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Research goals 
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• Many applications in neuroscience and other fields require a high-
resolution, high-sensitivity magnetic microscope.  
 

• Magnetoecephalography (MEG): a diagnostic technique for 
studying the brain through measurements of magnetic fields 
produced by neural currents. 

 Current MEG can only measure averages over 
large numbers of neurons (104 to 105) 
 

 High-resolution magnetometery, capable of 
detecting a few neurons; 
o Full understanding of brain function 
o Direct imaging of the structure and  

composition of proteins and molecules       



Research goals 
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Micro-MEG possible 
- Revolutionary impact in ultra-sensitive microscopy  

Single neuron : 
Size  10 – 100 m  
magnetic field   50 pT 
  - out of reach of current 
technologies  



Atomic Magnetometer  
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• Atomic magnetometer:  
 based on lasers and alkali-metal (Cs, Rb, K) vapor cells  
 the most sensitive non-cryogenic magnetic-field sensor.  

• Alkali-metal: a single unpaired electron in the outer energy 
shell that can be easily manipulated.  
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Principle of atomic magnetometer 
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SERF magnetometer 

7 

Fundamental Limitation of AM: Spin-exchange collisions.  

Decoherence  
   (short T2) 

Breakthrough: Spin-Exchange Relaxation-Free (SERF) magnetometer 

• In the regime of  high density (strong spin-exchange, strong signal) 
and low magnetic field, spin-exchange collisions do not depolarize 
the spins. 

• Only SERF magnetometer can achieve subfemtotesla sensitivity in 
low frequency  



SERF magnetometer 
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SERF magnetometer eliminates spin-exchange relaxation ! 

Spin-exchange collision rate >> precession frequency 

high density,   
low magnetic field 

NO decoherence 

First demonstrations of the SERF magnetometer ( PRL V. 89, p.130801, 2002 ):  
1. Pump and probe beams were orthogonal (most optimal configuration) 
2. Sensitivity  10 fT/Hz1/2 

3. Less convenient  for miniaturization and cost reduction 



SERF Magnetometer Response 
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Bloch equation describes the response of the SERF magnetometer 
to magnetic fields:  

Steady state solution, dS/dt =0 : 
 

S : electron spin polarization vector, 
R: optical pumping rate 
S0: equilibrium electron spin polarization 
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SERF Magnetometer Response 
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Magnetometer signal proportional to the 
component of the electron spin in the 
probe propagation direction: 
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SERF Magnetometer Response  
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Second case:  is very small (nearly parallel beams configuration) 
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SERF Magnetometer Response  
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Second case:  is very small  
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SERF Magnetometer Response  
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Visualization of the optimization to the y component: 
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Resolution of SERF magnetometer 
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The fundamental sensitivity limit is due to shot-noise: 

N = the number of active atoms 
V = the cell volume, 
t  =  the measurement time 
 

Higher sensitivity  lower resolution 
Example:    1 fT/Hz1/2  cm-scale resolution 
                         (Nature V. 422, p.596, 2003) 
                     70 fT/Hz1/2  mm-scale resolution 
                         (Nat. Photonics V. 1, p.649, 2007) 

How to reach high resolution, high sensitivity?  
 Instead of reducing cell dimensions to micron size, a flux 

concentrator expands the microscopic magnetic distribution to 
match the dimensions of AM operating with high sensitivity.  



FC + AM system 
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Magnetic field of interest 
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Design of a single channel FC+AM system 
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Flux concentrator: 
• Constructed from non-conductive 

MnZn ferrites to  avoid large 
Johnson noise.  

• Noise from MnZn ferrite  fT level 
•   6500  

 
Atomic magnetometer: 

• Commercial integrated AM 
• Vapor cell size: 3mm3mm 3mm 
• Sensitivity  10 fT level ( it can be 

improved to  1 fT level). 
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Test of field transfer on FC 
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Excitation coil 
with D = 1.5mm 

Sensing coil with D = 11.6 mm, 20 turns 
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Test of field transfer on FC 
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Test of field transfer on FC 
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Moving  

Gap changes 
by moving 
ferrite cores 

Moving  

Field transfer improves with smaller gap between ferrite tips 
  - more flux is collected by ferrite 

Desired gap size  a few tens m for 
high resolution  
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Test of resolution 
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Side view 
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Test of resolution 
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• Gap between ferrite tips changed 
• Measuring three peaks means the resolution of 500 m.  

Measured signals 
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Test of resolution 
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• The distance between 
excitation coils is  0.2 mm 
and 0.3 mm.  

Resolution = 200 m 

• For higher resolution, a sharp -metal 
film (one layer) is attached on the 
ferrite tips 

• Gap of the ferrite tips  0.1mm 
 

-metal film  
3 mm 



Test of resolution 
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• The distance between excitation coils is  0.2 mm and 0.1 mm.  
• Gap of the mu-metal tips  0.1mm 

0.2mm 0.1mm 

Coil array 

scanning 

Peak 1 

Peak 2 
Peak 3 

Resolution = 100 m 



Gradient cancellation 
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Direction of scanning Bx 

Gradient coil 
position 

z =15mm 

z =0mm 

x 
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Simulation result: 
Expected Gradient Field 

AM cell area, ~ 3 mm 
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Test of AM performance 
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FC +AM system 

There are 3 axes compensation coil 
and 5 gradient compensation coil  

Gradient coil 
position 

Note: these coils cannot 
compensate the gradient on FC! 

One layer of mu-metal shied is not shown  



Test of AM performance 
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Ideal case with shielding  WITH FC in shielding 

• Flux concentrator doesn’t deteriorate AM’s performance. 
• The gradient compensation coil on the flux concentrator is 

important to get best AM’s performance. 
 



Idea of Multi-channel AM 
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2D multi-channel is possible with Large Rb cell with a buffer gas 
and  broad beams instead of 16 individual cells and beams.  

Rb cell with buffer gas 

Array of photo-detectors 

Broad probe beam 



Prototype multi-channel AM 
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Advantage of using fibers: Flexible AM 
design    



Feasibility proof in single channel 
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Cell temperature  150 C 

Bandwidth  90 Hz 



Configuration of multi-channel AM system 
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44 channels 

16 channels photodiodes array 

DFB lasers 

For shielding: 
One layer of mu-metal shield 
One ferrite box 

Compensation 
coils inside 



Preliminary sensitivity test 
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SNR of each channel : 4000 to 100 
 
Field sensitivity of each channel: 
     50 fT/Hz1/2 to 2000 fT/Hz1/2  
   

Calibration field 
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Bandwidth of each channel 
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The bandwidth of each channel is 
good, around 80 Hz 



16 channels DAQ system 
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DC  
DC powered DAQ system 



16 channels DAQ system 
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Labview program will collect data from 16 channels at same time 

Intrinsic noise at all channel  20 nVrms/Hz1/2 



future work 
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• Application of the FC+AM system to detection of magnetic 
nanoparticles which in turn are very important for 
detection of target molecules in national security, medical 
diagnostics, and other application areas. 
 Better AM will be delivered in a week 
 

• Improvement of the multi-channel AM system and keep 
checking its performance 
 Place a small coil on the vapor cell and measure the 

field distribution with 16 channels at same time. 
 Check the performance of a 44 photodiode array  

 


