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What do we mean by the word “Shock”?

Scott R. Runnels, Ph.D.

Computational Physics Division
Los Alamos National Laboratory



Abstract

From one vantage point, a shock is a continuous but drastic change in state
variables that occurs over very small time and length scales. These scales and
associated changes in state variables can be measured experimentally. From
another vantage point, a shock is a mathematical singularity consisting of
instantaneous changes in state variables. This more mathematical view gives rise to
analytical solutions to idealized problems. And from a third vantage point, a shock
is a structure in a hydrocode prediction. Its width depends on the simulation’s grid
resolution and artificial viscosity. These three vantage points can be in conflict when
ideas from the associated fields are combined, and yet combining them is an
important goal of an integrated modeling program. This presentation explores an
example of how models for real materials in the presence of real shocks react to a
hydrocode’s numerical shocks of finite width. The presentation will include an
introduction to plasticity for the novice, an historical view of plasticity algorithms, a
demonstration of how pursuing the meaning of “shock” has resulted in hydrocode
improvements, and will conclude by answering some of the questions that arise
from that pursuit. After the technical part of the presentation, a few slides
advertising LANL's Computational Physics Student Summer Workshop will be shown.
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Hydrocodes Converge Toward an Idealized Shock

Underlying plot shown on next slide.



Similar Results when Material is a Solid
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Popsicle Analogy of a Shock
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Zero compression Zero compression
(strain) rate (strain) rate



Strain Rate Approaches as Dirac Delta

Underlying plot shown on next slide.



Strain Rate Approaches as Dirac Delta
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Strain Rate Approaches as Dirac Delta
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Energy put into the spring = Work = Force x Distance

W:jF-dx :lkx2
A 2






The force is the gradient of

the energy
LR
dx
F=k-X
‘ Relationship
W L kx*

2



In Multi-Dimensional Problems we need a Stress Tensor

O,
O
J 21
Oy,
< > O,
—




Hooke’s Law is like a spring but in all directions and
including shear. We use a 4t order tensor

E G
ij kl Shear
Modulusj

Indices range from 1-3.

F=Kk-X
3 3

O = Ején = ZZ i€

k=1 I=1

Repeated indices imply summation.



|f gkl is strain

and Eijkl is a constant, then this,

Oji = Eijklgkl

is the most general form of Hooke’s Law for
elastic deformation. It can be inverted:

4 )
Ey = Dijkl O;;

- J
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Go)
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O,
011
Ojj = Eijklgkl
aw
ae.
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W:TF-dx
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W+Q= 0} E;

sza-dg
0




W+Q= 0} E;

sza-dg
0




. N s N\
Q:jg do sza-dg
N\ 0 Y, N 0 Y,
W+Q=Jij8ij
a ) 2 )
- dO 0
44, % de,
ij

Strain can be expressed as the
gradient of its compliment.

o /

Key point in discussing plasticity...next...

J

Stress can be expressed as the
gradient of the energy density

antion. /







In the Plastic Range

A simple relationship between

F@x

is no longer possible.

Instead we discuss increments

dF<éI> dx

“Hardening”

Plastic
(this one is perfectly plastic)

Elastic



Release
Path

Plastic Elastic
Deformation Deformation
Permanent Recoverable

In 3D increments: total = plastic + elastic

AP e
de; =deg; +dg;

Key point




Release
Path

Handled By

“Flow Rule” Hooke’s Law

¥ ¥

[ In 3D increments: total = plastic + elastic dgij — dgi}o —+ dgi? J

Key point



First, we need a 3-D solid
model for this:

FA

For a tensor with 9 components k

Gij »

Path

we need a single value to

determine when it yields.

Determining how the plastic strain is related to
stress is a central part of plasticity.

“Flow Rule”

8
do, & de;



For a tensor with 9 components
- = Release
G| J F Path

we need a single value to

determine when it yields. >
X
10'22
051
01,
— — 011

It must be invariant with respect to the
l choice of coordinate system.

+ Here is one that works:
V‘
\\\/* > J, =(oy, _0'22)2 +(0, _(733)2 +(033— (711)2 + 6(‘7122 + 055+ 0-322)
4



von Mises Yield Criteria

J,(c0)=Y"

Yield Stress

...give or take some multipliers (i.e., how we define Y — some divide by 3).

Here is one that works:

J, = (0-11_0'22)2 +((722 _(733)2 +((733 _(711)2 +6(‘7122 +G§3 +0-3?2)



von Mises Yield Criteria

J,(c)=Y?

Yield Stress
...give or take some multipliers (i.e., how we define Y — some divide by 3).

Average, bulk Deviations from
pressure the average

017 Oy Og3 P Si1 S12 Sy

It is helpful

J

|
o

+

Lo i Oy Oy O3 Sp1 Sy Sy

pressure.

031 O3 O3z | P | S31 S3p Szz

Here is one that works:

J, = (0-11 _0-22)2 +((722 _(733)2 +((733 _511)2 + 6(0_122 + (7223 + 0-322)



von Mises Yield Criteria

J,(o)=Y?

Yield Stress

So we have a “Yield Function”:

f(o)=J,(0)-Y"

O < O Elastic Hooke’s Law Only

O — ()  Plastic Flow Rule

‘ > O Impossible  We make sure of this




dQ | of a

5” = — complimentary
d Gij energy density
= function.
B
T
; . Rﬂe# Total strain: Sum of
d&‘ij = d&‘ij -I-d&‘ij | and
. plastic strain.
X

We have a yield
function that

describes when
yielding occurs.

f(o0)=J,(c)-Y"*

® OO0




& =—— dg; =Dydoy,

--------= Hooke’s Law

AP :
de; =deg; +dg;

Assert: Plastic strain must be the gradient of
something. But what?

f(o0)=J,(c)-Y"*

Choosing the yield
function for the
gradient makes
what’s called the
Associated Flow
Rule.

de? o ()

|
J 00,




-G

Finding that multiplicative
constant requires another
equation.

O | <0
O =0

It’s this one —> ‘ > O Impossible




. dO

& =—— dg =D,,do
1] ij ijkl ki
do;
o Hooke’s Law
[
de; =dg; +dg; |
A Associated:
Flow Rulei
"""""""""""""""""""" of (o
4o = 1)
O

f(o)=J,(c)-Y"



. dO

& =—— dg =D,,do
1] ij ijkl ki
do;
o Hooke’s Law
[
de; =dg; +dg; |
A Associated:
Flow Rulei
"""""""""""""""""""" of (o
4o = 1)
O

f(o)=J,(c)-Y"



def =Dyydo | dep = di

Two Equations/Two Unknowns

af Strain = Plastic + Elastic
(o)
dg.. p— + Dijkl d Uij « Plastic strain is the gradient

of the yield surface

J

80”

af (6) O We must not go off
(beyond) the yield

surface.




Solving, and...

(1) Assuming isotropic material (shear and bulk modulus)
(2) Using deviatoric strain e and stress s

Produces the Prandlt-Reuss Material Model

da = ZGde + Kde. 5 m g,

Two Equations/Two Unknowns

af (O-) Strain = Plastic + Elastic
dgij — @ + Dijkl d Uij « Plastic strain is the gradient

of the yield surface

80”

df af (6) O We must not go off
(beyond) the yield

surface.




Solving, and...

(1) Assuming isotropic material (shear and bulk modulus)
(2) Using deviatoric strain e and stress s

Produces the Prandlt-Reuss Material Model

: GSmnemn
G = 2(3(9ij + Keij5ij — Vi S;

Two Equations/Two Unknowns

af (O-) Strain = Plastic + Elastic
dgij — @ + Dijkl d Uij « Plastic strain is the gradient

of the yield surface

80”

df af (6) O We must not go off
(beyond) the yield

surface.




Solving, and...

(1) Assuming isotropic material (shear and bulk modulus)
(2) Using deviatoric strain e and stress s

Produces the Prandlt-Reuss Material Model

Gs._ e
S;; = ZGeij mn_mn g

Y2 J

Two Equations/Two Unknowns

af (O-) Strain = Plastic + Elastic
dgij — @ + Dijkl d Uij « Plastic strain is the gradient

of the yield surface

80”

df af (6) O We must not go off
(beyond) the yield

surface.




Plastic

(this one is perfectly plastic)
Elastic

You can reengage by choosing to
believe the following...that we
have this ODE...

A 4

Deviations from
+ the average

S1 1 Sl 2 S1 3

+

S21 S22 S23

_831 S32 833_
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Prandtl Emphasis on numerical accuracy
Levy
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Saint-Venant
von Mises

Focus largely on High-speed Other analytical solutions
low speed deformation begins and numerical methods
deformation follow. Time Step a Factor.

In a code the strain rate is constant during a time step.

This enables integration of the P-R ODE either
analytically or numerically.



PrandIt-Reuss (“P-R”) Material Model

Sij = 2_ Sij

1964: Wilkins’ Radial Return Algorithm

Solves the above ODE at each time step in a hydrocode.

Given strain rate (circled), produce new estimates of stress at each time step.

Does not look like an ODE solver, though.



(" )

Radial I?eturn Three Pieces
Algorithm
Average, bulk Deviations from
pressure + the average
_811 S12 513_

G J

(1) 017, O3 Og3 P
Split the =
P 0,1 Oy Oy - P + S;1 Sy Sy
stress tensor
| 031 O3 O3 | B P | S31 S3p Szz
(2) 1
B 2 2 2 2 2 2
Use a scalar J, = g [(011 _522) + (022 _0-33) + (033 _011) ]"' Oy, 1+ 0,3+ 035

metric of ¢ Notice that p does not play a role. Only s; plays a role.

) ° Thisis the job of the radial
N return algorithm.

Ensure J,
respects Y




017 Ojpp Oj3 P Si1 S12 Sy
Oy Oy Oy | — — P + Sp1 Sy Sy
| 031 O3 O3 | B P | S31 S3p Sz

1
J, = 6 [(011 - 022)2 + (022 - 033)2 + (633 - 611)2]"' 0122 + 5223 + G:fl



017 Ojpp Oj3 P Si1 S12 Sy
Oy Oy Oy | — — P + Sp1 Sy Sy
| 031 O3 O3 | B P | S31 S3p Sz

1
‘Jz = g [(511 o 522)2 + (322 o S33)2 + (333 o S11)2 ]"' 5122 + S22:-3 + 5321



Average, bulk Deviations from
pressure the average

+
~ _ ~ _ o
(1) O;; O3 O3 P
Tl Oy Oj O3 - P +
stress tensor
| 031 O3 O3 | i P

2
NCHERS

Must Obey

Shear Deviatoric
modulus strain
Hooke’s Law using
“deviatoric” stress and strain. i j

1
Jz = g [(311 o S22)2 + (522 o S33)2 + (533 o S11)2 ]"' S122 + S223 + S321




Y 2
‘]Z(Sij)S?

Must Obey

Shear Deviatoric
modulus strain




Shear Deviatoric
modulus strain

3(s)< % S..

Must Obey IJ

E S =206¢;



S

new

°'d+AtZGe

Sij = ZGeij



e )

16)< s.t.“a' °'d+AtZGe

Must Obey
wﬂ trlal

) ’\
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\_

Radial Return
Algorithm

-

\_

Y 2
‘]Z(Sij)S?

N

Must Obey
/

\
y,
1. Compute trial deviatoric stress

| |
S =S +At2G8,

3. Scale it back so that it obeys the yield criteria
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analytically or numerically.
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PrandIt-Reuss (“P-R”) Material Model Ortiz & Popov: Generalized

Gsmnemn framework for numerical

Sij = ZGeij - Y 2 ij methods, including radial return

Kreig & Kreig: Analytical solution
and comparison to numerical

Saint-Venant

von Mises methods

Erandu Emphasis on numerical accuracy
evy
: 1940s/WW?2 1977¢) 1985@Q)

Wilkins’ = numerical

Focus largely on High-speed integration

low speed deformation begins
deformation

Other analytical solutions
and numerical methods
follow. Time Step a Factor.

Hydrocodes stay with Wilkins + Iteration
1940s/WW2

Algorithmic Obtains P-R through
Description limit process
Prandtl- . Wilkins’ Margolin & Flower Solution for
<-- Hill <-- Drucker <-- €rmmmmmnnnooeoes

Reuss Radial Return Strain-Rate Hardening
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“Hardening”

Plastic
(this one is perfectly plastic)

Elastic

N

Strain Rate

t=t+ At




PTW expects rise times
~ onthe order of 102 to
1012 seconds

With an incorrect yield
stress, the deviatoric
stress may be incorrect.

—

Yield Stress [ ) )
» Radial Return
Algorithm
_ Y

Deviatoric Stress

t=t+ At

ydrocodes provide rise
_times on the order of\
108 seconds.

...and they seek
perfectly sharp shocks.



PTW expects rise times
on the order of 10° to

1012 seconds X

With an incorrect yield
stress, the deviatoric
stress may be incorrect.

e~

—

Yield Stress )

» Radial Return
Algorithm

It is a cloudy

situation.

- / Deviatoric Stress
\

J

t=t+ At

ydrocodes provide rise
_times on the order of\
108 seconds.

...and they seek
perfectly sharp shocks.



Strain Rate Approaches as Dirac Delta

100 points
200 points ====-=
400 points rrreeee
800 points

We will now attempt to answer the
following question:

What happens if we

feed an idealized
shock, a Dirac delta,
into PTW and our
plasticity model?

Strain Rate (1/us)
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Radial Return
Algorithm

-

In 1991
Margolin and
Flower let

algorithm.

&

At =2 0in the

The result was
a Prandtl-Reuss
like equation.

~

/

\
J
1. Compute trial deviatoric stress

| |
S =S +At2G8,

3. Scale it back so that it obeys the yield criteria
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\_

Radial Return
Algorithm

N\

J

4 )

In 1991
Margolin and
Flower let

At =2 0in the
algorithm.

The result was
a Prandtl-Reuss
like equation.

& /

This has enabled an analytical study of shocks
with plastic deformation.



s, = 2G¢, +5, ; G, S\kﬁkl
Yield Stress [ i B
» Radial Return
Algorithm
S y

‘ Deviatoric Stress

Strain Rate







(@)

g,



s, = 2G¢, +5, ; G, s@.
Yield Stress [ i B
» Radial Return
Algorithm
- y

" 4

Strain Rate Deviatoric Stress

O,;, O3, Oy3 P S;1 S, Si3

Oy, Oy Oy| — — P + So; Sy, S,s




SkI ekI

3, = 2Ge, +5, é—GSU i

Yield Stress [ ) )
» Radial Return
Algorithm
_ Y

N

Strain Rate

Replace with
<: Idealized

profile.




s; = 2Ge; +5; é—Gs,J S:ﬁ“
Yield Stress [ ) )
» Radial Return
Algorithm
_ Y

o

Strain Rate

Linear
density rise




ﬂ .
Y:G.(E.j s, =208, +5, ¥ Gs, %
< Analytical 'Y Y

expressions forY,Y
ODE can be solved

analytically with
special choice for f3.

Analytical expressions for ¢,¢&

\




PTW Strength Model

Radial Return as an ODE

&

s; =2G€; +5; ;—GS

Sk| ek|
\(2

\

J

This is: Deviatoric stress during the linear density rise.

Result: Sij = — % (kp

)p(t) _/Oo (t) i
p(t) + pZ p(t) ™

Hydrocode shock shape

“Numerica

e

versus

“Analytical”

I”




Deviatoric Stress (Mbar)
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PTW Strength Model

Radial Return

of Sj;.

~ . R
s; = 2Ge; +5; %—Gs,J S'ﬁ”
- Y,
p(t) = pZpt)*t Xise
———( ko) 0 function
P(t) +,0 P(t) of shock
width,
Hydrocode shock shape W.
We can
take
Iirnw—>0



_ 1) _1—/?0 p(t)
(p) p(t) + p2 p(t) ™

The Result: 1
' Lfinal
lim,,_, S; oc—ln( ina o
pfinal initial

It is finite.

The radial return algorithm regularizes the singularity.




Computations confirm it.

Post-Shock Deviatoric Stress State (Mbar)
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Strain Rate Approaches as Dirac Delta

0 T T ' ! e
e 100 points
200 points ====-=
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N
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-% E feed an idealized
% 8| shock, a Dirac delta,
into PTW and our
plasticity model?
10 | =
12 Answer: The deviatoric

0.2 021 022 0.23 0.24 0.25 O0.JECEINELILEEALTNELIE]
Time (us) return algorithm regularizes

the singularity.




Like integrating a Dirac-delta Answer: Radial return

J‘ F(X)5(x—c)ix = f (C) regularizes the singularity

Yield Stress i R
» Radial Return
Algorithm
_ Y

‘ ' Deviatoric Stress

Strain Rate

Question: What if the idealized shock were produced (infinite strain rate)?



Like integrating a Dirac-delta Answer: Radial return

J- f (x)5(x—c)dx ~ £ (c) regularizes the singularity

Y= G( j B s, =2Ge, +s, %—Gs S:'(i“

Analytical shock shape PTW ODE Form of Radial Return
Solved that ODE and took

limit w=>0

Question: What if the idealized shock were produced (infinite strain rate)?




Next Question: How do the hydrocode
shock and the idealized shock relate in the
context of plasticity?



Shock Rise Time Required for Convergence can be Very Small

Underlying plot shown on next slide.
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Shock Rise Time Required for Convergence can be Very Small

Post-Shock to Pre-
Shock Density

Underlying plot shown on next slide.



Shock Rise Time Required for Convergence can be Very Small
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Exact Radial
Return

\

In 1991
Margolin and
Flower let

At =2 0in then
Radial Return
algorithm.

The result was
the Prandtl-
Reuss model.

Y

._ZGe +S. ——

IjY

SkI ekI
Gs; vE



4

Exact Radial
Return

In addition,

they provided Y

an analytical Sy ek,
solution. i — ZGe T S” ? - GS Y 2

For the
hardening case.



(" )

= Material Model with Hardening
Exact Radial < 266 s, Y e Suta
Return - iy iy 2

Inaddition Analytical Solution over One Time Step

they provided Y (t) F(0) fzv(t) aj” S

[t

an an.alytical 5 (1) =35 (, )Y(O) F(t) IF(t)
solution.

F(t)=Ae” +e™

For the
hardening case. ﬁ ﬁ

(ekl ekI)Y (Skl kl) _\/_t Gl
b (ekl ekI)Y (Skl kl) “ 2'([Y(t')dt




4 )
Exa Ct Ra d ia I Material Model with Hardening

Y
s —ZGe +5; — —G5s.
. Return ) iy iy 2

SkI ekI

Other analytical Analytical Solution over One Time Step
lutions: a
solutions Y (t) E (O) \/EY (t) (t)
sy (1) =, () e [Fla)de’
Yoder (1984) Y (0) F(t) IF(t)
Montmitonnet (1992)
Ristianmaa (1993) F(t) = A)e“t +e ™
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FLAG - Prior:

Poor PTW Integration + Std. Radial Return + No Iterations = Spatially Non-Convergent
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Equivalent Plastic Strain

The Prandtl-Reuss Analytical Solution with the PTW
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Forward Euler Method for PTW also Works
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Different Combinations Were Tested

Exact

Discrete Radial

Nonlinear

Spatially

Test Case R PTW: Query] PTW: Euler | PTW: Exact Viscosity effects Notes
Return Return lterations Convergent
Drastically effects solution.
Viscosity smears solution,
1 X X No .\:' . Solutions are very inaccurate
masks inaccuracies and
nonconvergence
Viscosity smears the . .
Large wall heating present in
2 X X Yes solution, wall heating is g | Ep
solution
smeared
. . Solution is closer to test case 2
Minimal effect, solution . .
3 X X X Yes solution, but still not exactly the
smears but not by a lot
same
Minimal effects, solution Solution is very similar to test
4 X X X Yes e v
wall heating is smeared case 2
Solution is identical to test case
Minimal effects, solution 2. No nonlinear iterations was
5 X X Yes

wall heating is smeared

implemented in combination
with PTW:Exact

Nathan Walter and Paul Friedrichsen

Conclusions

and reduces impact of artificial viscosity.

Analytical integration of Prandtl-Reuss eliminates spatial non-convergence

Artificial viscosity masks non-convergence and hardening rule errors

Analytical integration of Prandtl-Reuss reduces impact of no iterations.




Final Comments




Summary and Conclusions

Singular Shocks input
into PTW: What would it
mean?

Hydrocode’s relatively
wide shocks: How do

they impact PTW?

Positive outcomes for
hydrocodes

The hydrocode’s radial return algorithm
regularizes the singularity in the limit.

Hydrocode’s typical rise times are not small
enough to approximate the limiting value.

Analytical radial return:

(1) Improves stability in FLAG.

(2) Reduces the impact of artificial
viscosity.

(3) Opens the opportunity to use shock
locators with the singular solution.
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Los Alamos National Laboratory s

Computational Physics Summer Workshop

Students from across the US
compete to participate.

Research in teams of two.

Under LANL mentor(s).

US Citizens only
35 hours of lectures.

10-week Stipends:

$7,500 - $13,000
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This year’s geographic and academic diversity. =

People whom we’ve never met before.



Five Years,

104 65% Extended their relationships beyond the workshop
St?de”ts 65% Were expanded relationships to other staff

rom
across the 69% Published work from the workshop

He 48% Workshop research appears in thesis/dissertation

“The workshop was the best thing that
could have happened to me

academically. My experiences there have
completely changed the course of where |
want my career to go and what | want to
do with my life. I am incredibly grateful
that I got to be a part of it.”

Jenifer Lilieholm, 2014

CompPhysWorkshop . LANL.gov

“The workshop allowed me to
make connections with lab
scientists and help me choose
a dissertation project which
was modern, academically
interesting and scientifically
useful to the computational

physics community.”
Cori Hendon, 2011

Applications due in January
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