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YOUNGS-TYPE MATERIAL STRENGTH MODEL IN THE
BESNARD-HARLOW-RAUENZAHN TURBULENCE EQUATIONS

NICHOLAS A. DENISSEN AND BRADLEY J. PLOHR

Abstract. Youngs [AWE Report Number 96/96, 1992] has augmented a two-phase tur-
bulence model to account for material strength. Here we adapt the model of Youngs to the
turbulence model for the mixture developed by Besnard, Harlow, and Rauenzahn [LANL
Report LA-10911, 1987].

1. Introduction

For applications to mixing driven by acceleration instabilities, Youngs [6] has devised
a model of material strength within the context of a two-fluid turbulence model. In the
present work, we adapt the model of Youngs to the turbulence model of Besnard, Harlow,
and Rauenzahn [1] (BHR), which solves for the Favre-mean conservation equations and
assumes species-mass flux via turbulent diffusion only.

After introducing the model of Youngs, the approach we take to the derivation of the
governing equations is to generalize the BHR model successively for (1) flow with fluctuating
source terms, (2) flow of the individual phases in a multiphase fluid, and (3) flow of a
multiphase fluid mixture. Step (1) is carried out in Secs. 2 and 3, whereas Steps (2) and (3)
are carried out in Sec. 4. Using these results, we specialize the BHR equations for a mixture
to account for material strength in analogy to Youngs model in Sec. 5.

Youngs begins with the two-fluid turbulence model in Ref. [5] and adds two additional
terms to account for material strength. The first is an additional dissipation term in the
turbulent kinetic energy equation (using BHR nomenclature).

∂t(ρ̄K) = −c′4
K1/2Y

S
(1.1)

where K is the turbulent kinetic energy, Y the yield stress and S the turbulent length scale.
The second addition is an inter-species drag term which is added to the species momentum
equations:

D′12 = −c′1
α1α2

S
Y
U

|U |
(1.2)

where αi are the volume fractions and U is the difference is species velocity. Thus, the
Youngs model says the effect of material strength is two-fold. It increases the dissipation
rate, and reduces fluid interpenetration. Our goal is to include both of these terms in the
BHR framework. To preview the work ahead, the end result is two sets of terms in the BHR
equations:

∂t(ρK) + . . . = −c′1
ρ

|ρ1 − ρ2|
Y

S
|a| − c′4

K1/2Y

S
(1.3)
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2. Reynolds-Averaged Conservation Laws

Besnard, Harlow, and Rauenzahn [1], and these authors together with Zemach [2], have
developed a system of evolution equations governing the flow of a turbulent two-phase mix-
ture. This system comprises: (a) the Reynolds-averaged conservation laws for the mass of
each of the two fluid constituents, for the mixture momentum, and for the mixture energy;
and (b) evolution equations for certain flow quantities that arise in the conservation laws as a
result of averaging. In this section, we derive the averaged conservation laws; cf. Refs. [2, 4].
Our attention is focused on two issues: the constitutive assumption for the stress tensor that
accounts for material strength, and the changes to the conservation laws that result from
fluctuating source terms in the momentum and energy equations.

We employ the following notation, close to that of Ref. [2], for the flow quantities: ρ, u,
I, σ, q, f , and r denote the mass density, particle velocity vector, specific internal energy,
Cauchy stress tensor, energy (i.e., heat) flux vector, specific body force vector, and specific
energy source, respectively. We allow f and r to exhibit turbulent fluctuations. Also, the
two constituents are labeled by k = 1, 2, and ρk, ck, αk, and jk denote the intrinsic mass
density, mass fraction, volume fraction, and drift (i.e., diffusive) flux vector. (In particular,
ρ ck = αk ρk.) Other notation is defined as it is introduced.

2.1. Conservation laws. The conservation laws for mass, momentum, energy, and species
(for k = 1, 2) are

∂tρ+∇ · (ρu) = 0, (2.1)

∂t(ρu) +∇ · (ρuu− σ) = ρf , (2.2)

∂t(ρE) +∇ · (ρE u− u · σ + q) = ρu · f + ρ r, (2.3)

∂t(ρ ck) +∇ · (ρ ck u+ jk) = 0 (2.4)

with E := 1
2
|u|2 + I being the specific total energy. By definition,

∑
k ck = 1 and

∑
k jk = 0;

hence summing Eq. (2.4) produces Eq. (2.1).
In regions where the flow is smooth (i.e., away from shock waves), the mass and momentum

equations imply the kinetic energy balance law

∂t(ρ
1
2
|u|2) +∇ ·

(
ρ 1

2
|u|2 u

)
= u · (∇ · σ) + ρu · f . (2.5)

Subtracting Eq. (2.5) from Eq. (2.3) shows that the specific internal energy satisfies

∂t(ρ I) +∇ · (ρ I u+ q) = σ : ∇u+ ρ r. (2.6)

2.2. Constitutive assumptions. The stress tensor decomposes as

σ = −P I + τ , (2.7)

where P := −1
3

trσ is the mean pressure and τ := devσ is the deviatoric stress tensor.
The thermal and caloric equations of state specify, respectively, the pressure P and the
specific internal energy I as functions of the mass density ρ, temperature T , and fluid
composition, determined by c1. For example, for an ideal gas, P

m
= ρRT and I

m
= cv T ,

where R =
∑

k ck Rk and cv =
∑

k ck cv,k; here Rk = NAkB/Mk and cv,k are constants for
k = 1, 2.

For a Newtonian viscous fluid, as treated in Refs. [2, 4], the deviatoric stress τ is modeled
by

τ visc := 2µ devd (Newtonian viscous fluid), (2.8)
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with µ ≥ 0 being the shear viscosity. Here d := sym(∇u) is the rate of deformation tensor. In
contrast, for an isotropic rigid-plastic or rigid-viscoplastic solid undergoing plastic yielding,
as considered by Youngs [6], τ is modeled by

τ plast :=
√

2
3
Y

devd

‖devd‖
(rigid-plastic solid), (2.9)

where Y is the dynamic yield strength of the solid. In the present work, we model τ by

τ
m
= τ visc + τ plast (2.10)

with µ =
∑

i αi µi and Y =
∑

i αi Yi being the volume-averaged shear viscosity and dynamic
yield strength.

Fourier’s law provides the model q
m
= −κ∇T for the energy flux vector, with κ being the

thermal conductivity, assumed constant. Similarly, Fick’s law gives the model jk
m
= −ρD∇ck

for the drift flux vector, with D being the mass diffusivity, also assumed to be constant.

2.3. Reynolds-averaged balance laws. We adopt a Reynolds averaging operator 〈 · 〉,
such as ensemble averaging. The associated notation employed for averages and fluctuations
of flow quantities f and g is f := 〈f〉, f ′ := f − f , ρ g̃ := 〈ρ g〉, and g′′ := g− g̃. Application
of 〈 · 〉 to Eqs. (2.1)–(2.4) yields

∂tρ+∇ · (ρ ũ) = 0 (2.11)

∂t(ρ ũ) +∇ · (ρ ũ ũ− σ) = ρ f̃ , (2.12)

∂t(ρ Ẽ) +∇ ·
(
ρ Ẽ ũ− ũ · σ + q

)
= ρ ũ · f̃ + ρ r, (2.13)

∂t(ρ c̃k) +∇ ·
(
ρ c̃k ũ+ jk

)
= 0, (2.14)

with Ẽ := 1
2
|ũ|2 + I. Appearing in these Reynolds-averaged equations are the turbulence-

enhanced stress tensor, specific internal energy, energy flux vector, specific energy source,
and drift flux vector

σ := σ −R, (2.15)

I := Ĩ +K, (2.16)

q := q + qI + qσ + qK , (2.17)

r := r̃ + rf , (2.18)

jk := jk + jck. (2.19)

Here

R := 〈ρu′′ u′′〉, (2.20)

ρK := 〈ρ 1
2
|u′′|2〉, (2.21)

qI := 〈ρ I ′′ u′′〉, (2.22)

qσ := −〈u′′ · σ〉, (2.23)

qK := 〈ρ 1
2
|u′′|2 u′′〉, (2.24)

ρ rf := 〈ρu′′ · f ′′〉, (2.25)

jck := 〈ρ c′′k u′′〉 (2.26)
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define the Reynolds stress tensor−R, the turbulence kinetic energy (TKE)K, the turbulence
energy flux vectors associated with the internal energy (qI), stress (qσ), and TKE (qK),
respectively, the turbulence specific energy source rf , and the turbulence species flux jck.

In regions where the flow is smooth, the Reynolds-averaged mass and momentum equations
imply that the mean-flow kinetic energy satisfies

∂t(ρ
1
2
|ũ|2) +∇ ·

(
ρ 1

2
|ũ|2 ũ

)
= ũ · (∇ · σ) + ρ ũ · f̃ . (2.27)

Therefore the turbulence-enhanced specific internal energy satisfies

∂t(ρ I) +∇ ·
(
ρ I ũ+ q

)
= σ : ∇ũ+ ρ r. (2.28)

On the other hand, applying the Reynolds averaging operator to Eq. (2.6) reveals that

∂t(ρ Ĩ) +∇ ·
(
ρ Ĩ ũ+ q + qI

)
= 〈σ : ∇u〉+ ρ r̃. (2.29)

Following Ref. [2], define the vector a := −〈u′′〉, which appears in the identities

ū = ũ− a, (2.30)

u′ = u′′ + a. (2.31)

Then

〈σ : ∇u〉 = σ : ∇ũ− σ : ∇a+ 〈σ′ : ∇u′〉
= σ : ∇ũ−∇ · (a · σ ) + a · (∇ · σ ) + 〈σ′ : ∇u′〉.

(2.32)

As a result, the averaged specific internal energy is governed by

∂t(ρ Ĩ) +∇ ·
(
ρ Ĩ ũ+ q + qI + a · σ

)
= σ : ∇ũ+DK + ρ r̃, (2.33)

where

DK := a · (∇ · σ )− ρ π + ρ ε, (2.34)

ρ π := 〈P ′∇ · u′〉, (2.35)

ρ ε := 〈τ ′ : ∇u′〉. (2.36)

Subtracting Eq. (2.29) from Eq. (2.28), we find that K satisfies the equation

∂t(ρK) +∇ ·
(
ρK ũ+ qK − 〈u′ · σ′〉

)
= −R : ∇ũ−DK + ρ rf . (2.37)

Hence DK is the rate of transfer of energy from K to Ĩ.

2.4. Closure. The system (2.11), (2.12), (2.14), and (2.33) involves several quantities that
require modeling. We refer to Ref. [2, Sec. 3.8] for a discussion of the averaged thermal and
caloric equations of state that determine P and Ĩ from ρ, T̃ , and c̃1. A derivation of, and
closure model for, an evolution equation governing R (and hence K) is presented in Sec. 3.
Following Ref. [2], we adopt the models

q
m
= −κ∇T̃ , (2.38)

qI
m
= −CDI τ t (∇Ĩ) ·R, (2.39)

jk
m
= −ρD∇c̃k, (2.40)

jck
m
= −CDc τ t (∇c̃k) ·R, (2.41)

π
m
= 0. (2.42)
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Here τ t := K/ε is the turbulence time scale and CDI and CDc are nondimensional constants.
In the case of a fluid, ε can be modeled by

εvisc := K3/2/L, (2.43)

where L is the turbulence length scale, which is governed by a balance law analogous to
Eq. (2.37) for K. The correct non-dimensional grouping for the inclusion of Yield strength
is:

ε :=
K3/2

L
+ c′

K1/2Y

ρ̄L
(2.44)

3. BHR Equations

In Refs. [1, 2], evolution equations are developed (in the case without fluctuating source
terms) for R and for auxiliary flow quantities such as a := −〈u′′〉 and b := ρ 〈υ′′〉 (with
υ := 1/ρ being the specific volume). These equations are equivalent (modulo some minor
changes explained below) to the following ones:

∂tR+∇ · (Rũ− 3CDR τ t sym3 {[∇ (υ̃R)] ·R})
= −2 sym [(∇ũ) ·R] + 2C2R dev sym [(∇ũ) ·R]

− 2 sym (a∇ · σ) + 2C3R dev sym (a∇ · σ)

− C1R devR/τ t − 2
3
ρ ε I,

(3.1)

∂ta+∇ · (a ũ− 2CDa τ t sym {[∇ (υ̃ a)] ·R})
= (∇υ̃) ·R+ (∇ · ũ)a+ (C2a − 1) (∇ũ) · a

+ (C3a − 1) υ̃ b∇ · σ − C1a a/τ t,

(3.2)

∂t(υ̃ b) +∇ · (υ̃ b ũ− CDb τ t [∇ (υ̃2 b)] ·R)

= 2 (∇υ̃) · a+ 2 υ̃ b∇ · ũ− C1b υ̃ b/τ t.
(3.3)

Here the C coefficients are nondimensional constants. In particular, one-half of the trace of
Eq. (3.1) is the equation for K:

∂t(ρK) +∇ · (ρK ũ− CDK ρK τ t∇K) = −R : ∇ũ− a · (∇ · σ)− ρ ε. (3.4)

(In this model for the diffusive flux of K, we have neglected devR relative to ρK and set
CDK := (10/9)CDR. As in Ref. [2], CDK is identified with Cµ.)

The derivation of these equations is now recounted and generalized to a minor extent. Our
purpose is to determine the changes in the BHR equations that result from the fluctuating
source terms ρf and ρ r.

3.1. Evolution of a covariance. Occurring frequently in Eqs. (2.20)–(2.26) is the Favre
covariance

c̃ov(g, u) := 〈ρ g′′ u′′〉/ ρ (3.5)

between a tensorial flow quantity g and the velocity u. For example, the covariance corre-
sponding to g = u is given by

ρ c̃ov(u,u) = R; (3.6)

and the covariance corresponding to g = υ is given by

ρ c̃ov(υ,u) = 〈ρ υ′′ u′′〉 = 〈ρ υu′′〉 = 〈u′′〉 = −a. (3.7)
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Suppose that g satisfies a balance law of the form

∂t(ρ g) +∇ · (ρ gu) = σg, (3.8)

with σg denoting the source of g. For example, if g = u, then by Eq. (2.2), σg = ∇·σ+ρf ;
and if g = υ, then σg = ∇ · u. As the Reynolds average of Eq. (3.8) is

∂t(ρ g̃) +∇ · [ρ g̃ ũ+ ρ c̃ov(g, u)] = σg, (3.9)

the covariance ρ c̃ov(g, u) represents the extra flux of g̃ associated with the turbulent fluc-
tuations, i.e., the turbulence flux of g.

3.2. Evolution of a covariance with the velocity. We seek the evolution equation gov-
erning c̃ov(g, u). To this end, start with the equations for g and g̃, revised using Eqs. (2.1)
and (2.11) to take the forms

ρ ∂tg + ρ (∇g) · u = σg, (3.10)

ρ ∂tg̃ + ρ (∇g̃) · ũ+∇ · [ρ c̃ov(g, u)] = σg, (3.11)

respectively. Noting that υ̃ = 1/ ρ, subtract υ̃ ρ times the second equation above from the
first:

ρ ∂tg
′′ + ρ (∇g′′) · u = −ρ (∇g̃) · u′′ + υ̃ ρ∇ · [ρ c̃ov(g, u)] + σg − υ̃ ρ σg. (3.12)

Example 3.1. If g is taken to be u, then ρ c̃ov(g, u) is R and, according to Eq. (2.2), σg is
∇ · σ + ρf . In this case Eq. (3.12) reads

ρ ∂tu
′′ + ρ (∇u′′) · u = −ρ (∇ũ) · u′′ +∇ · σ + υ̃ ρ∇ · (−σ +R) + ρf ′′. (3.13)

Next add Eq. (3.12), multiplied on the right by u′′, to Eq. (3.13), multiplied on the left
by g′′. Also add Eq. (2.1) multiplied by g′′ u′′. Combine the differentiated terms on the
left-hand side to find that

∂t(ρ g
′′ u′′) +∇ · (ρ g′′ u′′ u) = −(∇g̃) · ρu′′ u′′ + υ̃∇ · [ρ c̃ov(g, u)] ρu′′

+ σg u
′′ − υ̃ σg ρu′′ − ρ g′′ (∇ũ) · u′′ + g′′∇ · σ

+ υ̃ ρ g′′∇ · (−σ +R) + ρ g′′ f ′′.

(3.14)

Finally, substitute u = ũ + u′′ in the second term on the left-hand side and apply the
Reynolds averaging operator:

∂t [ρ c̃ov(g, u)] +∇ · [ρ c̃ov(g, u) ũ+ 〈ρ g′′ u′′ u′′〉]
= −(∇g̃) ·R+ 〈σg u′′〉 − ρ c̃ov(g, (∇ũ) · u) + 〈g′′∇ · σ〉+ ρ c̃ov(g, f).

(3.15)

Example 3.2. If g is taken to be u, as in the preceding example, then Eq. (3.15) becomes

∂tR+∇ · [Rũ+ 〈ρu′′ u′′ u′′〉]
= −2 sym [(∇ũ) ·R] + 2 sym〈u′′∇ · σ〉+ 2 ρ sym c̃ov(u, f).

(3.16)

As a consequence of the identity

〈u′′∇ · σ〉 = −a∇ · σ + 〈u′′∇ · σ′〉 = −a∇ · σ +∇ · 〈u′ σ′〉 − 〈(∇u′) · σ′〉, (3.17)

this equation becomes

∂tR+∇ · [Rũ+ 〈ρu′′ u′′ u′′〉]− 2 sym [∇ · 〈u′ σ′〉]
= −2 sym [(∇ũ) ·R]−DR + 2 ρ sym c̃ov(u, f),

(3.18)
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where the energy transfer rate tensor is

DR := 2 sym [a (∇ · σ )] + 2 sym 〈(∇u′) · σ′〉 . (3.19)

This equation governing the Reynolds tensor R coincides with the equation at the top of
page 14 in Ref. [2]. Also, half of the trace of this equation for R is Eq. (2.37) for K.

Example 3.3. If g is taken to be υ, then ρ c̃ov(g, u) = −a and σg is ∇·u. Hence Eq. (3.15)
is the governing equation for a:

∂ta+∇ · [a ũ− 〈ρ υ′′ u′′ u′′〉] = (∇υ̃) ·R+ (∇ · ũ)a− 〈(∇ · u′′)u′′〉
− (∇ũ) · a− υ̃ b∇ · σ − 〈υ′∇ · σ′〉 − ρ c̃ov(υ, f).

(3.20)

(We have decomposed u as ũ+ u′′ and σ as σ + σ′.)

Remark. Multiplying Eq. (3.20) by ρ, adding a times Eq. (2.11), and invoking the identities

〈(∇ · u′′)u′′〉 = 〈(∇ · u′)u′〉+ (∇ · a)a, (3.21)

〈ρ υ′′ u′′ u′′〉 = −υ̃ 〈ρ′ u′ u′〉+ 2aa (3.22)

yields an alternative form of the governing equation for a:

∂t(ρa) +∇ · (ρa ũ) + ρ (∇ū) · a = −ρ∇ · [υ̃ 〈ρ′ u′ u′〉]− υ̃ (∇ρ) ·R+ ρ∇ · (aa)

− b∇ · σ − ρ 〈υ′∇ · σ′〉 − ρ 〈(∇ · u′)u′〉 − ρ 〈f ′′〉.
(3.23)

If f = 0, this equation is the combination of equations (28) and (29) in Ref. [2] under the
assumption, made therein, that ∇ · u′ = 0.

3.3. Evolution of a general covariance. More generally, the Favre covariance between
the flow quantities g and h is

c̃ov(g, h) := 〈ρ g′′ h′′〉/ ρ. (3.24)

Manipulations similar to those in Sec. 3.2 show that

∂t(ρ g
′′ h′′) +∇ · (ρ g′′ h′′ u) = −(∇g̃) · ρu′′ h′′ − ρ g′′ (∇h̃) · u′′

+ υ̃∇ · [ρ c̃ov(g, u)] ρ h′′ + υ̃ ρ g′′∇ · [ρ c̃ov(h, u)]

+ σg h
′′ − υ̃ σg ρ h′′ + g′′ σh − υ̃ ρ g′′ σh.

(3.25)

Averaging then yields the equation governing c̃ov(g, h):

∂t [ρ c̃ov(g, h)] +∇ · [ρ c̃ov(g, h) ũ+ 〈ρ g′′ h′′ u′′〉]
= −(∇g̃) · ρ c̃ov(u, h)− ρ c̃ov(g, (∇h̃) · u) + 〈σg h′′〉+ 〈g′′ σh〉.

(3.26)

Example 3.4. If g and h are both taken to be υ, then Eq. (3.26) is the equation governing
the Favre variance var(υ) := c̃ov(υ, υ) = υ̃2 b:

∂t(υ̃ b) +∇ · [υ̃ b ũ+ 〈ρ υ′′ υ′′ u′′〉] = 2 (∇υ̃) · a+ 2 υ̃ b∇ · ũ+ 2 〈υ′′∇ · u′′〉. (3.27)

(Again we have decomposed u as ũ+ u′′.)

Remark. Multiplying Eq. (3.27) by ρ, adding υ̃ b times Eq. (2.11), and invoking the identities

〈υ′′∇ · u′′〉 = 〈υ′∇ · u′〉 − υ̃ b∇ · a, (3.28)

〈ρ υ′′ υ′′ u′′〉 = 〈υ′ u′〉+ (−b+ 1) υ̃ a (3.29)
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along with ũ = ū+ a yields an alternative form of the governing equation for b:

∂tb+ ū · ∇b+ (b+ 1) υ̃∇ · (ρa) + ρ∇ · 〈υ′ u′〉 − 2 ρ 〈υ′∇ · u′〉 = 0, (3.30)

which is Eq. (34) in Ref. [2].

3.4. Closure. The equations governing R, a, and b, viz., Eqs. (3.18), (3.20), and (3.27),
are not closed because of the appearance of several unknown averages. Closures for these
quantities were proposed in Refs. [1, 2].

3.4.1. Closure for the equation governing R. As in Refs. [1, 2] we close Eq. (3.18) for R by
modeling the second term in the energy transfer rate tensor (3.19) by

2 sym 〈(∇u′) · σ′〉 m
= dev {C1RR/τ t − 2C2R sym [(∇ũ) ·R]− 2C3R sym (a∇ · σ)}

+ 2
3

(ε− π) I
(3.31)

and adopting the models (2.42) and (2.44) along with

〈ρu′′ u′′ u′′〉 m
= −3CDR τ t sym3 {[∇ (υ̃R)] ·R} , (3.32)

sym [∇ · 〈u′ σ′〉] m
= 0. (3.33)

Here C1R, C2R, C3R, CDR, and Cµ are nondimensional constants. Thus we obtain Eq. (3.1)
augmented by the term 2 ρ sym c̃ov(u, f). In particular, the term 〈ρu′′ ·f ′′〉 is added to the
right-hand side of Eq. (3.4).

3.4.2. Closure for the equation governing a. We close Eq. (3.20) for a in a manner similar
to that of Refs. [1, 2]:

−〈υ′∇ · σ′〉 m
= −C1a a/τ t + C2a (∇ũ) · a+ C3a υ̃ b∇ · σ, (3.34)

〈ρ υ′′ u′′ u′′〉 m
= 2CDa τ t sym {[∇ (υ̃ a)] ·R} , (3.35)

〈(∇ · u′′)u′′〉 m
= 0. (3.36)

Here C1a, C2a, C3a, and CDa are nondimensional constants. Thus we obtain Eq. (3.2) aug-
mented by the term −ρ c̃ov(υ, f).

Remark. In effect, the closure model of Ref. [2], which assumes that ∇ · u′ = 0, takes

〈ρ υ′′ u′′ u′′〉 m
= 2CDa τ t υ̃ sym [(∇a) ·R] + 2aa, (3.37)

〈(∇ · u′′)u′′〉 m
= (∇ · a)a (3.38)

instead of Eqs. (3.35) and (3.36). Notice that in this formulation the diffusing flow quantity
is a instead of υ̃ a.

3.4.3. Closure for the equation governing b. We also close Eq. (3.27) for b in a manner similar
to that of Refs. [1, 2]:

2 〈υ′′∇ · u′′〉 m
= −C1b υ̃ b/τ t, (3.39)

〈ρ υ′′ υ′′ u′′〉 m
= −CDb τ t

[
∇
(
υ̃2 b
)]
·R, (3.40)

Here C1b and CDb are nondimensional constants. Thus we obtain Eq. (3.3).
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Remark. In effect, the closure model of Ref. [2] takes

2 〈υ′′∇ · u′′〉 m
= −C1b υ̃ b/τ t − 2 υ̃ b∇ · a, (3.41)

〈ρ υ′′ υ′′ u′′〉 m
= −CDb τ t υ̃

[
∇
(

1 + b

ρ

)]
·R+ (−b+ 1) υ̃ a (3.42)

instead of Eqs. (3.39) and (3.40). In this formulation the diffusing flow quantity is υ̃ (1 + b)
instead of υ̃2 b.

3.5. Summary. Thus the effects of the fluctuating source terms ρf and ρ r on the BHR
equations are that (a) Eq. (3.1) governingR is augmented by the term 2 ρ sym c̃ov(u, f) and
(b) Eq. (3.2) governing a is augmented by the term −ρ c̃ov(υ, f). In particular, Eq. (3.4)
governing ρK is augmented by the term 〈ρu′′ · f ′′〉.

4. Multiphase Fluid Flow

This section concerns a flowing continuum that is a mixture of multiple fluid phases. Our
goal is to relate flow quantities associated with each phase to a corresponding quantity for
the mixture.

4.1. Phase-specific quantities. The phases are labeled by the subscript k. Flow quantities
associated with the phases are constructed with the aid of the phase indicator function βk:
for each realization of the flow, βk(x, t) equals 1 if x belongs to the spatial region occupied
by phase k at time t, and it equals 0 otherwise. For a flow quantity f , the Reynolds average
〈βk f〉 weighted by βk is specific to phase k.

The notation we employ for averaging is αk fk := 〈βk f〉 and αk ρk g̃k := 〈βk ρ g〉, where
αk := 〈βk〉 is the volume fraction of phase k and ρk := 〈βk ρ〉/〈βk〉 is the intrinsic mass
density of phase k. We recognize the Favre average 〈ρ βk〉/ρ of βk as the Favre averaged
mass fraction c̃k of phase k. Therefore

ρ c̃k = 〈βk ρ〉 = αk ρk. (4.1)

is the mass density of phase k within the mixture. Notice that, because
∑

k βk = 1,∑
k

αk = 1 and
∑
k

c̃k = 1. (4.2)

In addition, f ′k := f − fk and g′′k := g − g̃k denote the fluctuations within phase k, and
αk ρk c̃ovk(g, h) := 〈βk ρ g′′k h′′k〉 defines the Favre covariance c̃ovk(g, h) within phase k of flow
quantities g and h.

4.2. Sum rules. A flow quantity associated with the mixture, regarded as a single con-
tinuum, can be related to the corresponding phase-specific quantities. If f and g are flow
quantities, then ∑

k

αk fk =
∑
k

〈βk f〉 = f, (4.3)∑
k

ck g̃k =
∑
k

〈βk ρ g〉/ρ = g̃. (4.4)

The sum rules for covariances are somewhat more complicated. Let us adopt the notation

gD
k := g̃k − g̃ (4.5)
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for the variation in g associated with drift. Then if g and h are flow quantities,∑
k

c̃k c̃ovk(g, h) =
∑
k

〈βk ρ (g − g̃k) (h− h̃k)〉/ρ = 〈ρ g h〉/ρ−
∑
k

c̃k g̃k h̃k (4.6)

and ∑
k

c̃k g
D
k h

D
k =

∑
k

c̃k g̃k h̃k − g̃ h̃. (4.7)

Adding these two equations reveals that∑
k

c̃k c̃ovk(g, h)︸ ︷︷ ︸
intra−phase

+
∑
k

c̃k g
D
k h

D
k︸ ︷︷ ︸

inter−phase

= c̃ov(g, h). (4.8)

Thus the covariance in the mixture is the sum over intra-phase covariances plus an inter-
phase covariance associated with drift.

Remark. If there are only two phases, then because g̃ = c̃1 g̃1 + c̃2 g̃2,

gD
1 = c̃2 (g̃1 − g̃2), (4.9)

gD
2 = −c̃1 (g̃1 − g̃2). (4.10)

Therefore ∑
k

c̃k g
D
k h

D
k = c̃1 c̃2 (g̃1 − g̃2) (h̃1 − h̃2). (4.11)

4.3. Source terms arising from f . According to Eq. (3.18), the source term for R arising
from f is 2 ρ sym c̃ov(u, f), which can be related to intra- and inter-phase quantities through
the rule (4.8):

2 ρ sym c̃ov(u, f) = 2 ρ sym
∑
k

c̃k c̃ovk(u, f) + 2 ρ sym
∑
k

c̃k u
D
k f

D
k . (4.12)

Similarly, Eq. (3.20) shows that the source term for a arising from f is

− ρ c̃ov(υ, f) = −ρ
∑
k

c̃k c̃ovk(υ, f)− ρ
∑
k

c̃k υ
D
k f

D
k . (4.13)

On the other hand, Eq. (2.12) implies that the source term for ρ ũ arising from f is

ρ f̃ = ρ
∑
k

c̃k f̃k (4.14)

by virtue of rule (4.4). Finally, by Eq. (2.13), the source term for ρ Ẽ arising from f is

ρ ũ · f̃ + ρ rf = ρ ũ · f̃ +
∑
k

〈βk ρu′′k · f ′′k 〉+ ρ
∑
k

c̃k u
D
k · f D

k . (4.15)

The source term for ρK arising from f , obtained by forming one-half of the trace of the
source term for R, is

〈ρu′′ · f ′′〉 =
∑
k

〈βk ρu′′k · f ′′k 〉+ ρ
∑
k

c̃k u
D
k · f D

k . (4.16)

No other balance laws involve f .
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5. Material Strength Model

In this section, we apply the foregoing results to model the effect of material strength on
turbulent flow. The development starts with the material strength model of Youngs [6] for
two-phase flow and obtains the corresponding turbulent mixture equations.

5.1. Material strength model for two-phase flow. Youngs [6] has developed, within
the context of a two-phase turbulence model, a model for the effect of material strength. In
essence, this model involves a viscoplasticity-related drag term added to the turbulent flow
equations. In the notation of Sec. 4, it takes

α1 ρ1 f̃1
m
= −C ′1 α1 α2

Y

L

U

|U |
, (5.1)

α2 ρ2 f̃2
m
= C ′1 α1 α2

Y

L

U

|U |
(5.2)

along with r̃
m
= 0. Here U := ũ1 − ũ2 is the two-phase flow velocity difference,

Y = α1 Y1 + α2 Y2 (5.3)

is the volume-weighted average of the yield strengths Yk of the two phases, and C ′1 is a
nondimensional constant. In particular,

f̃1 − f̃2 = −C ′1
(
α2

ρ1

+
α1

ρ2

)
Y

L

U

|U |
= −C ′1

ρ

ρ1 ρ2

Y

L

U

|U |
. (5.4)

5.2. Material strength model for the mixture. The material strength model that we
propose for a two-phase mixture derives from Youngs’ model under the assumption that each
intra-phase covariance is negligible compared to the inter-phase covariance.

For Youngs’ model, Eq. (4.14) shows that

f̃ = 0, (5.5)

and because there are only two phases,∑
k

c̃k u
D
k f

D
k = c̃1 c̃2 (ũ1 − ũ2) (f̃1 − f̃2) = −C ′1 c̃1 c̃2

ρ

ρ1 ρ2

Y

L

U U

|U |
, (5.6)

∑
k

c̃k υ
D
k f

D
k = c̃1 c̃2 (υ̃1 − υ̃2) (f̃1 − f̃2) = −C ′1 c̃1 c̃2 (υ̃1 − υ̃2)

ρ

ρ1 ρ2

Y

L

U

|U |
. (5.7)

We neglect each intra-phase covariance in Eqs. (4.12), (4.13), (4.15), and (4.16); therefore
we preliminarily take the source terms for R, a, ρ Ẽ, and ρK to be

2 ρ sym c̃ov(u, f)
m
= −2C ′1 c̃1 c̃2

(ρ)2

ρ1 ρ2

Y

L

U U

|U |
, (5.8)

−ρ c̃ov(υ, f)
m
= +C ′1 c̃1 c̃2 (υ̃1 − υ̃2)

(ρ)2

ρ1 ρ2

Y

L

U

|U |
, (5.9)

ρ ũ · f̃ + ρ rf
m
= −C ′1 c̃1 c̃2

(ρ)2

ρ1 ρ2

Y

L
|U | , (5.10)

〈ρu′′ · f ′′〉 m
= −C ′1 c̃1 c̃2

(ρ)2

ρ1 ρ2

Y

L
|U | , (5.11)
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respectively. Note that υ̃k = 1/ρk.

5.3. Correspondence with Two-Phase Flow. The preliminary model of the previous
section involves the quantityU := ũ1−ũ2, which is not calculated by the governing equations
for the mixture. To address this issue, we develop a correspondence between these quantities
and ones that are, in fact, calculated in the BHR model.

As a = −ρ c̃ov(υ,u), neglect of each intra-phase covariance in Eq. (4.8) results in the
approximation

a ≈ −ρ c̃1 c̃2 (υ̃1 − υ̃2) (ũ1 − ũ2). (5.12)

Similarly, as b = (ρ)2 c̃ov(υ, υ), we make the approximation that

b ≈ (ρ)2 c̃1 c̃2 (υ̃1 − υ̃2)
2. (5.13)

Hence U := ũ1 − ũ2 and υ̃1 − υ̃2 can be calculated, modulo an undetermined sign, from a
and b:

U
m
= − 1

ρ c̃1 c̃2 (υ̃1 − υ̃2)
a, (5.14)

|υ̃1 − υ̃2|
m
=

1

ρ

(
b

c̃1 c̃2

)1/2

. (5.15)

With the aid of this correspondence, we arrive at our material strength model: the source
terms for R, a, ρ Ẽ, and ρK are

2 ρ sym c̃ov(u, f)
m
= −2C ′1

ρ

|ρ1 − ρ2|
Y

L

aa

|a|
, (5.16)

−ρ c̃ov(υ, f)
m
= −C ′1

b

|ρ1 − ρ2|
Y

L

a

|a|
, (5.17)

ρ ũ · f̃ + ρ rf
m
= −C ′1

ρ

|ρ1 − ρ2|
Y

L
|a| , (5.18)

〈ρu′′ · f ′′〉 m
= −C ′1

ρ

|ρ1 − ρ2|
Y

L
|a| , (5.19)

respectively.
The codes are able to compute these terms from the BHR and hydro equations. The

species densities are computed from the equations-of-state via the pressure/temperature
equilibration assumption.
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6. FLAG Implementation

The model is implemented in the FLAG hydrocode in the same framework described in
Ref. [3]. The equations are, in Lagrangian form:

ρ̄
DK

Dt
= aj

∂p̄

∂xj
+

∂

∂xj

(
µT
σk

∂K

∂xj

)
−Rij

∂ũi
∂xj
− K

S

(
ρ̄
√
K +

cs4Ȳ√
K

)
− cs1

ρ̄

|ρ1 − ρ2|
Ȳ

S
|ai|

ρ̄
DS

Dt
=

S

K

[(
3

2
− C4

)
aj
∂p̄

∂xj
−
(

3

2
− C1

)
Rij

∂ũi
∂xj

]
+

∂

∂xj

(
µT
σS

∂S

∂xj

)
−
(

3

2
− C2

)(
ρ̄
√
K +

cs4SȲ√
K

)
− cs1

ρ̄

|ρ1 − ρ2|
Ȳ

K
|ai|

ρ̄
Dai
Dt

= b
∂p̄

∂xi
+ ρ̄

∂aiaj
∂xj

− ρ̄aj
∂ũi − ai
∂xj

− Rij

ρ̄

∂ρ̄

∂xj
+

∂

∂xj

(
µT
σa

∂ai
∂xj

)
−Caai

S

(
ρ̄
√
K +

cs4aȲ√
K

)
− cs1

b

|ρ1 − ρ2|
Ȳ ai
S|ai|

ρ̄
Db

Dt
= 2ρ̄aj

∂b

∂xj
− 2(b+ 1)aj

∂ρ̄

∂xj
+ ρ̄2 ∂

∂xj

(
µT
ρ̄2σb

∂b

∂xj

)
− Cb

b

S

(
ρ̄
√
K +

cs4bȲ√
K

)
with the new terms highlighted in red. Ȳ is computed by the volume averaging the material
contributions. For completeness, the dissipation terms were added to all equations. The
relevant parameter values are taken from Youngs where possible. Two equations do not have
analogous terms in the Youngs model. For the b equation the strength-based dissipation is
set to zero. This is the assumption that dissipation based on yield does not contribute to
molecular mixing. In the S equations, various assumptions are possible. The cs4S parameter
can be set to zero, which mean the yield strength does not affect the turbulent length scale.
Alternatively it can be set such that the strength-based dissipation does not change the
classical viscous dissipation rate ε. This can be derived from the definition S = K3/2/ε and
for standard BHR parameters gives cs4S = −2.381. This choice is found to be the most
stable.

cs1 cs4 cs4S cs4a cs4b
2.0 1.0 -2.381 1.0 0.0

Table 6.1. Parameter Values

The pressure/temperature equilibrium assumption sets volume fractions of the species,
which allow us to compute species-specific densities. The mean yield stress is computed
using these volume fractions.

Ȳ = α1Y1 + α2Y2

This creates a distribution of Yield strength across the mixing layer.
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2006.

[5] D. L. Youngs. Numerical simulation of mixing by rayleigh–taylor and richtmyer–meshkov instabilities.
Laser and Particle Beams, 12:725, 1994.

[6] D. L. Youngs. Inclusion of the effect of material strength in a turbulent mixing model. Report Number
96/96, Atomic Weapons Establishment, 1997.

Los Alamos National Laboratory, X–Computational Physics Division
E-mail address: denissen@lanl.gov

Los Alamos National Laboratory, Theoretical Division
E-mail address: plohr@lanl.gov


	1. Introduction
	2. Reynolds-Averaged Conservation Laws
	2.1. Conservation laws
	2.2. Constitutive assumptions
	2.3. Reynolds-averaged balance laws
	2.4. Closure

	3. BHR Equations
	3.1. Evolution of a covariance
	3.2. Evolution of a covariance with the velocity
	3.3. Evolution of a general covariance
	3.4. Closure
	3.5. Summary

	4. Multiphase Fluid Flow
	4.1. Phase-specific quantities
	4.2. Sum rules
	4.3. Source terms arising from f

	5. Material Strength Model
	5.1. Material strength model for two-phase flow
	5.2. Material strength model for the mixture
	5.3. Correspondence with Two-Phase Flow

	6. FLAG Implementation
	References

