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Abstract—This work presents a novel modeling and analysis
framework for graph sequences which addresses the challenge
of detecting and contextualizing anomalies in labeled, streaming
graph data. We introduce a generalization of the BTER model of
Seshadhri et al. by adding flexibility to community structure, and
use this model to perform multi-scale graph anomaly detection.
Specifically, probability models describing coarse subgraphs are
built by aggregating node probabilities, and these related hierar-
chical models simultaneously detect deviations from expectation.
This technique provides insight into the graphs’ structure and
helps contextualized detected event. For evaluation, two new
hierarchical detectors are tested against a baseline Gaussian
method on a synthetic graph sequence with seeded anomalies.
We demonstrate that in a labeled setting with community struc-
ture, our graph statistics-based approach outperforms both a
distribution-based detector and the baseline, accurately detecting
anomalies at the node, subgraph, and graph levels.

I. INTRODUCTION

Social networks play an increasingly important role in
today’s society, yet extracting domain insights from their
analysis and visualization remains challenging—in large part
due to their transient nature and the inherent complexity of
many graph algorithms. Many social graphs naturally have
(1) labeled nodes representing individuals or entities, and (ii)
an edge set that changes over time, creating a sequence or
time-series of individual snapshots of the network. A key task
in understanding this data is the ability to identify patterns
and aberrations across snapshots—specifically in a way that
can pinpoint areas of interest, and provide context for results.
The importance of context in anomaly detection is easily
exemplified in a cyber-security setting, where observing an
unanticipated connection (edge) between an internal IP and
an external host might warrant alarm. However, providing the
context that many similar IPs (i.e. nodes in a common com-
munity) regularly contact that host could save an unnecessary
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investigation. Unfortunately, although this time-varying labeled
scenario is natural in many domains, most existing techniques
for anomaly detection are either limited to static graphs or
unable to “zoom in” on the reason a graph is identified as
non-standard (see Section [I).

Here we address the problem of identifying and contex-
tualizing anomalies at multiple levels of granularity in the
sequential graph setting. This problem is neither a special
case nor an extension of the more commonly studied scenario
of finding anomalous parts of a single (static) graph, since
the availability of common node labels provides information
not available in single-graph or unlabeled graph ensemble
problems, necessitating the development of new methods. We
propose and test a novel method for anomaly detection in time-
varying graph data using hierarchically related distributions to
detect related abnormalities at three increasingly fine levels of
granularity (e.g., at graph, subgraph, and node levels). This
multi-scale technique gives insight into exactly what caused
the anomaly, and allows one to focus attention on the specific
subgraphs involved. The probabilistic multi-scale detection
relies on comparison with an underlying graph model, and we
use an extension (described in Section [[II) of the recent BTER
model [1] that enables improved prescription of community
structure. To fit an instance of the model to observed graphs,
we give methods for detecting communities and estimating
parameters (see Section [[V)). Section [V]defines the probability
calculations for two new multi-scale detectors, as well as
a baseline detector similar to that of [2] (which is limited
to detecting anomalies at the graph-level). Finally, to test a
newly observed graph for anomalous structure, we compute
hierarchically-related probabilities from the tuned model and
their associated p-values using a Monte-Carlo simulation. Our
workflow is a streaming detection framework, where param-
eters are learned from previous observations, the detector is
applied to new data, then the parameters are updated to include
the new graph in the observations. We note that performing
anomaly detection using a graph’s probability—as given by
the model from which it was sampled—will often result in
an inaccurate detector when node labels are known. This is
a consequence of the likelihood of an unlabeled graph being
shared by isomorphic copies distinguished by these labels and
is discussed in Section [V| We illustrate this phenomenon and
provide empirical evidence that modeling a set of statistics in-
dicative of node/subgraph interactions provides more accurate
detection in two experiments described in Section

II. BACKGROUND & RELATED WORK

Previous work on finding anomalies in graph data includes
compression techniques such as [3], in which minimum de-
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scription length is used to detect repetitive “normal” sub-
graphs. Because this technique detects subgraphs deviating
only slightly from a found normative pattern, it performs more
rigid detection than ours. Approaches based on hypothesis
testing using graph statistics have also been studied (e.g. [2],
[4], [S). Methods in [4] and [S] are geared towards identifying
abnormally dense regions, while our detectors are designed to
identify anomalies caused not only in community density, but
changes in the interactions within or between communities. A
more recent hypothesis testing approach in [2] fits Gaussian
distributions to three graph statistics. Due to similarities with
our workflow (using a p-value estimated by a Monte-Carlo
simulation from a graph model to decide anomalies), we test
our method against a baseline detector using similar Gaussian
estimates, although we note that [2] focused on Kronecker
graphs, not the GBTER model. A recent paper of Peel &
Clauset [6] also uses a hierarchical generative graph model
and Bayesian hypothesis testing for change detection in time-
varying networks; our work differs in the introduction of a
new graph model (Section and focus on related anomalies
at different scales (as opposed to a “shock” that changes
the overall graph structure). For a survey on graph anomaly
detection, we refer the readers to Akoglu et al. [7]].

This paper extends the general anomaly detection work-
flow of Ferragut et al. [8] to hierarchically analyze graph
data. The general method estimates probability models from
observations and new data is declared anomalous if it has
sufficiently small p-values. More precisely, if a probability
distribution P is estimated from observed data x1,...,2,_1,
the p-value of new data, z,, is p-value(z,) = P({X :
P(X) < P(x,)}). Generally, a threshold o € [0,1] is set,
and if p-value(z,) < a, z, is identified as anomalous. For
streaming data, model parameters are iteratively updated to
include the new observation, x,. Often, « is tuned in light
of labeled results to find an acceptable balance of false vs.
true positives. Analysis in [8] identifies operational benefits
of the method, including a theorem allowing users determine
« a priori by setting an expected alert rate. We utilize the
framework’s accommodation of any probability model in order
to apply it simultaneously at hierarchical levels.

III. THE GENERALIZED BTER MODEL (GBTER)

In order to perform probabilistic anomaly detection, we
need a generative graph model that enables computation of
probabilities for various graph configurations while accurately
modeling a graph’s community structure and degree sequence.
Significant prior work has been devoted to developing such
models and validating the importance of capturing both these
aspects of a real-world data set (e.g., [1], [9], [10]). Motivated
by social and cyber settings, we require a generative model
that can accommodate observed hierarchical structure. A nat-
ural candidate is a Stochastic Block Model, first introduced
in [[L1]], in which community membership is defined and edge
probability depends on membership of the endpoints. This
achieves flexible community membership and density, but the
expected degree of each node cannot be set explicitly. To
improve adherence to degree distribution, one could use the
Block Two-Level Erdos-Rényi (BTER) [L], [LO], but we found
the implicitly determined community structure of the model
to be too limiting for matching real-world data. To address
these challenges, we define and use a generalization of BTER

that allows explicit prescription of the communities’ size,
membership, and approximate density.

The Generalized Block Two-level Erdos-Rényi (GBTER)
model takes as input (1) the expected degree of each node,
(2) community assignments of the nodes, i.e., a partition of
the vertex set into disjoint subsets, {C;}, and (3) an edge
probability p; for edges within each community Cj;. In the
first stage of edge generation, within-community edges are
sampled from an Erdos-Rényi [12]] modeﬂ, ER(|C}|,p;), for
each community C;. Note the expected degree of a node
within C; is p;(|C;| — 1) after the first stage. In the second
stage, we define the excess expected degree of a node i,
denoted ¢;, to be the difference between the input expected
degree \; and the expected degree after stage one. Formally,
g; = max(0,\; — p;(|C;| — 1)) for node ¢ in community
C';. We then apply a Chung-Lu style model [9]] on the excess
expected degree-sequence, [g;];cv . Specifically, the probability
of adding the edge (i, 7), is
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Note that the second stage can generate both inter- and intra-
community edges. It is necessary that Chung-Lu inputs, {¢;},
satisfy €;e; < ), e, for Equation 1] to define a probability. A
calculation shows that the expected degree of node ¢ is indeed
d; whenever d; > p;(|C;| —1) (i.e., the expected degree from
the first-stage edges does not exceed the total expected degree
of any node), thus the CL model is well-defined.

P(i,j | e) = )]

To calculate the probability of edge (4, j), we condition on
whether ¢ and j share a community. Recall, our communities
partition the set of nodes, so each i is in exactly one commu-
nity. If ¢ and j are assigned to the same community, C, let p
denote the internal edge probability of C', and we see
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If ¢ and j are assigned to different communities, the edge
probability is as given in Equation

GBTER differs from the original BTER model by allowing
greater flexibility and assignment of community membership,
size, and internal edge density (p). As indicated in [10],
the expected clustering coefficient for an ER(n,p) graph is
p>. This implies that GBTER also allows pre-specification
of each community’s approximate clustering coefficient. Note
that GBTER assumes node labels allowing specification of
community assignments, while BTER only depends on the
number of nodes of each expected degree, and BTER com-
munity assignment is not known/specified a priori. Since edge
and graph probabilities depend on community assignments (in
both models), such calculations are complicated and expensive
in the BTER (as all possible community assignments must be
considered), which inhibits its use for anomaly detection.

P(i,jli,jeC)=p+(1-p) )

IV. FITTING MODEL PARAMETERS

We now describe how to fit the GBTER model to a
sequence of observed graphs with common node labels using
Bayesian techniques for learning the parameters and inferring

4Erdos-Rényi graphs, denoted ER(n,p), have n fixed nodes and each
possible edges occurs independently with probability p.



the following model inputs: (1) the community assignments,
(2) the within-community edge densities, and (3) the expected
node degrees. Once a specific instance of the model is deduced,
probabilistic anomaly detectors are constructed, as detailed in
Section [V]

In this paper, a partition of the vertex set into communities
is learned using the Markov Clustering (MC) algorithm [13].
We chose MC as it is known to scale well and is easy to
implement. To apply MC, a weighted graph is constructed by
counting occurrences of each edge in observed graphs. We note
that our general method requires a partition of the nodes into
communities but is blind to the algorithm used. For example,
communities inferred from context (e.g., grouping nodes by a
known, common affiliation) can be used to obviate this step
and may provide more insightful results in a real-world setting.

Given community assignments, the within-community edge
densities are estimated. Each community, C, is modeled inter-
nally by an Erdos-Rényi random graph, ER(|C/|, p), and we
seek to estimate p. Letting k£ denoted the number of edges
within the subgraph C, it follows that k ~ Binomial((lg‘)7 D).
In order to use Bayesian inference, we assume p ~ Beta(«, §),
with prior parameters @ > 0,3 > 0, and then use the
maximum posterior likelihood estimation (MPLE). Specifi-
cally, (p’kl, ..., kn) ~ Beta(&, ) with posterior parameters
a=a+Y, ki, and f = f+N (1) =3, k; where k; denotes
the number of edges internal to C' observed in the i-th graph,
G, fori=1,...,N. MPLE gives p := (& —1)/(&+ 8 —2),
the mode of the posterior.

Lastly, the expected degree sequence must be estimated
from the data. For a fixed node, we assume its degree,
d, is Poisson distributed with expected degree )\, i.e. d ~
Poisson(\). We use the conjugate prior, A ~ Gamma(c, 3)
with prior parameters a > 1,3 > 1. This yields the posterior
distribution, (A|dy,...,dy) ~ Gamma(d, ) with posterior
parameters & = v+, d;, and B = B + N, where d; denotes
the observed degree of the node in G;. ForA each node, MPLE
gives its expected degree, A := (& — 1)/, the mode of the
posterior Gamma.

V. ANOMALY DETECTORS

Given an instance of a GBTER model, which defines
a probability distribution on graphs, one can leverage the
distribution to detect anomalies at the graph, subgraph, and
node level. This section defines two multi-scale detectors, one
which uses the GBTER distribution directly, and one which
leverages statistics inherent to the GBTER model. The Multi-
Scale Probability Detector naturally uses the graph probability
as determined by the GBTER model for detection, which is
then decomposed into probabilities of subgraphs and nodes
for hierarchical information. Although intuitive, this detector
suffers from a few limitations, discussed below, which inform
construction of the Multi-Scale Statistics Detector. This second
detector builds from the bottom up, defining the probability of
a node based on the likelihood of its internal and external
degree. Subgraph probabilities are determined by those of
member nodes, so multi-scale analysis is facilitated by both
models. Lastly, we describe a baseline method for detecting
anomalous graphs by fitting Gaussian distributions to graph
statistics. We note that the Gaussian Baseline is only used for

identifying anomalous graphs, as it cannot discriminate at the
subgraph or node level.

A. Multi-Scale Probability Detector

Our first method uses the graph probability, as given by
the GBTER model, for anomaly detection. Specifically, given a
graph G = (V, E') with vertices V' and edges E, the probability
of G is

r@G) =[] p6s [] a-PGi), @
(i,4)€E (i,4)¢E
where P(i,j) is the probability of the edge (i,j) under the
GBTER model, as derived in Section In practice, given a
graph (G, we compute its probability using Equation [3| then
use Monte-Carlo simulation to estimate its p-value.

In order to detect anomalies at different scales, the prob-
ability of a graph is decomposed into a product of subgraph
probabilities. Specifically, we define the probability of node g

as
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It follows that P(G) = [, P(i)'/2. Similarly, the probability
of a subgraph G’ = (V', E') is defined to be [] P(i)'/2, with
the product over ¢ € V’. Hence, given a partition of V into
communities, {C;}, the probability of G also breaks into a
product of community probabilities, i.e., P(G) = [[;, P(C}).
This formulation allows anomaly detection of any fixed sub-
graph, in particular at the node, community, and graph level.

The probability of sampling a graph under a given genera-
tive model is an intuitive choice for anomaly detection. Upon
further examination, this technique will yield poor results in
models where the mode of the distribution varies depending on
whether or not labels are regarded. As an illustrative example,
consider the ER model on three labeled nodes, V' = {1, 2,3}
with p = 1/3. The most probable unlabeled graph under this
distribution has exactly one edge, and occurs with probability
(3)(1/3)(2/3)* = 4/9. Now labeling nodes, there are three
different but isomorphic graphs with one edge each, namely,
with edge (1,2) or (2,3) or (1, 3) only. But the probability of
each of these one-edge graphs is (1/3)(2/3)% = 4/27, while
the probability of the empty graph is (2/3)% = 8/27. Hence
when labels are regarded, the mode of the distribution is the
empty graph, not the one-edge graphs as in the unlabeled case;
consequently, in this case the Multi-Scale Probability Model
will view the expected graphs as more anomalous than the less
likely empty graph! Now consider the GBTER model used
in the our experiments. Because the probability of a within-
community edge is greater than 1/2 and inter-community edge
is less than 1/2 with the given parameters, the labeled-node
mode of the distribution is the graph with every community as
a clique and no other edges. Although this graph is unlikely
to be sampled, the Multi-Scale Probability Model will regard
it as the most “normal” possible graph. The conclusion of this
reasoning is that using the graph’s probability will produce
unwarranted results, yet modeling characterizing statistics of
the graph (e.g., inter- and intra-community node degrees)
gives accurate detection capabilities. This is exhibited in our
empirical results, and motivates the second detector.



B. Multi-Scale Statistics Detector

Our second detector is based on observing and model-
ing intra- and inter-community node degrees (after learning
GBTER parameters). Fix a node ig € V, and let C' denote ig’s
community, p denote C’s intra-community edge probability,
and A\ the expected degree of node iy (all as learned from
fitting the GBTER model to our observations). We set d;,, :=
{(i0,7) € E : j € C}| = iy’s internal degree, and d., :=
{(i0,7) € E: j ¢ C}| =io’s external degree. Following the
ER(|C|, p) assumption, we assume d;,, ~ Binomial(|C|—1, p),
and d., ~ Poisson(e), where £ = max(0, \—p(|C|—1)), is the
excess expected degree of iy (see Section [[II). For the Multi-
Scale Statistics Detector, the probability of node ¢ is defined
as the joint probability of its degrees, P(ig) := P(dipn,dex)-
We assume the two degrees are independent and obtain

—&odey
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Given a subgraph G’ = (V', E’) we set P(G’) :=[]., P(3).

Note that since GBTER allows both internal and external
edges to be created by the second stage of the process,
the model above inflates internal degree d;, and deflates
de, compared to GBTER. Additionally, as the range of a
Poisson variable is unbounded, degrees exceeding |V| —1 (an
impossibility) are assigned positive probability by this model.
To circumvent this possibility, the truncated Poisson can be
used for sampling. In our experiments, the expected degree
(A) and expected excess degree (¢) are sufficiently smaller
than |V| — 1, which implies the P(deg(i) > |V] — 1]) is
negligible. Testing with and without the truncation exhibited
similar results.

To use either of the multi-scale detectors, we set thresholds
at each level, and any node/subgraph/graph with p-value below
the respective threshold is labeled anomalous. The model
parameters are updated upon receipt and detection of each
graph.

C. Gaussian Baseline Detector

Our baseline method fits univariate Gaussian distributions
to graph statistics and uses the product of the p-values for
detection. We compute three statistics from each observed
graph: average node degree (X), average clustering coefficient
(X2), and the spectral norm (X3). Calculating X; and X, from
a given graph is straightforward. In order to calculate X3, the
GBTER model is used with parameters estimated as described
above to produce the expected adjacency matrix E(A), in
which E(A); ; gives the probability of an edge between nodes
7 and j. The spectral norm is defined as the maximum modulus
eigenvalue of the residual matrix A — F(A). After computing
the observed statistics, independent univariate Gaussian distri-
butions (N (u;, o)) are fit to each of the three statistics. Lastly,
given a newly observed graph, G, with statistics z1, 2, T3,
we assign p-value(G) = [[°_, P(X; < 2N (ui,04)). As
before, p-values falling below a given threshold, «, are labeled
anomalous, and the three normal distributions are updated upon
receipt of each new graph.

This follows the approach of Moreno and Neville [2],
although their work is based on mixed Kronecker Product
graphs and uses average geodesic distance instead of the

TABLE I: Community assignments for first GBTER experiment

Gy & Cs
MT [O’1a253] [43536a7] [839a10311]

M, | (0,11,2,4) ([3.5,6,8]) (17,910, 1]

Note: For the first experiment, the seeded-anomaly model M,
is obtained from M, by switching the position of two nodes
from each of the first three communities, C'1, C2, C's. Anomalous
nodes shown in italicized red print, and anomalous communities
are circled. Communities 4-10 are unchanged and not shown.

spectral norm we employ for X3. Since the average geodesic
distance is undefined for disconnected graphs, we selected the
spectral norm based on prior use in network hypothesis testing
and strong results for similar tests involving Chung-Lu random
graphs [S]. While we consider this baseline a natural adaptation
of [2]], the disparity in use between their and our application
inhibits direct comparison.

VI. SYNTHETIC GRAPH EXPERIMENT

In order to test the anomaly detection capabilities, two
hidden GBTER models are used to generate labeled data, (1)
a “regular” model, M,, for sampling non-anomalous graphs,
and (2) a seeded-anomaly model, M,, with slightly perturbed
inputs to generate anomalous graphs. To begin the experi-
ment, 100 non-anomalous graphs are sampled from M,., and
the anomaly detectors are fit to the data, as described in
Section Prior distributions Beta(1,1), Gamma(2,2) were
used. To test the streaming anomaly detection, 500 graphs
are iteratively generated and observed with every fifth graph
from the seeded anomaly model. Upon sampling a new graph,
its p-value according to each anomaly detector is computed
(and it is labeled as anomalous if it falls below a given
threshold). Similarly, the hierarchical detectors label each node
and community depending on its respective p-value. Lastly,
each anomaly detector’s GBTER parameters are updated to
include observation of the new graph.

We conduct two experiments, both using networks of 40
nodes divided into ten equally-sized communities. For the
“regular” model, each community is assigned a within-edge
probability of p = .8, and the expected degrees of nodes vary
in the range of five to eight according to a truncated power-law.
To create the seeded-anomaly model for the first experiment,
two nodes from each of the first three communities are
interchanged resulting in six (of 40) anomalous nodes and three
(of ten) anomalous communities per anomalous graph (see
Table [[). For the second experiment, community assignments
are held constant, but the within-community density (p) of the
first four communities is changed from 0.8 to 0.4 in the seeded-
anomaly model, and the expected degree of the nodes in these
four communities is increased by two. This will decrease intra-
community, and increase extra-community interaction for these
four communities. All together the second experiment has four
(of ten) anomalous communities, and 16 (of 40) anomalous
nodes per anomalous graph.

Results of the experiments are given in Table [[I, which
includes the AUC as well as Precision, Recall, and F1 for each



TABLE II: GBTER Experiment Results (o« maximizing F1)

Method a F1 Precision Recall AUC

EXPERIMENT 1

Graph Level
Graph Probability 0.020 0.742 0.678 0.820 0.934
Graph Statistic 0.009 0.919 0.929 0.910 0.991
Gaussian Baseline 0.029 0.526 0.418 0.710 0.785
Community Level
Graph Probability 0.019 0.810 0.745 0.887 0.987
Graph Statistic 0.009 0.830 0.840 0.820 0.987

Node Level
Graph Probability 0.020 0.298 0.239 0.393 0.877
Graph Statistic 0.017 0.547 0.453 0.690  0.951

EXPERIMENT 2

Graph Level
Graph Probability 0.007 0.895 0.855 0.940 0.984
Graph Statistic 0.011 0.922 0.904 0.940 0.993
Gaussian Baseline 0.006 0.590 0.697 0.510 0.809
Community Level
Graph Probability 0.062 0.436 0.390 0.495 0.838
Graph Statistic 0.028 0.654 0.620 0.693  0.936
Node Level
Graph Probability 0.053 0.436 0.368 0.533 0.894
Graph Statistic 0.047 0.434 0.427 0.442 0.821

detector at the threshold o maximizing its F1 scoreE] Recall
that the Gaussian Baseline is only for graph level detection and
thus does not contribute to the community or node level results.
For the full-graph tests, the Gaussian Baseline is far inferior to
the new models with the Multi-Scale Statistics Detector as the
clear winner. Further, the results at all levels provide evidence
that the Multi-Scale Statistics Detector is the superior method,
as expected after the a priori analysis given in Section

VII. CONCLUSIONS AND FUTURE WORK

As many applications involve representing data with known
entities and time-varying relationships, this work considers a
sequence of graphs with node labels and changing edges. Our
goals were to investigate a method for finding abnormalities
in such a graph sequence that (1) use multiple, related levels
of granularity to facilitate an understanding of why/how an
anomaly occurred, and (2) to leverage node labels for more
accurate detection. To this end, we introduced GBTER, a
generalization of the BTER graph model, that allows more
accurate modeling of community structure, and built two
hierarchical streaming anomaly detectors. The first intuitively
uses the graph’s probability as given by the model, yet more
thorough analysis suggests that the inability of graph models
to distinguish isomorphic copies with different node labels will
inhibit detection accuracy. Secondly, a statistics-based detector,
that respects the node labels in each graph is created. Our
hypothesis that the statistics-based detector will give more
accurate results is verified in two tests on synthetic data where
ground-truth is known at the node, subgraph, and graph levels.
Additionally, both detectors outperform a baseline detector
that fits Gaussian distributions to observed statistics of the
full graph. We believe applying this method to other time-
sampled social networks will enable discovery of underlying
structure and anomalies with the context in which they occur.
Also, the multi-scale detection will inform an intuitive graph
visualization for “zooming-in” on detected regions.

SAUC statistic denotes the area under the receiver operator characteristic
(ROC) curve. F1 is defined as the harmonic average of Precision, P, and
Recall, R. Specifically, Fl:=ave(P~!,R~1)~! = 2PR/(P + R).

While investigations of scalability are outside the scope
of this work, we expect applications of this approach to
necessitate larger data. Here we identify the bottlenecks in the
current implementation for future efforts. Firstly, this approach
requires a partition of the nodes into communities, but is
agnostic to the method used. Hence, we have the ability to
optimize performance by the partitioning algorithm chosen. As
mentioned above, using communities known from context can
obviate this step and provide groupings that are familiar to the
operator. Secondly, estimating the p-values of a given distribu-
tion can be computationally expensive, especially if it requires
sampling large graphs and calculating their probabilities. In
general, importance sampling, in which one over-samples
from a subset of the event space, can aid in Monte-Carlo
simulations, although further research is required to optimize
performance gains for our needs. Thirdly, the choice of proba-
bility models of the parameters could be changed to admit eas-
ier p-value computation. For example, multinomials become
robust with abundant observations. In a specific application,
flexibility in the modeling may yield increased performance
with negligible effects on accuracy. Lastly, adapting the overall
workflow to fit a specific application may admit performance
gains. For example, updating parameters less often (in a batch
process periodically) or discarding anomalous data from the
update observations are options that have yet to be explored. In
summary, while the current implementation is suitable only for
small datasets, the approach gives opportunities for scalability
and should be adaptable to high-volume and/or large-network
settings.
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