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Abstract— Solid-state lighting (SSL) luminaires containing light 

emitting diodes (LEDs) have the potential of seeing excessive 

temperatures when being transported across country or being 

stored in non-climate controlled warehouses. They are also being 

used in outdoor applications in desert environments that see little 

or no humidity but will experience extremely high temperatures 

during the day. This makes it important to increase our 

understanding of what effects high temperature exposure for a 

prolonged period of time will have on the usability and 

survivability of these devices. Traditional light sources “burn 

out” at end-of-life.  For an incandescent bulb, the lamp life is 

defined by B50 life.  However, the LEDs have no filament to 

“burn”.  The LEDs continually degrade and the light output 

decreases eventually below useful levels causing failure.  

Presently, the TM-21 test standard is used to predict the L70 life 

of LEDs from LM-80 test data.  Several failure mechanisms may 

be active in a LED at a single time causing lumen depreciation.  

The underlying TM-21 Model may not capture the failure physics 

in presence of multiple failure mechanisms.  Correlation of lumen 

maintenance with underlying physics of degradation at system-

level is needed.  In this paper, Kalman Filter (KF) and Extended 

Kalman Filters (EKF) have been used to develop a 70-percent 

Lumen Maintenance Life Prediction Model for LEDs used in SSL 

luminaires.  Ten-thousand hour LM-80 test data for various 

LEDs have been used for model development.  System state at 

each future time has been computed based on the state space at 

preceding time step, system dynamics matrix, control vector, 

control matrix, measurement matrix, measured vector, process 

noise and measurement noise.  The future state of the lumen 

depreciation has been estimated based on a second order Kalman 

Filter model and a Bayesian Framework.  Life prediction of L70 

life for the LEDs used in SSL luminaires from KF and EKF 

based models have been compared with the TM-21 model 

predictions and experimental data.   

Keywords- LEDs, Life Prediction, Kalman Filter, Extended 

Kalman Filter 

I.  INTRODUCTION 

The field of electric lighting is undergoing major revolution.  

We are in the process of transition to solid state lighting from 

the incandescent lighting that we have so grown used to and 

fond off.  The LEDs (Light Emitting Diodes) have been used 

in a variety of applications including automotive headlights, 

residential lighting, industrial lighting, televisions and 

displays.  Early indications are that LEDs will dominate the 

lighting market because of the LEDs’ advantages compared to 

the traditional fluorescent light in the light efficiency, energy 

saving, improved physical robustness and long operating 

hours.  Energy is one of the major grand challenges facing us 

in the 21st century.  Lighting accounts for 17% of the 

worldwide electricity consumption.  Non-OECD countries 

presently account for 82% of the increase in global energy 

usage.  One possible way to address the growing demand for 

energy is to reduce the energy consumption on lighting 

[Baribeau 2012].  The U.S. Department of Energy has made a 

long term commitment to advance the efficiency, 

understanding and development of solid-state lighting (SSL) 

and is making a strong push for the acceptance and use of SSL 

products to reduce overall energy consumption attributable to 

lighting.   

The transition to solid state lighting poses certain 

challenges.  The industrial utilization of LEDs in extreme 

environments requires the LEDs have a good survivability 

under exposure to wide temperature excursions, humidity, and 

vibration.  Consistency and reliability of SSL needs to be 

improved beyond the present generation.  Challenging 

applications include: Automotive, Healthcare, and 

Horticulture.  SSL luminaires are complex systems consisting 

of LEDs, Optics, Drive electronics, and Controls.  Consumer 

electronics applications expected to function for only 1-3 

years.  Currently, it is not possible to qualify SSL luminaire 

lifetime of 10-years and beyond often necessary of high 

reliability applications, primarily because of lack of 

accelerated test techniques and comprehensive life prediction 

models.  SSL luminaires comprises of several material 

systems and interfaces with different failure modes at each 

level.  There may be interactions between optics, drive 
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electronics, controls and thermal design impact reliability.  

Accelerated testing for one sub-system may be too harsh for 

another sub-system.  New methods are needed for predicting 

SSL reliability for new and unknown failure modes.  

Presently, there is scarcity of life distributions for LEDs and 

SSL devices which are needed to assess the promised 

lifetimes.   

LED failure is often addressed by the L70 lifetime, which 

is the time required for the lumen output to drop to 70-percent 

of the initial output or stated conversely, it indicates 70-

percent lumen maintenance time.  L70 life is presently 

computed based on a minimum 6000 hours of LED testing 

using the LM-80 test method and TM-21 extrapolations of the 

LM-80 data. The TM-21 model relies on an exponential model 

of LED degradation for assessment of the L70 life. The 

underlying TM-21 model may not capture the failure physics 

in presence of multiple failure mechanisms.  Since multiple 

failure mechanisms may be active in an LED or an SSL, the 

determination of single activation energy accurately may be 

challenging if not impossible.  Further, the weighted average 

activation energy is based on large population statistics for a 

particular LED or SSL design and may or may not be 

applicable for the part of interest.  In this paper, a new 

methodology for the L70 life prediction of LEDs has been 

developed based on the use of underlying physics based 

damage propagation models in conjunction with the Kalman 

Filter.  Kalman filtering is a recursive algorithm that estimates 

the true state of a system based on noisy measurements 

[Kalman 1960, Zarchan 2000].  Previously, the Kalman Filter 

has been used for navigation [Bar-Shalom 2001], economic 

forecasting [Solomou 1998], and online system identification 

[Banyasz 1992]. Typical navigation examples include tracking 

[Herring 1974], ground navigation [Bevly 2007], altitude and 

heading reference [Hayward 1997], auto pilots [Gueler 1989], 

dynamic positioning [Balchen 1980], GPS/INS/IMU guidance 

[Kim 2003]. Application domains include GPS, missiles, 

satellites, aircraft, air traffic control, and ships. The ability of a 

Kalman filter to smooth noisy data measurements is utilized in 

gyros, accelerometers, radars, and odometers.  Prognostication 

of failure using Kalman filtering has been demonstrated in 

steel bands and aircraft power generators [Batzel 2009, 

Swanson 2000, 2001]. Numerous applications in prognostics 

also exist for algorithms using more advanced filtering 

algorithms, known as particle filters. The state of charge of a 

battery was estimated and remaining useful life was predicted 

in [Saha 2009a,b].  

Kalman Filter and Extended Kalman Filter Models have 

been used to estimate the future lumen state of the LED 

system, track the Lumen Maintenance degradation lines, and 

estimate the L70 life for the specific part of interest and 

determine remaining useful life.  System state has been 

described in state space form using the measurement of the 

feature vector, velocity of feature vector change and the 

acceleration of the feature vector change.  This model can be 

used to calculate acceleration factors, evaluate failure-

probability and identify ALT methodologies for reducing test 

time.  It is anticipated that the presented method could be used 

for health monitoring of large deployments of LED and SSL 

devices whether in street lighting or automotive applications 

and allow continual insight into the anticipated downtime for 

repair and replacement.  Kalman Filter is used for linear-

system tracking while the Extended Kalman Filter can be used 

for case in the non-linear system.  Both algorithms can 

generate dynamic and updating estimations at each data points 

of interest, and then we can get the distribution of pseudo L70 

life from those estimations.  Model predictions have been 

compared with TM21 calculator.  Degradation models used to 

capture the underlying physics of the LED and SSL system 

have been discussed.  The cumulative failure distribution has 

been obtained, and the expected reliability computed with 

95% confidence bounds.   

II. TEST-VEHICLE AND EXPERIMENTAL DATA 

In this paper, 10,000 hour test data acquired by Philips on the 

LUXEON Rebel LED has been used for model development.  

The dataset is titled DR05-1-LM80 [Philips 2012].  Data was 

acquired in accordance with the IES LM-80 standards, and the 

correlated color temperature (CCT) of the testing units is 

3000K.  Data at ambient air temperature of 55°C, 85°C, 

105°C, and 120°C with LED currents in the range of 0.35A to 

1A have been used for model development.  Table 1 shows the 

scope of the input data set used for model development.   

 
Figure 1: LED Test Product [Philips 2012] 

 

Table 1: Input Dataset Used for Model Development  

[Philips 2012] 

  Current Ts  CCT 

Test1 0.35A 55°C 3000K 

Test2 0.35A 85°C 3000K 

Test3 0.35A 105°C 3000K 

Test4 0.35A 120°C 3000K 

Test5 0.5A 55°C 3000K 

Test6 0.5A 85°C 3000K 

Test7 0.5A 105°C 3000K 

Test8 0.5A 120°C 3000K 

Test9 0.7A 55°C 3000K 

Test10 0.7A 85°C 3000K 

Test11 0.7A 105°C 3000K 

Test12 1A 55°C 3000K 

Test13 1A 85°C 3000K 

Test14 1A 105°C 3000K 

 

A representative sample of the test product, commercially 

known as LUXEON LXM3-PW series LED, is shown in 



Figure 1. The surface temperature measurement location is 

shown in Figure 1.  The surface temperature is lower than the 

ambient temperature by approximately 2°C in most cases.  

Each test condition has 25 samples.  Lumen maintenance data 

has been reported along with the u’ and v’ measurements 

versus accelerated test time up to 10,000 hours of test time.   

 

Table 2: LED Surface Temperature for Various Ambient 

Temperatures [Philips 2012] 

Ambient Temperature Surface Temperature 

55°C 53°C 

85°C 83°C 

105°C 103°C 

120°C 118°C 

III. FAILURE MECHANISMS 

The observed lumen degradation in the LEDs may categorized 

into two main categories including, (1) wear-out resulting 

from long term degradation, (2) catastrophic failure of the 

LED resulting from short term degradation (Figure 2).  

Catastrophic short term degradation may be caused by 

manufacturing problems, operation problems, harsh 

environment exposure or other unpredicted elements in the 

LED system.  Long term degradation may be caused by long-

term exposure to harsh environments can be represented by a 

simple ramp function decay, polynomial function family 

decay, exponential family decay, or complicated and 

combined functions to model statistical model family decay.  

In this paper, we mainly focus on the long term degradation of 

Lumen Maintenance, from which the wearing life of LEDs is 

predicted. 

 
Figure 2: LEDs Failure Categories 

Analysis of the variance in the lumen output from the LED 

versus lifetime at high temperature shows that the variance in 

the LED output increases with the increase in operating time at 

high temperature.  Simple regression of the test data versus 

test time indicates that the lumen maintenance mean of the 

tested distribution oscillates with respect to test time.  

However, majority of the test data falls within the ±95% 

confidence limits.   

 
Figure 3: Distribution for the Experimental Dataset 

 
 

Figure 4: Simple Regression for the Experimental Dataset 

 

Degradation in the LED after exposure to harsh environments 

may cause a shift in the correlated color temperature (CCT).  

The color may shift from blue to orange or from green to pink 

or vice-versa.  There are a number of reasons for the color 

shift including (1) aging of the LEDs, or UV exposure may 

cause plastics to change color (2) operating conditions 

including contaminants in the atmosphere may cause 

luminaire changes (3) light engines may shift color over time 

with different engines shifting in color differently, (4) 

maintenance issues may cause the luminaires to look different 

over time due to a number of reasons including incorrect 

installation of parts.  Nearly all the light engines have some 



type of color shift.  Examples include (1) metal halide lamps 

which are notorious for color shift (2) incandescent bulbs 

color shift when they are dimmed (3) LEDs that will shift 

color over time.  While, linear fluorescents may not color shift 

“much” however, improper maintenance practices can cause 

obvious luminaire color shift over time. The causes of color 

shift with LEDs are not well understood.  The color shift in 

LEDs needs specific attention for a number of reasons.  Prior 

testing has shown that the color shift with LED-based 

luminaires can be so great as to constitute a “failure” to an end 

user.  In this paper, Extended Kalman Filter has been used to 

project color shift over an extended period of time.   

 
(a) 

 
(b) 

Figure 5: (a) 1931 color CIEXY Space (b) Yu'v' is a uniform 

luminance-chrominance space and the visualized color of 

3000K using 1976CIEUV and Location of the 55°C, 0.35A 

dataset 

Chromaticity specifies the quality of color regardless of the 

luminance and is quantified by the hue and saturation.  The 

white point of the illuminant is the neutral reference.  The 

white point of an RGB display is the x,y chromaticity of [1/3, 

1/3].  All other chromaticities are described in relation to this 

white point reference using polar coordinates.  Hue is the 

angular component and saturation or purity is the radial 

component.  The outer curved boundary of the chromaticity 

diagram is the spectral or monochromatic locus, with 

wavelengths shown in nanometers.  The “horseshoe” shape of 

the chromaticity diagram consists of the (x,y) chromaticity 

points of every color of light whose spectrum consists of only 

a single wavelength.  Chromaticities that lie along the horse 

shoe are called spectral chromaticities.  Colors along the horse 

show range from violet, magenta, blue, cyan, green, yellow 

and red.  The dotted line at the bottom of the chromaticity 

diagram completes the region “enclosed” by the horseshoe. 

The chromaticities along the straight line are not “spectral” 

and there is no light with only a single wavelength component 

that exhibits a color with such a chromaticity. Colors along the 

straight line are called the nonspectral purples.   

Color space is a three-dimensional space in which the color 

is specified by a set of three numbers such as the CIE 

coordinates X, Y, and Z, which specify the color and 

brightness. The CIE XYZ color space is designed so that the Y 

parameter is a measure of the brightness or luminance of a 

color. The chromaticity is a color projected into a two-

dimensional space that ignores brightness.  The chromaticity 

of a color is specified by the two derived parameters x and y, 

two of the three normalized values which are functions of all 

three tristimulus values X, Y, and Z (Figure 5a): 
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Where, Y means luminance, Z is equal to blue stimulation, or 

the S cone response, and X is a linear combination of cone 

response curves chosen to be nonnegative.  The XYZ 

tristimulus values are derived parameters from the long-, 

medium-, and short-wavelength cones.  The Y luminance is 

measured in foot-Lamberts or candelas/sq.m, and the x and y 

co-ordinates are dimensionless.  The derived color space is 

specified by x, y, and Y and is known as the CIE xyY color 

space and is widely used to specify colors in practice.  The 

Yu'v' is a uniform luminance-chrominance space. Yu'v' is 

derived from XYZ space [CIE 1986; Poynton 2003], 
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In the experimental data-set, the initial CCT of warm 

LUXEON LED value is 3000K whose u’ and v’ location in 

1976 CIE [Schanda 2007] is shown in the following Figure 5b.  

The vertical stack of points indicates the (u’, v’) coordinates of 

all the data at 55°C, 85°C and 105°C from pristine state till 

10,000 hours of testing.   



 
Figure 6: Planckian Locus in Yxy CIE1931XY Space and 

Location of the 55°C, 0.35A dataset.   

Planckian locus, also called the black body locus is the path 

that the color of an incandescent black body would take in a 

particular chromaticity space as the blackbody temperature 

changes. The blackbody goes from deep red at low 

temperatures through orange, yellowish white, white, and 

finally bluish white at very high temperatures. Figure 6 shows 

the Planckian Locus in the Yxy space (Black Line).  The red-

dot on the Planckian Locus indicates the location of the 55°C 

ambient air, 0.35A test data set.   
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Figure 7: Variance of the CCT in the 55°C, 0.35A Dataset 

 

The data-set consists of 26-samples and has a mean CCT of 

2952K.  The (u’, v’) data from experiments has been 

converted to the (x, y) space and plotted in Figure 6 [Poynton 

2003].   
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Figure 8: Evolution of the CCT for the 55°C, 0.35A Data-set 

along the Planckian Locus with Test Time up to 10,000 Hours 

in Yxy CIE1931 Space 

55C
85C
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Figure 9: Shift of the LED Chromaticity in the CIE1976UV 

space.  Plot depicts the change in (u’, v’) for the different 

temperatures versus test time in hours.  Plotted data 

corresponds to current of 0.35A.   

One can approximate the Planckian locus in order to calculate 

the CCT in terms of chromaticity coordinates, if a narrow 

range of color temperatures is considered, such as those 

encapsulating daylight.  The cubic approximation proposed by 

McCamy [1992] has been used to construct the Planckian 

Locus, 
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Where, n is the inverse slope in the x-y space, xe = 0.3320, 
and ye = 0.1858.  Variance of the CCT in the experimental data 
is shown in Figure 7.  LEDs subjected to high temperature 
exposure shift in the 1976CIEUV space with accelerated test 
time. Figure 9 shows the u’ and v’ coordinates for the data-set 
and the dataset mean versus operating hours.  The red line is 
the average of 55°C chromaticity, the blue line is average of 
85°C chromaticity, the green line is average of 105°C 
chromaticity and the pink line is average of 120°C 
chromaticity.  It is thus expected that the color would shift with 
time of exposure at high temperature.   

IV. EXTENDED KALMAN FILTER BASED ASSESSMENT OF 

L70 LIFE 

In order to prognosticate the remaining useful life (RUL) of 

LEDs, the L70 lifetime has been used.  The L70 life is defined 

as the time at which LED lumen output is 70 percent of the 

lumen output compared to the pristine LED at beginning of the 

test.   
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Figure 10: Recursive Algorithm and Extended Kalman Filter 

The RUL is estimated by the using the Extended Kalman 

Filter with historic data.  System damage state estimation in 

the presence of measurement noise and process noise has been 

achieved using the Extended Kalman Filter (EKF). Previously, 

the Kalman Filter has been used in guidance and tracking 

applications [Kalman 1960, Zarchan 2000].  System state has 

been described in state space form using the measurement of 

the feature vector, velocity of feature vector change and the 

acceleration of the feature vector change. The equivalent 

Extended Kalman Filter equation for state space representation 

is in the presence of process noise and measurement noise is: 

wFxx   (10) 

w)x(fx   (11) 

Where the F is the system linear dynamic matrix; f(x) is non-

linear dynamic matrix; the G is measurement matrix; u  is 

measurement vector; and w  is system white noise;  

VxHZ   (12) 

V)x(hZ   (13) 

Where H is the measurement matrix, z is the measurement 

vector, h(x) is a measurement function,which is a nonlinear 

function of states, v is zero-mean random process described by 

the measurement noise matrix. The process noise can be 

calculated by taking the expected value of white noise: 

   ]E[ww=Q T

 
(14) 

Similarly, the measurement noise matrix is derived from the 

measurement noise as following: 

] E[vv=R T

 
(15) 

Since the system-dynamics ‘F’ and measurement equations are 

nonlinear, a first-order approximation is used in the continuous 

Riccati equations for the systems dynamics matrix F and the 

measurement matrix H. It is expected that the progression of 

interconnect damage is nonlinear, and therefore need to be 

linearized before it can be estimated. In the Extended Kalman 

Filter, the problem of linearization is addressed by calculating 

the Jacobian of the nonlinear function of states (f) and the 

measurement function (h) around the estimated state. System 

state at each future time has been computed based on the state 

space at preceding time step, system dynamics matrix, control 

vector, control matrix, measurement matrix, measured vector, 

process noise and measurement noise. The matrices are related 

to the nonlinear system and measurement equations according 

to: 

x̂xx

)x(f
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From the linear dynamic equations, we can clearly know that 

the world is linear as we supposed, and once we made this 

premise.  All the problems can be simply solved through the 

matrix calculation. Therefore, we can get the first and second 

derivatives from the linear matrix calculation;  
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The system dynamic matrix for the EKF is: 
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(19) 

The system dynamic matrix for the KF is: 
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(20) 

We use this Jacobin Matrix to linearize the non-linear 

problem; therefore it can use the classical KF updates. This is 

for the second order system, and thus we can find the transfer 

function F to describe certain system, which it is the key to 

find fundamental matrix )(t . In this paper for the EKF, we 

used the system model: 
tex   (21) 

The state vector is: 



  xxxk
  (22) 

This is an exponential function. The ‘  ’ and ‘ ’ are two 

coefficients that are decided by different systems. The first 

derivation x and the second derivation x  are from: 
tex   (23) 

xx   (24) 
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Therefore the elements in system dynamic matrix will be 

calculated as:  
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Usually, the fundamental matrix )(t  can be obtained from 

two ways: the first way, we can get it from Laplace Transform, 

simply as:  

])FSI[()t( 1   (27) 

Where the
1 is inverse of the Laplace Transform; However, 

the second way, known as the common way to find )(t , 

derives from the Taylor Series expansion: 
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Normally, we only use the first two terms for representing the 

fundamental matrix )(t , because the adding more terms 

cannot contribute much to the precision and filter convergence.  

The Fundamental Matrix in the Extended Kalman Filter is:  
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The Fundamental Matrix in the Extended Kalman Filter is:  
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In the Kalman Filter, the Fundamental Matrix will be directly 

used to update the estimation from last time to the next. 

Generally speaking, the process to find the ideal estimation 

can be expressed as following steps:  First of all, we make the 

primary estimation, which should be approximate to the 

initiate value in the dataset, and secondly, we can find the first 

projection using the fundamental matrix )(t and simply 

calculate as: 

x̂)t(x   (31) 

For the KF the projection can be represented by: 

















































































wx

x

x

x

x

x

0

0

000

100

010











 

(32) 

For the EKF the projection can be represented by: 
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The next estimate could be obtained from the following 

equation: 

)xHZ(Kxx̂   (34) 

K  is Kalman Gain 

H is measurement matrix 

Z  is measurement.  

Each time we update the Kalman Gain and Covariance Matrix, 

which minimizes the errors and makes optimal calculation 

during each step. Thus, the Kalman Gain mainly conveys the 

information about how is our estimation close to the 

observation. The way to obtain Kalman Gain (K) is from three 

Riccati equations:  

K

T

kkkk QPM   (35) 

1

ktktk )RHHM(HMK   (36) 

kk M)KHI(P   (37) 

In the above equations, the 
kM is the covariance matrix; the 

  is the fundamental matrix; the T  is the transpose of that 

matrix; kP  is another covariance matrix that representing error 

according to the time; the 
kQ  is the discrete process noise 

matrix, which is calculated from: 
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the H is the unit measurement matrix and tH  is transpose of it; 

the K is the Kalman Gain; 
kR  represents the measurement 

noise according to the different system. We notice that those 

three equations run like in the recursions:  for the initial 

covariance error 0P , we can find variance matrix 
kM  that 

represents the current error in the first equation according to 

time.  Then we use it in the second equation to find the 

Kalman Gain K , after that, we substitute the Estimate Kalman 

Gain K  into the third equation to update last covariance error 

kP , thus we obtain the ‘next’ covariance error 1kP  . Therefore, 

as we go back to the first equation, we can obtain the updated 

kM   and updated Kalman Gain K .In the EKF, the Euler 

integration has been introduced to instead the performance of 

the KF’s fundamental matrix, it can be found that: 

Txx̂x 1kkk    (40) 



Txx̂x 1kkk    (41) 

We call the equation above is the update equations, 

kx̂ represents the projection from the last time k ; 
1

ˆ
kx  is the 

first derivative at time k-1; kx̂ is the estimation at time k, kx̂ is 

the first derivative at time k; T  is the sample time.   

)xHZ(Kxx̂ k1kk   (42) 

)xHZ(Kxx̂ k2kk    (43) 

The above equations are the basic Extended Kalman Filter 

equations, which are to find the estimation and its ‘velocity’. 

Also, in those equations, it uses the same three Riccati 

Equations that expressed in the Kalman Filter to obtain the 

Kalman Gain 
1K and

2K .  Thus, the Extended Kalman Filter 

actually has turned the non-linear problem into a linear one 

through integrating method. So at each step, the Extended 

Kalman Filter made a small integration, and if the integrate 

time is small enough, then the answer we get is becoming 

more precise. However, the difficulty within the Extended 

Kalman Filter is to find the dynamic non-linear model to 

describe the system, which always contains the unknown 

coefficients. Therefore, the better we know about the test 

system, for example, the theories and functions in the situation 

of LEDs failure, the better we can predict system model in the 

Extended Kalman Filter, therefore, the prediction of 

Remaining Useful Life (RUL) would be close to the real RUL 

in our PHM.  

 

Algorithm: Filtering and RUL prediction 

1. Initiate 0x̂  

2. Make the projections:  

Txx̂x 1kkk    

Txx̂x 1kkk    

3. Calculate error covariance matrix before updata: 

K

T

kkkk QPM   

4. Calculate the Kalman Gain: 
1

ktktk )RHHM(HMK   

5. Update the estimation with measurement: 

)xHZ(Kxx̂ k1kk   

)xHZ(Kxx̂ k2kk    

6. Calculate error covariance after measurement update: 

kk M)KHI(P   

7. Extrapolate feature vector to threshold value: 

nknk wexLM nk





    

8. Report predicted RUL (and uncertainty); 

9. Iterate to step 2 for next measurement (k = k +1); 

 

The predictions are updated continually as more data becomes 

available.  The Figure 11 below shows the estimation of RUL 

for L70.  In the plot the blue line is raw experimental dataset, 

the solid red line is Extended Kalman Filter Prediction, and 

the dash red line is Extended Kalman Filter extrapolations for 

L70, the green line is L70 criterion, and the green arrow shows 

the Remaining Useful Life from the last evaluated point. 

 
 

Figure 11 the Intuition of RUL for L70 

Different failure models have been integrated with the 

Extended Kalman Filter Algorithm to extrapolate the pseudo 

decay curve, and calculate the Remaining Useful Life using 

L70 criterion.   The extrapolation function uses state vectors 

from Extended Kalman Filter estimations.  The state vectors 

provide information about the migration of accrued damage in 

the LED.  Once all the state vectors converge at certain level, 

the Extended Kalman Filter prediction of decay lines will 

converge and remain within 95-percent Confidence Interval 

level.  

V. TM-21 ESTIMATION OF LED LIFE 

Computation method based on TM-21 includes four parts: the 

first part uses the Least Squares Fit (LSF) to determine the 

Projected Initial Constant   and Decay Rate Constant , The 

governing function for the Lumen Maintenance according to 

time: 
te)t(   (44) 

The lumen maintenance, )t( , is known for about a dozen 

datum points. In order to solve for α and β, the logarithm of 

both sides was taken to produce a linear function.  

t)()(log))t((log ee   (45) 

t  (46) 

Coefficients of regression have been computed to get the 

optimal curve fit for the ‘slope’ and ’intercept’. The values of 

α and β were determined for the lower case temperature T1, 

and for the upper case temperature T2.  
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Activation Energy was calculated using the decay rate from 

two different temperatures: 



























12

2

1

a

T

1

T

1

logk

E
 

(49) 

 
 Figure 12: TM-21 Degradation Curve 

Using the activation energy aE  and the lower case α value 

and temperature, the Pre-Exponential Factor A, was 

determined. 
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With the Pre-Exponential Factor known, the In-Situ 

temperature α value was determined. 
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Next, the In-Situ temperature β value was determined. 

210   (52) 

Lastly, with the values of α and β known for the In-Situ 

temperature, the L70 value in hours was determined. 
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The TM-21 extrapolation curve is shown in Figure 12.  The 

green dash lines are the extrapolations from the low 

temperature to the high temperature. The red dash line shows 

the overall lumen degradation.  The L70 life of LED using 

TM-21 is about 36871.4 hours for long-term degradation.  

However there is a limitation to use this TM-21 Calculator, we 

have to know at least three cases at different temperatures in 

order to correctly calculate the Activate Energy Ratio. 

Moreover, the TM-21 is single estimation value, which cannot 

provide any insight into the Probability and Distribution of 

L70 estimations.  

VI. EKF MODEL ANALYSIS 

General LED Lumen Decay Life-Prediction functions are 

plotted in Figure 13 and shown in Table 3.  Potential failure 

mechanisms in the LED system include: (1) Silicone 

Encapsulate Degradation; (2) Chip Degradation; (3) Phosphor 

Degradation; (4) Reflector Degradation; and (5) Lens 

Degradation.   

 
Figure 13: LED Lumen Decay models 

 

Table 3: Lumen Decay Models [IES TM-21 2011] 

 Model 
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Each failure mechanism may have different underlying failure 

physics and a different unique function to describe it.  The 

following plot shows the possible decay models existing in the 

LED systems.  The overall degradation in LED Lumen 

Maintenance may result from several combined long term 

decay functions triggered by multiple failure mechanisms. 

Thus, the true lumen degradation profile may be fairly 

complicated.  In this paper, we primarily focus on three failure 

mechanisms.  The first failure mechanism is the drift of 

charged defects in chip, which may be described as the ramp 

function [IES TM21 2011]. The second failure mechanism is 

thermal decomposition of encapsulant, which is represented as 

an exponential function.  The third failure mechanism is the 

combination of those previous two models.  Figure 14 shows 

the constant decay rate model for the prediction of the Pseudo 



L70 life for the LEDs. The charge drift model model is 

described by the function: 

1o Cdt/dL   (54) 

)TT(CLL 01Io   (55) 

In this model, the decay rate is constant, which is presented by 

the straight lines (Figure 14).  Constant degradation rate 

cannot truly describe the degradation in operational 

environments, where the decay rate may not be maintained 

constant throughout the LED Lifetime.  

 
Figure 14: Constant Decay Model with Kalman Filter for L70 

Estimation of 105°C, 1A LEDs 

 
Figure 15: Exponential Decay Model with Kalman Filter for 

L70 Estimation of 105°C, 1A LEDs 

Initial stages of lumen degradation in LEDs may result from 

chip degradation or plastic degradation.  However, as the time 

elapses, the damage evolution in the system may include 

additional failure mechanisms and thus additional lumen 

degradation trends.  It is feasible for several failure 

mechanisms working together to accrue the damage and 

accelerate failure of system. In order to allow evolution of 

damage at a non-constant decay rate, a second order 

polynomial function has been incorporated into the extended 

kalman filter algorithm to predict decay curve (Figure 16). 

Figure 16 shows the accelerating degradation using the 

polynomial function where the decay rate is not constant, 

which expresses as:  

TCCdt/dL 21o   (56) 

2

0201Io )TT(C5.0)TT(CLL   (57) 

 
Figure 16: Polynomial Decay Model with Kalman Filter for 

L70 Estimation of 105°C, 1A LEDs 

Further, the LED system may experience long-term 

degradation in high temperature environments.  In this case, 

the main degradation in the system may result from thermal 

decomposition of encapsulant in LEDs.  In this case, the 

exponential decay function is used to represent the decay 

curve in the extended Kalman filter algorithm. This 

extrapolation is presented in the Figure 15 and represented by,  

01o LCdt/dL   (58) 

)TT(C

Io
01eLL


  (59) 

VII. L70 LIFE DISTRIBUTION USING KF AND EKF 

Exponential decay function (Model 3) has been used to predict 

the L70 life.  Extended Kalman filter has been used to estimate 

the L70 life of each LED based on prior measured values of 

lumen maintenance.  Figure 17 shows the EKF prediction of 

L70 life depicted by red-lines for each sample in the 105°C, 

1A experimental dataset.  The degree of correlation between 

the measured data and the EKF predictions of state can be 

assessed by comparing the red-lines for EKF predictions with 

the actual measurements of lumen output indicated by the 

blue-dots for each of the 25 samples in the measured sample-

set.  In each case, the pseudo L70 life has been estimated using 

EKF in conjunction with the Newton Raphson Method.  When 

Kalman Filter made a prediction about the state vectors in 

each evaluated time, and the remaining useful life could be 

estimated and calculated mathematically by solving the 

equation H(t) and find the time T-prediction: 

)EoL(ftxtxx)t(H 2

0    (60) 

)x('f/)x(f)n(T)1n(T   (61) 



Where, )n(T is the estimated root at time n; )1n(T  is the 

estimated root at time (n+1); )x('f   is the derivation of target 

equation.  The Predicted RUL (T-predicted) is known as the 

‘L70’ End of Life (EoL) minus the sampling time (T-sample). 

So the algebra equations presents as following: 

sampleEKF T70LRUL   (62) 

 
Figure 17: EKF Estimations 

 
Figure 18: Fitted Distribution for Decay Rate i after 8000 

hours for 105°C, 1A dataset.   

 
Figure 19: Fitted Distribution for Decay Rate αi after 8000 

hours for 105°C, 1A dataset.   

Coefficients for the estimation for the exponential model 

( )texp(  ) used with extended Kalman filter have 

been computed by training the EKF parameters in the prior 

acquired data.  In this model,   is the Lumen Maintenance 

(%), is the initial degradation factor,   is the degradation 

rate.  The estimation parameters 
i and 

i  are shown in 

Figure 18 and Figure 19.  Figure 20 shows the EKF 

predictions of L70 life with the green lines using exponential 

model.  Those extrapolation lines have been drawn by the 

coefficients estimated by the KF in the above table.  The blue 

line in the picture shows the true estimation, which is the mean 

of the distribution; the red curve shows the variance of the 

distribution.   

 
Figure 20 EKF Extrapolations and Mean Estimations 

 
Figure 21 Lumen Degradation Path for estimating lumen at 

16,000 hours 

 
Figure 22 Lumen Estimation Summary for 16,000 hours 



Using the presented approach, the lumen degradation could be 

predicted at future time.  Figure 21 shows the prediction of 

Lumen Maintenance at 16,000 hours using EKF.  Normal 

distribution has been assumed for the estimation of training 

decay rates.  Figure 21 shows the degradation path for 

estimating the 16,000 hours life. The dots represent the lumen 

maintenance estimations, and the blue line shows the 16,000 

hours threshold.  Figure 22 shows the lumen estimation at 

16,000 hours.  The blue bar shows the counts of estimated 

lumen value, the red line is fitted distribution. The mean value 

of 16,000 hours lumen maintenance is 86.53%, and the mean 

value of 8000 hours is 92.21%. Therefore, the lumen 

maintenance degradation from 8000 hours to 16,000 hours is 

5.68 %.  The lumen maintenance variance at 8000 hours is 

1.1196e-04, and the lumen maintenance variance at 16,000 

hours is 1.2863e-04, so the variance increases 1.667e-5, which 

indicates the distribution shape is wider than the distribution at 

8000 hours.   

VIII. KF CHROMATICITY TRACKING USING EKF 

The Chromaticity u’ and v’ has also been tracked by the 

Kalman Filtering Algorithm (Figure 23).  Predictions of 

Chromaticity shift along with lumen maintenance can provide 

valuable insight in to the prior damage and the remaining 

useful life of the LEDs.   

 

 
Figure 23 KF Chromaticity Tracking 

 

Shift of the (u’, v’) coordinates could indicate a major color 

shift which may render the LED unusable.  The dash blue line 

is the KF chromaticity tracking for u’ and v’ in 9000 hours 

operating hours.  Figure 24 shows u’ v’ KF tracking in 2D 

1976 CIE u’ v’ coordinate.  The circle is ± 0.006 confidence 

interval; the circle center is central point for 3000K.   

 

 
Figure 24 KF track with ± 0.006 confident interval 

IX. LIFE DISTRIBUTION FIT 

Cumulative distribution function F(t) represents the population 

fraction failing by age t. The reliability function R(t) for a life 

distribution is the probability of survival beyond age t, 

namely, the survivor or survivorship function can be 

represented as [Nelson 2004]: 

F(t)-1R(t)   (63) 

Normal distribution, Lognormal distribution and Weibull 

distribution have been fit to the distribution of predicted L70 

lifetimes from EKF.   

A. Normal Distribution 

Previously, the normal distribution has been used to describe 

the life of incandescent lamp filaments in the field of lighting.  

The Normal Cumulative Distribution Function is represented 

by: 
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Normal Probability Density. The probability density is: 

  y,-e)(2(y)f )]/(2u)-[-(y-1/22 22

 (65) 

Normal Reliability Function. The population fraction 

surviving age t is: 

])/-[(t-1R(t)   (66) 

The KF prognostic pseudo L70 life follows the normal 

distribution with expectation µ (26118) and variance 

 (8687.7). 

]7.8687)/26118-[(tF(t)   (67) 

The KF reliability function, R(t), can thereby be written by: 
]7.8687)/26118-[(t-1F(t)-1R(t)   (68) 

The EKF prognostic pseudo L70 life follows the normal 

distribution with expectation µ (43265) and variance 
 (2720.9). 

720.9]23265)/4-[(tF(t)   (69) 

The EKF reliability function, R(t), can thereby be written by: 
720.9]23265)/4-[(t-1F(t)-1R(t)   (70) 



 
Figure 25 KF Distribution of L70 

 

Figure 26 EKF Distribution of L70 

B. Lognormal Distribution 

The Lognormal distribution is widely used for life data or 

semiconductor failure mechanisms.  The lognormal and 

normal distributions are related; this fact is used to analyze 

lognormal data with same methods for normal data. 

Lognormal Cumulative Distribution is represented by: 

0 t},]/-{[log(t)(t)F   (71) 

Lognormal Probability Density function is represented by: 

0t,e]}t)2{0.4343/[((t)f )}/(2]-{-[log(t)2/1 22

   (72) 

Lognormal Reliability Function is represented by: 
}]/-{-[log(t)}]/-{[log(t)-1R(t)   (73) 

The KF cumulative distribution of LEDs’ L70 life would be 

written as the following function: 

}3045.0/)]122.10/{[log()( ttF   (74) 

In the KF prognostic L70 distribution, we found that R(t) 

could be represented as: 

}3045.0/]48772)t[log({

}3045.0/)]122.10/t{[log(1)t(R



  (75) 

The EKF cumulative distribution of LEDs’ L70 life would be 

written as the following function: 

}06.0/)]7.10/{[log()( ttF   (76) 

In the LEDs’ L70 distribution, we found that R(t) could be 

represented as: 

}06.0/]43564)t[log({

}06.0/)]7.10/t{[log(1)t(R



  (77) 

C. Weibull Distribution 

The Weibull distribution is often used for product life, because 

it models either increasing or decreasing failure rates simply. 

It is also used as the distribution for products properties such 

as strength (electrical or mechanical), elongation resistance 

(references), etc., in accelerated tests. It is used to describe the 

life of roller bearings, electronic components, ceramics, 

capacitors, and dielectrics in accelerated test.  Weibull 

Cumulative Distribution or the population fraction failing by 

age t is: 

0t,e-1F(t) )-(t/ 
  (78) 

Weibull Probability Density is given by: 

0t,et)/()t(f )/t(1 
  (79) 

Weibull Reliability function is given by: 

0t,eR(t) )-(t/ 
  (80) 

The EKF L70 life follows the Weibull distribution with the 

shape parameter β (3.11) and scale parameter α (29000). 

0t,e-1F(t) ])[-(t/29000 3.11

  
(81) 

The reliability function, R(t), can thereby be written by: 

0t,eF(t)-1R(t) ])[-(t/29000 3.11

  (82) 

The L70 life follows the Weibull distribution with the shape 

parameter β (17.6) and scale parameter α (45000). 

0t,e-1F(t) ])[-(t/45000 17.6

  (83) 

The reliability function, R(t), can thereby be written by: 

0t,eF(t)-1R(t) ])[-(t/45000 17.6

  (84) 

 

Table 4 KF Distribution Fitted Statistic 

Goodness-Fit Tests for Three Distributions 

Distributions Cramer-von Mises 

Criterion 

P-Value 

Normal  1.161 <0.010 

Lognormal  0.541 <0.005 

Weibull  1.050 <0.010 

 

Table 5  EKF Distribution Fitted Statistic 

Goodness-Fit Tests for Three Distributions 

Distributions Cramer-von Mises 

Criterion 

P-Value 

Normal  0.0968 <0.005 

Lognormal  0.0981 <0.005 

Weibull  0.295 <0.010 

Table 4 and Table 5 respectively shows the fitting statistics for 

the Normal distribution, Lognormal distribution and Weibull 

distribution.  The lower value of Cramer-von Mises Criterion 

(CMC-Minimum Distance), indicates a better fit of 

distribution.  The lognormal distribution fitting shows lowest 

criterion value, indicating that it is the best fitting distribution. 

The best fitted distribution for KF is lognormal distribution 



(Figure 25) with CMC value 0.541, and normal distribution 

(Figure 26) for EKF with CMC value 0.0968. 

X. SUMMARY AND CONCLUSIONS 

A life prediction methodology for L70 life of LEDs has been 
developed based on Kalman Filter and Extended Kalman Filter 
Models.  Both the lumen degradation and the chromaticity shift 
have been predicted.  The estimated state-space parameters 
based on lumen degradation and chromaticity were used to 
extrapolate the feature vector into the future and predict the 
time-to-failure at which the feature vector will cross the failure 
threshold of 70-percent lumen output.  This procedure was 
repeated recursively until the LED failed. Remaining useful life 
was calculated based on the evolution of the state space feature 
vector.  The KF/EKF estimations are range from 26,000 to 
40,000 hours for the LEDs depending on the underlying 
degradation mechanism.  Model predictions correlate 
reasonably with the TM-21 which provides L70 life-prediction 
in the neighborhood of 36,000 hours.  Since the proposed 
computation method based on KF and EKF is recursive, any 
changes in underlying damage acceleration trigger updates to 
Kalman Gain and allow convergence of the model to measured 
lumen degradation.  It has been shown that the KF and EKF 
based models can capture the underlying failure physics of 
multiple failure mechanisms active in the LEDs including (1) 
Silicone Encapsulate Degradation; (2) Chip Degradation; (3) 
Phosphor Degradation; (4) Reflector Degradation; and (5) 
Glass Degradation.  Failure distributions of the L70 life have 
been constructed based on normal, lognormal and Weibull 
distributions.  Normal distribution shows the best fit to the L70 
histogram for the EKF model and the lognormal distribution 
shows the best fit for the L70 histogram for the KF model.   
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