UIUCDCS—R—SO—IOOS

A VIRTUAL ADDRESS KERNEL MODIFICATION FOR UNIX

N s cps
B st

by

Alfred D. Whaley '

; DISCLAIMER
]This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
{warramv, express or implied, or assumes any
' or f of any i i
Ircpresems hat its use would not infringe privately own!
commergial product, process, of service by trade name, trademark, manufacturer, of oiherwise, does
not necessarily constitute or imply its endorsement, recommendation, of favoring by the United
States Government Of any agency \hereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

lega! tiability or responsibility for the accuracy.
product, of process disclosed, of
ed rights. Reference herein 10 any specific

Government of any agency thereof.

February 1980

DEPARTMENT OF COMPUTER SCI
ENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, ILLINOIS 61801

f

o

nist '
RIBUTION OF w15 GOCUMENT 1§ UNLIMITER,

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

A VIRTUAL ADDRESS KERNEL MODIFICATION FOR UNIX

by Alfred D. Whaley
. University of Illinois

Urbana, Illinois

ABSTRACT

4

UNIX is é modern popular high—level -lénguage operating system
running principallyl(but not exclusively) on PDP11 computers. One of the
big problems with this system is a tight restriction on kernel memory
due to the 32k word virtual address. space of the PDP11. The work
described here divides the kernel into modules which run in "independent
address spaces to overcome this problem. The main software effort was
to develop éoftware tools to\make it easy to .work with the separate
modules, and, where ﬁossible, to maye the conversion without modifying

the kernel source code.

Keywords: kernél, address space, operating system, UNIX, virtual

memory,‘compatibility, minicomputer, memory limitations,‘softwafe tools.

'

. ANTRODUCTION

Use of the popular Bell Labs UNIX system on a PDP11/40 can preseht
difficulties due to thellimited address space of the machine. Lowering
hardware costs have caused all the major minicomputer manufacturers to.
enter thq midsize computer market, but escalating software costs have
prevented them from abandoning old instruction sets. This meané the
16-bit minicomputer manufacﬁufers (for example, Pfime, Interdata, Data
General, and Digital Equipment) have all been faced with the problems of
using instruction sets with 16-bit address fields on machines with more
memory. The PDP11 series has "solved" the problem. by a memory -
management system which maps a virtual address spacé of 32K 16-bit words
into é physical address space of 128K words. It is interesting to note
that the early use of the virtual address concept was to provide a large
virtual space with the confines of a small bhysical space. Little
attempt has been made to solve tﬁe small virtual address problem in the
PDP11 series (prior to the VAX, a substantially different computer) so,
although several programs may be resident in physical memory, no single
program may be over 32k bytes. Due to the dedicated use of two of eight
segment registers, the UNIX kernel is restricted to 24K on a PDP11/40,
34, 23, 35, or 60, which is often inadequate. On the model 45 or 70,
separate address spaces are provided for program and data, greatly
alleviating the problem, although the 70 ié so powerful that one tends
to allocate so much buffer space in the kernel that the virtual limit

again becomes a problem.

'

One widely. distributed (though undocumented) solution io this
hérdware limit on the model 40 was a version of UNIX by Robert
Sidebotham, faculty'of'Environmental Design, University of Calgary. His
solution was to move the I/0O buffers out of kernei address space.
Unfortunately this kind of approach tends to be slow and more awkward
due to the increased difficulty of accessing buffer.data for filing
system and other /purposes. Modifications to the -source code are

numerous. The 6ther difficulty with this approach'is ﬁhat it does not

" help enough. The system we were using had sixteen buffers (fairly

typical) occupying Uk words, which is therefore the maximum amount of-

address space that could have been regained with the Calgary method.

2

Typical UNIX additions of many I1/0 drivers or code | to handle
interprocess communicaticns can easily take up more than 4K -words, and

cannot be accommodated by this technique.

Another system which solves the problem of. address space is
MERT[1]. MERT is a full fledged multiprocessing environment which runs
UNIX as one possible subsystem. It is reputed to be quite slow compared
to standard UNIX, not surprising considering its elaborate natﬁre, but
it appears to have the desired features.. MERT is‘ inappropriate for a
PDP-11/40 because it fequires the split instruction and data space of
the PDP-11/45 or PDP-11/70. '

The final motivating force for the virtual kernel development
described here was a multiplexor [2] which allows a large number of
input and output lines (up to 256) to be connected, each able to run at
moderately high speeds. The amount of tabular information for software
control of a UNIX terminal or other I/O line is fairly large; with so

many lines we quickly ran out of kernel space.

The goels of this project were to provide an extremely general
facility which would make Yit easy to break the kernel intd resident
overlays so .that not all of the -executable code is Aaddressable at any
one time. The techniques developed resulted in a set of software tools
rather than being tied to some:peculiarity of the UNIX kernel. 'As it
turned -out, with the correct tools developed, there was a perticular
division of the kernel into virtual modules which involved an eXtremely

low amount of work.

The next section treats the problems inherent in and
characﬁeristics of the UNIX kernel that affect any attempt to split it
up into multiple virtual segments. Following is a section which

describes the software tools developed foﬁ the project}~

ISSUES OF SEPARATION - _ - g

Division of. 2 program into .overlays creates one .primary problen,
that of reference to addresses that are not currently valid. It is
useful however to treat text (executable code) and data addresses

separately. Data addresses are only a problem if they are referenced by

3

text which ié'not in their overlay, so all data referenced by more Gthan
one segment has been moved into a low core common non-overlay segment
that is always addressable. This solution is particularly -suitable for
UNIX since the data which is addressed in many different routines is
almost entirely in a small number of large arrays. These arrays are the
central storehouse of information on processes, files, 'and the like, and
.their use 1is so widespread that easy acéess by all overlays is

essential.

If shared data could not all be in the cdmmon area, it could; in
isolated instances, be 'accessed not directly but by 'invoking a
subroutine in a foreign overlay segment which could address “the data
desired. This would involve modifying the source code slightly to
change from a data reference to a procedure call. Another way to handle
data 1is to overlay it directly, which requires that each reference to
the data involved be preceded by a call to the overlay manager to make'
sure that the segment is addressable. This approach would be useful for
UNIX on a PDP11/70 where the amount- of buffer space alone could be over
32K. Fortunately, on the PDP11/40, both these methods may be avoided as o
all the arrays involved fit easily'into the common segment. The problem’
of accessing data may be therefore conveniently bypassed without

' overlays,\allowing us to focus our attention in the remainder of this

section on the problem of text.

The fact that text is broken only at procedure boundaries when
creating overlay segments, reduces the text problem to one of procedure
linkage across overlay seg@ent boundaries. Réferences in the source
code to foreign procedﬁres are converted to calls to an overlay manager
with the procedure name and original calling arguments and the numeric
designation of the new overlay as arguments. Since. our policy is to
avoid modifying the source code, this modification is done throughA the
use of macros. The overlay ‘manager switches the hardware segment
registers to make the new overlay addressable, and calls the procedure.
On ‘return, thé manager restores the addressability of tﬁe original
caller and returns. As an example the subroutine subr is not in the
current overlay so the call

subr (a,_b, c¢);

is converted by a macro to

vswteh (3, a, b, ¢, subr, 1);

where 3 is the argument count and 1 is the overlay contaihing subr{

Since the old kernel did not need to be too much lérger than the
size of the address space, any split should produce an acceptable
arrangement. For this reason only one additional segment was originally
created; it contains the nonfdisk driﬁers--see Figure 1. The two

segments are referred to as the main and device segments.

In order not to slow down any of the wusual functions, ‘routines
implementing system calls and multiprocessing functions are in one
.segment, so that nearly all normal functions on a system .call may be
performed without overlay mapping changes. Drivers for non-disk I/0 are
genérally involved in activities consisting of large real-time delays,
so the division seems' fairly natural. This means that most normal
timesharing activitieé may be carried out as in the original UNIX kernel
without reloading the segment registers. The typical user does not

\

create any additional delay except during I/0 to a terminal.

A third overlay segment ‘in Figure 1 1is the "begin" segment.
Initialization code is placed here.and then freed just before exit so

that the storage segment occupied is avail%ble for user programs.

Aithough the principle problem with overlays was presented at the
start of this section as being the validity of addresses, a few peculiar
-difficulties exist which may not be placed in this category. They "are
briefly summarized here. A principle consideration with virtual
addresses is that I/0 equibment does not (on this machine and most
ofhers) go through the segmentation hardware. The physical rather thén
virtual addreés must be calculated for use in 1/0. The large I1/0
buffers havé already been descfibed ias being in the common section,
where'physical and virtual addresses are the same and for the same
reason the "clists", (16-byte terminal I/0 buffers) have also been left
in common. .These economies mean less changes (mostly none in fact) in
the I/0 drivers. Only one driver with some cénned messages in its -own
data area needed modification. A routine in’ the common area called

physad returns the physical address of a virtual address for this

—

purpose.

A problem that we have been able to ignore is thét of sleep
addresses. Sleer and "wakeup aré a pair of synchronizing primitives
anéloéous to P and V, that use an address as a unique eQent identifier.
The address is never actuélly refefenced but must be unique. Since the
segment identifier is not included (it could be), the virtual addresses
of different ‘sleep/wakeup pairs 1in ‘difféﬂent segments could . be
duplicates when not intended. Such a coincidence is extremely unlikely
and due to UNIX structure such a coincidence is not fatal, merely
ihefficient (since "false" wakeubs are already possible, and all
routines are required to check validity and re-sleep if necessary), so

the problem has been ignored.

SUPPORT TOQLS
loader

The principle ingredient in this syétem is a modified relocating
loader which generates virtuali segments after resolving external
references. A fair amount of thought was necessary here, because it was
not desired to make extensive- modifications to the ¢ éompiler (and
language) and object file format for the sake of this one project. In
conflict with this was the imperative 'need for certain kinds of
communication of a static predefined nature between the various virtual
segments. The major approach taken here was to define a set of new
reserved external variable names that act'és keywords. Some. . of theée
are Jjust special symbols such as the symbol PHEND which is set to the
value of the physical ending address of used memofy.- Other symbols ‘are
operators. By way of illustration, in the statements -

extern sqrt, PHEND;

int var sqrt;

int xyz PHEND;
the variable var is initialized to the virtual address of the -sqrt
routine. The value is filled in by the loader. vThe variable xyz is
initialized not‘to the address of the external item PHEND, but the

physical address of the first free memory after all overlay segments.

Reserved names used as operators may be regarded as unary operators
applied to the external reference seen most recently by the loader. 1In
the above example there is no guarantee that the 'loader " will see
variab;es var and xyi in the precise order coded, so for operators, use

of an array is prudent. For example in the array:

int array(2) {
sqrt, . 7
PHYSADR‘ o
b

there are two words defined, the first having the address of the square
.root routine, and the second having the physical address of the start of
not the square ‘root routine, but the virtual® segment that it is .
contained in. Such information is valuable inta mechanism that switches
the values in the segmentation registers to change which segment is
current, but is of little use elsewhere. Clearly external names have

scope over all segments. ' i \

Referring again to Figure 1 we can see how a simplified UNIX kernel
may be assembled by the follow1ng single loader command
1d -o modcom vswtch.o -v O ‘

-0 modmain pe.o pa.o -v =1

-0 moddev pd.o pb.o -v 60000

-0 modbegin pc.o =v 60000
This command causes the loader to output to file modcom all object files
before the first -v flag, i.e. object file'vswtch.q'containing procedure
vswteh. The parameters "-v O" specify the starting virtual address of
the overlay module; in this case modcom will start at virtual address
zero. As the first module generated, it also starts at physical address
zero. Next the output name modmain is assigned with the next -o
parameter. Object files pe.o and pa.o will be placed in this module.
The "-v =1" parameters assign the starting virtual address. In this
pase, since the numeric field is preceded by a minus sign, the number 1
is taken as belng another module (in this case modcom) after which this
module (modmain) should follow compactly in the assignment of virtual

addresses.

During execution, exactly one of the three modules moddev,
modbegin, and the portion of modmain above virtual address 60000, will
be addressable at any one time. They caﬁnot all be addressable since
they all occupy the same part of_the address space. Subroutine vswtech
in modcom controls the contents' of the hardware virtual address
registers, and thus which module ié addressable. - These three modules
are therefore overlay segments, while modcom is - "resident." When
procedure pa calls procedure pb (the call is illustrated in Figure 1
after macro expansion), control is actually passed by procedure call to
vswtch. The last argument in the call is a 3 which vswtch uses to index
into array segadr. Array element 3 is the valve of PHYSADR (in the

‘ language C, indexing starts at zero) which immediately'fqllows the
address of pb (in segadr(2)). As explained earlier, the 1loader will

have placed in -segadr(3) the physical address of moddev. Vswtch then

1
uses this value to effect the change in virtgal address mapping.
For convenience, each module (modcom, moddev, etc.) has the
~identical format of former object files except that an unused word in
the header tells the physical address at which the segment is to be
l loaded. This address is assigned by the loader. This compatibility
! means that the utility programs for dealing with object files still have
some restficted use. The 'size and name list programs still work, and
| the debugger could be made tc work easily by subtracting the virtual

offset when accessing the object file.

In\order to have the convenience of a single composite file, the
standard UNIX ar command is used tc build an archive file with the foﬁr
segments. An archive file is in essence a subrouﬁine library in a
single file. An archive command suitable for the abové example would
be:

ar r /unix moddev modcom modmain modbegin

which would create an archive file of name "/unix" with four members in
it, moddev, -modconm, modbegin, and modmain. The bootstrap program is
capable of recognizing an archive file, and of 1loading each member

separatély. f

The last consideration has to do with -the text and data areas.

8

Traditionally, UNIX programs are split up into text and data areas with
an additional bss area that is uninitialized data (and only its size-is
carried in the object file). In the new scheme, each segment must have
its own text, data and bss areas, since it is impossible to execute a
segment that cannot access its data. This is the reason -in the above
example that modcom and modmain could not be put in one segment by the

loader, even:though they are contiguous.

In order to verify more easily that the program being loaded makes
no undesired expllclt cross- segment references, an optional diagnostic
printoutklists such references. In addition to these modlflcations to
the UNIX loader, it has been improved in other ways. The main change is
that it now stops searching libraries when all external references are
resolved. Because it has. been possible to use the same loader for
regular tlmesharlng use as well as forming UNIX kernels w1thout a lot of
awkward sw1tches, the searching efficiency has meant much to the regular
user of the program. '
bootstrap

Preuiously, UNIX was loaded by a‘small assembly language program
that oocupied themfirst block of some device, usually a disk pack. That
program, when executed, allowed the operator to type a single name of
the file -<containing the program to be loaded--usually the UNIX kernel.
The new virtual kernel is so large that no simple orogram that does not
utilize the virtual memory hardware can load it. - The traditional boot
program therefore now loads without user query "another program which
acts more or less the same operationally, but has the capability to load
any old style program (stand alone or unix kernel), or a new large
kernel. It examines the header to determine whether the file is a
single object file or an archive file w1th several obJeot files. Each
obJect file found is loaded at the phy81cal address glven in the obJect
header; The names(of the archlve members are ignored.- This is a nice
brogram that has all the features one could never fit in a boot program
before, but is not very 1nterest1ng theoretlcally It' is noteworthy
however, that the program is not tied to any particular form of the UNIX
kernelﬁ‘ It would be a useful tool for loadlng the UNIX kernel if the

‘complete virtual structure of the kernel were altered. In an

e

experimental research or classroom environmental this freedom would be

useful.
C pr Ss0

There is a preprocessor for the C compiler which handles definition
of tokens for character string substitution later in the source and also
provides a very simple macro facility. As one of the goals of ‘this

virtual conversion is not to change code any more than possible, calls

. to subroutines in foreign overlay segments are converted via the macro

facility to calls to the vswtch routine (as discussed earlier), for

example
#define subr(x, y, z) vswteh (3, x, y, z, %subrg, 1)

Since the preprocessor repeatedly rescans a line until all -macros are
found, an excape mechanism was introduced, where the characters %...%

make the second subr invisible.

Organizationally, all subroutines in an overlay segment are placed.

in the same file directory, and a single file called macs with all
macros needed for those routines is included. Therefore, the. only
change to most of the routines in the UNIX kernel was the inclusion of

the single 1line:
#include "macs" -

(#include is a standard preprocessor feature). In order to move a
program to a different overlay segment, it need merely be moved to the

appropriate directory, with no source changes.

CONCLUSTION

A set of techniques have been described which have an elegant
simplicity and yet a flexibiliﬁy that should make them valuable in a
research environment. Excellent success was obtained in the low impact
on the source code, and in avoiding new languages and data types to
accomplish these goals. ﬁe believe the tools developed are at least- as
valuable as the fact of an easily expandable kernel, which itself has

been an urgent need on our and other installations. Version 7 UNIX can

10

e

not even be run on a PDP11/40 or PDP11/23 (except in an extremely
restricted single user system) without the modifications developed here.
The kernel itself works reliably. and does not subjectively seem to be

slower than the original.

'

/
A}

EFERENCE ,
{1] Bayer, D.L. and H. Lycklama, "MERT - A Multi-Environment -Real-Time
Operating System," ACM Operating Systems Review 9 (5), 1975,

33-42.

[2] Whaley, A.D., "A PDP11 Multiplexor," Dept. Computer Sci. Rpt.
UIUCDCS-78-942, Univ. Illinois at Urbana-Champaign, 1978.

11

]

VIRTUAL

[4!

ADDRESS
-------- B — - e~ 120000
MODMAIN — - T 110000 -
: . | MODDEY ' ’
procedure pe .
o , procedure pd
procedure pa : . _ — 62000
. procedure pb . MODBEGIN
vswtch(2,x,y,pb,3) .
. - : .procedure pc
—_——— ——— 60000
/
- e 54000

MODCOM

procedure vswtch

. / .
. As modmain, moddev and modbegin overlap
extern pa,pd,pc in their virtual addresses, procedure
extern PHYSADR vswtch is used to control which is
int segadr (6) accessible at any one time.

pa,

- PHYSADR, \ - . ; .
pd, - ' ' ' ‘ .
PHYSADR, . ,
pc,

PHYSADR
b '
-------- S — — - -- 0

Figure 1. Schematic map of UNIX kernel with four virtual segments.

x . .

‘BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient’s Accession No.
SHEET : UIUCDCS-R-80-1005
4. Title and Subtitle 5. Report Date

A VIRTUAL ADDRESS KERNEL MODIFICATION FOR UNIX

February 1980

6.
7. Author(s) v . 8. Performing Organization Rept. -
Alfred D. Whaley ' , No. g-80-1005
9. Performing Organization Name and Address) 10. Project/Task/Work Unit No.

Department of Computer Science
University of Illinois U-C

11. Contract/Grant No.

Urbana, IL 61801 - A . ' DE-AS02-76ER02383
12. Sponsoring Organization Name and Address . 13. Type of Report & Period
:) Covered
U.S. Department of Energy technical

Chicago Operations Office

9800 South Cass Avenue 4.

Chicago, IL 60439

15. Supplementary Notes

16. Abstracts

UNIX is a modern popular high-level language operating system running
principally (but not exclusively) on PDPll computers. One of the big
problems with this system is a tight restriction on kernel memory due

to the 32k word virtual address space of the PDP1l. The work described
here divides the kernel into modules which run in independent address
spaces to overcome this problem. The main software effort was to develop
software tools to make it easy to work with the separate modules, and

where possible, to make the conversion without modifying the kernel
source code.

17. Key Words and Document Analysis. 17a. Descriptors

kernel

address space
operating system
UNIX

virtual memory
compatibility
minicomputer
memory limitations
software tools

17b. ldentifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement ‘ 19. Securicy Class (This 21. No. of Pages
) ' Report) : 16
unlimi UNCLASSIFIED
mited . 20 Security Class (This 77 Price

Page
UNCLASSIFIED

FORM NTIS-35 (10-70)

USCOMM-DC 40329-P71

