test of the ultimate success of this project is how the platform performs under real world
circumstances with real equipment (e.g., simultaneous heating and cooling, overlapping zones),
real people (e.g., working different schedules, having different preferences for temperature and
lighting conditions) and situations (e.g., power outages, network drops).

One potential deployment scenario is for OpenBAS to run on the premises within an existing
private WLAN, as shown in Figure 14 below. For example, a small business that has an existing
private wireless network would simply add the devices (such as the OpenBAS platform on a
miniature computer and various thermostats, gateways to lighting controllers) to this existing
network.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 27 of 34

Figure 14: OpenBAS within an existing WLAN.

Another scenario is for OpenBAS to form a private Building Area Network, as shown below.

Figure 15: OpenBAS forming a private BAN.

WAN$

WLAN$

LoWPAN$

LAN$

OpenBAS$
wifi$tstat$

net$lite$

net$ctrl$

net$tstat$
net$lite$

WAN/LAN&

WLAN&

LoWPAN&

LAN&

OpenBAS&

wifi&tstat&

net&lite&

net&ctrl&

net&tstat&
net&lite&

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 28 of 34

Figure 16: Schematic of OpenBAS installed in a building, and creating the Building Area Network of
hardware devices.

We developed a pilot test of the OpenBAS platform in a historic 25,000 sf commercial building
at the CIEE office on the second floor of 2087 Addison Street in Berkeley, CA.

Figure 17: The CIEE offices are located in the upper floor of the historic Kress building in downtown
Berkeley, CA.

By the end of the project, the OpenBAS platform has been installed at the CIEE office with the
following equipment:

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 29 of 34

Five thermostats
two RTAs (WiFi), and three Proliphixs (on virtual Local Area Network using Ethernet)

Three lighting controllers
 Enlighted system on LED fixtures in the conference room
 Enlighted system on dimming fluorescent fixtures in the copy room
 Wattstopper/EnOcean switch and occupancy sensor in private office and in kitchen
 Terralux/EnOcean dimmable LED retrofit in corridor
Two general controllers
 Raritan PDU controlling fan, task lamp, and computer monitor in private office
 Echola PDU in kitchen
14 indoor environmental sensors throughout the floor (6lowPAN mesh network)
 temperature, relative humidity, light, carbon dioxide, motion
Rainforest Eagle interface with PG&E utility electric interval meter (ZigBee)
 Data collected at 5 second intervals from the utility meter

Figure 18: Five thermostats placed in the CIEE offices: two RTAs in the open area and the northern private
offices, and three Prophilix thermostats.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 30 of 34

Figure 19: Lighting control installed in CIEE office.

In addition, 14 sets of indoor environmental sensors were added in the building, interfaced to the
OpenBAS platform with a 6loWPAN mesh network; these reliably provided detailed sensor data
throughout the building. The types of sensors are shown below in Figure 20. Also, a gateway
was installed for the electrical utility interval meter for this floor of the building. The gateway
interfaced with the OpenBAS platform and provided real-time (less than 30 second interval)
power data for the floor of the building. The research team found this data quite valuable in
understanding the overall contribution of HVAC and lighting to the whole building load.

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 31 of 34

Figure 20: Auxiliary sensors added to the OpenBAS platform.

Publications/Presentations/Travel
Project was presented at EPRI’s Power Delivery & Utilization Program, Software Defined
Buildings Winter retreats (UC Berkeley/industry), Green Tech Center/ITU/SDU (Denmark),
Saga University (Japan), and Daikin Konwakai (St. Michael’s, MD). The working platform in a
plexiglass “building” was demonstrated at the DOE BTO annual review, at the Carnegie Mellon
University OpenBAS workshop, to Ethan Rogers, ACEEE Chairman of the Intelligent Efficiency
conference, and at the IT University in Copenhagen Denmark. A paper was presented at
ACEEE’s Summer Study on Energy Efficiency in Building.

Conclusion
In developing both a building-scale and lab-scale deployment of an open software architecture
building automation system, we satisfied and exceeded Milestone1.1 for this project. We
developed and tested a working open source (Access instructions in Appendix A) open software
architecture building automation system targeted to small-medium commercial buildings.
OpenBAS provides integrated building services, including HVAC, Lighting, General Control,
Energy, Environment. The hardware devices represented multiple vendors in each of multiple
trades. We developed plug-n-play capability from device to application, executable specification
of semantic relationships, and interactions within and between system zones.
Key developments included:

• Broad driver suite of modern devices
• Canonical driver resource architecture

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 32 of 34

• Clean handling of actuation and subscription
• Well-defined Service Tier

– scheduler, discovery, zone ctrl, x-zone ctrl
– interconnections through select clause

• Canonical metadata => entity-relationships
• Discovery protocol

– detection, driver support, profile linkage
• Profile / Document Store – versioned
• Clear infrastructure / Application Separation

– publish to multiple stores => meteor syndication
• Independent Application Tier

Figure 21: OpenBASArchitecture

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 33 of 34

Appendix A: Access to OpenBAS code

DE-EE0006351
Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

University of California

Page 34 of 34

We have provided a complete install procedure for an OpenBAS deployment on appropriate
hardware, which is described at the beginning of the README. To see the full install process,
click on INSTALL.md.

