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ABSTRACT 

 
The focus of this project is on the development of a reliable and efficient ab initio based 
computational high temperature material design method which can be used to assist the 
Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental 
evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. 
Southern University is the subcontractor on this project with a focus on the 
computational simulation method development. 
 
We have performed ab initio density functional theory (DFT) method and molecular 
dynamics simulation on screening the top coats and bond coats for gas turbine thermal 
barrier coating design and validation applications. For experimental validations, our 
focus is on the hot corrosion performance of different TBC systems. For example, for 
one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and 
confirmed it’s hot corrosion performance.  
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EXECUTIVE	SUMMARY		
In the theoretical/simulation part, the interatomic potentials for pure metals, binary alloys or 

systems were calculated using a recently developed repulsive kinetic energy fitting scheme to 
reduce the computation expense on performing molecular dynamics (MD) simulations. For 
ternary and systems containing f-electron elements, such as Ta and Ir, we used traditional ab 
initio DFT model with relative small cell sizes. Here, the evolutionary algorithm was also 
applied to obtain the most stable structures and accelerate the structure optimization. The 
integrated materials design package MedeA, combined the database searching, model building, 
simulation job submission, data processing, visualization, and analysis etc., was used to assist 
our thermal barrier coatings design and student training. For the model systems, we simulated the 
Y and Ta doping effect in bond coat and Ta2O5 dopant effect in top coat ZrO2. The results were 
summarized and used to guide experiment validations. Our simulation works were performed on 
Louisiana Optical Network Initiative (LONI) and LSU super computers and dislocation 
dynamics texture experiment was conducted at LBNL beamline 12-2-2. 

In the experimental validation part, our focus was on alternative coating materials other than 
the well-established yttria stabilized zirconia (YSZ) system. The study consisted two main 
approaches: 1. alternative materials to ZrO2-based systems (rare earth zirconate), and 2. 
alternative stabilizers to Y2O3 for ZrO2-based systems(CeO2,Ta2O5,TiO2). For the first approach, 
we studied gadolinium zirconate (Gd2Zr2O7), and for the second approach, our focus was on 
zirconium tantalum oxides with single orthorhombic phase (TaZr2.75O8). Because YSZ is 
susceptible to hot corrosion, one of our main experimental evaluations is to examine the hot 
corrosion performance of both gadolinium zirconate (Gd2Zr2O7) and ZrO2/Ta2O5 compounds. 
Different compositions of ZrO2-Ta2O5 samples and gadolinium zirconate samples in the presence 
of molten mixture of Na2SO4 + V2O5 at elevated temperatures were tested. For the ZrO2-Ta2O5 
samples, the compositions were selected to form tetragonal and orthorhombic phases of 
zirconium-tantalum oxides. Results showed that orthorhombic zirconium-tantalum oxide was 
more stable, both thermally and chemically in Na2SO4+V2O5 media at 1100˚C, and showed a 
better hot corrosion resistance than the tetragonal phase. 

Students and postdocs were trained to setup the needed ab initio DFT MD simulation 
models, perform high performance computing (HPC) simulations, process and analyze the 
simulation data sets, write analysis reports, and present the results and conclusions through 
participating group meeting, workshop, international conferences etc. They were also trained in 
sample preparation—including the preparation of TBC samples using plasma spray system, 
XRD, TGA, DSC, and synchrotron XRD materials characterization techniques such as the full 
width at half maximum (FWHM) synchrotron XRD data processing, radial texture measurement, 
and data interpretation. Partly supported by this project, ten peer reviewed papers were 
published.  
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focus on finding new candidates is divided in to two main categories; I: replacing zirconia based 
TBCs with new ceramic materials with different structures, II: stabilizing zirconia with other 
oxides instead of Yttria. The research focus is on the hot corrosion behavior of Gd2Zr2O7, ZrO2 
stabilized with Ta2O5 and zirconia stabilized with both Ta2O5 and Y2O3.  

To prepare TBC samples using plasma spray coating, nickel-based superalloy (Inconel 738) 
disks of Φ25×1.5 mm were employed as the substrates. TBCs composed of a ceramic top coating 
and a NiCrAlY bond coat (Amdry 9625, Sulzer Metco, with particle size 45~75 µm) were 
deposited onto the superalloy substrates by the atmospheric plasma spray (APS) process. For 
example, TBC top coats, YSZ, 50 wt% YSZ+50 wt% Gd2Zr2O7and Gd2Zr2O7, were made in one 
of our studies using agglomerated powders. The plasma spraying was carried out using a Sulzer-
Metco 9M plasma spray system using an Ar/H2 gas mixture. The spraying parameters are given 
in Table 2.1. 
 

Table 2.1. Plasma spraying parameters 

Layer 
Arc current 

(A) 
Coating distance 

(mm) 
Plasma gas Ar/H2 

(SCFH) 
Carrier gas Ar 

(SCFH) 
Powder feed rate 

(g/min) 
Bond coat 500 130 96/15 8 40 

Ceramic layer 660 80 64/32 8.4 40 
 

The experimental methods on the hot corrosion study of zirconium tantalum oxides are 
reported in the following paragraph. Similar approaches were used to study other TBC samples. 

Hot corrosion studies using Na2SO4 and V2O5 mixtures were conducted on samples at 
1100˚C in air. For the above mixtures, 95% Na2SO4 and 99.9% V2O5 from Sigma Aldrich were 
used. Five types of ceramic samples, YSZ, 70 wt%ZrO2 + 30 wt% Ta2O5 (30TaSZ), 70 wt% 
YSZ + 30 wt% Ta2O5 (30TaYSZ), 50 wt%ZrO2 + 50 wt% Ta2O5 (50TaSZ), and 30 wt%ZrO2 + 
70 wt% Ta2O5 (70TaSZ) were made using agglomerated powders from Sigma Aldrich. To obtain 
the samples, powders were first pressed with binders in a uniaxial die (2.5 cm inner diameter) at 
350 MPa pressure to obtain the compressed green bodies, which were then sintered at 1450˚C for 
5 hours and 30 minutes to obtain the dense bodies. To perform an accelerated high-temperature 
hot corrosion test on samples, a mixture of 50wt% Na2SO4 + 50wt% V2O5 deposit was spread 
evenly onto the surfaces of the specimens with a mixed salt amount of 20 mg/cm2. The 
specimens were then set in an electric furnace with an ambient atmosphere under a maximum 
temperature of 1100˚C for 4 h. The furnace has two small holes for air to flow naturally. After 
each 4 h of testing at 1100˚C, the samples were allowed to cool down inside the furnace, and 
then the samples were inspected both visually and with an optical microscope for possible crack 
initiation. To repeat the test, the samples were recoated with the Na2SO4 + V2O5 salt mixture and 
the heating profile was repeated. The morphology and microstructure of the as received samples 
and the samples after the hot corrosion tests were examined using field emission scanning 
electron microscopy (Quanta3D FEG, FEI Company, USA). For surface morphology studies 
using SEM, a thin Pt layer was sputtered onto the samples to improve the electrical conductivity. 
X-ray diffraction (MiniFlex XRD, Rigaku Corporation, Japan) with Cu Kα radiation λ = 1.54178 
Å at a scan speed of 1˚/min was used to establish the phase composition of the specimen. 
 The dislocation dynamics texture study was conducted at LBNL by adding radial shear stress 
to the DAC loaded sample. The Fit2D and MAUD software were used to process the texture 
data. The Figure 2.1 below shows a typical synchrotron high pressure shear stress texture 
measurement experiment setup.  
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Fig 2.1 The radial synchrotron x-ray diffraction shear stress texture measurement setup. 

3.	Results	and	Discussions:			

3.1:	 For	 the	 evolution	 of	 hot	 corrosion	 resistance	 of	 YSZ,	 Gd2Zr2O7,	 and	
Gd2Zr2O7+YSZ	composite	thermal	barrier	coatings,	the	following	results	were	
found.	

Figure 3.1.1 reveals the X-ray diffraction patterns for the as-received conventional YSZ, 
Gd2Zr2O7+YSZ, and Gd2Zr2O7 coatings.  It can be seen that the major phase of the APS coated 
YSZ is tetragonal zirconia, Gd2Zr2O7+YSZ coating includes both tetragonal ZrO2 and Gd2Zr2O7 
phases, and Gd2Zr2O7 has a single phase as expected. The cross-sectional microstructure of APS 
YSZ, Gd2Zr2O7+YSZ and Gd2Z2O7 TBC specimens are shown in Fig. 3.1.2. All layers of the as-
sprayed specimens have similar microstructures with a noticeable level of porosity without any 
visible cracks. For the as-sprayed TBC samples, no delamination can be found along the YSZ / 
Gd2Zr2O7+YSZ / Gd2Zr2O7 top layer and the NiCrAlY bond coat interface. Figure 3.1.3 shows 
the XRD patterns obtained from the YSZ, Gd2Zr2O7+YSZ, and Gd2Z2O7 coatings after the hot 
corrosion test with the Na2SO4+V2O5 salt mixture at 1050ºC. Comparing the patterns of the as-
sprayed TBC samples, most of the tetragonal zirconia in the YSZ sample has changed to the 
monoclinic phase and YVO4 is formed as a hot corrosion product, while for the other two 

specimens, besides monoclinic ZrO2 the newly evolved peak is related to GdVO4. 
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temperature of 1050°C (five 4-hours cycles), serious degradation and spallation started to occur, 
Fig. 3.1.4a. Due to the damage by the Na2SO4+V2O5 corrodents, a porous layer was formed on 
the YSZ coating. Phase analysis results on these porous areas showed that a large amount of 
tetragonal zirconia on the surfaces of the conventional YSZ top layer had transformed to 
monoclinic phase due to the depletion of yttria. In addition, large quantity of rod shaped hot 
corrosion reaction product, YVO4, was detected on the surface of the conventional YSZ coating. 
Similar findings have been reported by other researchers.  

For the Gd2Zr2O7+YSZ and Gd2Zr2O7 coating, the corrosion products are GdVO4 and YVO4 
as well as monoclinic ZrO2. In Fig.3.1.4B, it is obvious that some regions are perfectly intact and 
the major phase in these areas is Gd2Zr2O7. Compare to YVO4, the GdVO4 crystals are much 
smaller in size and quantity and they have a unique dendrite shape. For the YSZ sample, after hot 
corrosion tests, large quantity of rod shaped YVO4 crystals are visible on the coating surfaces.   

After exposure to molten salt at 1050ºC for 20 hours (five 4-hours cycle), spallation and 
delamination started to occur in conventional YSZ coating. Chemical degradation of 
conventional YSZ coatings can be classified as successive occurrence of related chemical 
reactions during the hot corrosion tests. During the exposure of V2O5 and Na2SO4 salt mixture at 
a high temperature (1050°C), a new compound of NaVO3 will be formed. 

 
V2O5  + Na2SO4 → 2 (NaVO3) + SO3                                                                        (3.1.1) 

 
Then, NaVO3, having a melting point of 610 °C, reacts with yttria from the YSZ solid solution to 
form YVO4: 

ZrO2 (Y2O3)  + 2(NaVO3) →ZrO2 + 2(YVO4) +  Na2O                    (3.1.2)                

Also Na2O can react with V2O5 directly to form NaVO3: 

Na2O (base) + V2O5 (acid) = 2NaVO3 (salt)                                    (3.1.3)                                      

The molten NaVO3 is also reported to increase the atom mobility, hence further promote the 
depletion of yttria from YSZ and the growth of YVO4 crystals. The Kinetic of reaction (3.1.2) is 
controlled by the mobility the Y3+ in the lattice which migrate preferentially toward the reaction 
interface due to the high V concentration present on the coating surface. After losing Y2O3, the 
transformation of tetragonal zirconia to monoclinic zirconia during the cooling stage of thermal 
cycling is accompanied by 3-5% volume expansion, leading to cracking and spallation of TBCs.  

The Gd2Zr2O7+YSZ and Gd2Zr2O7 coatings started to degrade after 36 hours (nine 4-hours 
cycles) of hot corrosion testing. For comparison, microscopic observations and phase analysis 
has been done after the same duration of hot corrosion testing as for YSZ (five 4-hours cycles). 
Exposure of the Gd2Zr2O7+YSZ and Gd2Zr2O7 coatings to the molten mixture of Na2SO4+V2O5 

at 1050ºC, after hot corrosion tests for five 4-hours cycles at peak temperature of 1050°C, results 
in additional peaks on XRD measurements attributed to GdVO4 and monoclinic ZrO2. As 
described earlier, if Na2SO4 and V2O5 react and NaVO3 forms then, the possible reactions that 
would have produced these phases can be written as: 

Gd2Zr2O7(s) + 2NaVO3 (l) → 2GdVO4(s) + 2ZrO2 (monoclinic) +Na2O          (3.1.4)                        

Gd2O3(s) + 2NaVO3 (l) → GdVO4(s) + Na2O                                        (3.1.5)                                      

No evidences from the XRD patterns indicate direct chemical interactions between Na2SO4 
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with YSZ and Gd2Zr2O7, thus the chemical reactions between Na2SO4 and YSZ and Gd2Zr2O7 

are believed to be minimum at the elevated temperature of 1050ºC, which has also been reported 
by other researchers. 

V2O5 may also react with Gd2Zr2O7 directly at elevated temperature to form GdVO4, 
monoclinic ZrO2 or ZrV2O7. 

 

3V2O5 (l) + Gd2Zr2O7(s) → 2ZrV2O7(s) +2GdVO4(s)                        (3.1.6)                                      

V2O5 (l) +Gd2Zr2O7(s) → 2GdVO4(s) +2ZrO2 (monoclinic)             (3.1.7)                                      

Based on XRD analysis, both GdVO4 and monoclinic ZrO2 are found in the hot corrosion 
products of the Gd2Zr2O7 coatings; thus reactions (3.1.4) and (3.1.7) are believed to be the main 
mechanisms for the degradation of Gd2Zr2O7 coatings. 

It has been reported that GdVO4 crystals can be produced by the reaction of Gd2Zr2O7 and 
NaVO3 at a temperature as low as 600°C. The production of GdVO4 consumes V2O5 and thus 
postpones the formation of YVO4 crystals and consequently less monoclinic ZrO2 and less YVO4 
crystals are formed. This is believed to be the main mechanism for the improved hot corrosion 
resistance for the Gd2Zr2O7+YSZ composite coating. On the surface of the YSZ+Gd2Zr2O7 
composite coating, YVO4 crystals have a small rod shape (about 20 μm in length), which is 
significantly smaller than the large rod shaped YVO4 found in the conventional YSZ coatings 
(about 50 μm in length). The presence of fine-grained Gd2Zr2O7 around YSZ particles also 
reduces the direct contact of conventional YSZ with molten salt, thus a better corrosion 
resistance. For pure YSZ coatings, YVO4 forms throughout the entire thickness of the coating, 
apart from the stresses induced by the ZrO2 phase transfer due to the reduction of Y2O3, as 
foreign objects, the corrosion product (YVO4) could impose extra stresses, which can easily 
initiate cracks and damage the coating. The smaller the YVO4 size, the lower the stresses and 
thus a better durability. For the YSZ+Gd2Zr2O7 composite coating, after 36 hours of accelerated 
hot corrosion test, many regions in the YSZ+Gd2Zr2O7 composite coatings are still intact and the 
original tetragonal ZrO2 phases exist. Clearly, YSZ+Gd2Zr2O7 composite coating provides better 
resistance against hot corrosion than the conventional YSZ. In the Gd2Zr2O7 case, the corrosive 
area is small with isolated dendritic shaped GdVO4 crystals. Also many surface regions are still 
intact with the original Gd2Zr2O7 phase. Unlike the YSZ case, where the hot corrosion attacks 
the stabilizer Y2O3, which has a small quantity in nature, the hot corrosion attacks the bulk 
Gd2Zr2O7 layer, thus the Gd2Zr2O7 coating provides a better resistance against hot corrosion than 
the conventional YSZ. 

Hot corrosion of ceramic oxides against molten salt such as V2O5 and NaVO3 is mostly 
controlled by Lux-Flood type of acid-base reactions and are explainable in terms of the relative 
acid-base character of the oxide. The severity of the reactions increases as the relative acidity to 
basicity between the reactants increases.  There is no direct information about the relative 
basicity of rare-earth zirconates in the open literature; however, we could estimate the basicity 
from the respective metal oxides. Rare earth oxides such as Sm2O3, Yb2O3, Gd2O3 are more basic 
than Y2O3 therefore, it will react at lower vanadium (or vanadium oxide) activities. On the other 
hand, as reflected from the thermodynamic data, GdVO4 is more stable than YVO4, which 
indicates that a higher V2O5 or NaVO3 activity is required for GdVO4 formation than for YVO4 
formation. In this experiment, Gd2Zr2O7 is less basic than YSZ which means that the driving 
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In this study, there are many unusual substances, such as TaVO5, Ta9VO25, whose 

thermodynamic data cannot be found easily. We checked several common handbooks, databases 
and software packages, such as the CRC Handbook of Chemistry and Physics, the Bureau of 
Mines and USGS database, the NIST-JANAF Thermochemical Tables, the MatNavi NIMS 
Materials Database, the HSC Chemistry package etc and failed to obtain useful information. A 
literature search also failed to generate the required complete thermodynamic data set. To further 
assist the understanding of the corrosive reactions, we performed ab initio density functional 
theory (DFT) based electronic structure simulations to obtain the relevant thermodynamic data. 
The Gibbs free energy of formation was calculated for each reactant and product by summation 
the energy of formation at 0K, zero point energy, vibrational internal energy and free energy at 
1227 ˚C, and PV term. The phonon module in the software MedeA was used to calculate the 
thermodynamic vibration parameters. The (VASP) was used to perform DFT calculations where 
plane wave basis set was implemented. The ab initio projector augmented wave (PAW) general 
gradient approximation (GGA) calculation method with plane wave basis sets was used and 400 
eV plane wave cut-off energy was set in the simulation. Each lattice in all of the supercells was 
selected to be larger than ~ 7 Å. Only harmonic vibration approximation was considered in the 
phonon calculations. The calculated Gibbs free energy of formation results are shown in Table 
3.4.1.  
 

Table 3.4.1: At 1500K, Gibbs free energy of formation in unit kJ/mol: 
Substance Y2O3 NaVO3 YVO4 Na2O Ta2O5 NaTaO3 TaVO5 Ta9VO25 

Gibbs 
Energy 

-
2713.2

4 

-
1501.9

3 
-3960.34

-
494.51

-1719.71 
-

1304.14 
-

2048.53 
-10693.86

 
For NaTaO3, the Gibbs free energy of formation at 1500K is -1304.14 kJ/mol, while the 

Gibbs free energy of formation for TaVO5 at 1500K is -2048.53 kJ/mol. To make a comparison, 
the Gibbs free energy of formation of YVO4 at 1500K is -3960.34 kJ/mol. So, YVO4 is much 
more stable than both NaTaO3 and TaVO5. Since Na2O has a low melting temperature of 1132 
˚C, the Y2O3 and YVO4 can be easily dissolved in Na2O. Also Na2O can further feed the 
formation of NaVO3. All these explain the experimentally observed fast reaction of Y2O3 than 
Eqs. 3.4.1 and 3.4.2.  
  

Based on the calculated Gibbs free energy results, all experimentally observed stability and 
reaction date are well explained. We had also performed MD simulation on TaZr2.75O8 crystal. 
The simulation results show a stable TaZr2.75O8 supercell at temperature up to 1050 K. 

4.	High	Temperature	TBC	Durability	Testing	Rig	Development	and	
Thermal	Cycling	testing	

4.1	Overview	of	TBC	Testing	Rig	
There are mainly two test methods for TBCs high temperature properties: the isothermal 

oxidation test which uses the muffle furnace and cycling test which mostly uses burner rig. The 
isothermal oxidation test cannot reflect the cycle-dependence of the TBCs properties at high 
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4.7.5 Failure	Mechanism	of	Gd2Zr2O7	Based	TBCs	

The thermal cycling performances of single, double, and three ceramic-layered GZ based 
TBCs were carried out under different thermal conditions. The failure phenomenon can be 
classified into three categories: 

(1) Delamination at the edge in YSZ layer close to the YSZ/TGO interface, and further 
propagation resulted in the entire spallation of the ceramic coating. This is the most phenomenon 
occurred in the test.  

(2) Bucking which only happened in GZ50%/YSZ coating in 1150 oC thermal cycling 
test.  

(3) Spallation at/close to the interface of two ceramic layers, which occurred in GZ/YSZ 
two ceramic-layered coatings.  

Edge and buckle-driven delamination were also the two main competing failure 
mechanisms for conventional YSZ TBCs. The same explanation is supposed to be applied for the 
current GZ based TBCs. P. K. Wright et al. proposed a failure map representing the basic 
elements of this competition, as shown in Fig.4.7.14. In the lower left of the map, as the TGO 
experiences large in-plane compressions upon cooling, the film attempts to alleviate the stress by 
lengthening itself, through out-of-plane displacements. This can happen by TGO bucking. 
Because the low in-plane modulus of the TBC does not resist the small scale TGO buckling, the 
system would fail by TBC bucking.  In the upper right, the TBC has relatively high in-plane 
stiffness and limited strain tolerance, causing the residual stress in the TBC to be large and 
resulting in a high strain energy density. The TGO growth and the increased amplitude of 
undulations with thermal cycle enhance this energy density which provides a strong driving force 
for the edge delamination. The plasma sprayed TBC has splat grain morphology and inter splat 
boundaries parallel to the interface, which makes the relatively in-plane stiffness high, thus most 
of the failure occurs by edge delamination. 
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allowing the amplitude to increase (Fig.4.7.16). For the undulation to continue to enlarge, the 
growth strain at high temperature “feeds” the process. In such cases, steady-state ratcheting 
becomes possible, whereby the amplitude increases with each thermal cycle. 

As the amplitude increases, normal stresses develop in the superposed TBC. The normal 
stresses govern crack growth parallel to the interface, near the TGO, and they increase 
systematically as the TGO growth. Upon cooling, the compression normal to the TGO interface 
diminishes, because of thermal expansion misfit. In fact, should the bond coat creep sufficiently 
during TGO growth, these stresses become tensile at ambient and motivate interfacial separation.  

The failure process of TBCs occurs through a sequence of crack nucleation, propagation and 
coalescence events. It is motivated by the strain energy density in the TGO and resisted by the 
fracture toughness along the delamination plane. When the tensile stresses around the 
undulations are large enough to exceed the delamination toughness of the TBC, cracks are 
initiated. The TGO growth and increase of the amplitude of undulations enhance the normal 
tensile stresses which motivate the propagation of cracks. When small cracks become large 
enough to satisfy buckling requirements, opening of the interface crack faces increases the 
energy release rate, resulting in a minimum value, which represents a buckle propagation 
criticality. The coalescence of these cracks results in a separation large enough to satisfy large 
scale buckling and spalling. Therefore, TBC fails.           

With extensive thermal cycling, combinations of thermal expansion misfit and growth strains 
enlarge the imperfections by a ratcheting mechanism, amplifying the energy release rates and 
accelerating failure.  

For the spallation at/close to the interface of two ceramic layers in GZ/YSZ coatings, it is 
mainly caused by the following reasons: (1) there are more defects at the GZ/YSZ interface 
introduced in the sample preparation process; (2) the abrupt change of thermo-mechanical 
properties at the GZ/YSZ interface. This can be alleviated by adding a transition layer of 50wt% 
GZ+ 50wt% YSZ. As shown in three ceramic-layered TBCs, the ceramic interface was not the 
weakest place to initiate the cracks; (3) the interfacial stress resulted from the sintering effect of 
GZ. Since the thermal expansion coefficients of GZ and YSZ are very close, the spallation of GZ 
is not mainly from the thermal mismatch of the two ceramic materials. Because GZ has more 
globular pores and intersplat pores than YSZ layer, the sintering effect of GZ is more evident, 
which results in the volume and surface contraction of GZ. The shrinking surface introduces the 
in-plane tensile stress and causes cracks perpendicular to the surface, as shown in 
GZ/GZ50%/YSZ coating after thermal cycling at different temperature (Fig.4.7.6). The 
horizontal cracks in GZ layer are developed when the in-plane tensile stress accumulates to some 
extent. The coalescence of horizontal cracks combined with extension of vertical cracks result in 
the delamination and spallation of ceramic layer mostly from the YSZ layer.   

One thing should be pointed out is that all of the coatings were tested in the air furnace 
except for the test with cooling in which the sample didn’t fail after 706 cycles, which means that 
there was less thermal gradient in the samples than that in a burner-rig test. The GZ ceramic 
layer could not effectively protest the bond coat from the high temperature. The designed 
working temperature of the bond coat in this study was below 950 ºC. So the severe oxidation of 
the bond coat was the most important reason for the short lives of all the coatings. 
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5.	Conclusions:			

5.1:	 For	 the	 evolution	 of	 hot	 corrosion	 resistance	 of	 YSZ,	 Gd2Zr2O7,	 and	
Gd2Zr2O7+YSZ	composite	 thermal	barrier	coatings,	 the	 following	conclusions	
can	be	drawn.	

Under a typical gas turbine working temperature of 1050°C, the reactions between yttria 
(Y2O3) and V2O5 / NaVO3 produce YVO4, leaching Y2O3 from the YSZ and causing progressive 
tetragonal to monoclinic destabilization transformation. Based on hot corrosion chemical 
reactions formulas, the amount of corrosive salt charged in the tests was enough to react with the 
entire YSZ and Gd2Zr2O7 layers (20 mg/cm2 per cycle). After 20 hours (5 cycles) of hot 
corrosion test at 1050°C, the failure of the YSZ TBCs has initiated and propagated throughout 
the entire top coat, and led to the top coat delamination and spallation near the top coat–bond 
coat interface. The YSZ cross section shows severe macro-cracks and enhanced porosity due to 
the hot corrosion from the Na2SO4+V2O5 molten salts. For YSZ+Gd2Zr2O7 coating, molten 
Na2SO4+V2O5 mixture reacts with Gd2Zr2O7 to form GdVO4 and monoclinic ZrO2. The 
production of GdVO4 predominately consumes V2O5 and thus postpones the formation of YVO4 
crystals and consequently less monoclinic ZrO2 and less YVO4 crystals are formed. On the 
surface of the YSZ+Gd2Zr2O7 composite coating, YVO4 crystals, are significantly smaller (about 
20 μm in length) than the large rod shaped YVO4 found in the conventional YSZ coatings (about 
50 μm in length). The presence of fine-grained Gd2Zr2O7 around YSZ particles also reduces the 
direct contact of conventional YSZ with molten salt, thus a better corrosion resistance.  Molten 
Na2SO4+V2O5 mixture may also react with Gd2Zr2O7 coating. However, unlike the YSZ case, 
where the molten salts attack the stabilizer Y2O3, molten Na2SO4+V2O5 mixture reacts with the 
bulk Gd2Zr2O7 layer to form GdVO4 and monoclinic ZrO2. Under this accelerated hot corrosion 
test, bulk Gd2Zr2O7 layer started to degrade after 36 hours of hot corrosion testing (9 cycles), 
which is much better than the YSZ case, which started to fail after 5 cycles. Also based on the 
results, Gd2Zr2O7 layer provides a slightly better hot corrosion resistance than YSZ+Gd2Zr2O7 
coating. The chemical interactions, and the induced phase transformation, are the primary factors 
for degradation and spallation of the conventional YSZ and Gd2Zr2O7 coatings. Based on the 
degradation rate, the corrosive layer thickness, and the general status of the coating after hot 
corrosion, Gd2Zr2O7 containing coatings have a better hot corrosion resistance at a temperature 
of 1050°C than that of YSZ coatings. 
 

5.2:	For	Phase	stability	and	hot	corrosion	behavior	of	ZrO2‐Ta2O5	compounds,	
the	following	conclusions	can	be	drawn.	

The hot corrosion resistances of different compositions of YSZ, ZrO2, and Ta2O5 samples to 
Na2SO4 + V2O5 mixture were studied, under a typical gas turbine component surface temperature 
of 1100˚C. The samples were selected to form both tetragonal and orthorhombic zirconium-
tantalum oxides. Results show that orthorhombic zirconium-tantalum oxide is more stable, both 
thermally and chemically in Na2SO4+V2O5 media at 1100˚C, and shows a better hot corrosion 
resistance than the tetragonal phase. Thus orthorhombic zirconium-tantalum oxides offers good 
opportunities for developing novel TBCs with improved resistance to corrosion by 
sulfate/vanadate melts. 
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5.3:	For	thermal	cycling,	the	following	conclusions	can	be	drawn.	
Gd2Zr2O7 is a potential candidate for TBCs applications. However, its reaction with the 

TGO layer makes it must be used in combination with an insulator layer, usually in the form of 
double or multiple ceramic-layered TBCs. In the present work, XRD results showed that the 
lattice constants of GZ structure in the mixture of 50wt% GZ + 50wt% YSZ powder decreased 
with the increase of hold duration at 1300 ºC, which indicated that there might be an order-
disorder phase transformation due to the ion diffusion in the GZ/YSZ mixture. The reduction of 
relative intensities of YSZ to GZ in XRD indicated that YSZ tended to transform into GZ phase 
in the process of heat treatment, which would cause the volume change and the internal stress. 
This might be one of reasons for the interface failure in double-layered or functionally gradient 
TBC systems.    

The thermal cycling behaviors of single ceramic-layered GZ, YSZ coatings, double 
ceramic-layered GZ/YSZ, GZ50%/YSZ coatings and three ceramic-layered GZ/GZ50%/YSZ 
coatings were investigated at different thermal conditions. Results showed that GZ based TBCs 
were mainly failed by delamination at the edge in YSZ layer close to the YSZ/TGO interface, 
bucking and spallation at/close to the interface of two ceramic layers. Edge and buckle-driven 
delamination were motivated by the compression in the TGO around interface imperfections 
caused by TGO growth and thermal expansion misfit between the ceramic layer and the bond 
coat upon cooling. The tensile stresses that arise around undulations and the associated energy 
release rate govern the crack nucleation, propagation and coalescence. The tensile stresses at the 
edge caused by the cool shock phenomenon during the cooling step were also contributed to the 
edge delamination. Thermal cycling amplified the energy release rates and accelerated TBCs 
failure through enlarging imperfections by a ratcheting mechanism.  

The spallation at/close to the interface of two ceramic layers in GZ/YSZ coatings was 
mainly caused by defects at the GZ/YSZ interface introduced in the sample preparation process, 
the abrupt change of thermo-mechanical properties at the GZ/YSZ interface, and the interfacial 
stress resulted from the sintering effect of GZ. Sintering of GZ shrinked the ceramic layer, 
introduced the in-plane tensile stress and caused the vertical cracks, which usually initiated from 
the top layer due to the restriction of inner layer inside of TBCs during the thermal cycling.  

 

5.4:	For	simulation,	the	following	conclusions	can	be	drawn.	

The combination research of DFT based modeling, HPC MD simulation, and experiment 
validation study on novel TBC for gas turbine application was conducted. This integrated 
method as has been shown from other materials research can accelerate novel thermal barrier 
coating design and save tremendous expenses. For element component that includes f electrons, 
more accurate method such as quantum Monte-Carlo or self-consistent GW methods are needed 
to get more accurate inter-atomic interaction potentials and energy. The recent developed 
multicomponent alloys such as Hf-Mo-Nb-Ta-Ti-Zr etc. may serve as a better candidate for 
efficient bond coating for ultra high temperature applications. For other multicomponent metallic 
bond coating, extra metal dopants and/or diffusion barrier(s) such as Ta, Ti, and Al etc., may be 
needed and optimized to fit those high temperature and pressure requirements. The simulation 
and experiment both show that the TaZr2.75O8 with possible minor other dopants can have better 
corrosion resistance and stability than current YSZ top coatings etc.  

Our simulation works on top coat Gd2Zr2O7 study shows that doping Ti into both bond coat 
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and top coat can enhance the bonding strength of the top/bond coat and improve the performance 
of the original top coat itself. The synchrotron XRD shear stress texture study is an effective 
technique to understand in-situ dislocation dynamics at nano-scale and boost new modeling and 
simulation research and thus assist novel high performance TBC design. More transition/rare 
earth metal elements may be needed to optimize the high temperature properties of the thermal 
barrier coatings. In addition, other different dopants such as rare earth oxide effects, grain 
boundary defects such as twin and other dislocations, high pressure and controllable particle size 
effects may be the key research topics in the near future.   
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Graphical	Materials	List 
Fig 1.1 The unit cell model used in simulation for Ta20Nb20Hf20Zr20Ti20.  

Fig 2.1 The radial synchrotron x-ray diffraction shear stress texture measurement setup. 

Fig 3.1.1. XRD patterns of as-received A) conventional YSZ, B) Gd2Zr2O7+YSZ, C) Gd2Zr2O7 

Fig 3.1.2. Cross-section of APS coatings A) conventional YSZ, B) Gd2Zr2O7+YSZ, C) Gd2Zr2O7 

Fig 3.1.3. XRD patterns of A) conventional YSZ, B) Gd2Zr2O7+YSZ, C) Gd2Zr2O7 after hot 
corrosion in Na2SO4+V2O5 at 1050 ºC 

Fig 3.1.4. SEM surface images of A) conventional YSZ, B) Gd2Zr2O7+YSZ, C) Gd2Zr2O7 after 

hot corrosion in Na2SO4+V2O5 at 1050ºC 

Fig 3.1.5.  EDS spectra from the surface of the coatings A) crystal at region A in Fig. 3.1.4a, B) 
crystal at region A in Fig. 3.1.4c, C) region B in Fig. 3.1.4c 

Fig 3.1.6. Cross-section of A) conventional YSZ, B) Gd2Zr2O7+YSZ, C) Gd2Zr2O7  after hot 

corrosion in Na2SO4+V2O5 at 1050 ºC 

Fig 3.1.7. Cross section along the crack of a delaminated YSZ coating after hot corrosion in 

Na2SO4+V2O5 at 1050 ºC 

Fig 3.2.1. XRD patterns of as-received A) YSZ, B) 30TaSZ, C) 50TaSZ and D) 70TaSZ 

Fig 3.2.2. SEM images of as-received sintered A) YSZ, B) 30TaSZ, C) 50TaSZ and D) 70TaSZ 

Fig 3.2.3. XRD patterns of A) YSZ, B) 30TaSZ, C) 50TaSZ and D) 70TaSZ after hot corrosion 

in Na2SO4 + V2O5 at 1100˚C for 40 hours 

Fig 3.2.4. SEM surface images of A) YSZ, B) 30TaSZ, C) 50TaSZ, D) 70TaSZ after hot 
corrosion in Na2SO4 + V2O5 at 1100˚C for 40 hours. 

Fig 3.2.5. XRD patterns of as-received A) 30TaYSZ, B) 30TaSZ 

Fig 3.2.6. XRD patterns of A) 30TaYSZ, B) 30TaSZ after hot corrosion in Na2SO4 + V2O5 at 

1100 ˚C for 40 hours 

Fig 3.2.7. SEM surface images of A) 30TaYSZ, B) 30TaSZ, after hot corrosion in Na2SO4 + 

V2O5 at 1100 ˚C for 40 hours. 

Fig. 4.1.1 Thermal cycling test rig design 

Fig.4.1.2 Thermal cycling test rig under construction (L) and under operation in the lab (R) 

Fig.4.2.1 robust radiator (L); temperature controller panel (R) 

Fig.4.4.1  (a) Actuator; (b) Siemens Program Logic Controller (PLC) and DC power supply 

Fig.4.5.1 (a) Assembled sample holder, cooling tube and thermocouple; (b) Illustration of 
cooling mechanism 

Fig.4.6.1 Camera capturing images while the test in progress 

Fig.4.7.1 Thermal cycling life of single and double ceramic-layered coatings at 1150 ºC 

Fig.4.7.2 Photograph of failed single and double ceramic-layered coatings after the thermal 
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cycling test at 1150 ºC. (a)YSZ failed after 31 cycles; (b) GZ50%/YSZ failed after 23 cycles; (c) 
For GZ/YSZ, the GZ layer was spalled after 26 cycles and after 32 cycles the YSZ were also 
spalled; (d) GZ failed after 12 cycles. 

Fig.4.7.3 SEM micrographs of the cross-section of single and double ceramic-layered coatings 
after thermal cycling tests at 1150 ºC (A) YSZ, (B) GZ50%/YSZ, (C) GZ/YSZ, and (D) GZ.  

Fig.4.7.4 Measured temperature profile of 1h-thermal cycling test at different temperature using 
the designed test rig. 

Fig.4.7.5 Thermal cycling life of GZ/GZ50%/YSZ coatings at different temperature with the 
designed test rig. 

Fig.4.7.6 Photograph of failed GZ/GZ50%/YSZ coatings after the thermal cycling test at 
different temperature using the designed test rig. (a) Coating failed after 452 cycles at 1050 oC; 
(b) coating failed after 28 cycles at 1150 oC; and (c) coating failed after 16 cycles at 1250 oC.  

Fig.4.7.7 SEM micrographs of the cross-section of GZ/GZ50%/YSZ coatings after the thermal 
cycling test at different temperature using the designed test rig. (A) and (B) 1050oC; (C) and (D) 
1150oC; (E) and (F) 1250oC. 

Fig. 4.7.8 Photograph of the failed GZ/GZ50%/YSZ coating after 8 cycles of 10h-thermal-
cycling test at 1150 ºC. 

Fig. 4.7.9 SEM micrographs the surface of GZ/GZ50%/YSZ coatings after 8 cycles of the 10h-
thermal-cycling test at 1150 ºC. 

Fig.4.7.10 Measured temperature profile of thermal cycling test at 1150 oC with and without 
cooling using the designed test rig. 

Fig.4.7.11 Thermal cycling life of GZ/YSZ coatings at 1150 ºC without and with cooling using 
the designed test rig. 

Fig.4.7.12 Photograph of GZ/YSZ coatings after the thermal cycling test at 1150 ºC (a) without 
and (b) with cooling using the designed test rig. 

Fig.4.7.13  SEM micrographs of GZ/YSZ coatings at 1150 ºC (A, C, E) without cooling and (B, 
D, F) with cooling after the thermal cycling test at 1150 ºC. 

Fig.4.7.14 A schematic of large scale bucking and edge delamination of TBCs with a failure 
mechanism map. 

Fig.4.7.15 Distribution of stresses at an undulating TGO interface 

Fig.4.7.16 Schematic indicating the ratcheting phenomenon and its effect 
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LIST OF ACRONYMS AND ABBREVIATIONS 
 
DFT  density functional theory  

DSC  differential scanning calorimetry  

FWHM full width at half maximum 

HPC  high performance computing 

MC  Monte Carlo method 

MD  molecular dynamics 

MedeA Materials Design software 

SEM  scanning electron microscopy 

TBC   thermal barrier coating 

TGA  thermogravimetric analysis  

XRD  x-ray powder diffraction 

YSZ  yttria stabilized zirconia  


