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Abstract— Solid-state lighting (SSL) luminaires containing light
emitting diodes (LEDs) have the potential of seeing excessive
temperatures when being transported across country or being
stored in non-climate controlled warehouses. They are also being
used in outdoor applications in desert environments that see little
or no humidity but will experience extremely high temperatures
during the day. This makes it important to increase our
understanding of what effects high temperature exposure for a
prolonged period of time will have on the usability and
survivability of these devices. Traditional light sources “burn
out” at end-of-life. For an incandescent bulb, the lamp life is
defined by B50 life. However, the LEDs have no filament to
“burn”. The LEDs continually degrade and the light output
decreases eventually below useful levels causing failure.
Presently, the TM-21 test standard is used to predict the L70 life
of LEDs from LM-80 test data. Several failure mechanisms may
be active in a LED at a single time causing lumen depreciation.
The underlying TM-21 Model may not capture the failure physics
in presence of multiple failure mechanisms. Correlation of lumen
maintenance with underlying physics of degradation at system-
level is needed. In this paper, Kalman Filter (KF) and Extended
Kalman Filters (EKF) have been used to develop a 70-percent
Lumen Maintenance Life Prediction Model for LEDs used in SSL
luminaires. Ten-thousand hour LM-80 test data for various
LEDs have been used for model development. System state at
each future time has been computed based on the state space at
preceding time step, system dynamics matrix, control vector,
control matrix, measurement matrix, measured vector, process
noise and measurement noise. The future state of the lumen
depreciation has been estimated based on a second order Kalman
Filter model and a Bayesian Framework. Life prediction of L70
life for the LEDs used in SSL luminaires from KF and EKF
based models have been compared with the TM-21 model
predictions and experimental data.

Keywords- LEDs, Life Prediction, Kalman Filter, Extended
Kalman Filter

1. INTRODUCTION

The field of electric lighting is undergoing major revolution.
We are in the process of transition to solid state lighting from
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the incandescent lighting that we have so grown used to and
fond off. The LEDs (Light Emitting Diodes) have been used
in a variety of applications including automotive headlights,
residential lighting, industrial lighting, televisions and
displays. Early indications are that LEDs will dominate the
lighting market because of the LEDs’ advantages compared to
the traditional fluorescent light in the light efficiency, energy
saving, improved physical robustness and long operating
hours. Energy is one of the major grand challenges facing us
in the 2Ist century. Lighting accounts for 17% of the
worldwide electricity consumption. Non-OECD countries
presently account for 82% of the increase in global energy
usage. One possible way to address the growing demand for
energy is to reduce the energy consumption on lighting
[Baribeau 2012]. The U.S. Department of Energy has made a
long term commitment to advance the efficiency,
understanding and development of solid-state lighting (SSL)
and is making a strong push for the acceptance and use of SSL
products to reduce overall energy consumption attributable to
lighting.

The transition to solid state lighting poses certain
challenges. The industrial utilization of LEDs in extreme
environments requires the LEDs have a good survivability
under exposure to wide temperature excursions, humidity, and
vibration. Consistency and reliability of SSL needs to be
improved beyond the present generation.  Challenging
applications  include:  Automotive, Healthcare, and
Horticulture. SSL luminaires are complex systems consisting
of LEDs, Optics, Drive electronics, and Controls. Consumer
electronics applications expected to function for only 1-3
years. Currently, it is not possible to qualify SSL luminaire
lifetime of 10-years and beyond often necessary of high
reliability applications, primarily because of lack of
accelerated test techniques and comprehensive life prediction
models.  SSL luminaires comprises of several material
systems and interfaces with different failure modes at each
level. There may be interactions between optics, drive



electronics, controls and thermal design impact reliability.
Accelerated testing for one sub-system may be too harsh for
another sub-system. New methods are needed for predicting
SSL reliability for new and unknown failure modes.
Presently, there is scarcity of life distributions for LEDs and
SSL devices which are needed to assess the promised
lifetimes.

LED failure is often addressed by the L70 lifetime, which
is the time required for the lumen output to drop to 70-percent
of the initial output or stated conversely, it indicates 70-
percent lumen maintenance time. L70 life is presently
computed based on a minimum 6000 hours of LED testing
using the LM-80 test method and TM-21 extrapolations of the
LM-80 data. The TM-21 model relies on an exponential model
of LED degradation for assessment of the L70 life. The
underlying TM-21 model may not capture the failure physics
in presence of multiple failure mechanisms. Since multiple
failure mechanisms may be active in an LED or an SSL, the
determination of single activation energy accurately may be
challenging if not impossible. Further, the weighted average
activation energy is based on large population statistics for a
particular LED or SSL design and may or may not be
applicable for the part of interest. In this paper, a new
methodology for the L70 life prediction of LEDs has been
developed based on the use of underlying physics based
damage propagation models in conjunction with the Kalman
Filter. Kalman filtering is a recursive algorithm that estimates
the true state of a system based on noisy measurements
[Kalman 1960, Zarchan 2000]. Previously, the Kalman Filter
has been used for navigation [Bar-Shalom 2001], economic
forecasting [Solomou 1998], and online system identification
[Banyasz 1992]. Typical navigation examples include tracking
[Herring 1974], ground navigation [Bevly 2007], altitude and
heading reference [Hayward 1997], auto pilots [Gueler 1989],
dynamic positioning [Balchen 1980], GPS/INS/IMU guidance
[Kim 2003]. Application domains include GPS, missiles,
satellites, aircraft, air traffic control, and ships. The ability of a
Kalman filter to smooth noisy data measurements is utilized in
gyros, accelerometers, radars, and odometers. Prognostication
of failure using Kalman filtering has been demonstrated in
steel bands and aircraft power generators [Batzel 2009,
Swanson 2000, 2001]. Numerous applications in prognostics
also exist for algorithms using more advanced filtering
algorithms, known as particle filters. The state of charge of a
battery was estimated and remaining useful life was predicted
in [Saha 2009*"].

Kalman Filter and Extended Kalman Filter Models have
been used to estimate the future lumen state of the LED
system, track the Lumen Maintenance degradation lines, and
estimate the L70 life for the specific part of interest and
determine remaining useful life. System state has been
described in state space form using the measurement of the
feature vector, velocity of feature vector change and the
acceleration of the feature vector change. This model can be
used to calculate acceleration factors, evaluate failure-
probability and identify ALT methodologies for reducing test

time. It is anticipated that the presented method could be used
for health monitoring of large deployments of LED and SSL
devices whether in street lighting or automotive applications
and allow continual insight into the anticipated downtime for
repair and replacement. Kalman Filter is used for linear-
system tracking while the Extended Kalman Filter can be used
for case in the non-linear system. Both algorithms can
generate dynamic and updating estimations at each data points
of interest, and then we can get the distribution of pseudo L70
life from those estimations. Model predictions have been
compared with TM21 calculator. Degradation models used to
capture the underlying physics of the LED and SSL system
have been discussed. The cumulative failure distribution has
been obtained, and the expected reliability computed with
95% confidence bounds.

II.  TEST-VEHICLE AND EXPERIMENTAL DATA

In this paper, 10,000 hour test data acquired by Philips on the
LUXEON Rebel LED has been used for model development.
The dataset is titled DR05-1-LM80 [Philips 2012]. Data was
acquired in accordance with the IES LM-80 standards, and the
correlated color temperature (CCT) of the testing units is
3000K. Data at ambient air temperature of 55°C, 85°C,
105°C, and 120°C with LED currents in the range of 0.35A to
1A have been used for model development. Table 1 shows the
scope of the input data set used for model development.

Figure 1: LED Test Product [Philips 2012]

Table 1: Input Dataset Used for Model Development

[Philips 2012]
Current T, CCT
Testl 0.35A 55°C 3000K
Test2 0.35A 85°C 3000K
Test3 0.35A 105°C 3000K
Test4 0.35A 120°C 3000K
TestS 0.5A 55°C 3000K
Test6 0.5A 85°C 3000K
Test7 0.5A 105°C 3000K
Test8 0.5A 120°C 3000K
Test9 0.7A 55°C 3000K
Test10 0.7A 85°C 3000K
Testl1 0.7A 105°C 3000K
Testl2 1A 55°C 3000K
Testl3 1A 85°C 3000K
Test14 1A 105°C 3000K

A representative sample of the test product, commercially
known as LUXEON LXM3-PW series LED, is shown in



Figure 1. The surface temperature measurement location is
shown in Figure 1. The surface temperature is lower than the
ambient temperature by approximately 2°C in most cases.
Each test condition has 25 samples. Lumen maintenance data
has been reported along with the u” and v’ measurements
versus accelerated test time up to 10,000 hours of test time.

Table 2: LED Surface Temperature for Various Ambient

Temperatures [Philips 2012]
Ambient Temperature Surface Temperature
55°C 53°C
85°C 83°C
105°C 103°C
120°C 118°C

III.  FAILURE MECHANISMS

The observed lumen degradation in the LEDs may categorized
into two main categories including, (1) wear-out resulting
from long term degradation, (2) catastrophic failure of the
LED resulting from short term degradation (Figure 2).
Catastrophic short term degradation may be caused by
manufacturing  problems, operation problems, harsh
environment exposure or other unpredicted elements in the
LED system. Long term degradation may be caused by long-
term exposure to harsh environments can be represented by a
simple ramp function decay, polynomial function family
decay, exponential family decay, or complicated and
combined functions to model statistical model family decay.
In this paper, we mainly focus on the long term degradation of
Lumen Maintenance, from which the wearing life of LEDs is
predicted.

Simple Ramp Function Decay |
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Figure 2: LEDs Failure Categories

Analysis of the variance in the lumen output from the LED
versus lifetime at high temperature shows that the variance in
the LED output increases with the increase in operating time at
high temperature. Simple regression of the test data versus
test time indicates that the lumen maintenance mean of the
tested distribution oscillates with respect to test time.

However, majority of the test data falls within the +95%
confidence limits.

Lumen Maintenance VS Aging Time
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Figure 3: Distribution for the Experimental Dataset
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Figure 4: Simple Regression for the Experimental Dataset

Degradation in the LED after exposure to harsh environments
may cause a shift in the correlated color temperature (CCT).
The color may shift from blue to orange or from green to pink
or vice-versa. There are a number of reasons for the color
shift including (1) aging of the LEDs, or UV exposure may
cause plastics to change color (2) operating conditions
including contaminants in the atmosphere may cause
luminaire changes (3) light engines may shift color over time
with different engines shifting in color differently, (4)
maintenance issues may cause the luminaires to look different
over time due to a number of reasons including incorrect
installation of parts. Nearly all the light engines have some



type of color shift. Examples include (1) metal halide lamps
which are notorious for color shift (2) incandescent bulbs
color shift when they are dimmed (3) LEDs that will shift
color over time. While, linear fluorescents may not color shift
“much” however, improper maintenance practices can cause
obvious luminaire color shift over time. The causes of color
shift with LEDs are not well understood. The color shift in
LEDs needs specific attention for a number of reasons. Prior
testing has shown that the color shift with LED-based
luminaires can be so great as to constitute a “failure” to an end
user. In this paper, Extended Kalman Filter has been used to
project color shift over an extended period of time.
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Figure 5: (a) 1931 color CIEXY Space (b) Yu'v' is a uniform
luminance-chrominance space and the visualized color of
3000K using 1976CIEUV and Location of the 55°C, 0.35A
dataset

Chromaticity specifies the quality of color regardless of the
luminance and is quantified by the hue and saturation. The
white point of the illuminant is the neutral reference. The
white point of an RGB display is the x,y chromaticity of [1/3,
1/3]. All other chromaticities are described in relation to this
white point reference using polar coordinates. Hue is the
angular component and saturation or purity is the radial

component. The outer curved boundary of the chromaticity
diagram is the spectral or monochromatic locus, with
wavelengths shown in nanometers. The “horseshoe” shape of
the chromaticity diagram consists of the (x,y) chromaticity
points of every color of light whose spectrum consists of only
a single wavelength. Chromaticities that lie along the horse
shoe are called spectral chromaticities. Colors along the horse
show range from violet, magenta, blue, cyan, green, yellow
and red. The dotted line at the bottom of the chromaticity
diagram completes the region “enclosed” by the horseshoe.
The chromaticities along the straight line are not “spectral”
and there is no light with only a single wavelength component
that exhibits a color with such a chromaticity. Colors along the
straight line are called the nonspectral purples.

Color space is a three-dimensional space in which the color
is specified by a set of three numbers such as the CIE
coordinates X, Y, and Z, which specify the color and
brightness. The CIE XYZ color space is designed so that the Y
parameter is a measure of the brightness or luminance of a
color. The chromaticity is a color projected into a two-
dimensional space that ignores brightness. The chromaticity
of a color is specified by the two derived parameters x and vy,
two of the three normalized values which are functions of all
three tristimulus values X, Y, and Z (Figure 5a):

<= X (D
X+Y+2Z
Y (2)
N/ —
X+Y+Z
Z 3)
Zz=—-—=1-Xx-y
X+Y+7Z

Where, Y means luminance, Z is equal to blue stimulation, or
the S cone response, and X is a linear combination of cone
response curves chosen to be nonnegative. The XYZ
tristimulus values are derived parameters from the long-,
medium-, and short-wavelength cones. The Y luminance is
measured in foot-Lamberts or candelas/sq.m, and the x and y
co-ordinates are dimensionless. The derived color space is
specified by X, y, and Y and is known as the CIE xyY color
space and is widely used to specify colors in practice. The
Yu'v' is a uniform luminance-chrominance space. Yu'v' is
derived from XYZ space [CIE 1986; Poynton 2003],

o= 4X B 4x )
X+15Y+3Z —-2x+12y+3
, 9Y Oy )

vV = =
X+15Y+3Z —-2x+12y+3

In the experimental data-set, the initial CCT of warm
LUXEON LED value is 3000K whose u’ and v’ location in
1976 CIE [Schanda 2007] is shown in the following Figure 5b.
The vertical stack of points indicates the (u’, v’) coordinates of
all the data at 55°C, 85°C and 105°C from pristine state till
10,000 hours of testing.



0.9

o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 6: Planckian Locus in Yxy CIE1931XY Space and
Location of the 55°C, 0.35A dataset.

Planckian locus, also called the black body locus is the path
that the color of an incandescent black body would take in a
particular chromaticity space as the blackbody temperature
changes. The blackbody goes from deep red at low
temperatures through orange, yellowish white, white, and
finally bluish white at very high temperatures. Figure 6 shows
the Planckian Locus in the Yxy space (Black Line). The red-
dot on the Planckian Locus indicates the location of the 55°C
ambient air, 0.35A test data set.
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Figure 7: Variance of the CCT in the 55°C, 0.35A Dataset

The data-set consists of 26-samples and has a mean CCT of
2952K. The (u’, v’) data from experiments has been
converted to the (X, y) space and plotted in Figure 6 [Poynton
2003].
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Figure 8: Evolution of the CCT for the 55°C, 0.35A Data-set
along the Planckian Locus with Test Time up to 10,000 Hours
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Figure 9: Shift of the LED Chromaticity in the CIE1976UV
space. Plot depicts the change in (u’, v’) for the different
temperatures versus test time in hours.  Plotted data
corresponds to current of 0.35A.

One can approximate the Planckian locus in order to calculate
the CCT in terms of chromaticity coordinates, if a narrow
range of color temperatures is considered, such as those
encapsulating daylight. The cubic approximation proposed by
McCamy [1992] has been used to construct the Planckian
Locus,

CCT(x,y)=—449n’ +3525n> ®)
~6823.3n +5520.33
X —X, )
n=
y—Ve.



Where, n is the inverse slope in the x-y space, x. = 0.3320,
and y. = 0.1858. Variance of the CCT in the experimental data
is shown in Figure 7. LEDs subjected to high temperature
exposure shift in the 1976CIEUV space with accelerated test
time. Figure 9 shows the u’ and v’ coordinates for the data-set
and the dataset mean versus operating hours. The red line is
the average of 55°C chromaticity, the blue line is average of
85°C chromaticity, the green line is average of 105°C
chromaticity and the pink line is average of 120°C
chromaticity. It is thus expected that the color would shift with
time of exposure at high temperature.

IV. EXTENDED KALMAN FILTER BASED ASSESSMENT OF
L70 LIFE

In order to prognosticate the remaining useful life (RUL) of
LEDs, the L70 lifetime has been used. The L70 life is defined
as the time at which LED lumen output is 70 percent of the
lumen output compared to the pristine LED at beginning of the
test.
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Figure 10: Recursive Algorithm and Extended Kalman Filter

The RUL is estimated by the using the Extended Kalman
Filter with historic data. System damage state estimation in
the presence of measurement noise and process noise has been
achieved using the Extended Kalman Filter (EKF). Previously,
the Kalman Filter has been used in guidance and tracking
applications [Kalman 1960, Zarchan 2000]. System state has
been described in state space form using the measurement of
the feature vector, velocity of feature vector change and the
acceleration of the feature vector change. The equivalent
Extended Kalman Filter equation for state space representation
is in the presence of process noise and measurement noise is:

X =Fx+w (10)
x=f(x)+w (1)
Where the F is the system linear dynamic matrix; f(x) is non-
linear dynamic matrix; the G is measurement matrix; u is
measurement vector; and w is system white noise;
Z=H-x+V 12)
Z=h(x)+V (13)
Where H is the measurement matrix, z is the measurement
vector, h(x) is a measurement function,which is a nonlinear
function of states, v is zero-mean random process described by

the measurement noise matrix. The process noise can be
calculated by taking the expected value of white noise:

Q=E[ww'] (14)
Similarly, the measurement noise matrix is derived from the
measurement noise as following:

R=E[w"] (15)

Since the system-dynamics ‘F’ and measurement equations are
nonlinear, a first-order approximation is used in the continuous
Riccati equations for the systems dynamics matrix F and the
measurement matrix H. It is expected that the progression of
interconnect damage is nonlinear, and therefore need to be
linearized before it can be estimated. In the Extended Kalman
Filter, the problem of linearization is addressed by calculating
the Jacobian of the nonlinear function of states (f) and the
measurement function (h) around the estimated state. System
state at each future time has been computed based on the state
space at preceding time step, system dynamics matrix, control
vector, control matrix, measurement matrix, measured vector,
process noise and measurement noise. The matrices are related
to the nonlinear system and measurement equations according
to:
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e (16)
aX x=X

17

g = &) )
6X X=X

From the linear dynamic equations, we can clearly know that
the world is linear as we supposed, and once we made this
premise. All the problems can be simply solved through the
matrix calculation. Therefore, we can get the first and second
derivatives from the linear matrix calculation;

% X (18)
X|=F-x
The system dynamic matrix for the EKF is:
ok ox 0% (19)
o 2% &
Fer = 67)( 87)& 87)&
ox ok b
b 0db 0b
ox ox ab
The system dynamic matrix for the KF is:
010 (20)
F={0 0 1
0 0O

We use this Jacobin Matrix to linearize the non-linear
problem; therefore it can use the classical KF updates. This is
for the second order system, and thus we can find the transfer
function F to describe certain system, which it is the key to
find fundamental matrix d(z). In this paper for the EKF, we

used the system model:
x=a-e 2N
The state vector is:



Xy =|_x X BJ (22)
This is an exponential function. The ‘o’ and ‘B’ are two
coefficients that are decided by different systems. The first
derivation X and the second derivation X are from:

X:a.eﬁ't (23)
X=pB-x (24)
X=p-x=p"x (25)

Therefore the elements in system dynamic matrix will be
calculated as:

B 1 «x (26)
Far = B2 B 2Px
0O 0 O

Usually, the fundamental matrix ®(¢) can be obtained from
two ways: the first way, we can get it from Laplace Transform,
simply as:

O(t)=(SI-F) "]
Where the £~ is inverse of the Laplace Transform; However,
the second way, known as the common way to find ®(7),

27

derives from the Taylor Series expansion:
2 3
FD”  FD
2! 3!
Normally, we only use the first two terms for representing the
fundamental matrix ®(f) , because the adding more terms

(28)

O(t)=1+FT+

cannot contribute much to the precision and filter convergence.
The Fundamental Matrix in the Extended Kalman Filter is:

1+pT T xT (29)
@ (T) = T+ Fy; T=| BT 14+BT 2B-xT
0 0 1
The Fundamental Matrix in the Extended Kalman Filter is:
1 T 0575 (30)
©,,(T)~I1+F,T=[0 1 T
00 1

In the Kalman Filter, the Fundamental Matrix will be directly
used to update the estimation from last time to the next.
Generally speaking, the process to find the ideal estimation
can be expressed as following steps: First of all, we make the
primary estimation, which should be approximate to the
initiate value in the dataset, and secondly, we can find the first
projection using the fundamental matrix d(z) and simply

calculate as:

X=D()-R 31)
For the KF the projection can be represented by:
AX]T [0 1 ofax] [0 (32)

A =0 0 T|Ax|+|0
AX 0 0 OfAx w
For the EKF the projection can be represented by:

A% A% AX] 9
AX A?g Ax Ap AX 0
A |=| 2% AX AX o
| |Ax Ak Ab

| Ax Ax Ab |

The next estimate could be obtained from the following
equation:
x=x+K(Z-H-X)

K is Kalman Gain

H is measurement matrix
Z is measurement.

Each time we update the Kalman Gain and Covariance Matrix,
which minimizes the errors and makes optimal calculation
during each step. Thus, the Kalman Gain mainly conveys the
information about how is our estimation close to the
observation. The way to obtain Kalman Gain (K) is from three
Riccati equations:

(34

M, =®,P®," +Q, (35)
K=M,H (HMH, +R,) (36)
P, =(I-KH)M, (37)

In the above equations, the M, is the covariance matrix; the
D is the fundamental matrix; the ®" is the transpose of that
matrix; P, is another covariance matrix that representing error
according to the time; the Q, is the discrete process noise

matrix, which is calculated from:

00 0
Q=0 0 0
0 1

(38)
0
0
Ts (39)
Q = [o(1)-Q - 0(x)"dr
0

the H is the unit measurement matrix and H, is transpose of it;

the K is the Kalman Gain; R, represents the measurement
noise according to the different system. We notice that those
three equations run like in the recursions: for the initial
covariance error P0 , we can find variance matrix M, that
represents the current error in the first equation according to
time. Then we use it in the second equation to find the
Kalman GainK , after that, we substitute the Estimate Kalman
GainK into the third equation to update last covariance error
Pk , thus we obtain the ‘next’ covariance error P,,,. Therefore,
as we go back to the first equation, we can obtain the updated
M, and updated Kalman Gain K .In the EKF, the Euler
integration has been introduced to instead the performance of
the KF’s fundamental matrix, it can be found that:

%, =%, +%, T (40)



%, =k +XT (4D
We call the equation above is the update equations,
X, represents the projection from the last time k ; %, 1s the

first derivative at time k-1; ik is the estimation at time k, X 4 18

the first derivative at time k; T is the sample time.

X, =X, +K,(Z-H-X,) (42)
X, =X, +K,(Z-H X,) (43)
The above equations are the basic Extended Kalman Filter
equations, which are to find the estimation and its ‘velocity’.
Also, in those equations, it uses the same three Riccati
Equations that expressed in the Kalman Filter to obtain the
Kalman Gain K andK,. Thus, the Extended Kalman Filter
actually has turned the non-linear problem into a linear one
through integrating method. So at each step, the Extended
Kalman Filter made a small integration, and if the integrate
time is small enough, then the answer we get is becoming
more precise. However, the difficulty within the Extended
Kalman Filter is to find the dynamic non-linear model to
describe the system, which always contains the unknown
coefficients. Therefore, the better we know about the test
system, for example, the theories and functions in the situation
of LEDs failure, the better we can predict system model in the
Extended Kalman Filter, therefore, the prediction of
Remaining Useful Life (RUL) would be close to the real RUL
in our PHM.

Algorithm: Filtering and RUL prediction

1. Initiate )A(O

2. Make the projections:
X, =%, +xT
X, =X, +%,,T

3. Calculate error covariance matrix before updata:
M, = (DkPk(DkT +Qx

4. Calculate the Kalman Gain:
K=M,H HMH, + Rk)’l

5. Update the estimation with measurement:
X, =X, +K,(Z-H'X,)
X, =x, +K,(Z-HX,)

6. Calculate error covariance after measurement update:
P =(I1-KH)M,

7. Extrapolate feature vector to threshold value:
LM =X,,, refor 4 Wicin

8. Report predicted RUL (and uncertainty);
9. Tterate to step 2 for next measurement (k =k +1);

The predictions are updated continually as more data becomes
available. The Figure 11 below shows the estimation of RUL
for L70. In the plot the blue line is raw experimental dataset,
the solid red line is Extended Kalman Filter Prediction, and
the dash red line is Extended Kalman Filter extrapolations for

L70, the green line is L70 criterion, and the green arrow shows
the Remaining Useful Life from the last evaluated point.

Estimated Time for the 70% Lumen Maintanence
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Figure 11 the Intuition of RUL for L70

Different failure models have been integrated with the
Extended Kalman Filter Algorithm to extrapolate the pseudo
decay curve, and calculate the Remaining Useful Life using
L70 criterion. The extrapolation function uses state vectors
from Extended Kalman Filter estimations. The state vectors
provide information about the migration of accrued damage in
the LED. Once all the state vectors converge at certain level,
the Extended Kalman Filter prediction of decay lines will
converge and remain within 95-percent Confidence Interval
level.

V. TM-21 ESTIMATION OF LED LIFE

Computation method based on TM-21 includes four parts: the
first part uses the Least Squares Fit (LSF) to determine the

Projected Initial Constant o and Decay Rate Constant [3 , The
governing function for the Lumen Maintenance according to
time:

D(t)=R-e™* (44)
The lumen maintenance, @(t), is known for about a dozen

datum points. In order to solve for a and B, the logarithm of
both sides was taken to produce a linear function.

log, (P(1)) = log, (B) +(—a) - t (45)
Coefficients of regression have been computed to get the
optimal curve fit for the ‘slope’ and ’intercept’. The values of

a and B were determined for the lower case temperature T1,
and for the upper case temperature T2.

) N{iZNl:ti.@(t)i]—(itij{i(@(t)i)j
N.Zi:tiz _(itiJz
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o=—a



B [i@(t)ij—a.[itij (48)
B=log(p)=-" N =

Activation Energy was calculated using the decay rate from
two different temperatures:
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Figure 12: TM-21 Degradation Curve

Using the activation energy E, and the lower case o value

and temperature, the Pre-Exponential Factor A, was

determined.

( E. ) (50)
A=q,-e"
With the Pre-Exponential Factor known, the In-Situ
temperature a value was determined.

_[ E, J (51)
Ay = A-e kT

Next, the In-Situ temperature  value was determined.

By = BBy &

Lastly, with the values of a and B known for the In-Situ
temperature, the L70 value in hours was determined.

53
log(BO ) (53)
I Y

70 =
o)
The TM-21 extrapolation curve is shown in Figure 12. The
green dash lines are the extrapolations from the low
temperature to the high temperature. The red dash line shows
the overall lumen degradation. The L70 life of LED using
TM-21 is about 36871.4 hours for long-term degradation.
However there is a limitation to use this TM-21 Calculator, we
have to know at least three cases at different temperatures in
order to correctly calculate the Activate Energy Ratio.
Moreover, the TM-21 is single estimation value, which cannot

provide any insight into the Probability and Distribution of
L70 estimations.

VI. EKF MODEL ANALYSIS

General LED Lumen Decay Life-Prediction functions are
plotted in Figure 13 and shown in Table 3. Potential failure
mechanisms in the LED system include: (1) Silicone
Encapsulate Degradation; (2) Chip Degradation; (3) Phosphor

Degradation; (4) Reflector Degradation; and (5) Lens
Degradation.
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Figure 13: LED Lumen Decay models

Table 3: Lumen Decay Models [IES TM-21 2011]

Model
Model-1 [ =10 +K, (t—t")
Model-2 I, = exp [k2 (t —t° )]
Model-3
k k
[ =|I+=L |explk,(t—t")|-—
v ( v k2 J Xp[ 2( )] kz

Model-4 t

[, =I+k, ln(t_‘)j
Model-5 t

IV = Ig + k] (t — t0)+ k3 h’l(t—oj
Model-6

I ()

Each failure mechanism may have different underlying failure
physics and a different unique function to describe it. The
following plot shows the possible decay models existing in the
LED systems. The overall degradation in LED Lumen
Maintenance may result from several combined long term
decay functions triggered by multiple failure mechanisms.
Thus, the true lumen degradation profile may be fairly
complicated. In this paper, we primarily focus on three failure
mechanisms. The first failure mechanism is the drift of
charged defects in chip, which may be described as the ramp
function [IES TM21 2011]. The second failure mechanism is
thermal decomposition of encapsulant, which is represented as
an exponential function. The third failure mechanism is the
combination of those previous two models. Figure 14 shows
the constant decay rate model for the prediction of the Pseudo




L70 life for the LEDs. The charge drift model model is
described by the function:

dL, /dt=C, (54)
L, =L +C(T-T,) (55)
In this model, the decay rate is constant, which is presented by
the straight lines (Figure 14). Constant degradation rate
cannot truly describe the degradation in operational
environments, where the decay rate may not be maintained
constant throughout the LED Lifetime.
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Figure 14: Constant Decay Model with Kalman Filter for L70
Estimation of 105°C, 1A LEDs
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Figure 15: Exponential Decay Model with Kalman Filter for
L70 Estimation of 105°C, 1A LEDs

Initial stages of lumen degradation in LEDs may result from
chip degradation or plastic degradation. However, as the time
elapses, the damage evolution in the system may include
additional failure mechanisms and thus additional lumen
degradation trends. It is feasible for several failure
mechanisms working together to accrue the damage and
accelerate failure of system. In order to allow evolution of
damage at a non-constant decay rate, a second order
polynomial function has been incorporated into the extended
kalman filter algorithm to predict decay curve (Figure 16).
Figure 16 shows the accelerating degradation using the

polynomial function where the decay rate is not constant,
which expresses as:

dL, /dt=C, +C,T (56)
L, =L, +C(T-T,)+0.5C,(T-T,) (7
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Figure 16: Polynomial Decay Model with Kalman Filter for
L70 Estimation of 105°C, 1A LEDs

Further, the LED system may experience long-term
degradation in high temperature environments. In this case,
the main degradation in the system may result from thermal
decomposition of encapsulant in LEDs. In this case, the
exponential decay function is used to represent the decay

curve in the extended Kalman filter algorithm. This
extrapolation is presented in the Figure 15 and represented by,
dL,/dt=C, xL, (58)
L — LI X eClx(T—To) (59)

VII. L70 LIFe DISTRIBUTION USING KF AND EKF

Exponential decay function (Model 3) has been used to predict
the L70 life. Extended Kalman filter has been used to estimate
the L70 life of each LED based on prior measured values of
lumen maintenance. Figure 17 shows the EKF prediction of
L70 life depicted by red-lines for each sample in the 105°C,
1A experimental dataset. The degree of correlation between
the measured data and the EKF predictions of state can be
assessed by comparing the red-lines for EKF predictions with
the actual measurements of lumen output indicated by the
blue-dots for each of the 25 samples in the measured sample-
set. In each case, the pseudo L70 life has been estimated using
EKF in conjunction with the Newton Raphson Method. When
Kalman Filter made a prediction about the state vectors in
each evaluated time, and the remaining useful life could be
estimated and calculated mathematically by solving the
equation H(t) and find the time T-prediction:

H(t)=x, +xxt+Xxt’ —f(EoL) (60)
T(n+1)=T(n) - f(x)/f'(x) (61)



Where, T(n)is the estimated root at time n; T(n+1) is the

estimated root at time (n+1); f'(X) is the derivation of target
equation. The Predicted RUL (T-predicted) is known as the
‘L70° End of Life (EoL) minus the sampling time (T-sample).
So the algebra equations presents as following:

RUL = L7004 —T,

sample

(62)
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Figure 19: Fitted Distribution for Decay Rate a; after 8000
hours for 105°C, 1A dataset.
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Coefficients for the estimation for the exponential model
(DO =a-exp(—f-t)) used with extended Kalman filter have
been computed by training the EKF parameters in the prior
acquired data. In this model, @ is the Lumen Maintenance
(%), o is the initial degradation factor, B is the degradation
rate. The estimation parameters o, and B, are shown in

Figure 18 and Figure 19. Figure 20 shows the EKF
predictions of L70 life with the green lines using exponential
model. Those extrapolation lines have been drawn by the
coefficients estimated by the KF in the above table. The blue
line in the picture shows the true estimation, which is the mean
of the distribution; the red curve shows the variance of the
distribution.
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Using the presented approach, the lumen degradation could be
predicted at future time. Figure 21 shows the prediction of
Lumen Maintenance at 16,000 hours using EKF. Normal
distribution has been assumed for the estimation of training
decay rates. Figure 21 shows the degradation path for
estimating the 16,000 hours life. The dots represent the lumen
maintenance estimations, and the blue line shows the 16,000
hours threshold. Figure 22 shows the lumen estimation at
16,000 hours. The blue bar shows the counts of estimated
lumen value, the red line is fitted distribution. The mean value
of 16,000 hours lumen maintenance is 86.53%, and the mean
value of 8000 hours is 92.21%. Therefore, the lumen
maintenance degradation from 8000 hours to 16,000 hours is
5.68 %. The lumen maintenance variance at 8000 hours is
1.1196¢-04, and the lumen maintenance variance at 16,000
hours is 1.2863e-04, so the variance increases 1.667¢-5, which
indicates the distribution shape is wider than the distribution at
8000 hours.

VIIIL.

The Chromaticity u” and v’ has also been tracked by the
Kalman Filtering Algorithm (Figure 23). Predictions of
Chromaticity shift along with lumen maintenance can provide
valuable insight in to the prior damage and the remaining
useful life of the LEDs.

KF CHROMATICITY TRACKING USING EKF
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Figure 23 KF Chromaticity Tracking

Shift of the (u’, v’) coordinates could indicate a major color
shift which may render the LED unusable. The dash blue line
is the KF chromaticity tracking for u” and v’ in 9000 hours
operating hours. Figure 24 shows u’ v’ KF tracking in 2D
1976 CIE v’ v’ coordinate. The circle is + 0.006 confidence
interval; the circle center is central point for 3000K.
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Figure 24 KF track with + 0.006 confident interval

IX. LIFE DISTRIBUTION FIT

Cumulative distribution function F(t) represents the population
fraction failing by age t. The reliability function R(t) for a life
distribution is the probability of survival beyond age t,
namely, the survivor or survivorship function can be
represented as [Nelson 2004]:

R(t)=1-F(t) (63)
Normal distribution, Lognormal distribution and Weibull
distribution have been fit to the distribution of predicted L70
lifetimes from EKF.

A.  Normal Distribution

Previously, the normal distribution has been used to describe
the life of incandescent lamp filaments in the field of lighting.
The Normal Cumulative Distribution Function is represented
by:

y Hm}zj (64)
F(y)= IVZT:GZ e %7 dx 0 < y < 400

Normal Probability Density. The probability density is:
f(y)=Q2no?)"? - VRN oo <y < oo (65)
Normal Reliability Function. The population fraction
surviving age t is:

R(t)=1-D[(t-n)/o] (66)
The KF prognostic pseudo L70 life follows the normal
distribution with expectation p (26118) and variance

0 (8687.7).
F(t)=D[(t-26118)/8687.7] (67)
The KF reliability function, R(t), can thereby be written by:
R)=1-F(t)=1-D[(t-26118)/8687.7] (63)
The EKF prognostic pseudo L70 life follows the normal
distribution with expectation p (43265) and variance
0 (2720.9).

F(t)=D[(t-43265)/2720.9] (69)
The EKF reliability function, R(t), can thereby be written by:
R(t)=1-F(t)=1-D[(t-43265)/2720.9] (70)
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B.  Lognormal Distribution

The Lognormal distribution is widely used for life data or

semiconductor failure mechanisms. The lognormal and

normal distributions are related; this fact is used to analyze

lognormal data with same methods for normal data.

Lognormal Cumulative Distribution is represented by:

F(t) = ®{[log(t) - n)/c},t >0 (71)

Lognormal Probability Density function is represented by:

£(t) = {0.4343/[(21) * to]} - etz @Dl ¢ 5 9 (72)

Lognormal Reliability Function is represented by:

R(t) = 1- ®{[log(t) - u)/c} = ©{-[log(t) - u}/c} (73)

The KF cumulative distribution of LEDs’ L70 life would be

written as the following function:

F(t) = O{[log(#/10.122)]/0.3045} (74)

In the KF prognostic L70 distribution, we found that R(t)

could be represented as:

R(t) = 1 - ®{[log(t/10.122)]/0.3045} (75)
= d{log(t) — 24877]/0.3045}

The EKF cumulative distribution of LEDs’ L70 life would be

written as the following function:

F(t) = ®{[log(¢/10.7)]/0.06} (76)

In the LEDs’ L70 distribution, we found that R(t) could be
represented as:
R(t) = 1 - ®{[log(t/10.7)]/0.06} (77)

= D{—[log(t) — 44356]/0.06}

C.  Weibull Distribution

The Weibull distribution is often used for product life, because
it models either increasing or decreasing failure rates simply.
It is also used as the distribution for products properties such
as strength (electrical or mechanical), elongation resistance
(references), etc., in accelerated tests. It is used to describe the
life of roller bearings, electronic components, ceramics,
capacitors, and dielectrics in accelerated test. =~ Weibull
Cumulative Distribution or the population fraction failing by
age tis:

Ft)=1-¢ t>0 (78)
Weibull Probability Density is given by:
f()=R/oMHt* eV >0 (79)
Weibull Reliability function is given by:
R(t)=e¥" t>0 (80)

The EKF L70 life follows the Weibull distribution with the
shape parameter 3 (3.11) and scale parameter o (29000).

g 301 81
F(t)=1-¢2200"" ¢ 5 1)
The reliability function, R(t), can thereby be written by:
R(t)=1-F(t)= " ¢ > 0 (82)

The L70 life follows the Weibull distribution with the shape
parameter B (17.6) and scale parameter a (45000).

F(t)=1- 4500071 ¢ 5 g (83)
The reliability function, R(t), can thereby be written by:
R(t)=1-F(t)= #0071 = o (84)

Table 4 KF Distribution Fitted Statistic

Goodness-Fit Tests for Three Distributions

Distributions Cramer-von Mises P-Value
Criterion

Normal 1.161 <0.010

Lognormal 0.541 <0.005

Weibull 1.050 <0.010

Table 5 EKF Distribution Fitted Statistic

Goodness-Fit Tests for Three Distributions

Distributions Cramer-von Mises P-Value
Criterion

Normal 0.0968 <0.005

Lognormal 0.0981 <0.005

Weibull 0.295 <0.010

Table 4 and Table 5 respectively shows the fitting statistics for
the Normal distribution, Lognormal distribution and Weibull
distribution. The lower value of Cramer-von Mises Criterion
(CMC-Minimum Distance), indicates a better fit of
distribution. The lognormal distribution fitting shows lowest
criterion value, indicating that it is the best fitting distribution.
The best fitted distribution for KF is lognormal distribution




(Figure 25) with CMC value 0.541, and normal distribution
(Figure 26) for EKF with CMC value 0.0968.

X. SUMMARY AND CONCLUSIONS

A life prediction methodology for L70 life of LEDs has been
developed based on Kalman Filter and Extended Kalman Filter
Models. Both the lumen degradation and the chromaticity shift
have been predicted. The estimated state-space parameters
based on lumen degradation and chromaticity were used to
extrapolate the feature vector into the future and predict the
time-to-failure at which the feature vector will cross the failure
threshold of 70-percent lumen output. This procedure was
repeated recursively until the LED failed. Remaining useful life
was calculated based on the evolution of the state space feature
vector. The KF/EKF estimations are range from 26,000 to
40,000 hours for the LEDs depending on the underlying
degradation mechanism. Model predictions correlate
reasonably with the TM-21 which provides L70 life-prediction
in the neighborhood of 36,000 hours. Since the proposed
computation method based on KF and EKF is recursive, any
changes in underlying damage acceleration trigger updates to
Kalman Gain and allow convergence of the model to measured
lumen degradation. It has been shown that the KF and EKF
based models can capture the underlying failure physics of
multiple failure mechanisms active in the LEDs including (1)
Silicone Encapsulate Degradation; (2) Chip Degradation; (3)
Phosphor Degradation; (4) Reflector Degradation; and (5)
Glass Degradation. Failure distributions of the L70 life have
been constructed based on normal, lognormal and Weibull
distributions. Normal distribution shows the best fit to the L70
histogram for the EKF model and the lognormal distribution
shows the best fit for the L70 histogram for the KF model.
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