

LA-UR-15-26656

Approved for public release; distribution is unlimited.

Title: What do we mean by the word "Shock"?

Author(s): Runnels, Scott Robert

Intended for: ASC University Liaison activities and technical collaboration in San Antonio, Texas. This presentation will be given at the University of Texas at San Antonio, Trinity University, and Southwest Research Institute, all in San Antonio.

Issued: 2015-08-24

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

What do we mean by the word “Shock”?

Scott R. Runnels, Ph.D.
Computational Physics Division
Los Alamos National Laboratory

Abstract

From one vantage point, a shock is a continuous but drastic change in state variables that occurs over very small time and length scales. These scales and associated changes in state variables can be measured experimentally. From another vantage point, a shock is a mathematical singularity consisting of instantaneous changes in state variables. This more mathematical view gives rise to analytical solutions to idealized problems. And from a third vantage point, a shock is a structure in a hydrocode prediction. Its width depends on the simulation's grid resolution and artificial viscosity. These three vantage points can be in conflict when ideas from the associated fields are combined, and yet combining them is an important goal of an integrated modeling program. This presentation explores an example of how models for real materials in the presence of real shocks react to a hydrocode's numerical shocks of finite width. The presentation will include an introduction to plasticity for the novice, an historical view of plasticity algorithms, a demonstration of how pursuing the meaning of "shock" has resulted in hydrocode improvements, and will conclude by answering some of the questions that arise from that pursuit. After the technical part of the presentation, a few slides advertising LANL's Computational Physics Student Summer Workshop will be shown.

Outline

(1)

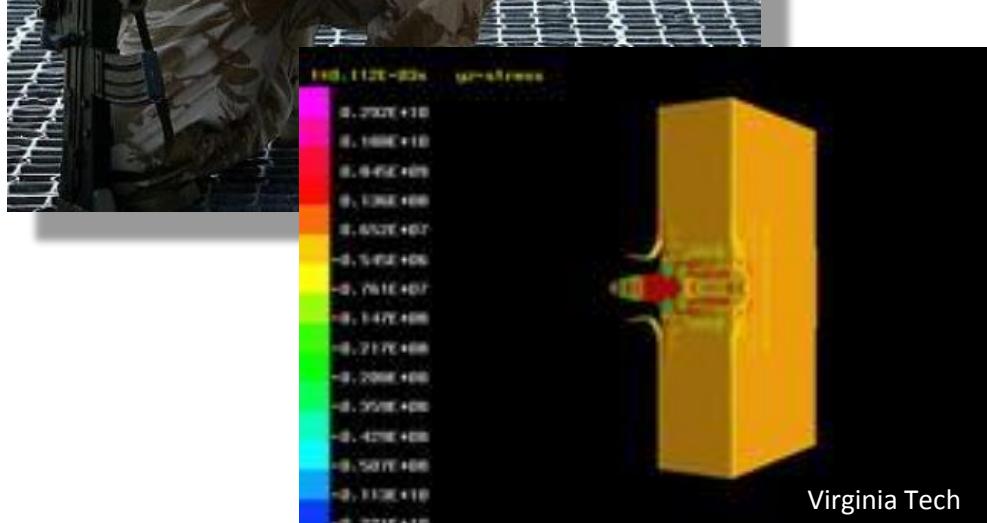
Motivation: What is strain rate in a shock?

(2)

Introduction to plasticity and historical overview

(3)

**Digging into the question:
Strain rate, shock, and
plasticity**



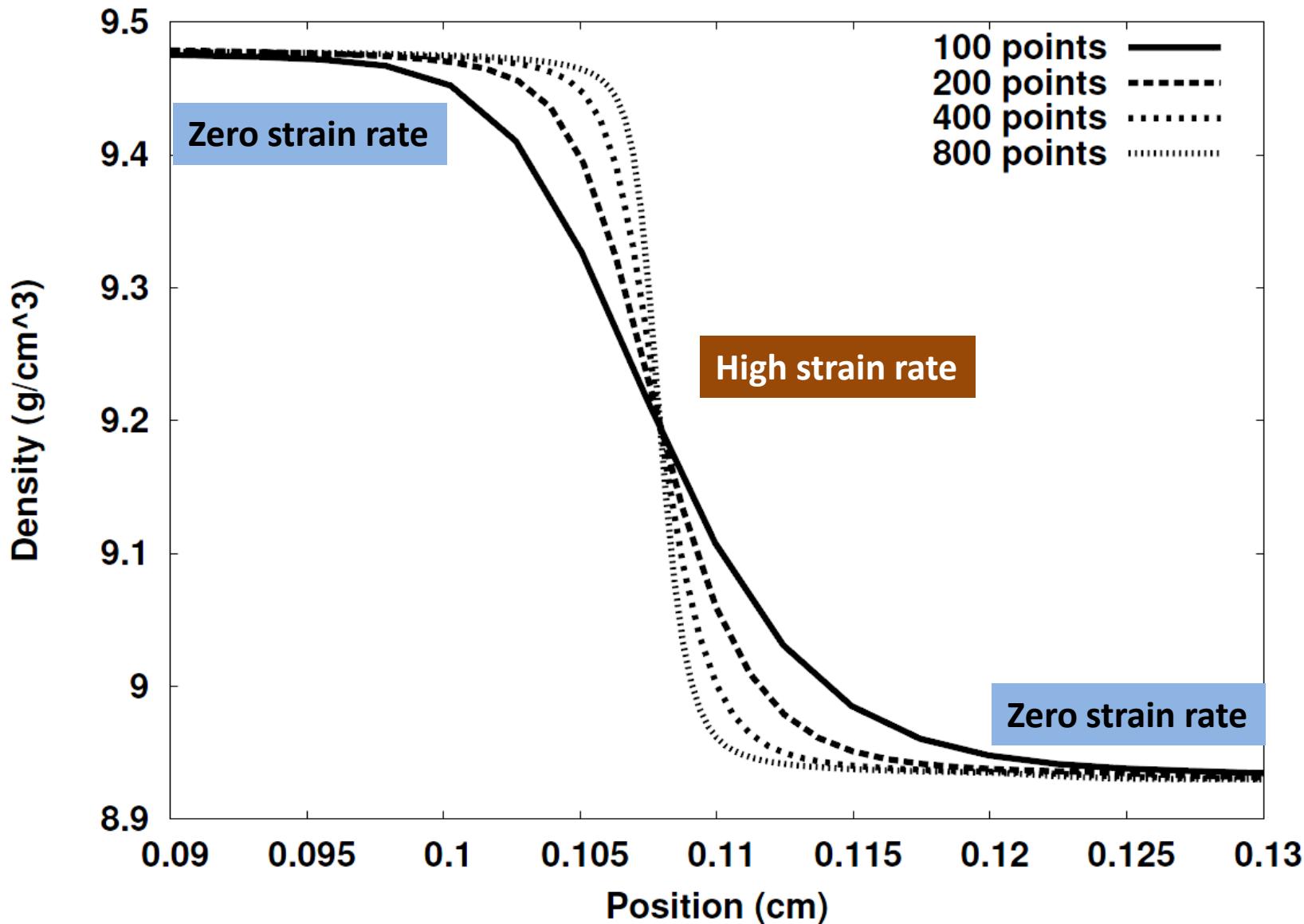
(4)

Benefits to hydrocodes

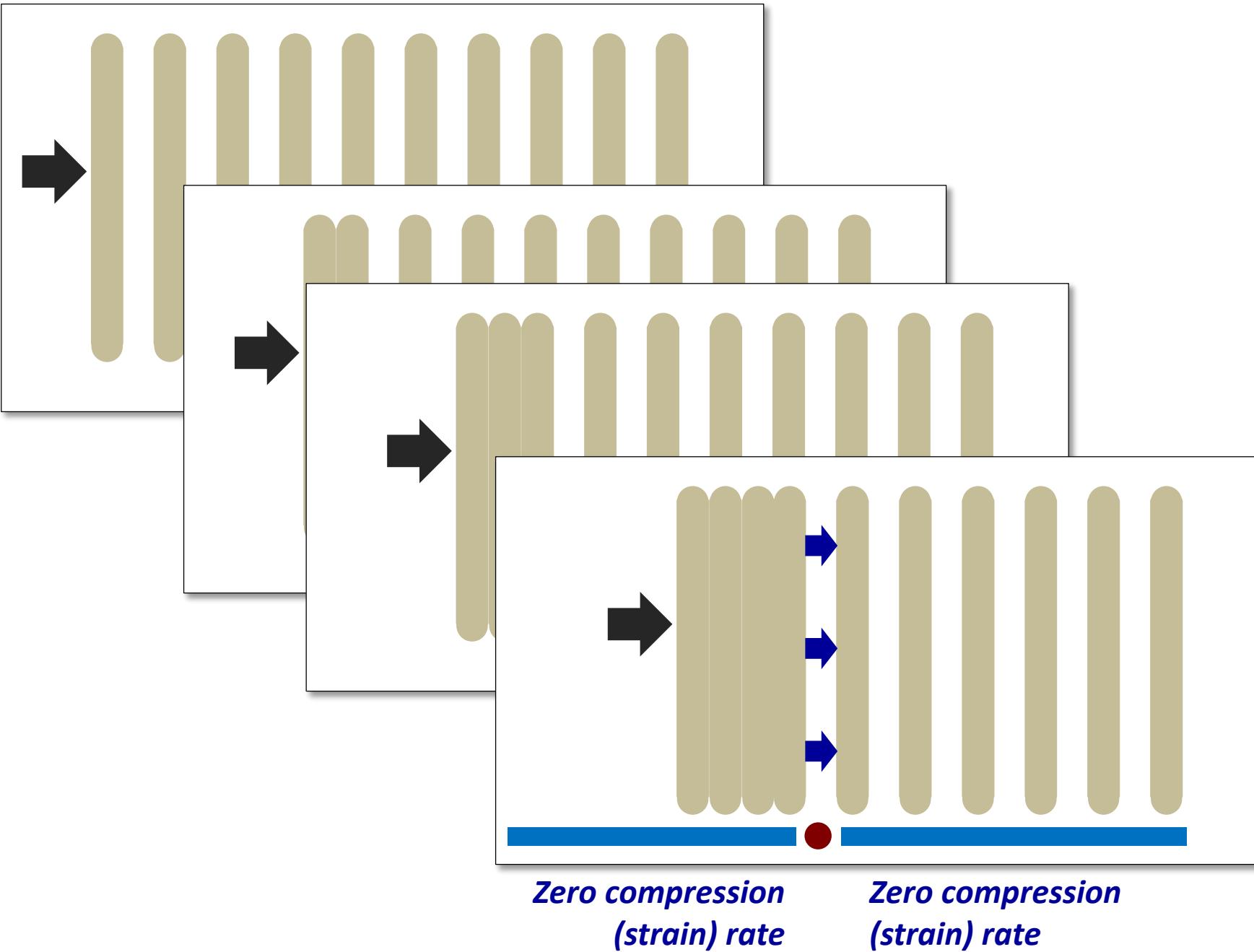
Hydrocodes Converge Toward an Idealized Shock

Underlying plot shown on next slide.

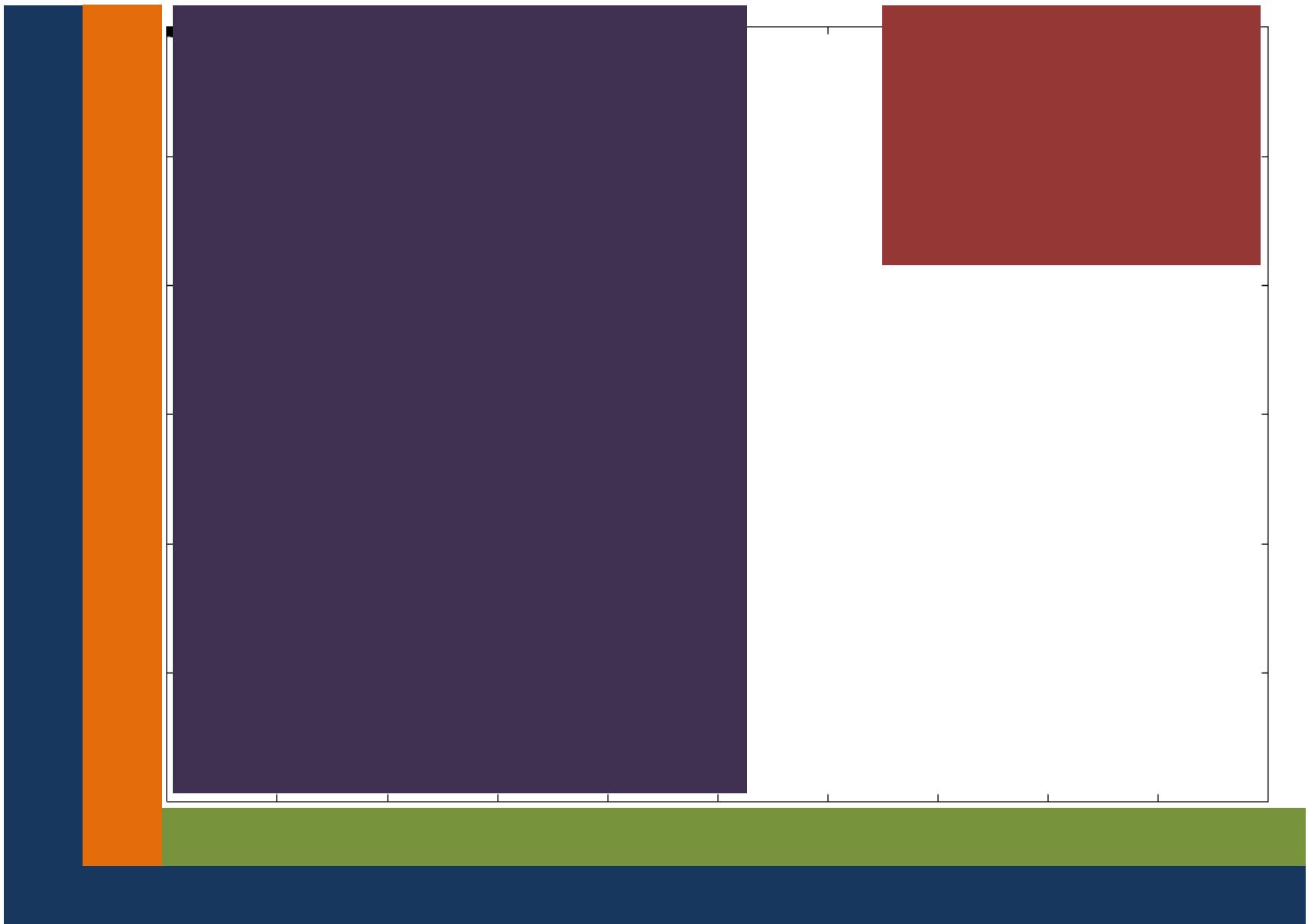
Similar Results when Material is a Solid



Popsicle Analogy of a Shock

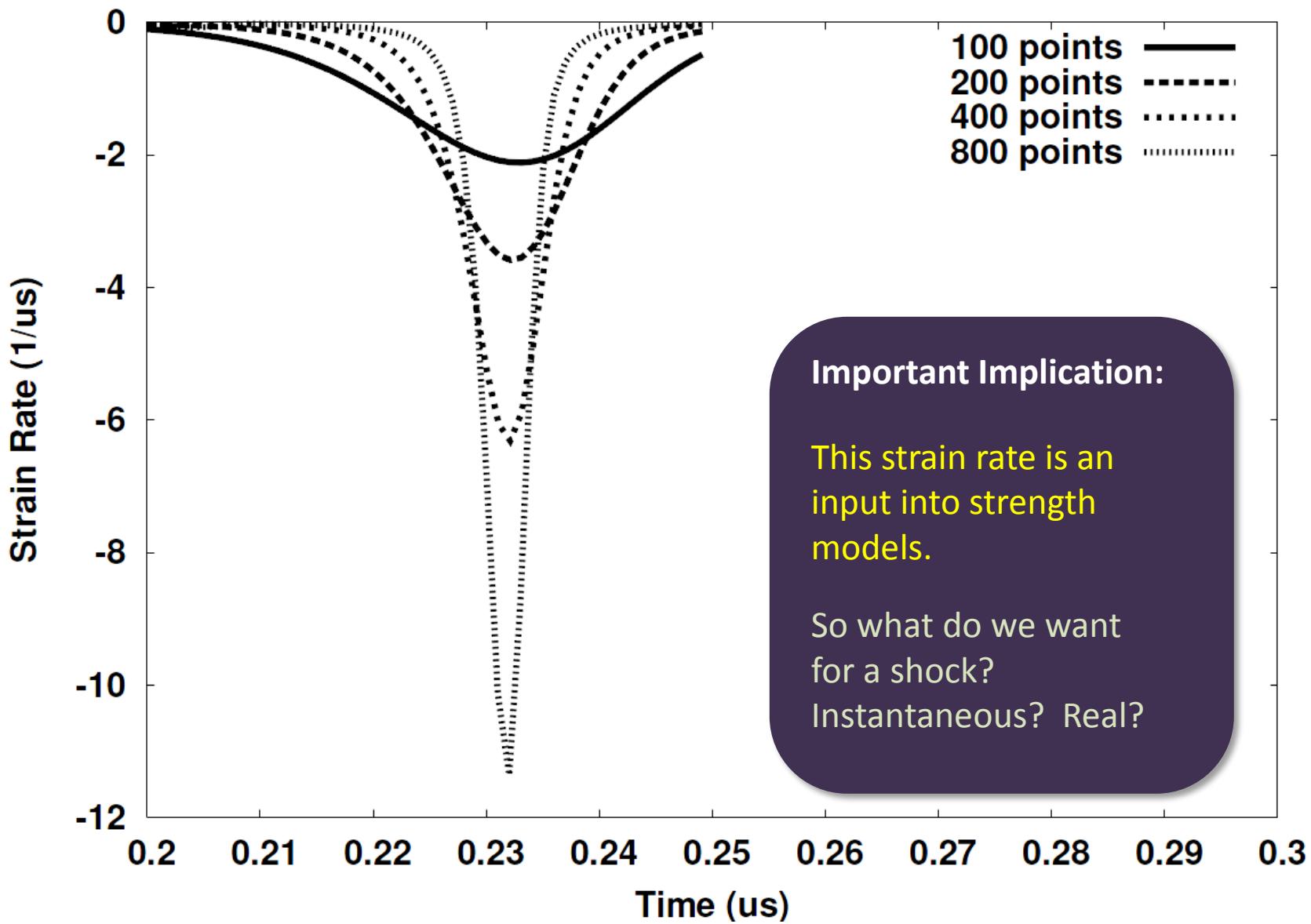


Strain Rate Approaches as Dirac Delta

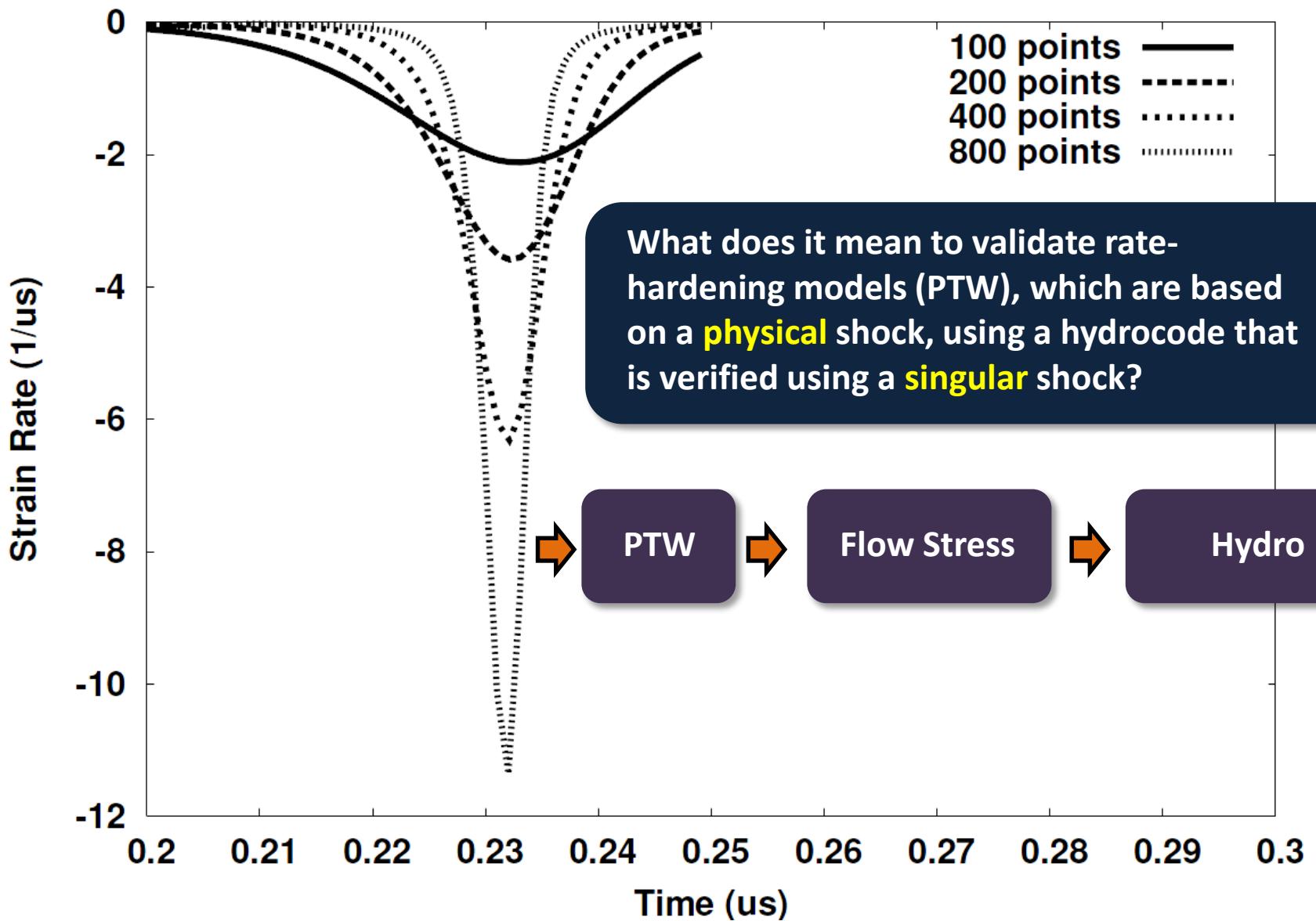


Underlying plot shown on next slide.

Strain Rate Approaches as Dirac Delta



Strain Rate Approaches as Dirac Delta



Outline

(1)

Motivation: What is strain rate in a shock?

(2)

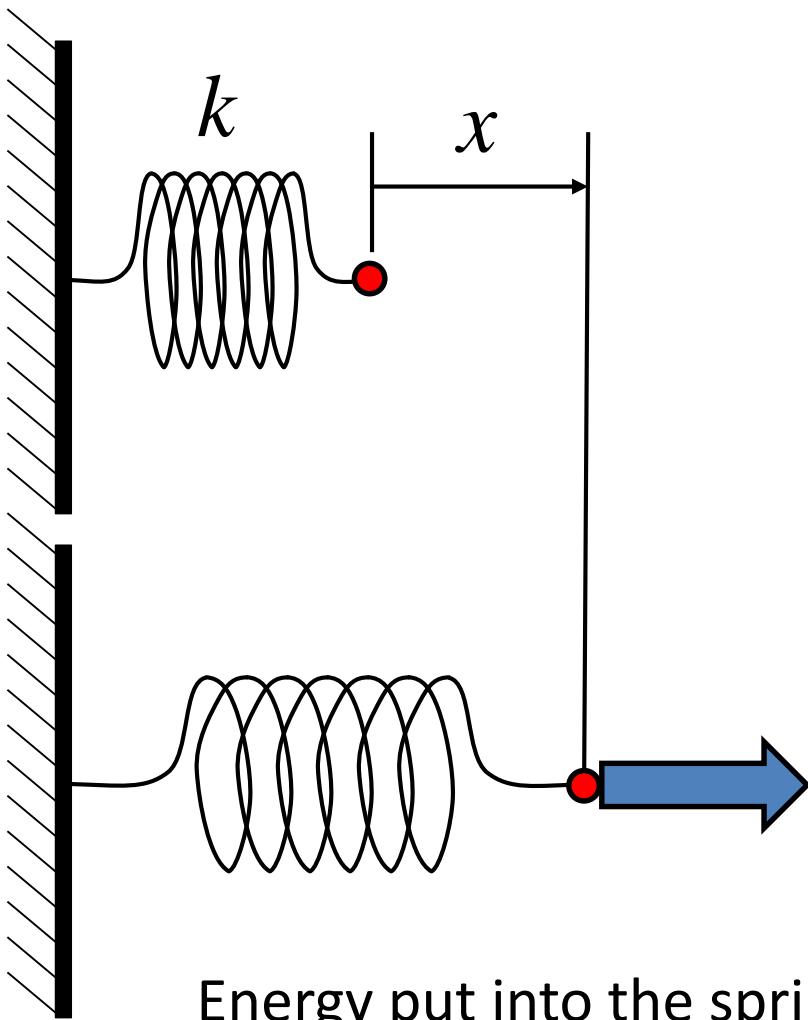
Introduction to plasticity and historical overview

(3)

**Digging into the question:
Strain rate, shock, and plasticity**

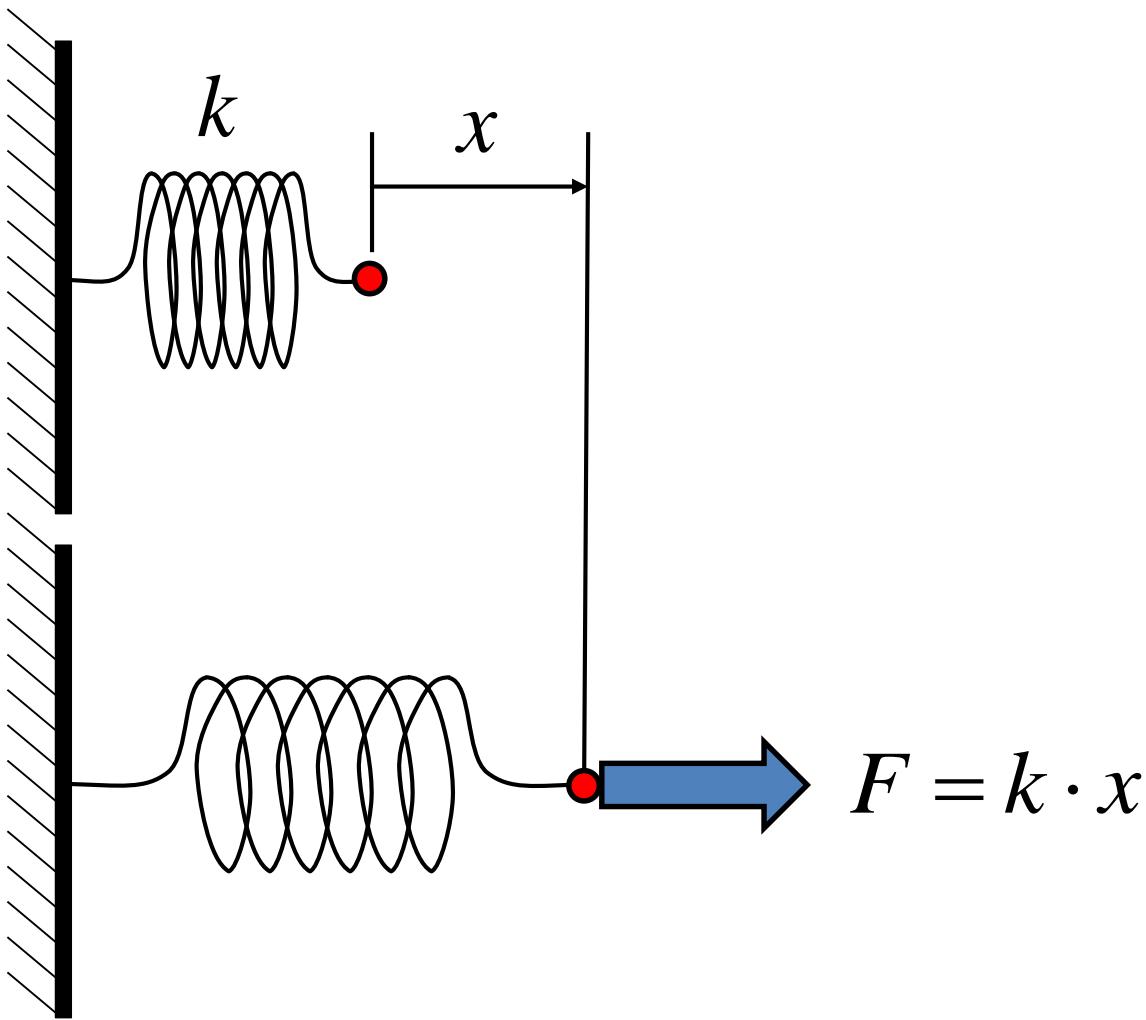
(4)

Benefits to hydrocodes

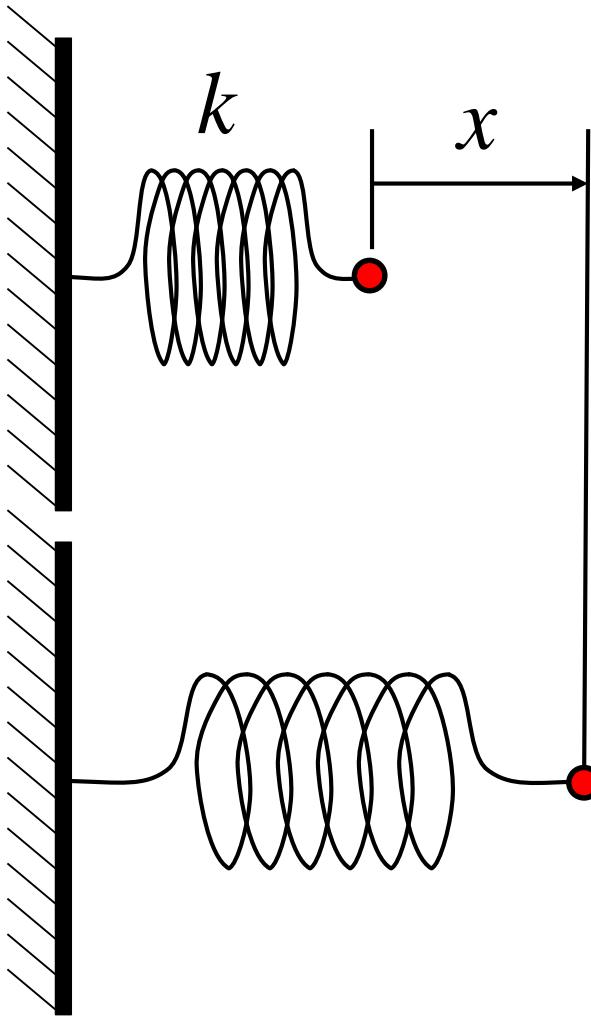


Energy put into the spring = Work = Force x Distance

$$W = \int_0^x F \cdot dx = \frac{1}{2} k x^2$$



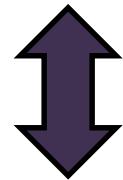
$$W = \frac{1}{2} k x^2$$



The force is the gradient of the energy

$$F = \frac{d}{dx} W$$

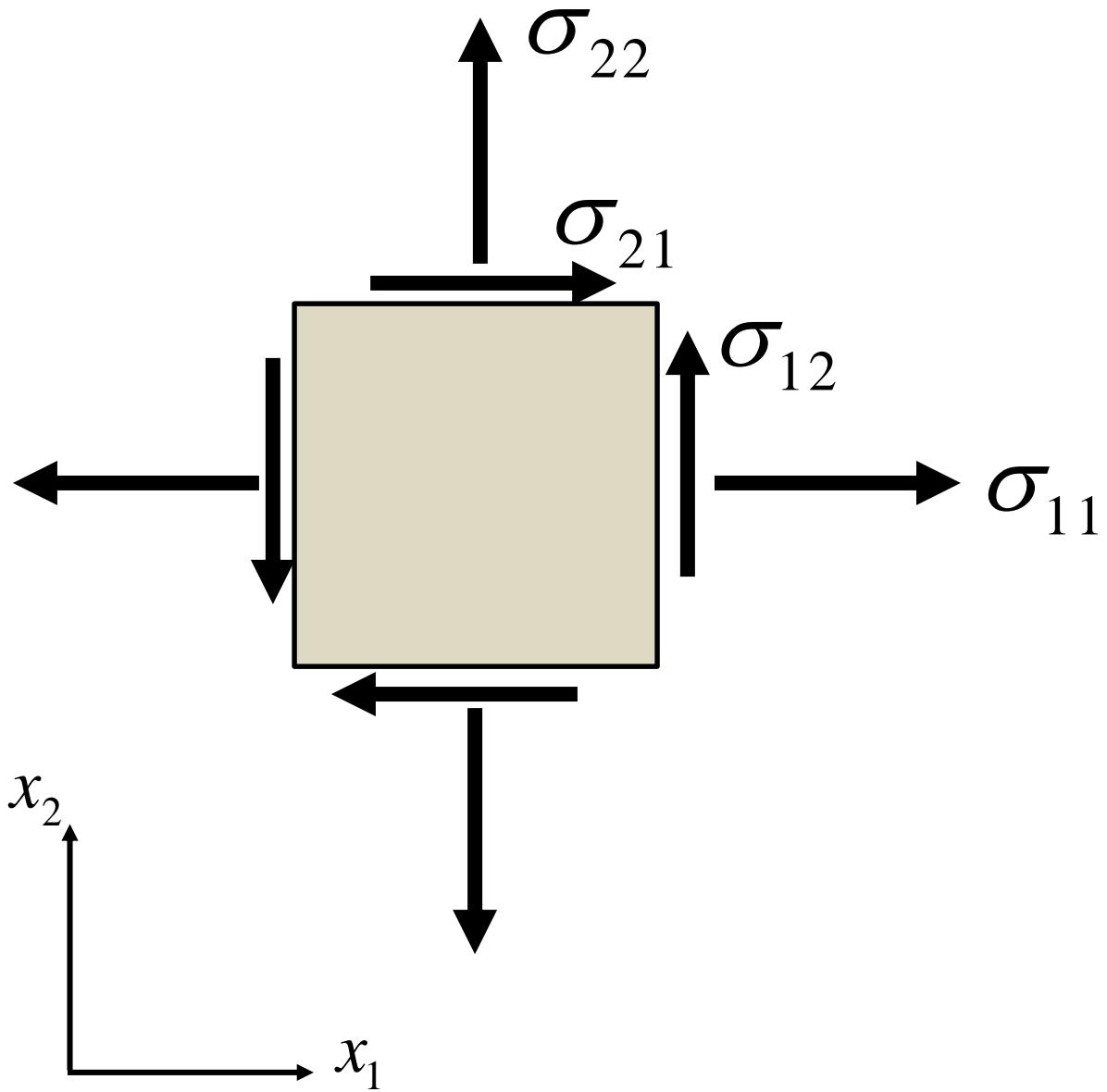
$$F = k \cdot x$$



Relationship

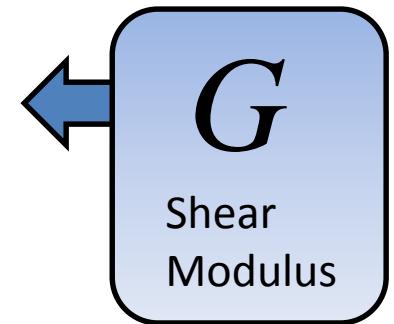
$$W = \frac{1}{2} k x^2$$

In Multi-Dimensional Problems we need a Stress Tensor



Hooke's Law is like a spring but in all directions and including shear. We use a 4th order tensor

$$E_{ijkl}$$



Indices range from 1-3.

$$F = k \cdot x$$

$$\sigma_{ij} = E_{ijkl} \epsilon_{kl} = \sum_{k=1}^3 \sum_{l=1}^3 E_{ijkl} \epsilon_{kl}$$

Repeated indices imply summation.

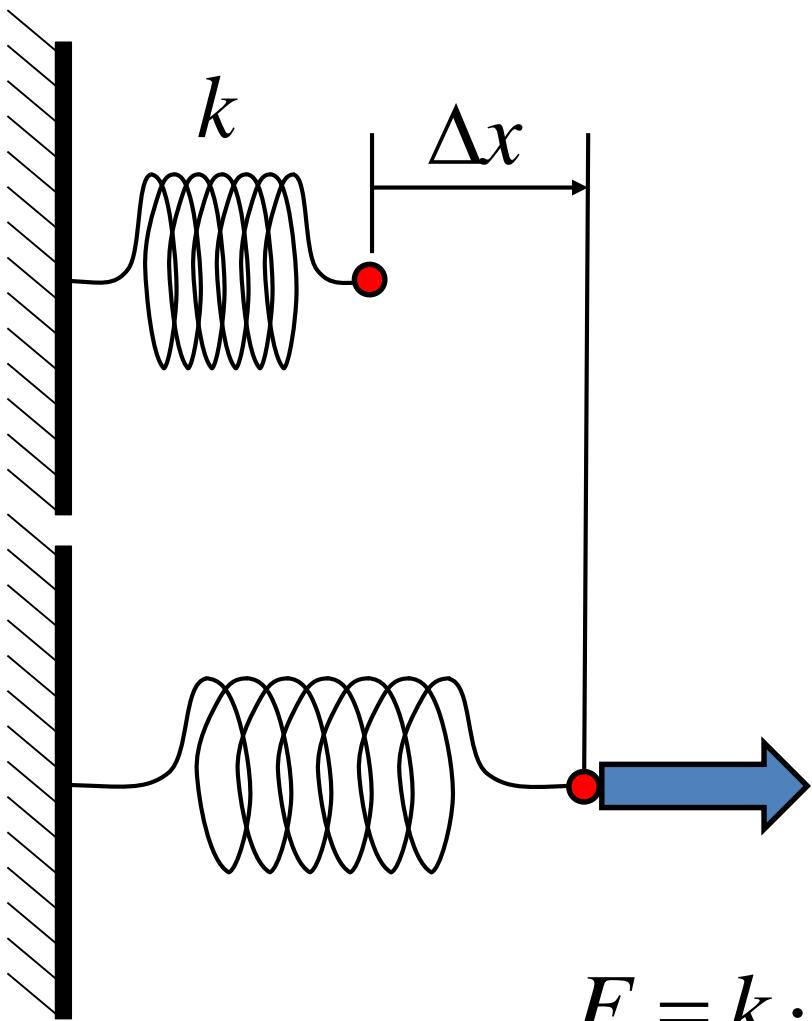
If \mathcal{E}_{kl} is strain

and E_{ijkl} is a constant, then this,

$$\sigma_{ij} = E_{ijkl} \mathcal{E}_{kl}$$

is the most general form of Hooke's Law for elastic deformation. It can be inverted:

$$\mathcal{E}_{kl} = D_{ijkl} \sigma_{ij}$$

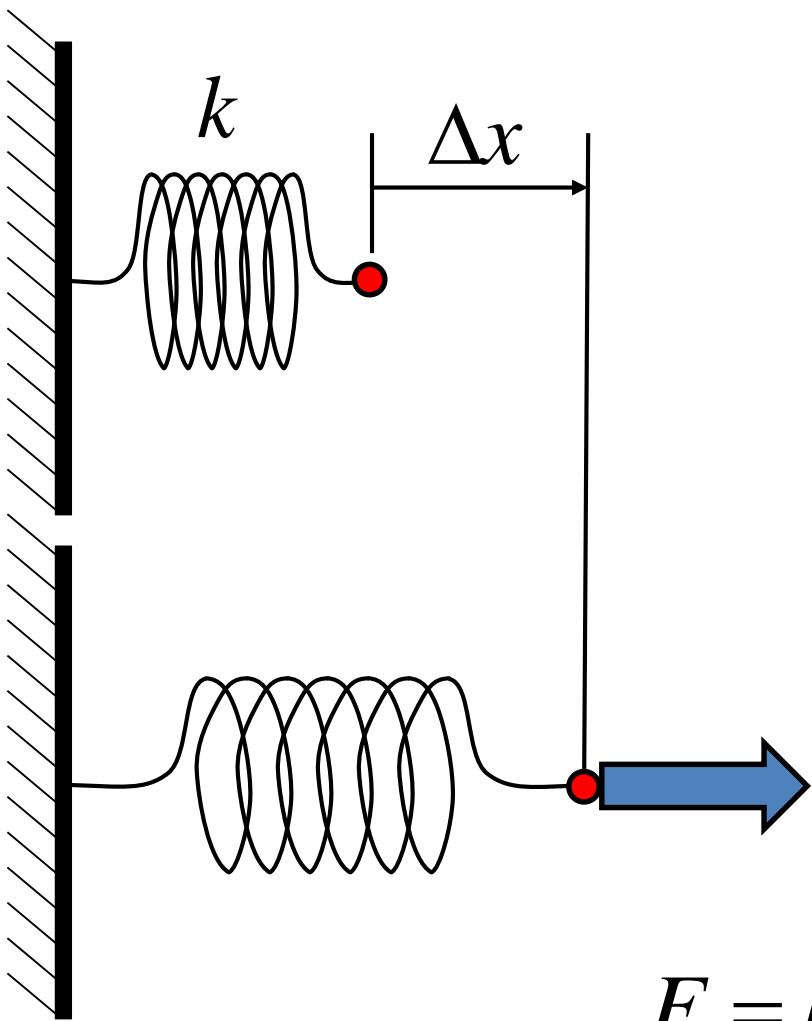
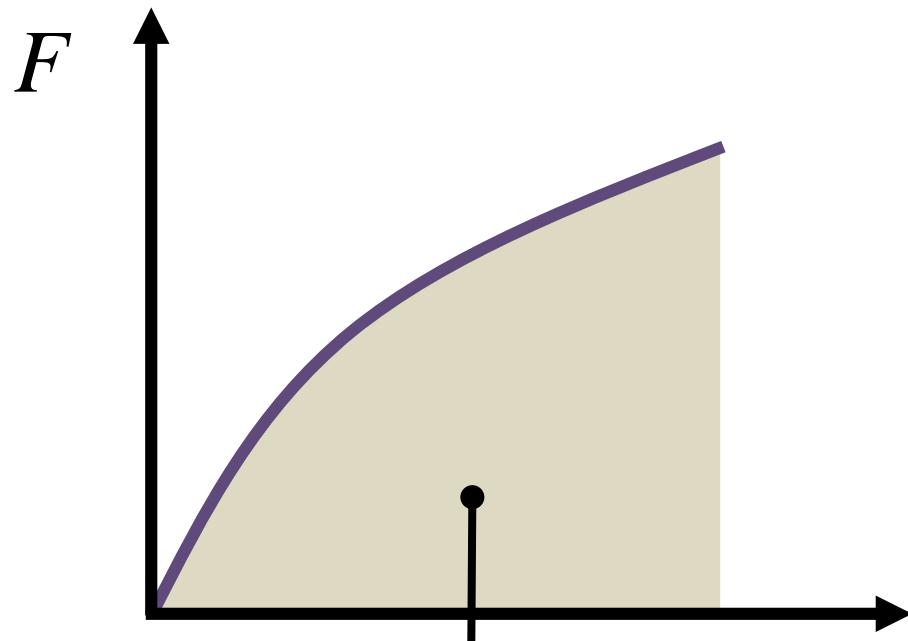


$$F = k \cdot \Delta x$$

$$F = \frac{dW}{dx}$$

$$\sigma_{ij} = \frac{dW}{d\varepsilon_{ij}}$$

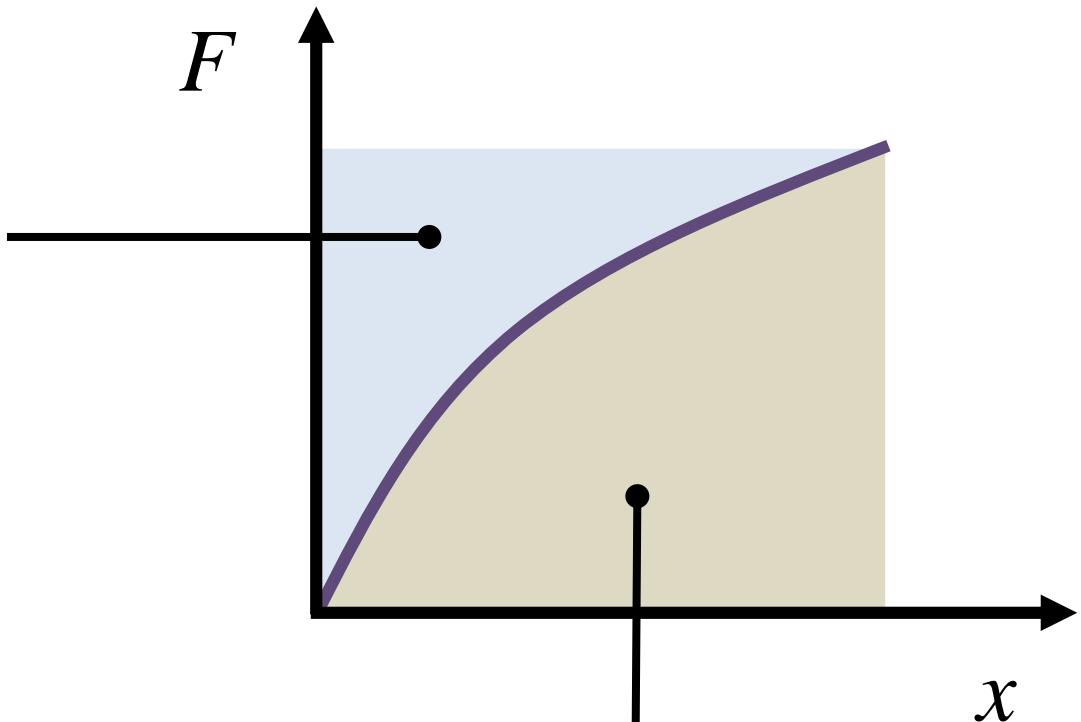
$$\sigma_{ij} = E_{ijkl} \varepsilon_{kl}$$



$$F = k \cdot x$$

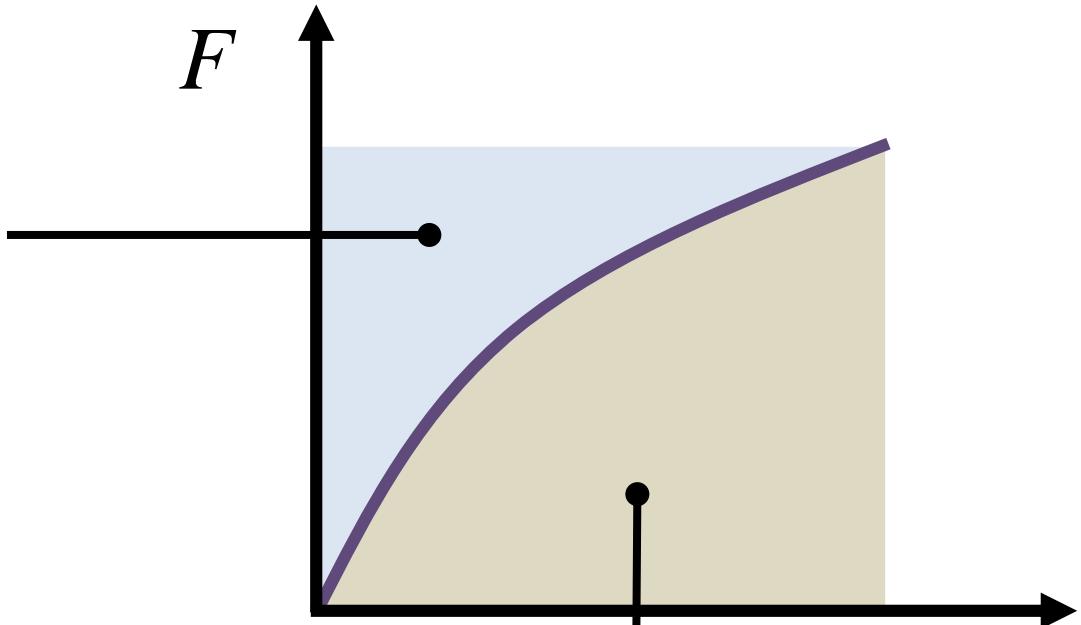
$$W = \int_0^x F \cdot dx$$

$$\Omega = \int_0^F x \cdot dF$$



$$W = \int_0^x F \cdot dx$$

$$\Omega = \int_0^F x \cdot dF$$



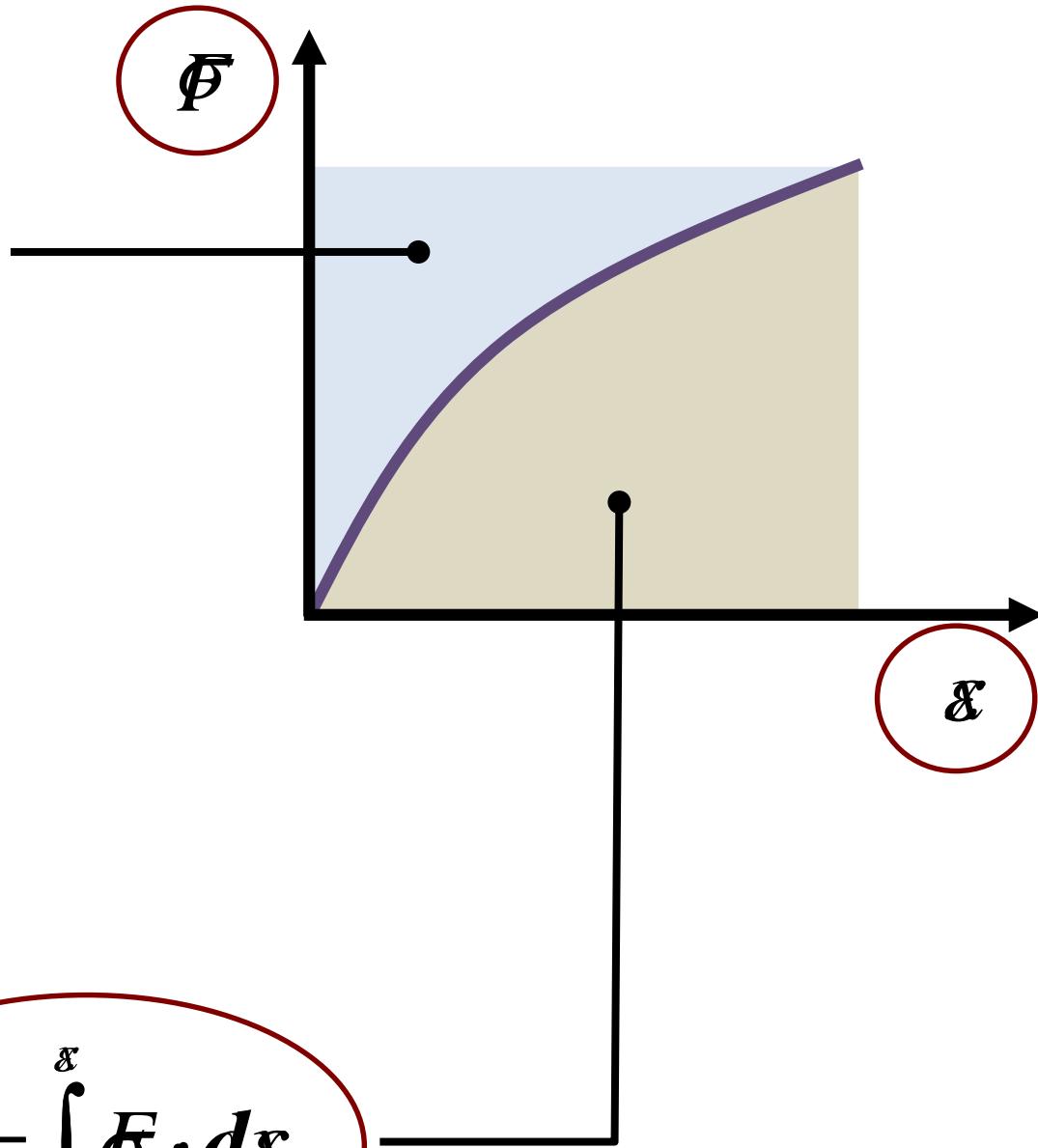
$$W + \Omega = Fx$$

$$W = \int_0^x F \cdot dx$$

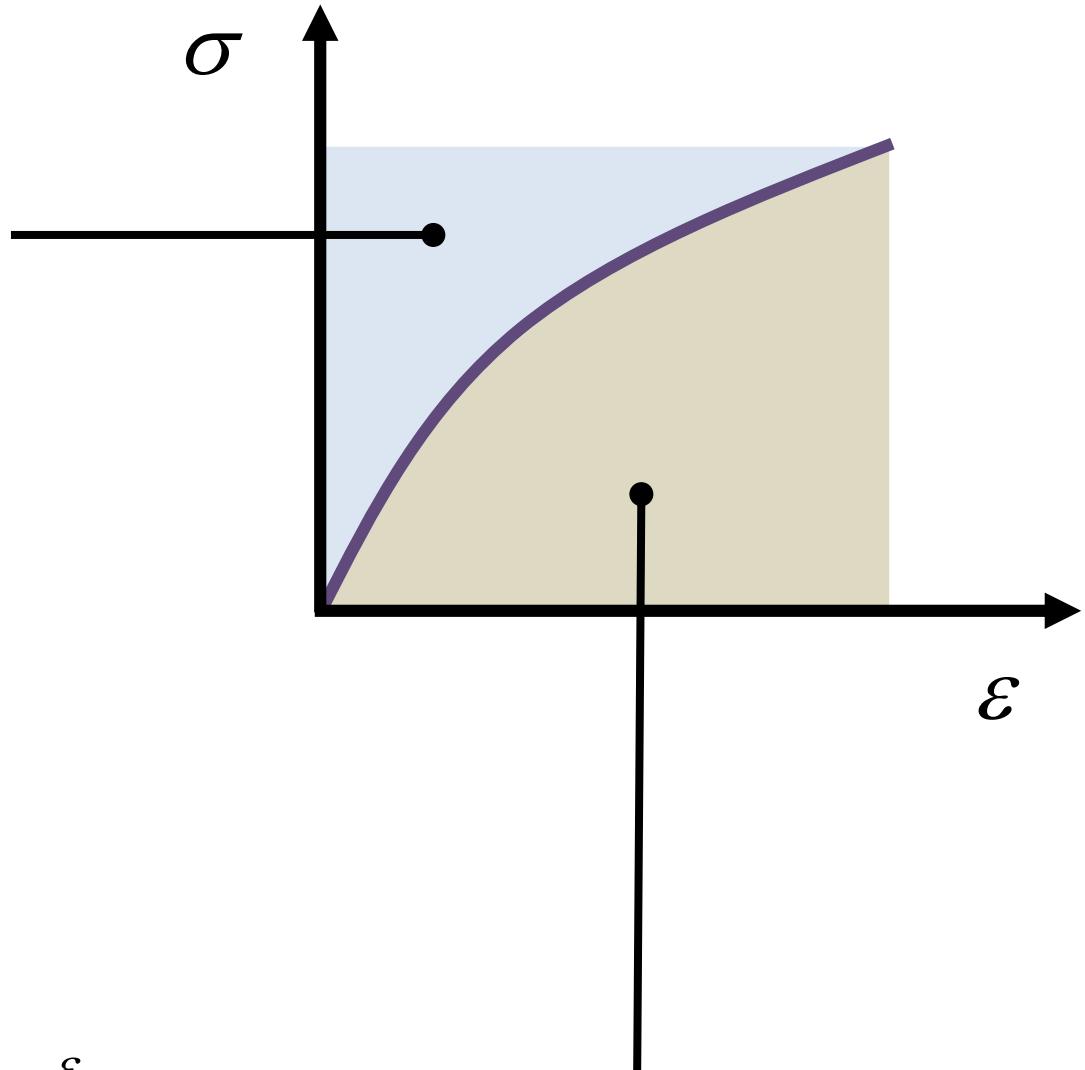
$$\Omega = \iint_0^F \epsilon x d\omega F$$

$$W + \Omega = \sigma F_{ij} \epsilon_{ij}$$

$$W = \int_0^x \mathbf{F} \cdot d\mathbf{x}$$



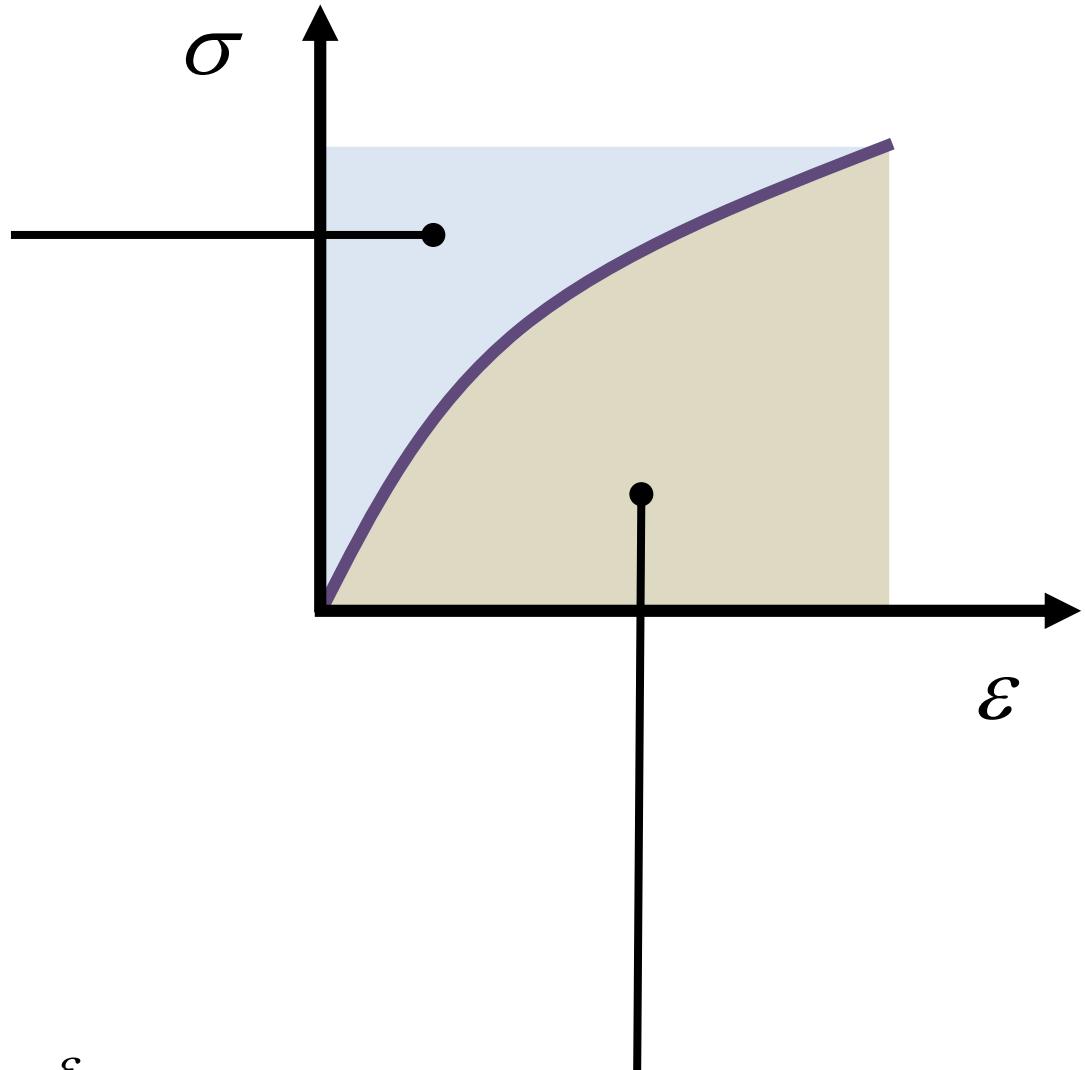
$$\Omega = \int_0^{\sigma} \varepsilon \cdot d\sigma$$



$$W + \Omega = \sigma_{ij} \varepsilon_{ij}$$

$$W = \int_0^{\varepsilon} \sigma \cdot d\varepsilon$$

$$\Omega = \int_0^{\sigma} \varepsilon \cdot d\sigma$$



$$W + \Omega = \sigma_{ij} \varepsilon_{ij}$$

$$W = \int_0^{\varepsilon} \sigma \cdot d\varepsilon$$

$$\Omega = \int_0^{\sigma} \varepsilon \cdot d\sigma$$

$$W = \int_0^{\varepsilon} \sigma \cdot d\varepsilon$$

$$W + \Omega = \sigma_{ij} \varepsilon_{ij}$$

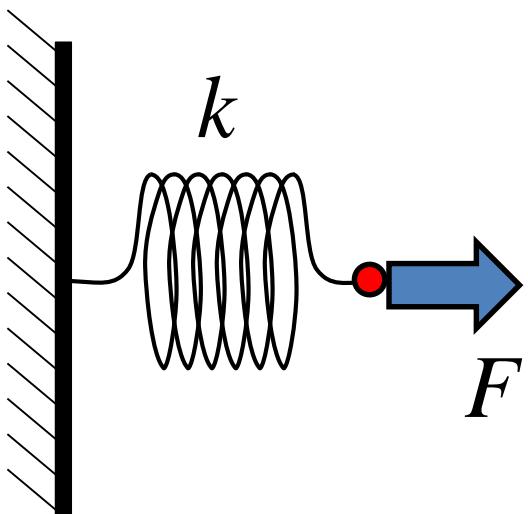
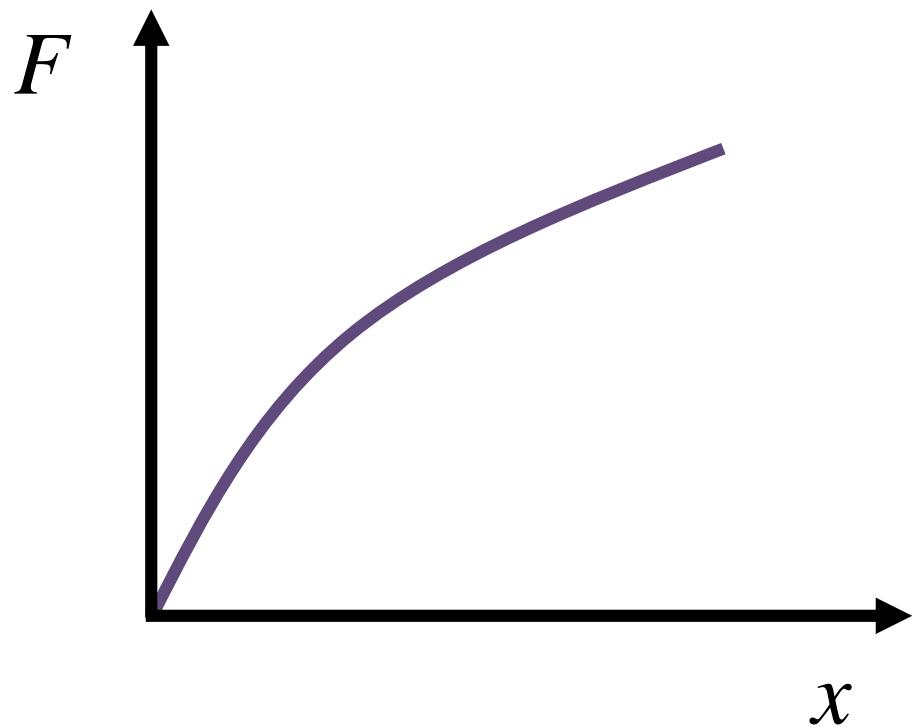
$$\varepsilon_{ij} = \frac{d\Omega}{d\sigma_{ij}}$$

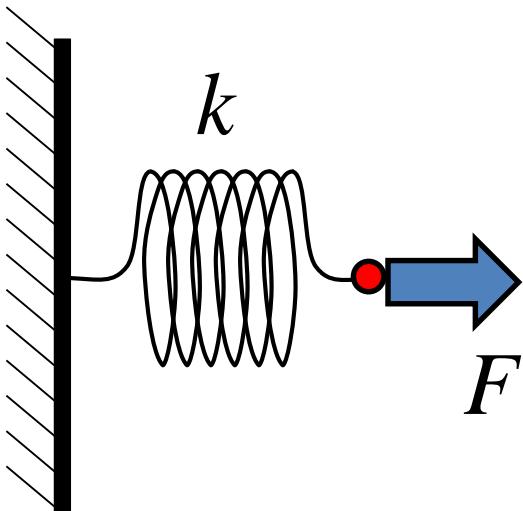
Strain can be expressed as the gradient of its compliment.

$$\sigma_{ij} = \frac{dW}{d\varepsilon_{ij}}$$

Stress can be expressed as the gradient of the energy density function.

Key point in discussing plasticity...next...



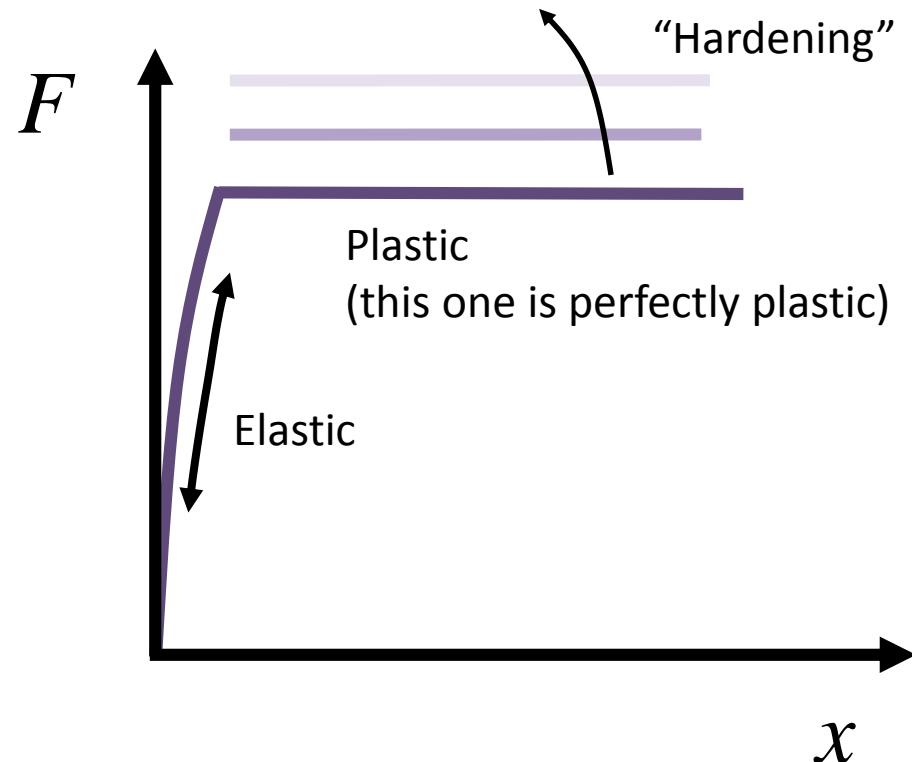


In the Plastic Range

A simple relationship between

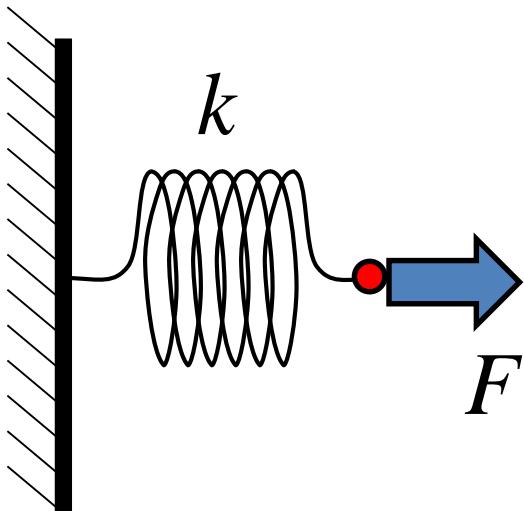
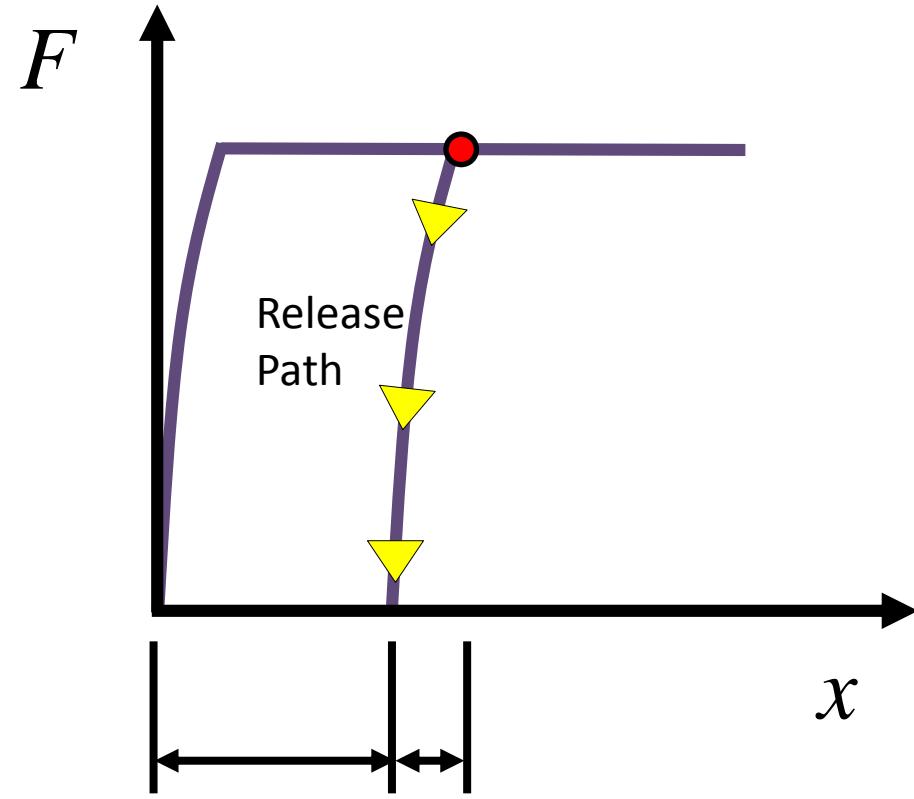
$$F \quad \cancel{\text{↔}} \quad x$$

is no longer possible.



Instead we discuss increments

$$dF \quad \cancel{\text{↔}} \quad dx$$

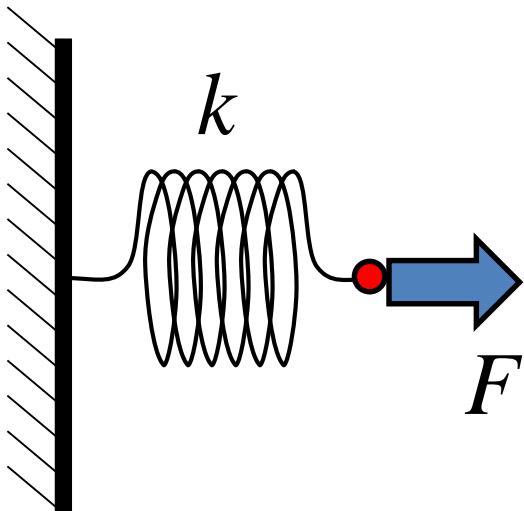
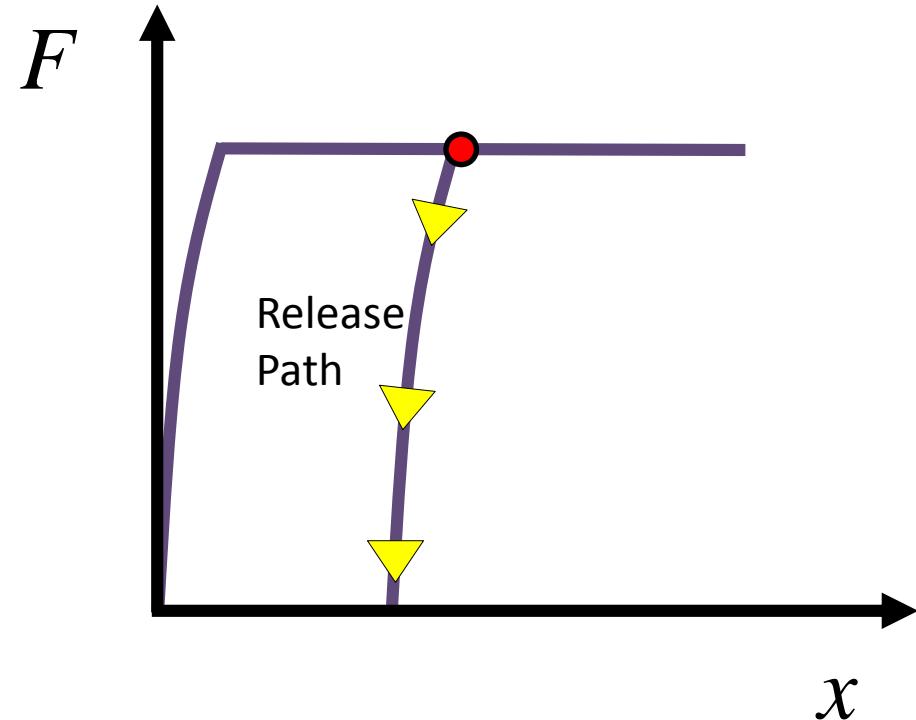


Plastic Deformation Elastic Deformation
Permanent *Recoverable*

In 3D increments: total = plastic + elastic

$$d\varepsilon_{ij} = d\varepsilon_{ij}^p + d\varepsilon_{ij}^e$$

Key point



Handled By

“Flow Rule” Hooke’s Law

In 3D increments: total = plastic + elastic

$$d\varepsilon_{ij} = d\varepsilon_{ij}^p + d\varepsilon_{ij}^e$$

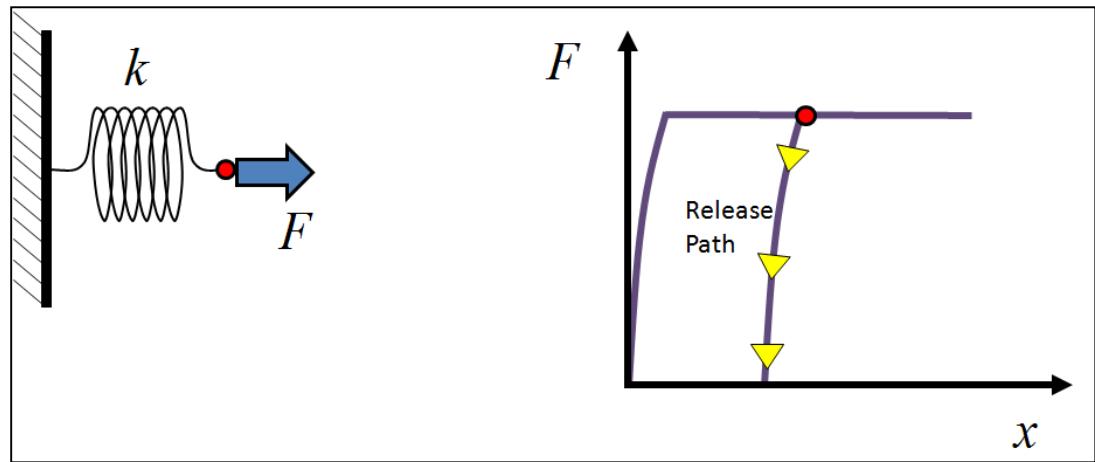
Key point

First, we need a 3-D solid model for this:

For a tensor with 9 components

$$\sigma_{ij}$$

we need a **single value** to determine when it yields.



Determining how the plastic strain is related to stress is a central part of plasticity.

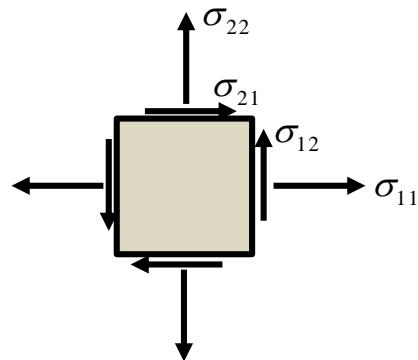
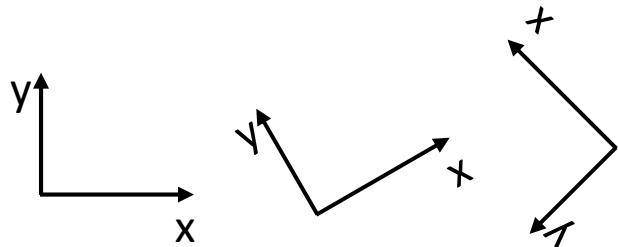
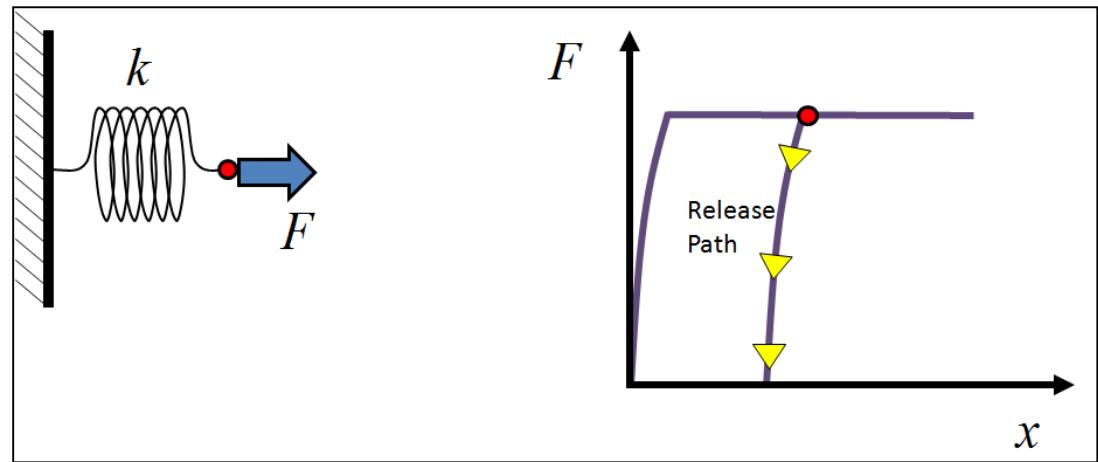
“Flow Rule”

$$d\sigma_{ij} \leftrightarrow d\varepsilon_{ij}^p$$

For a tensor with 9 components

$$\sigma_{ij}$$

we need a **single value** to determine when it yields.



It must be invariant with respect to the choice of coordinate system.

Here is one that works:

$$J_2 = (\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)$$

von Mises Yield Criteria

$$J_2(\sigma) = Y^2$$

Yield Stress

...give or take some multipliers (i.e., how we define Y – some divide by 3).

Here is one that works:

$$J_2 = (\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)$$

von Mises Yield Criteria

$$J_2(\sigma) = Y^2$$

Yield Stress

...give or take some multipliers (i.e., how we define Y – some divide by 3).

It is helpful
to separate
pressure.

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = - \begin{bmatrix} p & & \\ & p & \\ & & p \end{bmatrix} + \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$

Here is one that works:

$$J_2 = (\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)$$

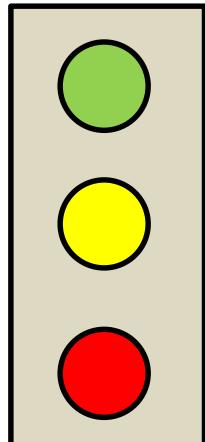
von Mises Yield Criteria

$$J_2(\sigma) = Y^2$$

Yield Stress

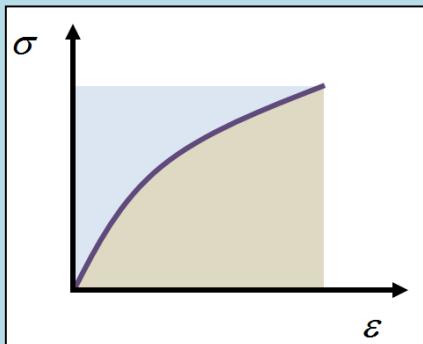
So we have a “Yield Function”:

$$f(\sigma) = J_2(\sigma) - Y^2$$

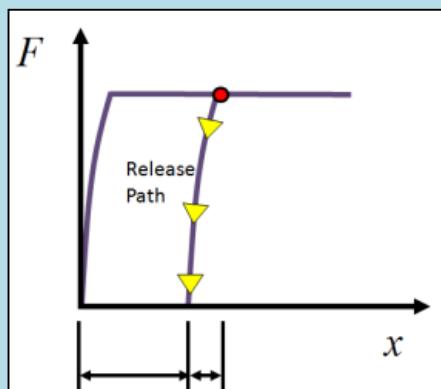


< 0	Elastic	<i>Hooke's Law Only</i>
$= 0$	Plastic	<i>Flow Rule</i>
> 0	Impossible	<i>We make sure of this</i>

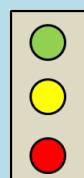
$$\varepsilon_{ij} = \frac{d\Omega}{d\sigma_{ij}}$$



$$d\varepsilon_{ij} = d\varepsilon_{ij}^p + d\varepsilon_{ij}^e$$



$$f(\sigma) = J_2(\sigma) - Y^2$$



We have a **yield function** that describes when yielding occurs.

Elastic Strain:
Gradient of a
 complimentary
 energy density
 function.

$$\varepsilon_{ij} = \frac{d\Omega}{d\sigma_{ij}}$$

$$d\varepsilon_{ij} = D_{ijkl} d\sigma_{kl}$$

Hooke's Law

$$d\varepsilon_{ij} = d\varepsilon_{ij}^p + d\varepsilon_{ij}^e$$

Assert: Plastic strain must be the gradient of something. But what?

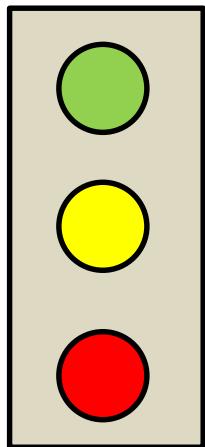
$$f(\sigma) = J_2(\sigma) - Y^2$$

Choosing the yield function for the gradient makes what's called the **Associated Flow Rule**.

$$d\varepsilon_{ij}^p \propto \frac{\partial f(\sigma)}{\partial \sigma_{ij}}$$

$$d\varepsilon_{ij}^p = d\lambda \frac{\partial f(\sigma)}{\partial \sigma_{ij}}$$

Finding that multiplicative constant requires another equation.



< 0

$= 0$

> 0 Impossible

$$d\varepsilon_{ij}^p \propto \frac{\partial f(\sigma)}{\partial \sigma_{ij}}$$

It's this one →

$$\varepsilon_{ij}^e = \frac{d\Omega}{d\sigma_{ij}}$$

$$d\varepsilon_{ij}^e = D_{ijkl} d\sigma_{kl}$$

Hooke's Law

$$d\varepsilon_{ij} = d\varepsilon_{ij}^p + d\varepsilon_{ij}^e$$

Associated
Flow Rule

$$d\varepsilon_{ij}^p = d\lambda \frac{\partial f(\sigma)}{\partial \sigma_{ij}}$$

$$f(\sigma) = J_2(\sigma) - Y^2$$

$$d\varepsilon_{ij}^p \propto \frac{\partial f(\sigma)}{\partial \sigma_{ij}}$$

$$\varepsilon_{ij}^e = \frac{d\Omega}{d\sigma_{ij}}$$

$$d\varepsilon_{ij}^e = D_{ijkl} d\sigma_{kl}$$

Hooke's Law

$$d\varepsilon_{ij} = d\varepsilon_{ij}^p + d\varepsilon_{ij}^e$$

Associated
Flow Rule

$$d\varepsilon_{ij}^p = d\lambda \frac{\partial f(\sigma)}{\partial \sigma_{ij}}$$

$$f(\sigma) = J_2(\sigma) - Y^2$$

$$d\varepsilon_{ij}^p \propto \frac{\partial f(\sigma)}{\partial \sigma_{ij}}$$

$$d\varepsilon_{ij}^e = D_{ijkl} d\sigma_{ij}$$

$$d\varepsilon_{ij}^p = d\lambda \frac{\partial f(\sigma)}{\partial \sigma_{ij}}$$

$$d\varepsilon_{ij} = d\varepsilon_{ij}^p + d\varepsilon_{ij}^e$$

$$d\varepsilon_{ij} = d\lambda \frac{\partial f(\sigma)}{\partial \sigma_{ij}} + D_{ijkl} d\sigma_{ij}$$

$$df = \frac{\partial f(\sigma)}{\partial \sigma_{ij}} d\sigma_{ij} = 0$$

Two Equations/Two Unknowns

Strain = Plastic + Elastic

Plastic strain is the gradient of the yield surface

We must not go off (beyond) the yield surface.

Solving, and...

- (1) Assuming isotropic material (shear and bulk modulus)
- (2) Using deviatoric strain e and stress s

Produces the Prandtl-Reuss Material Model

$$d\sigma_{ij} = 2Gde_{ij} + Kde_{ij}\delta_{ij} - \frac{Gs_{mn}de_{mn}}{Y^2} s_{ij}$$

Two Equations/Two Unknowns

$$d\varepsilon_{ij} = d\lambda \frac{\partial f(\sigma)}{\partial \sigma_{ij}} + D_{ijkl}d\sigma_{ij}$$

Strain = Plastic + Elastic

Plastic strain is the gradient of the yield surface

$$df = \frac{\partial f(\sigma)}{\partial \sigma_{ij}} d\sigma_{ij} = 0$$

We must not go off (beyond) the yield surface.

Solving, and...

- (1) Assuming isotropic material (shear and bulk modulus)
- (2) Using deviatoric strain \mathbf{e} and stress \mathbf{s}

Produces the Prandtl-Reuss Material Model

$$\dot{\sigma}_{ij} = 2G\dot{e}_{ij} + K\dot{e}_{ij}\delta_{ij} - \frac{Gs_{mn}\dot{e}_{mn}}{Y^2} s_{ij}$$

Two Equations/Two Unknowns

$$d\epsilon_{ij} = d\lambda \frac{\partial f(\sigma)}{\partial \sigma_{ij}} + D_{ijkl} d\sigma_{ij}$$

Strain = Plastic + Elastic

Plastic strain is the gradient of the yield surface

$$df = \frac{\partial f(\sigma)}{\partial \sigma_{ij}} d\sigma_{ij} = 0$$

We must not go off (beyond) the yield surface.

Solving, and...

- (1) Assuming isotropic material (shear and bulk modulus)
- (2) Using deviatoric strain \mathbf{e} and stress \mathbf{s}

Produces the Prandtl-Reuss Material Model

$$\dot{s}_{ij} = 2G\dot{e}_{ij} - \frac{Gs_{mn}\dot{e}_{mn}}{Y^2} s_{ij}$$

Two Equations/Two Unknowns

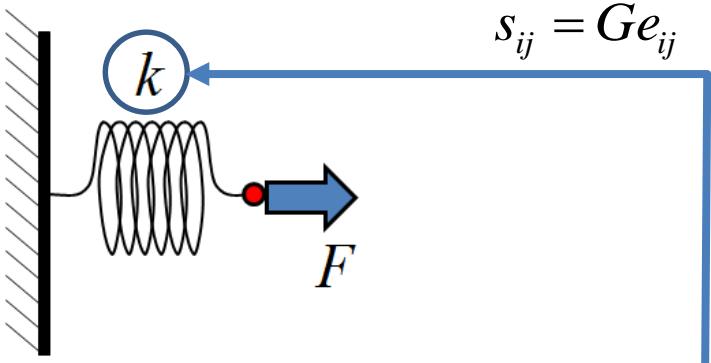
$$d\varepsilon_{ij} = d\lambda \frac{\partial f(\sigma)}{\partial \sigma_{ij}} + D_{ijkl} d\sigma_{ij}$$

Strain = Plastic + Elastic

Plastic strain is the gradient of the yield surface

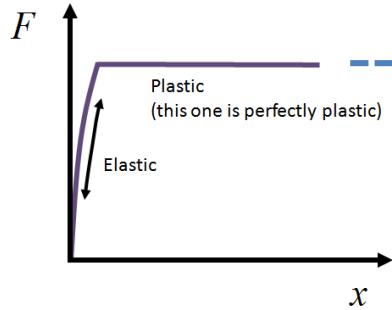
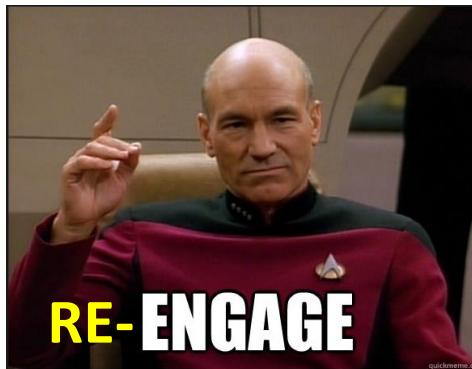
$$df = \frac{\partial f(\sigma)}{\partial \sigma_{ij}} d\sigma_{ij} = 0$$

We must not go off (beyond) the yield surface.



You can reengage by choosing to believe the following...that we have this ODE...

$$\dot{s}_{ij} = 2G\dot{e}_{ij} - \frac{Gs_{mn}\dot{e}_{mn}}{Y^2} s_{ij}$$



$$\begin{array}{c}
 \text{Stress tensor} \quad \text{Average, bulk pressure} \quad + \quad \text{Deviations from the average} \\
 \left[\begin{array}{ccc} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{array} \right] = - \left[\begin{array}{ccc} p & & \\ & p & \\ & & p \end{array} \right] + \left[\begin{array}{ccc} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{array} \right]
 \end{array}$$

$$\dot{s}_{ij}=2G\dot{e}_{ij}-\frac{Gs_{mn}\dot{e}_{mn}}{Y^2}s_{ij}$$

Prandtl-Reuss (“P-R”) Material Model

$$\dot{s}_{ij} = 2G\dot{e}_{ij} - \frac{G s_{mn}\dot{e}_{mn}}{Y^2} s_{ij}$$

Ortiz & Popov: Generalized framework for numerical methods, including radial return

Saint-Venant
von Mises
Prandtl
Levy

• 1930

1940s/WW2

1977 1985

Emphasis on numerical accuracy

Focus largely on low speed deformation

High-speed deformation begins

Other analytical solutions and numerical methods follow. Time Step a Factor.

In a code the strain rate is constant during a time step.

This enables integration of the P-R ODE either analytically or numerically.

Prandlt-Reuss (“P-R”) Material Model

$$\dot{s}_{ij} = 2G\dot{e}_{ij} - \frac{G s_{mn} \dot{e}_{mn}}{Y^2} s_{ij}$$

1964: Wilkins’ Radial Return Algorithm

Solves the above ODE at each time step in a hydrocode.

Given strain rate (circled), produce new estimates of stress at each time step.

Does not look like an ODE solver, though.

Radial Return Algorithm

Three Pieces

(1)
Split the stress tensor

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \begin{bmatrix} p & & \\ & p & \\ & & p \end{bmatrix} + \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$

(2)
Use a scalar metric of σ

$$J_2 \equiv \frac{1}{6} [(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2] + \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2$$

Notice that p does not play a role. Only s_{ij} plays a role.

(3)
Ensure J_2 respects Y

$$J_2 \leq \frac{Y^2}{3}$$

This is the job of the radial return algorithm.

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = - \begin{bmatrix} p & & \\ & p & \\ & & p \end{bmatrix} + \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$

$$J_2 \equiv \frac{1}{6} \left[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 \right] + \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2$$

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = - \begin{bmatrix} p & & \\ & p & \\ & & p \end{bmatrix} + \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$

$$J_2 \equiv \frac{1}{6} \left[(s_{11} - s_{22})^2 + (s_{22} - s_{33})^2 + (s_{33} - s_{11})^2 \right] + s_{12}^2 + s_{23}^2 + s_{31}^2$$

(1)
Split the stress tensor

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = - \begin{bmatrix} p & & \\ & p & \\ & & p \end{bmatrix} + \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$

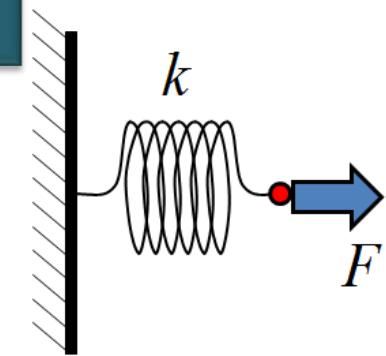
$$J_2(s_{ij}) \leq \frac{Y^2}{3}$$

Must Obey

Hooke's Law using "deviatoric" stress and strain.

$$s_{ij} = 2G e_{ij}$$

Shear modulus **Deviatoric strain**



$$J_2(s_{ij}) \leq \frac{Y^2}{3}$$

Must Obey

Shear
modulus

Deviatoric
strain

$$s_{ij} = 2G e_{ij}$$

$$J_2(s_{ij}) \leq \frac{Y^2}{3}$$

Must Obey

$$S_{ij} = 2Ge_{ij}$$

Shear
modulus

Deviatoric
strain

Transient
version

$$\dot{S}_{ij} = 2G\dot{e}_{ij}$$

$$J_2(s_{ij}) \leq \frac{Y^2}{3}$$

Must Obey

$$S_{ij}^{\text{new}} = S_{ij}^{\text{old}} + \Delta t 2G\dot{e}_{ij}$$

Transient
version

$$\dot{S}_{ij} = 2G\dot{e}_{ij}$$

$$J_2(s_{ij}) \leq \frac{Y^2}{3}$$

Must Obey

$$s_{ij}^{\text{trial}} = s_{ij}^{\text{old}} + \Delta t 2 G \dot{e}_{ij}$$

$$s_{ij}^{\text{new}} = \alpha s_{ij}^{\text{trial}}$$

Radial Return Algorithm

1. Compute trial deviatoric stress

$$S_{ij}^{\text{trial}} = S_{ij}^{\text{old}} + \Delta t 2G \dot{e}_{ij}$$

$$J_2(s_{ij}) \leq \frac{Y^2}{3}$$

Must Obey

2. Compute its J_2

3. Scale it back so that it obeys the yield criteria

$$S_{ij}^{\text{new}} = \alpha S_{ij}^{\text{trial}}$$

Prandtl-Reuss (“P-R”) Material Model

$$\dot{s}_{ij} = 2G\dot{e}_{ij} - \frac{Gs_{mn}\dot{e}_{mn}}{Y^2} s_{ij}$$

Ortiz & Popov: Generalized framework for numerical methods, including radial return

Saint-Venant
von Mises
Prandtl
Levy

•
•
•

1930

1940s/WW2

1977

1985

Krieg & Krieg: Analytical solution and comparison to numerical methods

Emphasis on numerical accuracy

Focus largely on low speed deformation

High-speed deformation begins

Other analytical solutions and numerical methods follow. Time Step a Factor.

In a code the strain rate is constant during a time step.

This enables integration of the P-R ODE either analytically or numerically.

Prandtl-Reuss (“P-R”) Material Model

$$\dot{s}_{ij} = 2G\dot{e}_{ij} - \frac{G s_{mn} \dot{e}_{mn}}{Y^2} s_{ij}$$

Ortiz & Popov: Generalized framework for numerical methods, including radial return

Saint-Venant
von Mises
Prandtl
Levy

Focus largely on low speed deformation

High-speed deformation begins

Wilkins' = numerical integration

Other analytical solutions and numerical methods follow. Time Step a Factor.

Hydrocodes stay with Wilkins + Iteration

1940s/WW2

1964

1991

Prandtl-
Reuss

Hill

Drucker

Wilkins'
Radial Return

Algorithmic Description

Obtains P-R through limit process

Margolin & Flower Solution for Strain-Rate Hardening

Outline

(1)

Motivation: What is strain rate in a shock?

(2)

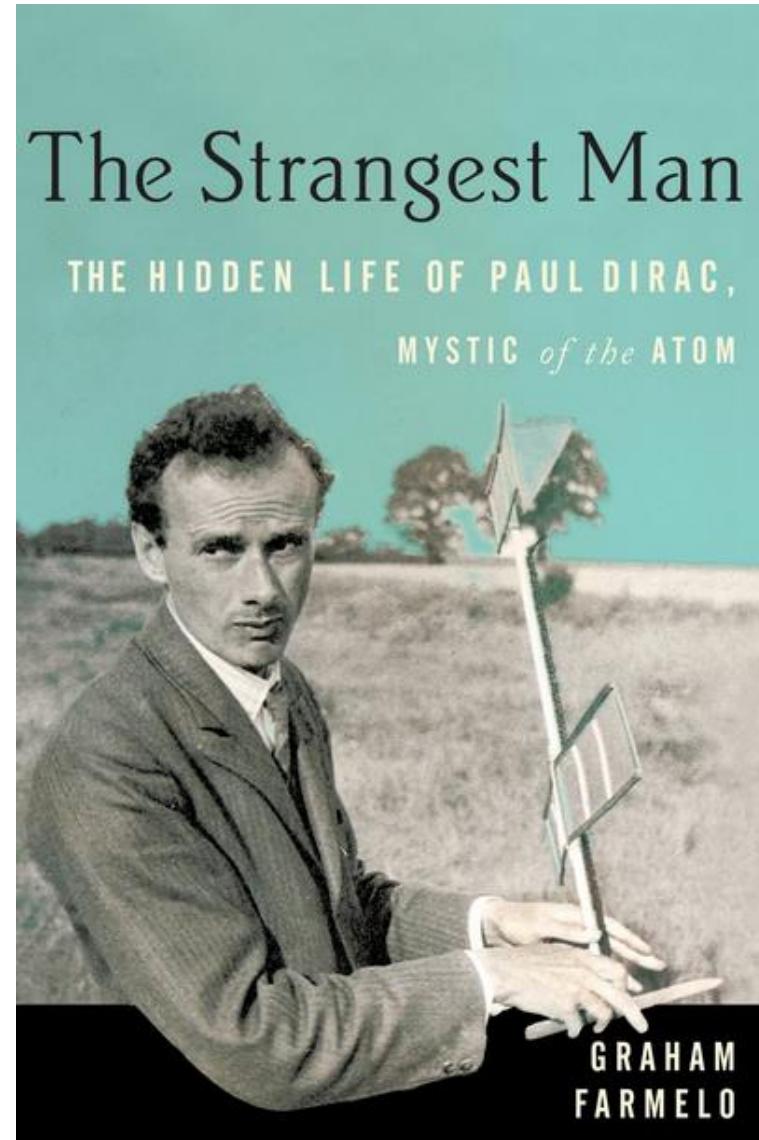
Introduction to plasticity and historical overview

(3)

**Digging into the question:
Strain rate, shock, and
plasticity**

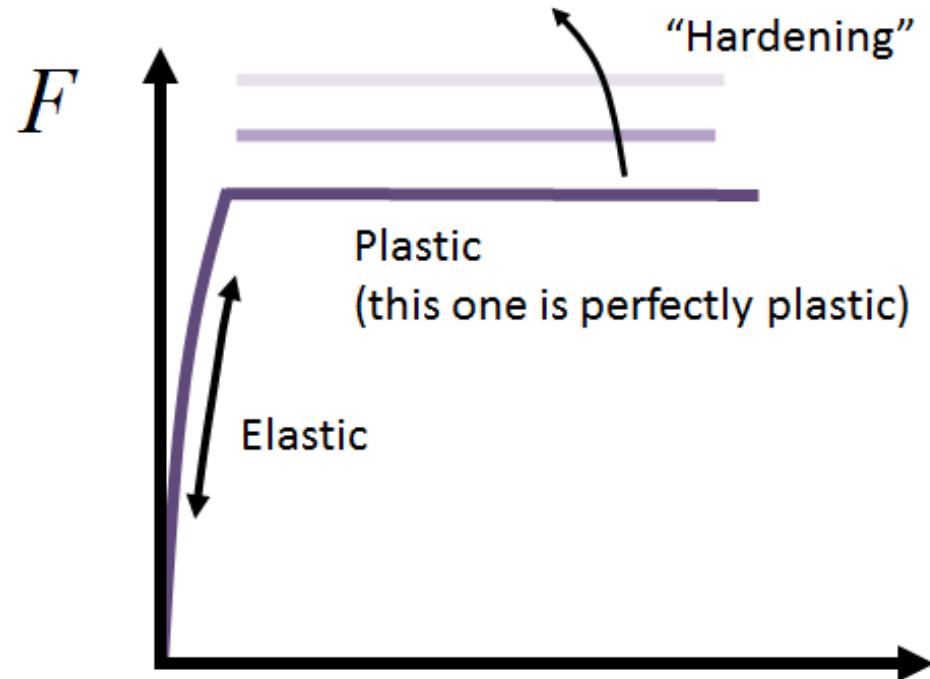
(4)

Benefits to hydrocodes



Strain-Rate Based Hardening

Strain Rate



Hydrocode’s Shock Shapes

PTW expects rise times on the order of 10^{-9} to 10^{-12} seconds

With an incorrect yield stress, the deviatoric stress may be incorrect.

Strain-Rate Based Hardening

Yield Stress

Radial Return Algorithm

Strain Rate

Deviatoric Stress

Hydrocodes provide rise times on the order of 10^{-8} seconds.

...and they seek perfectly sharp shocks.

Hydrocode's Shock Shapes

$t = t + \Delta t$

PTW expects rise times on the order of 10^{-9} to 10^{-12} seconds

With an incorrect yield stress, the deviatoric stress may be incorrect.

Strain-Rate Based Hardening

Yield Stress

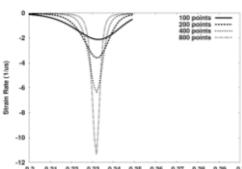
Radial Return Algorithm

It is a cloudy situation.

Strain Rate

Hydrocodes provide rise times on the order of 10^{-8} seconds.

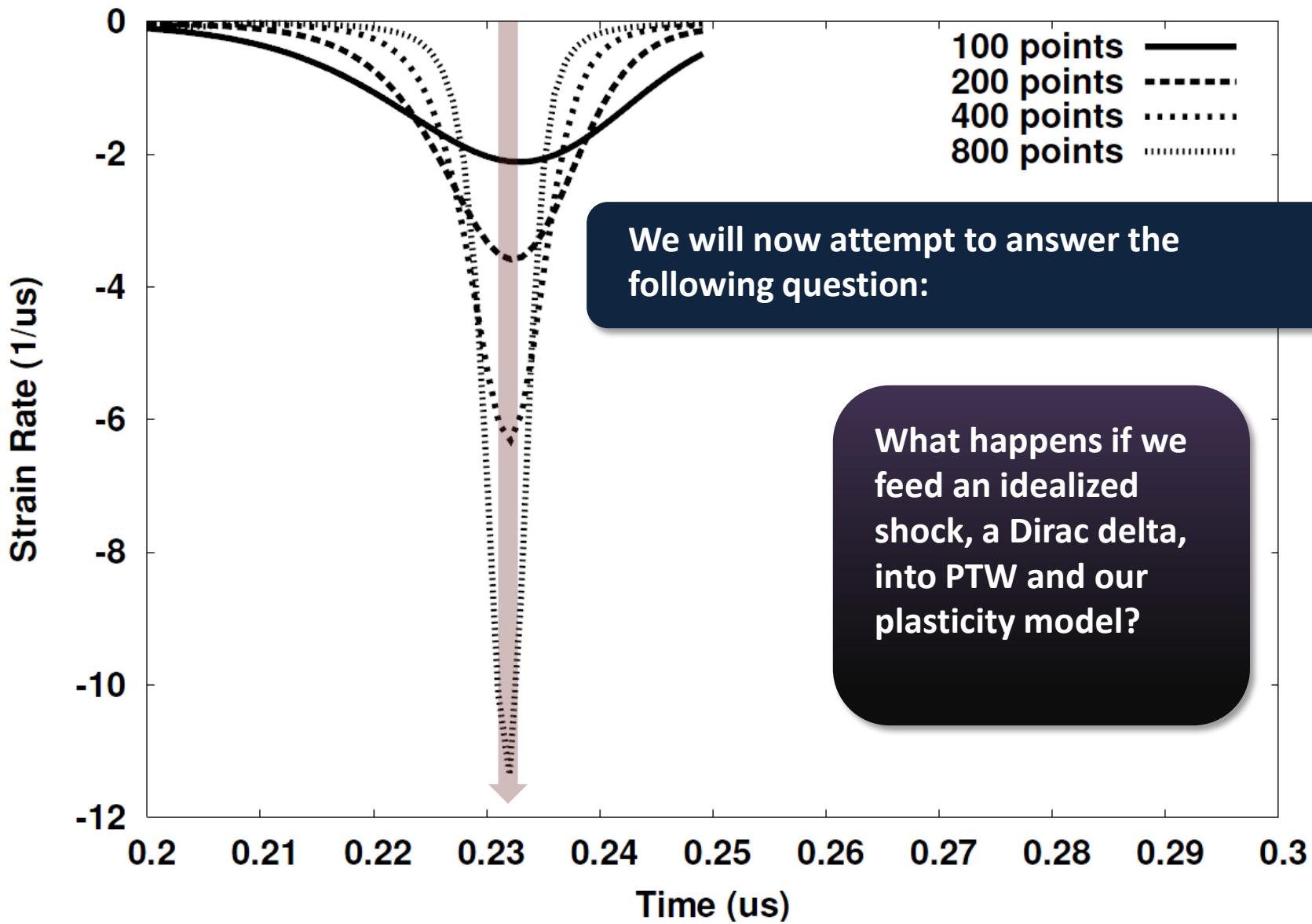
...and they seek perfectly sharp shocks.



Deviatoric Stress

$$t = t + \Delta t$$

Strain Rate Approaches as Dirac Delta



Radial Return Algorithm

In 1991
Margolin and
Flower let
 $\Delta t \rightarrow 0$ in the
algorithm.

The result was
a Prandtl-Reuss
like equation.

1. Compute trial deviatoric stress

$$S_{ij}^{\text{trial}} = S_{ij}^{\text{old}} + \Delta t 2G \dot{e}_{ij}$$

2. Compute its J_2

3. Scale it back so that it obeys the yield criteria

$$S_{ij}^{\text{new}} = \alpha S_{ij}^{\text{trial}}$$

Radial Return Algorithm

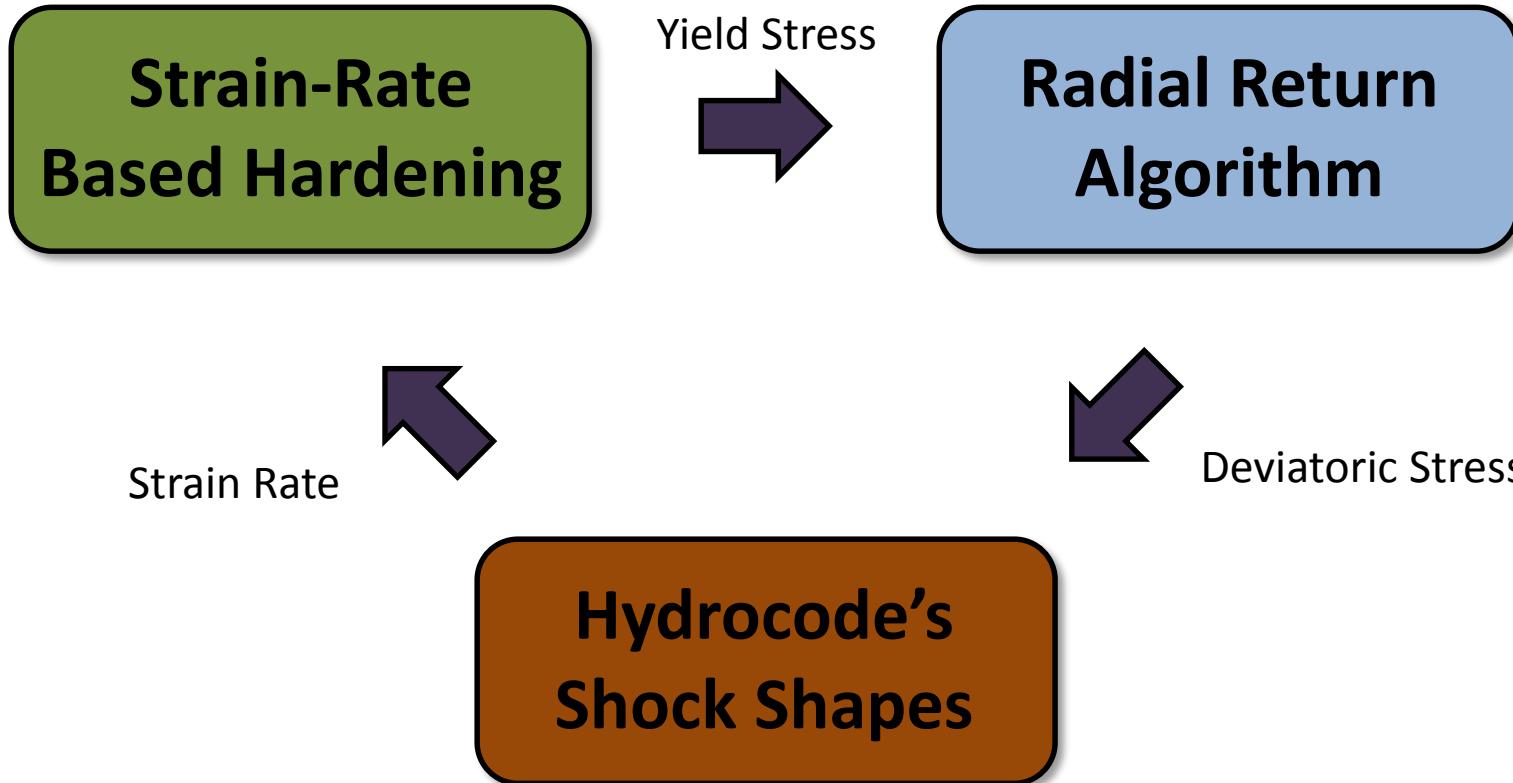
In 1991
Margolin and
Flower let
 $\Delta t \rightarrow 0$ in the
algorithm.

The result was
a Prandtl-Reuss
like equation.

$$\dot{S}_{ij} = 2G\dot{e}_{ij} + S_{ij} \frac{\dot{Y}}{Y} - G\dot{S}_{ij} \frac{S_{kl}\dot{e}_{kl}}{Y^2}$$

This has enabled an analytical study of shocks
with plastic deformation.

$$\dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - G\dot{s}_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$



Strain-Rate Based Hardening

PTW

For overdriven (strong) shocks...

$$Y = G \cdot \left(\frac{\dot{e}}{\xi} \right)^\beta$$

Yield stress

Shear modulus

Plastic strain rate

Based on material constants and density

Adjustable parameter

The diagram illustrates the PTW yield function $Y = G \cdot \left(\frac{\dot{e}}{\xi} \right)^\beta$. The yield stress Y is influenced by four main factors, each represented by a green box with a blue arrow pointing to its corresponding term in the equation:

- Shear modulus G (top left)
- Plastic strain rate \dot{e} (top right)
- Adjustable parameter β (right side, with a blue arrow pointing to the exponent)
- Yield stress (bottom left, with a blue arrow pointing to the first term)

Below the equation, a green box states "Based on material constants and density".

Strain-Rate Based Hardening

$$Y = G \cdot \left(\frac{\dot{e}}{\dot{\xi}} \right)^\beta$$

$$Y = G \cdot \left(\frac{\dot{e}}{\xi} \right)^\beta$$

$$\dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - G\dot{s}_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

Strain Rate

Deviatoric Stress

Hydrocode's Shock Shapes

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = - \begin{bmatrix} p & & \\ & p & \\ & & p \end{bmatrix} + \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$

EOS

Radial Return

$$Y = G \cdot \left(\frac{\dot{e}}{\xi} \right)^\beta$$

$$\dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - G\dot{s}_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

Strain-Rate
Based Hardening

Yield Stress

Radial Return
Algorithm

Strain Rate

Hydrocode's
Shock Shapes

*Replace with
idealized
profile.*

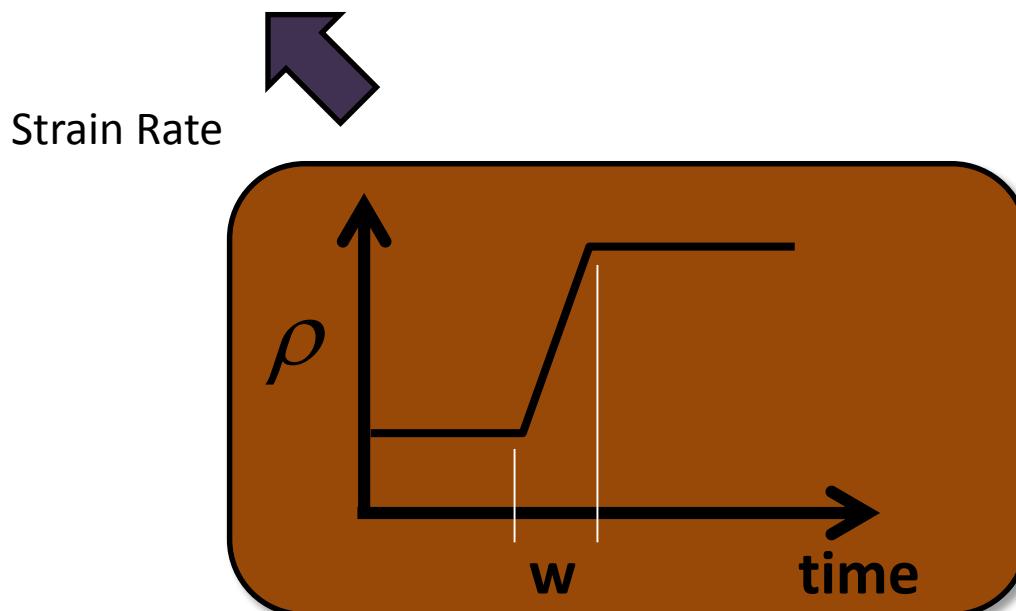
$$Y = G \cdot \left(\frac{\dot{e}}{\xi} \right)^\beta$$

$$\dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - G\dot{s}_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

Strain-Rate
Based Hardening

Yield Stress

Radial Return
Algorithm



Linear
density rise

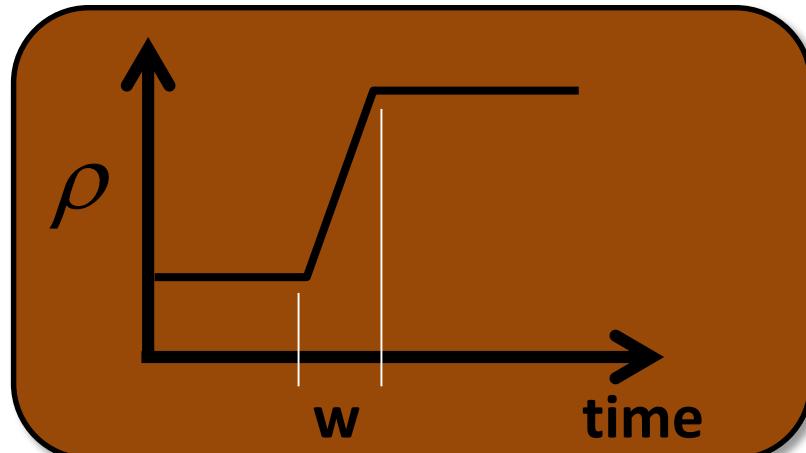
$$Y = G \cdot \left(\frac{\dot{e}}{\dot{\xi}} \right)^\beta$$

Analytical
expressions for Y, \dot{Y}

$$\dot{S}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - G\dot{S}_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

Analytical expressions for $\dot{e}, \dot{\xi}$

ODE can be solved
analytically with
special choice for β .



PTW Strength Model

$$Y = G \cdot \left(\frac{\dot{e}}{\dot{\xi}} \right)^\beta$$

Radial Return as an ODE

$$\dot{S}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - G\dot{S}_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

This is: Deviatoric stress during the linear density rise.

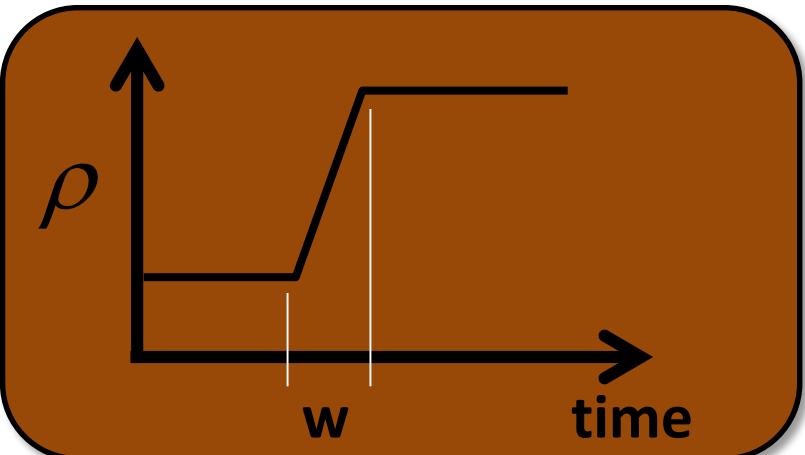
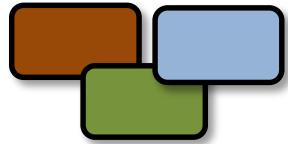
Result:

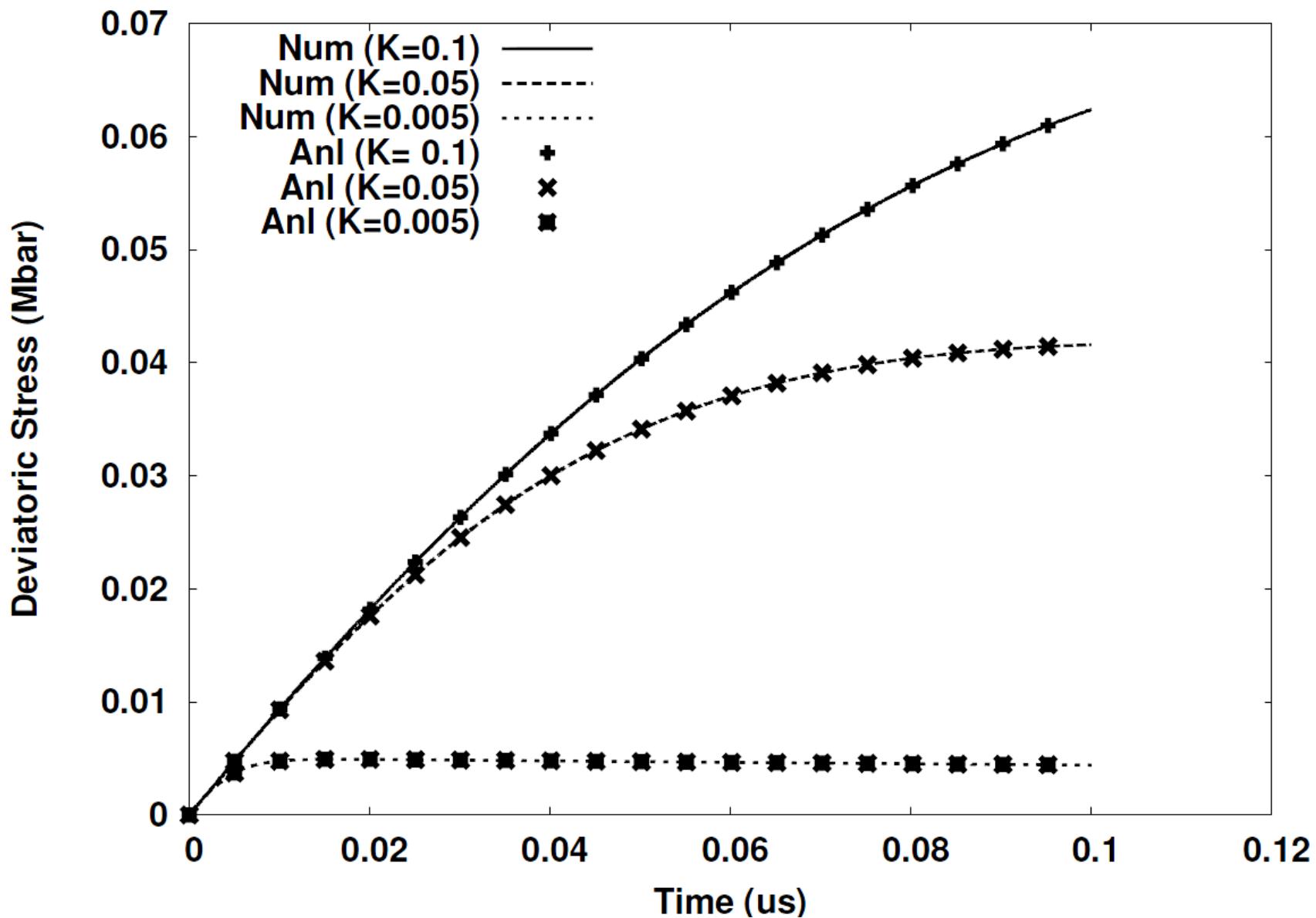
$$s_{ij} = -\frac{1}{C} (k\dot{\rho}) \frac{\rho(t)^{k-1} - \rho_o^{2k} \rho(t)^{-k-1}}{\rho(t)^k + \rho_o^{2k} \rho(t)^{-k}}$$

“Analytical”
versus

“Numerical”

Hydrocode shock shape





PTW Strength Model

$$Y = G \cdot \left(\frac{\dot{e}}{\dot{\xi}} \right)^\beta$$

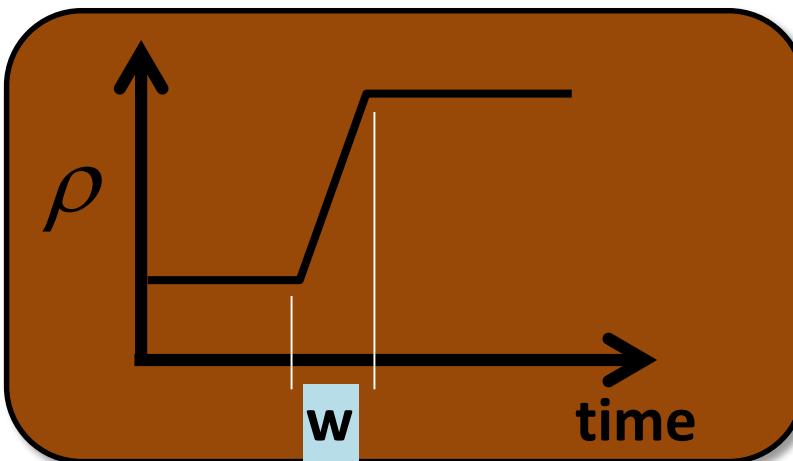
Radial Return

$$\dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - G\dot{s}_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

$$s_{ij} = -\frac{1}{C} (k\dot{\rho}) \frac{\rho(t)^{k-1} - \rho_o^{2k} \rho(t)^{-k-1}}{\rho(t)^k + \rho_o^{2k} \rho(t)^{-k}}$$

k is a function of shock width, w .

Hydrocode shock shape



We can take $\lim_{w \rightarrow 0}$ of s_{ij} .

$$s_{ij} = -\frac{1}{C}(k\dot{\rho}) \frac{\rho(t)^{k-1} - \rho_o^{2k} \rho(t)^{-k-1}}{\rho(t)^k + \rho_o^{2k} \rho(t)^{-k}}$$

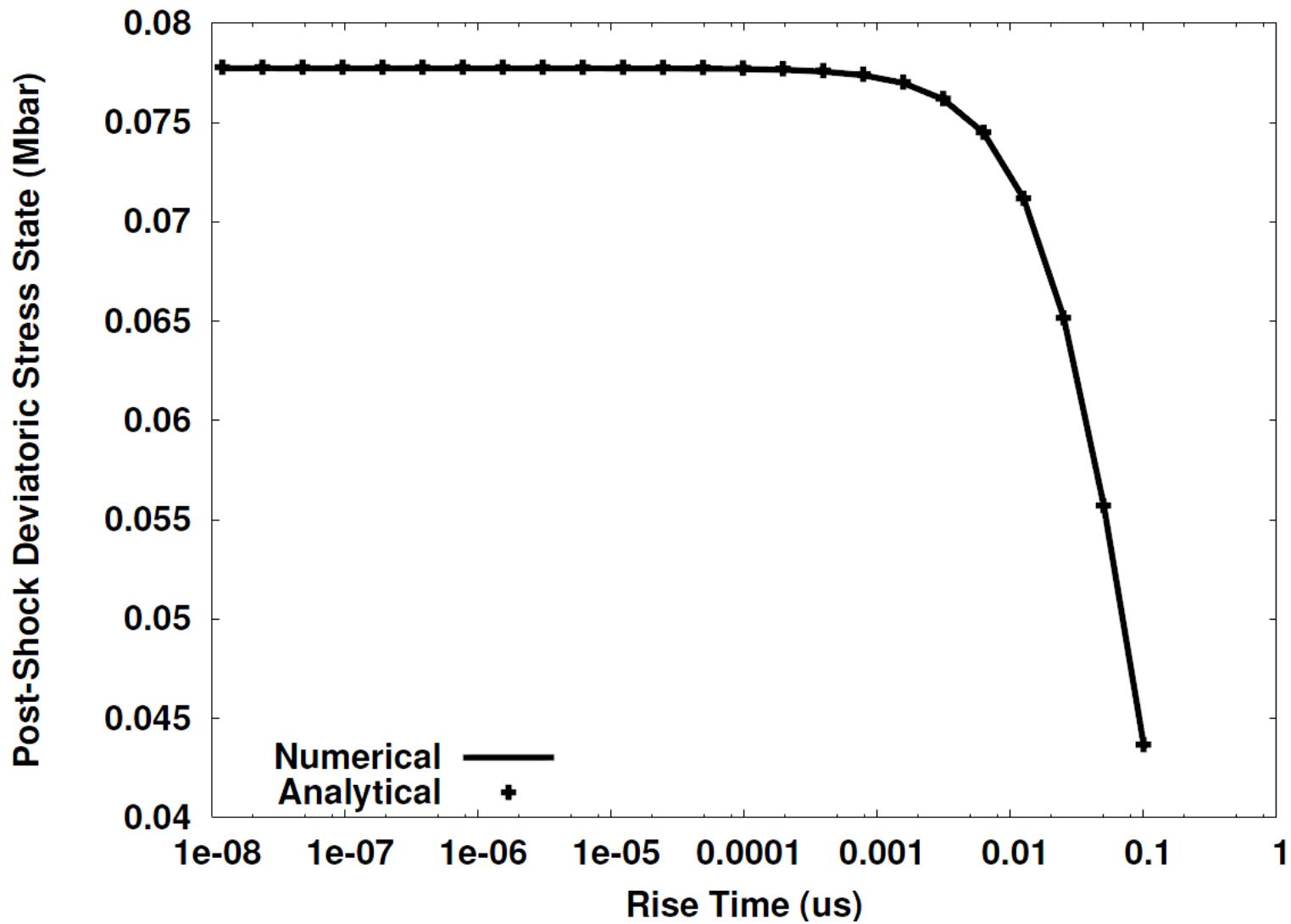
The Result:

$$\lim_{w \rightarrow 0} s_{ij} \propto \frac{1}{\rho_{\text{final}}} \ln\left(\frac{\rho_{\text{final}}}{\rho_{\text{initial}}}\right)$$

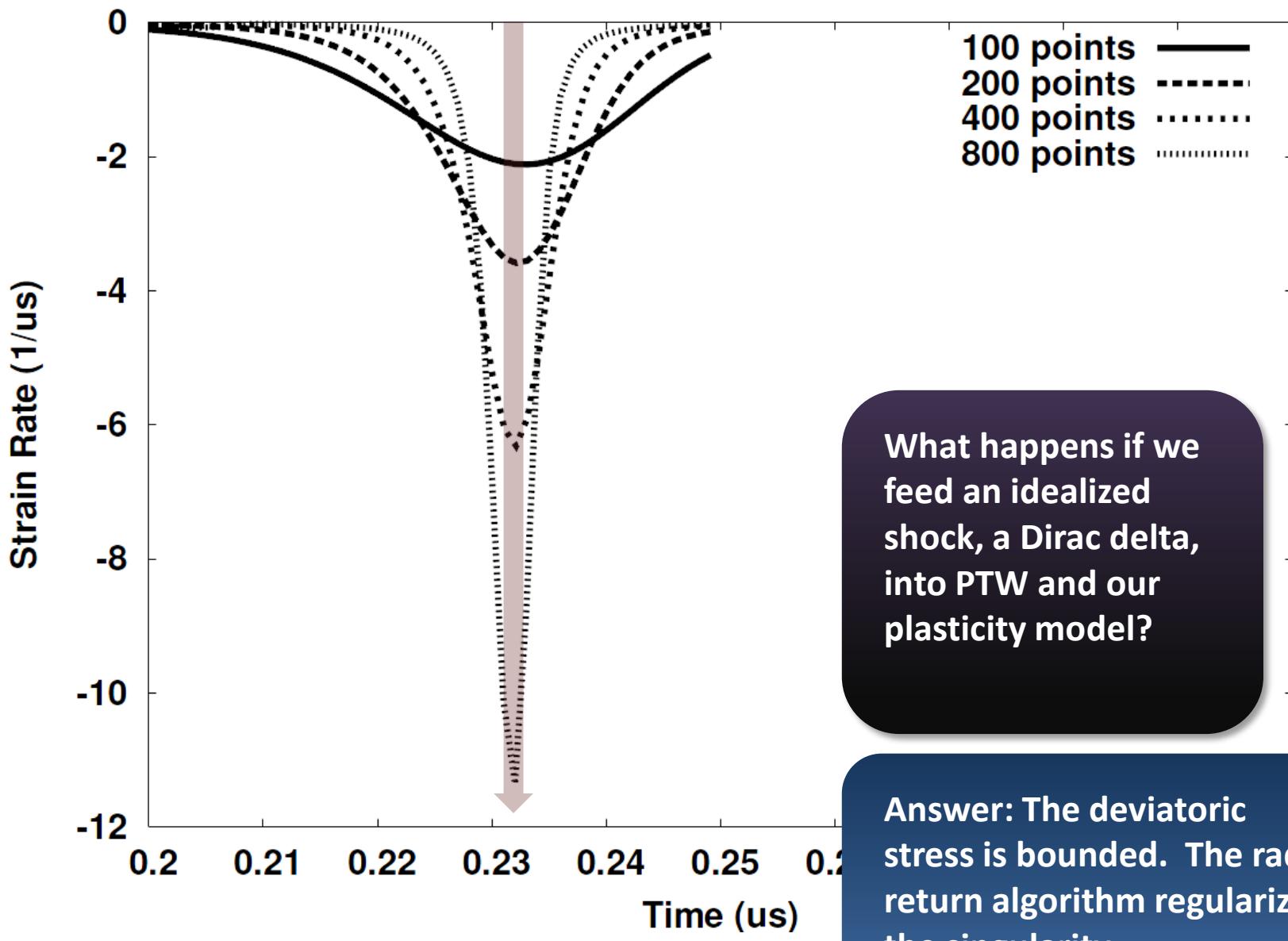
It is finite.

The radial return algorithm regularizes the singularity.

Computations confirm it.



Strain Rate Approaches as Dirac Delta



Like integrating a Dirac-delta

$$\int f(x)\delta(x-c)dx = f(c)$$

Answer: Radial return
regularizes the singularity

Strain-Rate
Based Hardening

Yield Stress

Radial Return
Algorithm

Strain Rate

Deviatoric Stress

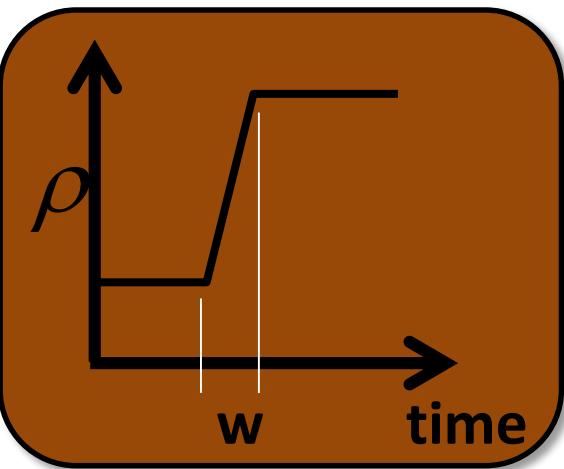
Hydrocode's
Shock Shapes

Question: What if the idealized shock were produced (infinite strain rate)?

Like integrating a Dirac-delta

$$\int f(x)\delta(x-c)dx = f(c)$$

Answer: Radial return
regularizes the singularity



Analytical shock shape

$$\rightarrow Y = G \cdot \left(\frac{\dot{e}}{\xi} \right)^\beta \rightarrow \dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - G\dot{s}_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

PTW

ODE Form of Radial Return

Solved that ODE and took

limit $w \rightarrow 0$

Question: What if the idealized shock were produced (infinite strain rate)?

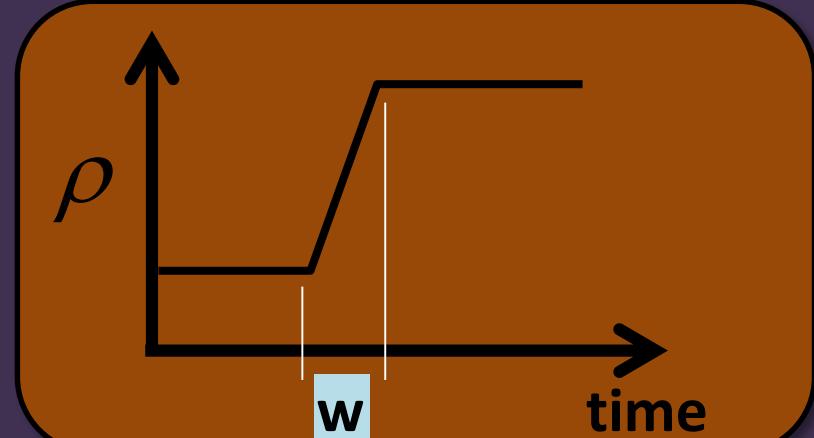
Strain-Rate
Based Hardening

Radial Return
Algorithm

**Next Question: How do the hydrocode
shock and the idealized shock relate in the
context of plasticity?**

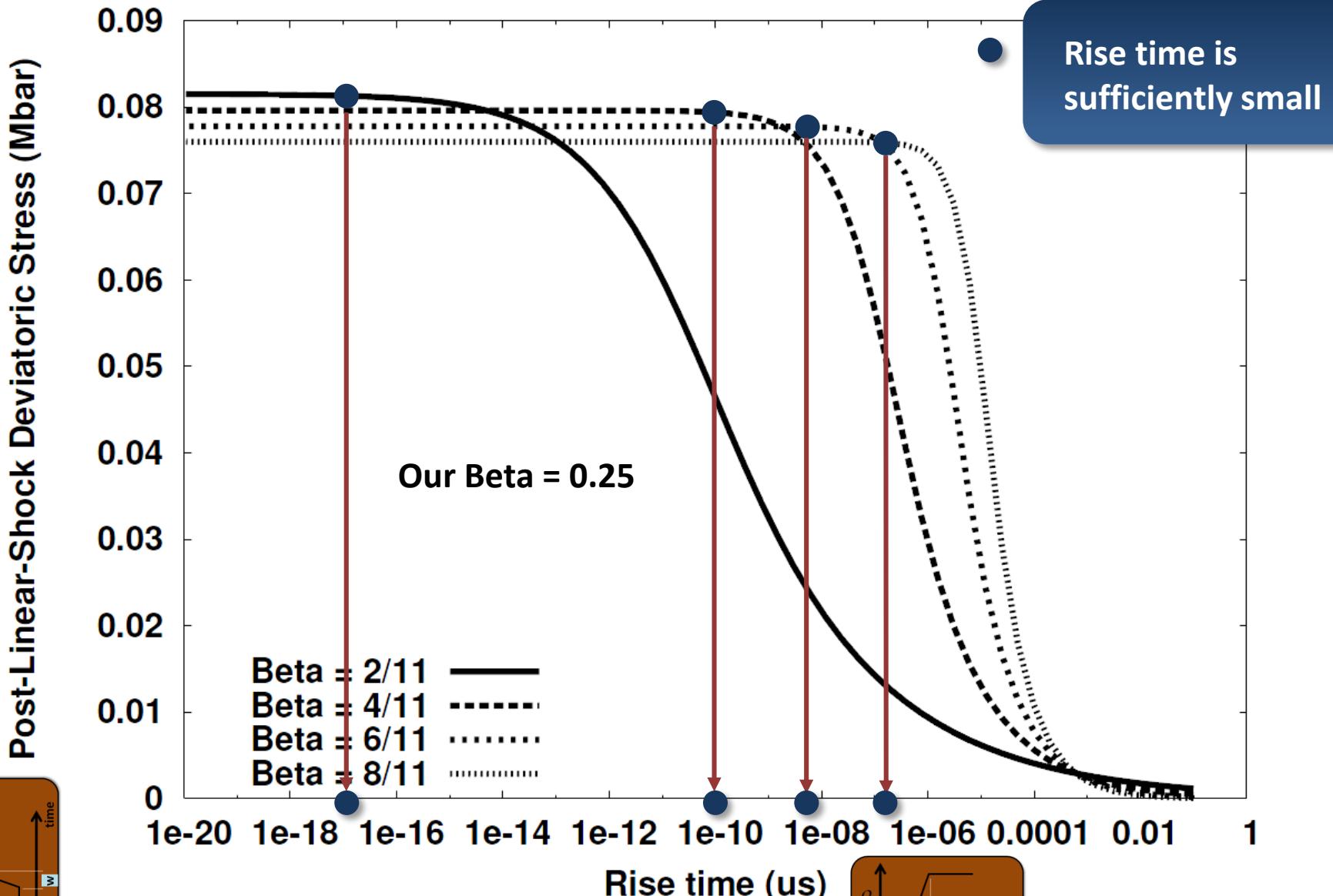
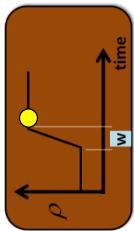
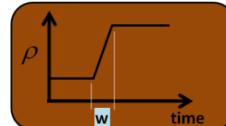
Hydrocode's
Shock Shapes

Shock Rise Time Required for Convergence can be Very Small



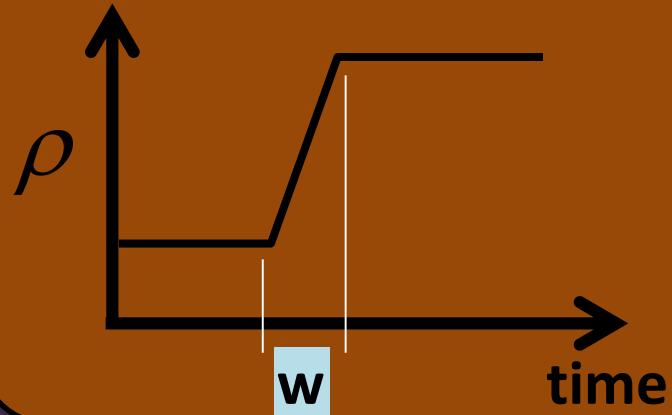
Underlying plot shown on next slide.

Shock Rise Time Required for Convergence can be Very Small



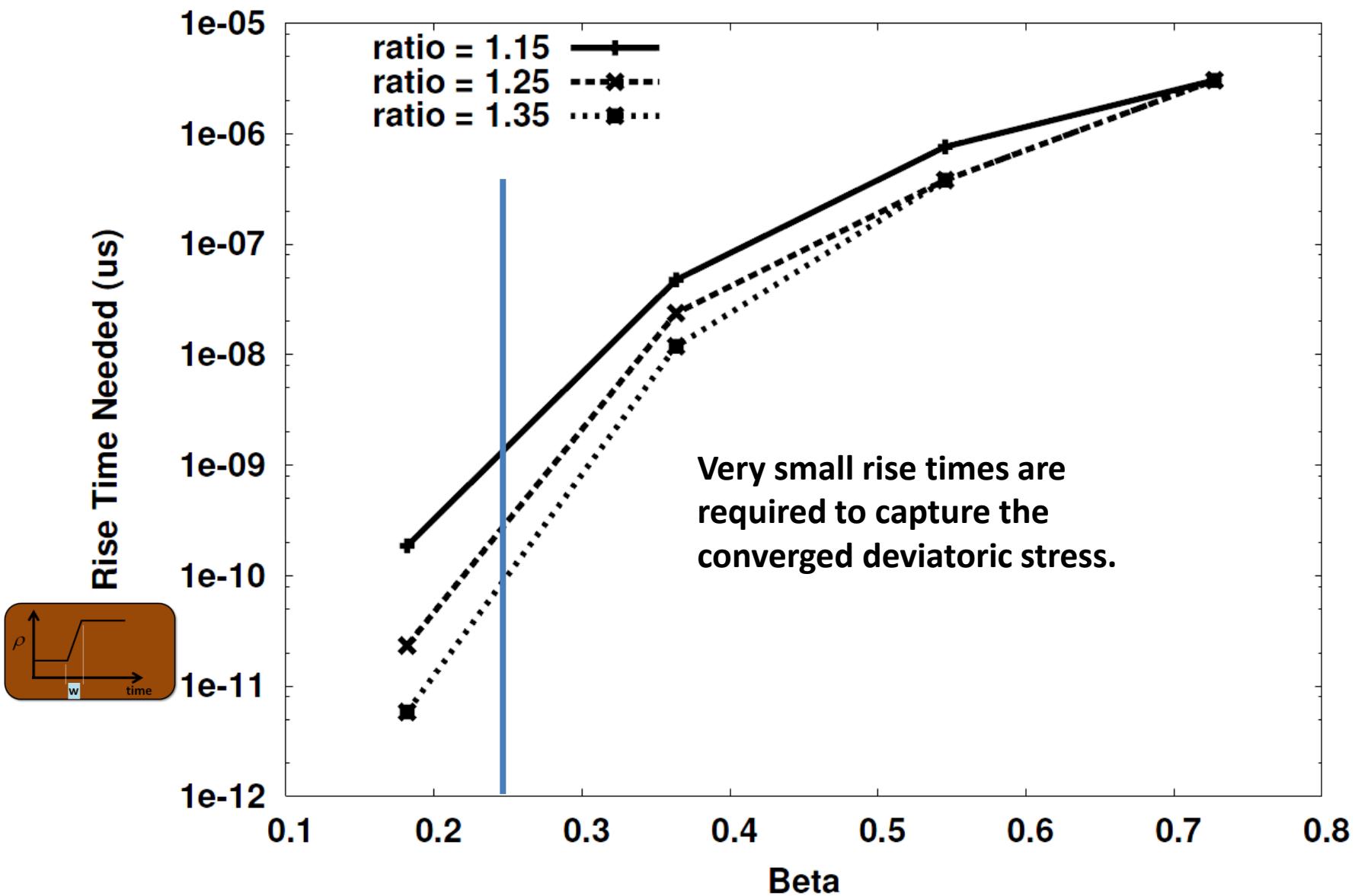
Shock Rise Time Required for Convergence can be Very Small

Post-Shock to Pre-Shock Density



Underlying plot shown on next slide.

Shock Rise Time Required for Convergence can be Very Small



Outline

(1)

Motivation: What is strain rate in a shock?

(2)

Introduction to plasticity and historical overview

(3)

**Digging into the question:
Strain rate, shock, and plasticity**

(4)

Benefits to hydrocodes

Exact Radial Return

In 1991
Margolin and
Flower let
 $\Delta t \rightarrow 0$ in then
Radial Return
algorithm.

The result was
the Prandtl-
Reuss model.

$$\dot{S}_{ij} = 2G\dot{e}_{ij} + S_{ij} \frac{\dot{Y}}{Y} - Gs_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

Exact Radial Return

In addition,
they provided
an analytical
solution.

$$\dot{S}_{ij} = 2G\dot{e}_{ij} + S_{ij} \frac{\dot{Y}}{Y} - GS_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

For the
hardening case.

Exact Radial Return

In addition, they provided an analytical solution.

For the hardening case.

Material Model with Hardening

$$\dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - Gs_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

Analytical Solution over One Time Step

$$s_{ij}(t) = s_{ij}(t_o) \frac{Y(t)}{Y(t_o)} \frac{F(t_o)}{F(t)} + \frac{\sqrt{2}Y(t)}{IF(t)} \dot{e}_{ij} \int_{t_o}^{\alpha(t)} F(\alpha') d\alpha'$$

$$F(t) = A_o e^{\alpha t} + e^{-\alpha t}$$

$$A_o = \frac{\sqrt{2}(e_{kl}^n \cdot e_{kl}^n)Y + (s_{kl}^n \dot{e}_{kl}^n)}{\sqrt{2}(e_{kl}^n \cdot e_{kl}^n)Y - (s_{kl}^n \dot{e}_{kl}^n)}$$

$$\alpha = \sqrt{2} \int_0^t \frac{GI}{Y(t')} dt'$$

Exact Radial Return

Other analytical
solutions:

Yoder (1984)

Montmitonnet (1992)

Ristianmaa (1993)

Auricchio (1995)

Peric (1996)

Material Model with Hardening

$$\dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - Gs_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

Analytical Solution over One Time Step

$$s_{ij}(t) = s_{ij}(t_o) \frac{Y(t)}{Y(t_o)} \frac{F(t_o)}{F(t)} + \frac{\sqrt{2}Y(t)}{IF(t)} \dot{e}_{ij} \int_{t_o}^{\alpha(t)} F(\alpha') d\alpha'$$

$$F(t) = A_o e^{\alpha t} + e^{-\alpha t}$$

$$A_o = \frac{\sqrt{2}(e_{kl}^n \cdot e_{kl}^n)Y + (s_{kl}^n \dot{e}_{kl}^n)}{\sqrt{2}(e_{kl}^n \cdot e_{kl}^n)Y - (s_{kl}^n \dot{e}_{kl}^n)}$$

$$\alpha = \sqrt{2} \int_0^t \frac{GI}{Y(t')} dt'$$

Exact Radial Return

Other analytical
solutions:

Yoder (1984)

Montmitonnet (1992)

Ristianmaa (1993)

Auricchio (1995)

Peric (1996)

Material Model with Hardening

$$\dot{s}_{ij} = 2G\dot{e}_{ij} + s_{ij} \frac{\dot{Y}}{Y} - Gs_{ij} \frac{s_{kl}\dot{e}_{kl}}{Y^2}$$

Analytical Solution over One Time Step

$$s_{ij}(t) = s_{ij}(t_o) \frac{Y(t)}{Y(0)} \frac{F(0)}{F(t)} + \frac{\sqrt{2}Y(t)}{IF(t)} \dot{e}_{ij} \int_{t_o}^{\alpha(t)} F(\alpha') d\alpha'$$

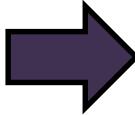
$$F(t) = A_o e^{\alpha t} + e^{-\alpha t}$$

$$A_o = \frac{\sqrt{2}(e_{kl}^n \cdot e_{kl}^n)Y + (s_{kl}^n \dot{e}_{kl}^n)}{\sqrt{2}(e_{kl}^n \cdot e_{kl}^n)Y - (s_{kl}^n \dot{e}_{kl}^n)}$$

$$\alpha = \sqrt{2} \int_0^t \frac{GI}{Y(t')} dt'$$

Strain-Rate Based Hardening

Yield Stress

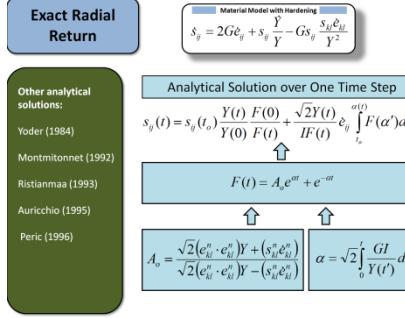


Radial Return Algorithm

Strain Rate

Deviatoric Stress

Hydrocode's Shock Shapes



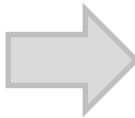
Strain-Rate Based Hardening

PTW

For overdriven (strong) shocks...

$$Y = G \cdot \left(\frac{\dot{e}}{\dot{\xi}} \right)^\beta$$

Yield Stress



Radial Return Algorithm

There are issues regarding how this ODE is integrated. The Radial Return interacts.

For weaker shocks...

$$\frac{dY}{d\varepsilon} = G\theta \frac{\exp \left[p \frac{\hat{\tau}_s - \hat{\tau}}{s_o - \hat{\tau}_y} \right] - 1}{\exp \left[p \frac{\hat{\tau}_s - \hat{\tau}_y}{s_o - \hat{\tau}_y} \right] - 1}$$

Exact Radial
Return

Material Model with Hardening
 $\dot{s}_g = 2\dot{G}\dot{e}_g + s_g \frac{\dot{Y}}{Y} - G s_g \frac{s_g \dot{e}_g}{Y^2}$

Other analytical
solutions:

Yoder (1984)

Montmittonnet (1992)

Ristianmaa (1993)

Auricchio (1995)

Peric (1996)

Analytical Solution over One Time Step

$$s_g(t) = s_g(t_o) \frac{Y(t)}{Y(t_o)} F(0) + \frac{\sqrt{2}Y(t)}{I^F(t)} \int_{t_o}^{t(t)} \dot{e}_g \int_{t_o}^{\alpha} F(\alpha') d\alpha' d\alpha$$

$$F(t) = A_c e^{\alpha t} + e^{-\alpha t}$$

$$A_c = \frac{\sqrt{2}(e_{g0}^0 \cdot e_{g0}^0)Y + (s_{g0}^0 e_{g0}^0)}{\sqrt{2}(e_{g0}^0 \cdot e_{g0}^0)Y - (s_{g0}^0 e_{g0}^0)} \quad \alpha = \sqrt{2} \int_0^t \frac{G I}{Y(t')} dt'$$

PTW

Strain-Rate
Based Hardening

Yield Stress

Radial Return
Algorithm

Strain Rate

Deviatoric Stress

Hydrocode's
Shock Shapes

Exact Radial
Return

Material Model with Hardening
 $s_y = 2G\dot{e}_y + s_y \frac{\dot{Y}}{Y} - Gs_y \frac{\dot{e}_{kl}}{Y^2}$

Other analytical
solutions:

Yoder (1984)

Montmittonet (1992)

Ristianmaa (1993)

Auricchio (1995)

Peric (1996)

Analytical Solution over One Time Step

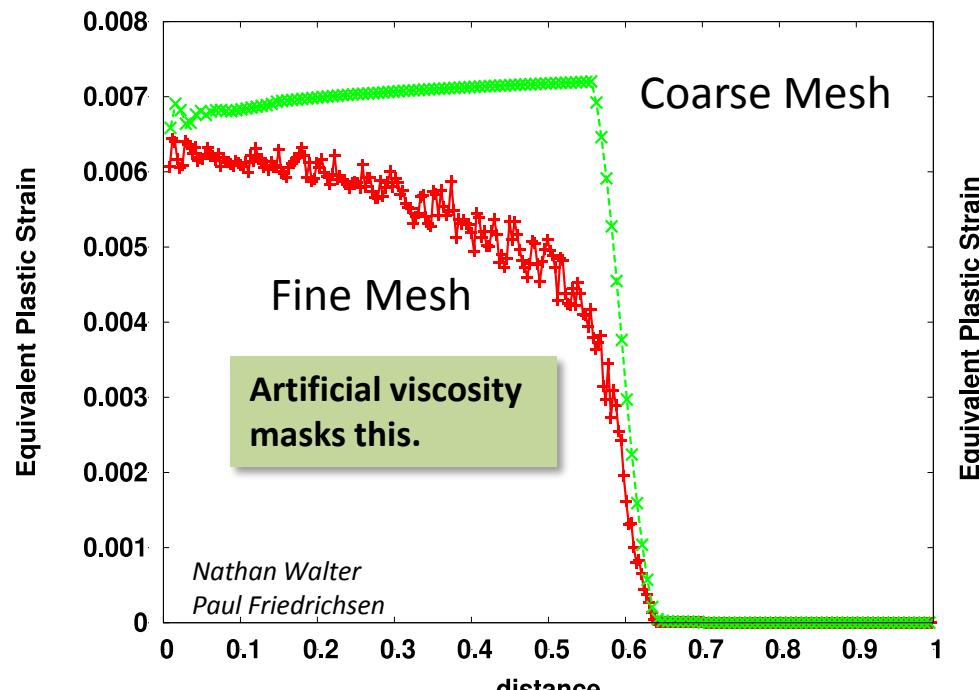
$$s_y(t) = s_y(t_0) \frac{Y(t)}{Y(0)} \frac{F(0)}{F(t)} + \frac{\sqrt{2}Y(t)}{IF(t)} \dot{e}_y \int_{t_0}^{t(t)} F(\alpha') d\alpha'$$

$$F(t) = A_s e^{\alpha t} + e^{-\alpha t}$$

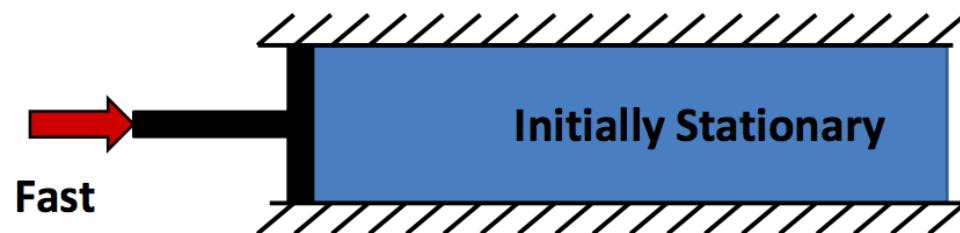
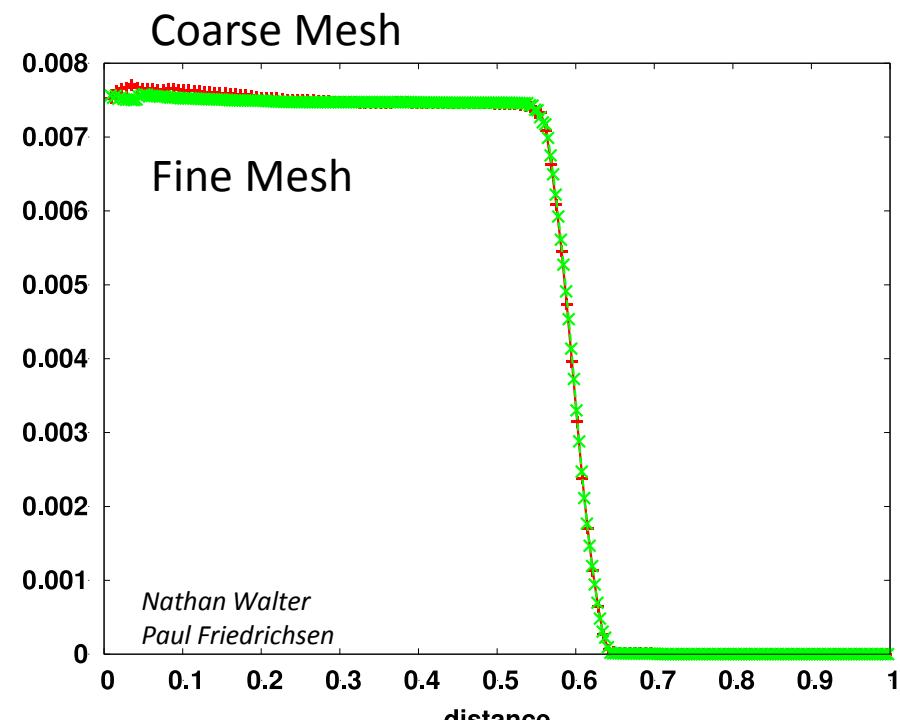
$$A_s = \frac{\sqrt{2}(e_{kl}^0 \cdot e_{kl}^0)Y + (s_{kl}^0 e_{kl}^0)}{\sqrt{2}(e_{kl}^0 \cdot e_{kl}^0)Y - (s_{kl}^0 e_{kl}^0)} \quad \alpha = \sqrt{2} \int_0^t \frac{G I}{Y(t')} dt'$$

FLAG - Prior:

Poor PTW Integration + Std. Radial Return + No Iterations = Spatially Non-Convergent



Discrete Radial Return with no iterations

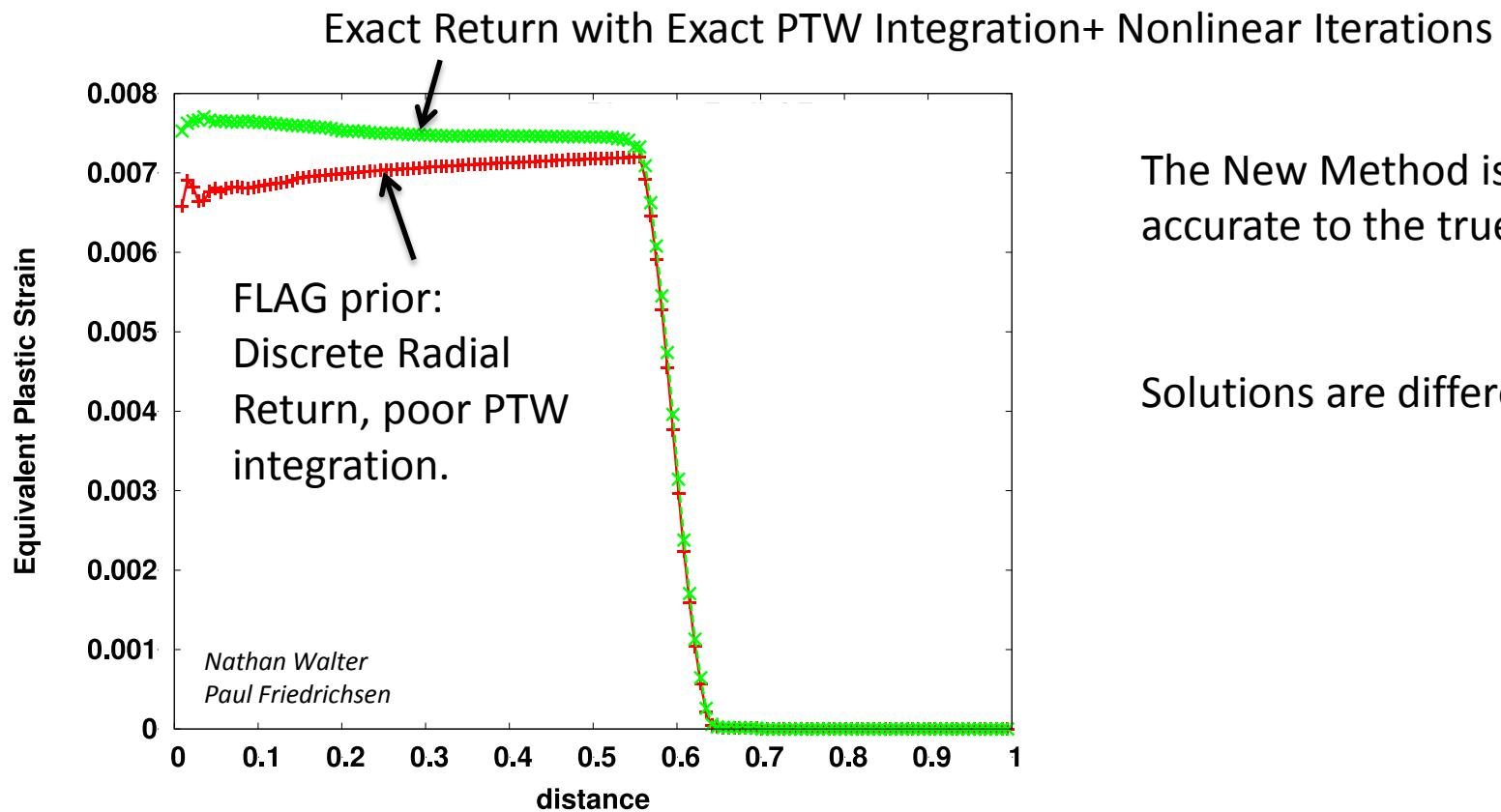


Analytical Solution with Iterations

Analytical solution is convergent in spatial refinement

No artificial viscosity needed

The Prandtl-Reuss Analytical Solution with the PTW Analytical Solution and Nonlinear Iterations

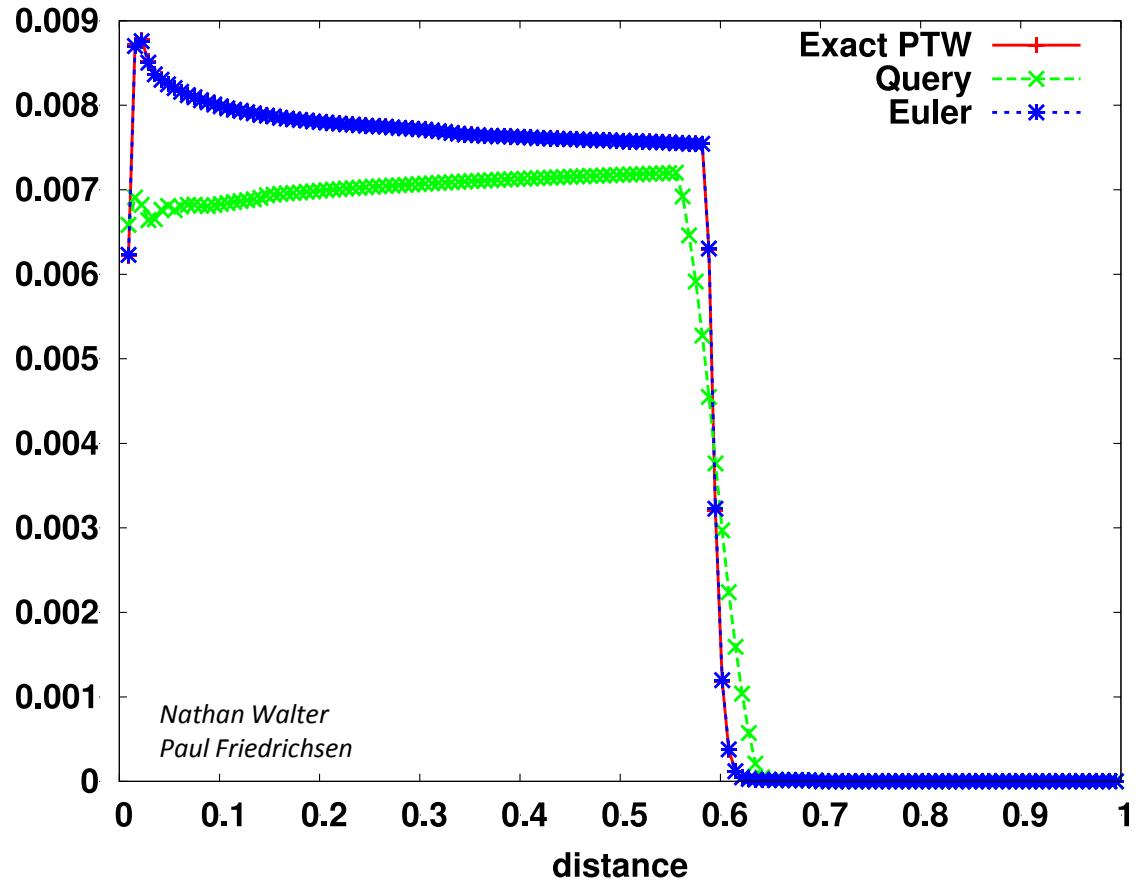


The New Method is more accurate to the true solution.

Solutions are different.

Forward Euler Method for PTW also Works

Equivalent Plastic Strain



The figure shows that the exact PTW equation, when implemented correctly, is identical to Euler integration.

This is good verification for the Exact PTW equation and of Euler's method for the hardening rule.

Different Combinations Were Tested

Test Case	Exact Return	Discrete Radial Return	Nonlinear Iterations	PTW: Query	PTW: Euler	PTW: Exact	Spatially Convergent	Viscosity effects	Notes
1		X		X			No	Drastically effects solution. Viscosity smears solution, masks inaccuracies and nonconvergence	Solutions are very inaccurate
2		X			X		Yes	Viscosity smears the solution, wall heating is smeared	Large wall heating present in solution
3	X		X	X			Yes	Minimal effect, solution smears but not by a lot	Solution is closer to test case 2 solution, but still not exactly the same
4	X		X		X		Yes	Minimal effects, solution wall heating is smeared	Solution is very similar to test case 2
5	X					X	Yes	Minimal effects, solution wall heating is smeared	Solution is identical to test case 2. No nonlinear iterations was implemented in combination with PTW:Exact

Nathan Walter and Paul Friedrichsen

Conclusions

Analytical integration of Prandtl-Reuss eliminates spatial non-convergence and reduces impact of artificial viscosity.

Artificial viscosity masks non-convergence and hardening rule errors

Analytical integration of Prandtl-Reuss reduces impact of no iterations.

Final Comments

Summary and Conclusions

Singular Shocks input into PTW: What would it mean?

The hydrocode's radial return algorithm regularizes the singularity in the limit.

Hydrocode's relatively wide shocks: How do they impact PTW?

Hydrocode's typical rise times are not small enough to approximate the limiting value.

Positive outcomes for hydrocodes

Analytical radial return:

- (1) Improves stability in FLAG.**
- (2) Reduces the impact of artificial viscosity.**
- (3) Opens the opportunity to use shock locators with the singular solution.**

Acknowledgements

Funding: Diane Vaughn and Mark Schraad

Collaborators: Len Margolin, Ted Carney, Tom Canfield.

**Students: Nathan Walter and Paul Friedrichsen –
implementation of exact return in FLAG and producing
results.**

Los Alamos National Laboratory's
Computational Physics Summer Workshop

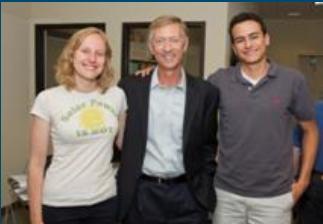
Research in teams of two.
Under LANL mentor(s).
35 hours of lectures.

Students from across the US
compete to participate.

US Citizens only

10-week Stipends:

\$7,500 - \$13,000



This year's geographic and academic diversity.

People whom we've never met before.

5th Anniversary

Five Years,
104
Students
from
across the
US.

- 65% Extended their relationships beyond the workshop
- 65% Were expanded relationships to other staff
- 69% Published work from the workshop
- 48% Workshop research appears in thesis/dissertation

“The workshop was the best thing that could have happened to me academically. My experiences there have completely changed the course of where I want my career to go and what I want to do with my life. I am incredibly grateful that I got to be a part of it.”
Jenifer Lilieholm, 2014

“The workshop allowed me to make connections with lab scientists and help me choose a dissertation project which was modern, academically interesting and scientifically useful to the computational physics community.”
Cori Hendon, 2011

Thank You