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What do we mean by the word “Shock”?



Abstract

From one vantage point, a shock is a continuous but drastic change in state
variables that occurs over very small time and length scales. These scales and
associated changes in state variables can be measured experimentally. From
another vantage point, a shock is a mathematical singularity consisting of
instantaneous changes in state variables. This more mathematical view gives rise to
analytical solutions to idealized problems. And from a third vantage point, a shock
is a structure in a hydrocode prediction. Its width depends on the simulation’s grid
resolution and artificial viscosity. These three vantage points can be in conflict when
ideas from the associated fields are combined, and yet combining them is an
important goal of an integrated modeling program. This presentation explores an
example of how models for real materials in the presence of real shocks react to a
hydrocode’s numerical shocks of finite width. The presentation will include an
introduction to plasticity for the novice, an historical view of plasticity algorithms, a
demonstration of how pursuing the meaning of “shock” has resulted in hydrocode
improvements, and will conclude by answering some of the questions that arise
from that pursuit. After the technical part of the presentation, a few slides
advertising LANL’s Computational Physics Student Summer Workshop will be shown.
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Hydrocodes Converge Toward an Idealized Shock

Underlying plot shown on next slide.



Similar Results when Material is a Solid

Zero strain rate

Zero strain rate

High strain rate



Zero compression 
(strain) rate

Popsicle Analogy of a Shock

Zero compression 
(strain) rate



Strain Rate Approaches as Dirac Delta

Underlying plot shown on next slide.



Strain Rate Approaches as Dirac Delta

Important Implication:

This strain rate is an 
input into strength 
models.

So what do we want 
for a shock?  
Instantaneous?  Real?



Strain Rate Approaches as Dirac Delta

PTW Flow Stress Hydro

What does it mean to validate rate-
hardening models (PTW), which are based 
on a physical shock, using a hydrocode that 
is verified using a singular shock?
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In Multi-Dimensional Problems we need a Stress Tensor



Hooke’s Law is like a spring but in all directions and 
including shear.  We use a 4th order tensor
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klijklij E  

is strainIf
kl

is a constant, then this,and
ijklE

is the most general form of Hooke’s Law for 
elastic deformation.  
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It can be inverted:
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Stress can be expressed as the 
gradient of the energy density 
function.

Strain can be expressed as the 
gradient of its compliment.

Key point in discussing plasticity…next…
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Elastic

Plastic
(this one is perfectly plastic)

A simple relationship  between

F x

is no longer possible.

In the Plastic Range

Instead we discuss increments

dF dx

“Hardening”
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Hooke’s Law“Flow Rule”

Handled By           
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ijd

“Flow Rule”

Determining how the plastic strain is related to 
stress is a central part of plasticity.

ijd
?

?

?
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First, we need a 3-D solid 
model for this:

For a tensor with 9 components

we need a single value to 
determine when it yields.

ij



For a tensor with 9 components

we need a single value to 
determine when it yields.
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It must be invariant with respect to the 
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Here is one that works:

von Mises Yield Criteria
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…give or take some multipliers (i.e., how we define Y – some divide by 3).

Yield Stress
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Here is one that works:

von Mises Yield Criteria
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…give or take some multipliers (i.e., how we define Y – some divide by 3).
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von Mises Yield Criteria

Yield Stress

So we have a “Yield Function”:
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Elastic Strain: 
Gradient of a 
complimentary 
energy density 
function.

Total strain: Sum of 
elastic strain and 
plastic strain.

We have a yield 
function that 
describes when 
yielding occurs.

Review
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Assert: Plastic strain must be the gradient of 
something.  But what?
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Hooke’s Law
Choosing the yield 
function for the 
gradient makes 
what’s called the 
Associated Flow 
Rule.
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Two Equations/Two Unknowns

Strain = Plastic + Elastic

Plastic strain is the gradient 
of the yield surface

We must not go off 
(beyond) the yield 
surface.
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Solving, and…

(1) Assuming isotropic material (shear and bulk modulus)
(2) Using deviatoric strain e and stress s 

Produces the Prandlt-Reuss Material Model
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Plastic strain is the gradient 
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surface.
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(1) Assuming isotropic material (shear and bulk modulus)
(2) Using deviatoric strain e and stress s 
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You can reengage by choosing to 
believe the following…that we 
have this ODE…
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Prandlt-Reuss (“P-R”) Material Model

1930

Focus largely on 
low speed 
deformation

Saint-Venant
von Mises
Prandtl
Levy

1940s/WW2 1977 1985

Kreig & Kreig: Analytical solution 
and comparison to numerical 
methods

Ortiz & Popov: Generalized 
framework for numerical 
methods, including radial return

Emphasis on numerical accuracy

High-speed 
deformation begins

Other analytical solutions 
and numerical methods 
follow.  Time Step a Factor.

In a code the strain rate is constant during a time step.

This enables integration of the P-R ODE either 
analytically or numerically.



1964: Wilkins’ Radial Return Algorithm
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Prandlt-Reuss (“P-R”) Material Model

Solves the above ODE at each time step in a hydrocode.

Given strain rate (circled), produce new estimates of stress at each time step.

Does not look like an ODE solver, though.
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Algorithm

Three Pieces

(1)
Split the 

stress tensor

(2)
Use a scalar 
metric of 
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(1)
Split the 

stress tensor
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Must Obey

Shear 
modulus

Deviatoric
strain

Hooke’s Law using 
“deviatoric” stress and strain.
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Algorithm
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1. Compute trial deviatoric stress

2. Compute its J2

3. Scale it back so that it obeys the yield criteria
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Prandlt-Reuss (“P-R”) Material Model

1930

Focus largely on 
low speed 
deformation

Saint-Venant
von Mises
Prandtl
Levy

1940s/WW2 1977 1985

Kreig & Kreig: Analytical solution 
and comparison to numerical 
methods

Ortiz & Popov: Generalized 
framework for numerical 
methods, including radial return

Emphasis on numerical accuracy

High-speed 
deformation begins

Other analytical solutions 
and numerical methods 
follow.  Time Step a Factor.

In a code the strain rate is constant during a time step.

This enables integration of the P-R ODE either 
analytically or numerically.
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Prandlt-Reuss (“P-R”) Material Model

1930

Focus largely on 
low speed 
deformation

Saint-Venant
von Mises
Prandtl
Levy

1940s/WW2

1964

Wilkins’ 
Radial Return

DruckerHill

1977 1985

1991

Margolin & Flower Solution for 
Strain-Rate Hardening

Kreig & Kreig: Analytical solution 
and comparison to numerical 
methods

Ortiz & Popov: Generalized 
framework for numerical 
methods, including radial return

Other analytical solutions 
and numerical methods 
follow.  Time Step a Factor.

Prandtl-
Reuss

Emphasis on numerical accuracy

Algorithmic 
Description

Obtains P-R through 
limit process

Hydrocodes stay with Wilkins + Iteration

High-speed 
deformation begins

1940s/WW2

Wilkins’ = numerical 
integration



Outline

(1)
Motivation: What is strain rate in 
a shock?

(2)
Introduction to plasticity and 
historical overview

(3)
Digging into the question: 
Strain rate, shock, and 
plasticity

(4)
Benefits to hydrocodes
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Strain Rate
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Deviatoric Stress

PTW expects rise times 
on the order of 10-9 to 
10-12 seconds

Hydrocodes provide rise 
times on the order of 
10-8 seconds.

With an incorrect yield 
stress, the deviatoric
stress may be incorrect.

…and they seek 
perfectly sharp shocks.

t = t + t



Strain-Rate 
Based Hardening

Radial Return 
Algorithm

Hydrocode’s
Shock Shapes

Strain Rate

Yield Stress

Deviatoric Stress

PTW expects rise times 
on the order of 10-9 to 
10-12 seconds

Hydrocodes provide rise 
times on the order of 
10-8 seconds.

With an incorrect yield 
stress, the deviatoric
stress may be incorrect.

…and they seek 
perfectly sharp shocks.

It is a cloudy 
situation.

t = t + t



Strain Rate Approaches as Dirac Delta

What happens if we 
feed an idealized 
shock, a Dirac delta, 
into PTW and our 
plasticity model?

We will now attempt to answer the 
following question:
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Algorithm
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ijstrial

ijs  

new

ijs 
trial

ijs

1. Compute trial deviatoric stress

2. Compute its J2

3. Scale it back so that it obeys the yield criteria

In 1991 
Margolin and 
Flower let
t 0 in the 
algorithm.

The result was 
a Prandtl-Reuss
like equation.
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Radial Return 
Algorithm

In 1991 
Margolin and 
Flower let
t 0 in the 
algorithm.

The result was 
a Prandtl-Reuss
like equation.

This has enabled an analytical study of shocks 
with plastic deformation.
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Strain-Rate 
Based Hardening
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GY
Yield 
stress

Shear 
modulus

Plastic strain 
rate

Based on material 
constants and density

Adjustable 
parameter

For overdriven (strong) shocks…

PTW
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Algorithm

Yield Stress

Replace with 

idealized 

profile.
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Linear 
density rise
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Analytical expressions for

Analytical 
expressions for

ODE can be solved 
analytically with 
special choice for .

,e
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Hydrocode shock shape

PTW Strength Model Radial Return as an ODE
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Result:

This is: Deviatoric stress during the linear density rise.
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PTW Strength Model Radial Return
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function 
of shock 
width, 
w.

We can 
take

of sij.

0wlim 
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Computations confirm it.



Strain Rate Approaches as Dirac Delta

What happens if we 
feed an idealized 
shock, a Dirac delta, 
into PTW and our 
plasticity model?

We will now attempt to answer the 
following question:

Answer: The deviatoric
stress is bounded.  The radial 
return algorithm regularizes 
the singularity.
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Question: What if the idealized shock were produced (infinite strain rate)?

Answer: Radial return 
regularizes the singularity

Like integrating a Dirac-delta

  )()( cfdxcxxf  



Question: What if the idealized shock were produced (infinite strain rate)?

Answer: Radial return 
regularizes the singularity

Like integrating a Dirac-delta
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Analytical shock shape PTW ODE Form of Radial Return

Solved that ODE and took

limit w0
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Next Question: How do the hydrocode
shock and the idealized shock relate in the 
context of plasticity?



Shock Rise Time Required for Convergence can be Very Small

r

w time

Underlying plot shown on next slide.



Shock Rise Time Required for Convergence can be Very Small

Our Beta = 0.25

Rise time is 
sufficiently small



Shock Rise Time Required for Convergence can be Very Small

Post-Shock to Pre-
Shock Density

r

w time

Underlying plot shown on next slide.



Shock Rise Time Required for Convergence can be Very Small

Very small rise times are 
required to capture the 
converged deviatoric stress.
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a shock?

(2)
Introduction to plasticity and 
historical overview
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Digging into the question: 
Strain rate, shock, and 
plasticity

(4)
Benefits to hydrocodes



Exact Radial 
Return

In 1991 
Margolin and 
Flower let
t 0 in then 
Radial Return 
algorithm.

The result was 
the Prandtl-
Reuss model.
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Exact Radial 
Return

In addition, 
they provided 
an analytical 
solution.

For the 
hardening case.
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Exact Radial 
Return

In addition, 
they provided 
an analytical 
solution.

For the 
hardening case.
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Exact Radial 
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Other analytical 
solutions: 

Yoder (1984) 

Montmitonnet (1992) 

Ristianmaa (1993)

Auricchio (1995) 

Peric (1996) 
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For overdriven (strong) shocks…
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For weaker shocks…

There are issues regarding how this ODE is 
integrated.  The Radial Return interacts.

PTW
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Discrete Radial Return with no 
iterations

Analytical Solution with Iterations

Analytical solution is convergent in 
spatial refinement

No artificial viscosity needed

Coarse Mesh

Fine Mesh

Coarse Mesh

Fine Mesh

FLAG - Prior: 
Poor PTW Integration + Std. Radial Return + No Iterations = Spatially Non-Convergent

Artificial viscosity 
masks this.

Nathan Walter
Paul Friedrichsen

Nathan Walter
Paul Friedrichsen



The New Method is more 
accurate to the true solution.

Solutions are different.

FLAG prior: 
Discrete Radial 
Return, poor PTW 
integration.

Exact Return with Exact PTW Integration+ Nonlinear Iterations

The Prandtl-Reuss Analytical Solution with the PTW 
Analytical Solution and Nonlinear Iterations

Nathan Walter
Paul Friedrichsen



The figure shows that the 
exact PTW equation, when 
implemented correctly, is 
identical to Euler integration.

This is good verification for 
the Exact PTW equation and 
of Euler’s method for the 
hardening rule.

Forward Euler Method for PTW also Works

Nathan Walter
Paul Friedrichsen



Different Combinations Were Tested

Conclusions

Analytical integration of Prandtl-Reuss eliminates spatial non-convergence 
and reduces impact of artificial viscosity.

Artificial viscosity masks non-convergence and hardening rule errors

Analytical integration of Prandtl-Reuss reduces impact of no iterations.

Nathan Walter and Paul Friedrichsen



Final Comments



Summary and Conclusions

The hydrocode’s radial return algorithm 
regularizes the singularity in the limit.

Singular Shocks input 
into PTW: What would it 
mean?

Hydrocode’s typical rise times are not small 
enough to approximate the limiting value.

Hydrocode’s relatively 
wide shocks: How do 
they impact PTW?

Analytical radial return:
(1) Improves stability in FLAG.
(2) Reduces the impact of artificial 
viscosity.
(3) Opens the opportunity to use shock 
locators with the singular solution.

Positive outcomes for 
hydrocodes
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Students from across the US 
compete to participate.

US Citizens only  

10-week Stipends: 

$7,500 - $13,000 

Research in teams of two.

Under LANL mentor(s). 

35 hours of lectures.

Computational Physics Summer Workshop
Los Alamos National Laboratory’s



This year’s geographic and academic diversity.

People whom we’ve never met before.



5th
Five Years, 

104 
Students 

from 
across the 

US. 

65%
65%
69%
48%

“The workshop was the best thing that 

could have happened to me 

academically. My experiences there have 

completely changed the course of where I 

want my career to go and what I want to 

do with my life. I am incredibly grateful 

that I got to be a part of it.”

Jenifer Lilieholm, 2014

“The workshop allowed me to 

make connections with lab 

scientists and help me choose 

a dissertation project which 

was modern, academically 

interesting and scientifically 

useful to the computational 

physics community.” 

Cori Hendon, 2011

Extended their relationships beyond the workshop
Were expanded relationships to other staff
Published work from the workshop
Workshop research appears in thesis/dissertation

Anniversary

Applications due in JanuaryCompPhysWorkshop.LANL.gov
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