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ABSTRACT 

Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo 
simulations in diffusive media. We present a new DDMC method for linear, steady-state, radiation 
transport on Adaptive Mesh Refinement (AMR) meshes in two-dimensional Cartesian geometry. We 
specifically examine the cases of (i) a regular mesh structure without refinement, (ii) a refined mesh 
structure where neighboring cells differ in refinement, and (iii) a boundary mesh structure at the 
interface between a diffusive region (where DDMC is used) and a non-diffusive region (where standard 
Monte Carlo is employed). With a test problem consisting of both diffusive and non-diffusive regions, 
we demonstrate that our new DDMC technique is more computationally efficient than standard Monte 
Carlo while still producing accurate solutions. 

Key Words: Hybrid Monte Carlo-diffusion~ Adaptive mesh refinement 

1. INTRODUCTION 

Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo 
radiation-transport simulations in diffusive media [1 - 5]. This type of media is characterized by a small 
mean-free path and collisions that are primarily scattering events. A standard Monte Carlo simulation in 
this regime consists of extremely long particle histories due to the small distance between collisions and 
lack of absorption, a situation that results in a computationally inefficient calculation. In DDMC, particles 
take discrete steps between spatial cells according to a discretized diffusion equation. Since each DDMC 
step replaces many small Monte Carlo steps, DDMC should be more efficient than standard Monte Carlo in 
diffusive media. In addition, given that DDMC is based on diffusion theory, DDMC should produce 
accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form 
a hybrid method that can treat problems with both diffusive and non-diffusive regions. 

In this paper, we present a DDMC method for linear, steady-state, radiation transport on Adaptive Mesh 
Refinement (AMR) meshes in two-dimensional Cartesian geometry [5]. This type of mesh is characterized 
by local refinement such that spatial cells may have multiple neighboring cells across each face and is 
commonly employed in Eulerian hydrodynamics calculations [6, 7]. Although we examine a simplified 
problem, our ultimate goal is to extend the methodology developed here to coupled 
radiation-hydrodynamics simulations [8]. Developing a DDMC method for AMR meshes is important for 
these types of calculations for two reasons. First, diffusive regions arise in such problems due to the 
linearization of the underlying nonlinear, time-dependent, radiation-transport process [9]. Second, if an 
AMR mesh is employed in the hydrodynamics portion of the simulation, then a DDMC technique 
amenable to this type of mesh must be used for the corresponding radiation-transport calculation. 
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We begin the remainder of this paper by developing our DDMC method for AMR meshes. We specifically 
examine the cases of (i) a regular mesh structure without refinement, (ii) a refined mesh structure where 
neighboring cells differ in refinement, and (iii) a boundary mesh structure representing the interface 
between diffusive and non-diffusive regions. The treatment of a boundary mesh structure demonstrates 
how to couple DDMC to standard Monte Carlo. With a test problem consisting of both diffusive and 
non-diffusive regions, we compare our new DDMC technique to both standard Monte Carlo and Random 
Walk (RW) [10, 11], another hybrid method for increasing the efficiency of Monte Carlo simulations in 
diffusive media. We conclude with a brief discussion summarizing our new DDMC technique and 
outlining areas for future work. 

2. DEVELOPMENT OF DDMC EQUATIONS 

We begin by considering the following steady-state, monoenergetic, diffusion equation [12] : 

(1 ) 

Here, ¢(r) is the scalar flux, :Et(r) is the total cross section, :Ea(r) is the absorption cross section, Q(r) is 
the radiation source, and r = xi+ yj is the spatial variable in two-dimensional Cartesian geometry. We 
assume that Eq. (1) is valid in some problem subdomain that has been designated for simulation by DDMC 
and that standard Monte Carlo is employed in the remainder of the problem. In order to couple DDMC and 
and standard Monte Carlo, we employ the asymptotic diffusion-limit boundary condition. At a point ron 
the boundary of the DDMC region, this boundary condition is given by [ 13] 

2 { W(IO · ni) 'I/Jb(r, O)dO = ¢ +: n · V¢ 
Jn·n<O 6 t 

Here, '1/Jb(r, 0) is the angular flux incident on the boundary of the DDMC region in direction n due to a 
simultaneous Monte Carlo simulation, d ~ 0. 7104 is the extrapolation distance, and n is the the 
unit -outward normal vector on the boundary. In addition, W (J.i) is a transcendental function well 
approximated by 

(2) 

(3) 

Our DDMC method is developed by discretizing Eqs. (1) and (2) on an AMR mesh. We adapt the work of 
Edwards [14] and Olson and Morel [15] by giving the resulting finite-difference equations a Monte Carlo 
interpretation. This discretization has the desirable properties that it (i) converges as the mesh size is 
refined and (ii) preserves linear solutions. The specific type of AMR mesh our DDMC technique employs 
consists of orthogonal cells with the following properties [7]: 

• The lowest-level (i.e., coarsest level) mesh is uniform with a mesh spacing of ~x and ~y. 

• Higher-level (i.e., finer-level) meshes are constructed by dividing the mesh spacing of the 
lowest-level mesh by factors of two. 

• Neighboring cells may only differ by one level of refinement such that each cell may have a 
maximum of two neighbors on each face. 
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2.1. Regular Mesh Structure 

We first examine a regular mesh structure without refinement as illustrated in Fig. 1. We will present the 
DDMC equation corresponding to cell 3, although the equations for other cells can be developed in a 
similar manner. Using a standard finite-difference discretization of Eq. (1) [14, 15] and rearranging terms 
shows the DDMC equation for cell 3 to be 

(I;3-+2 + L;3-+5 + I;3-+4 + I;3-+ 1 + I;a,3) ¢3 = 
1 

Q3 + ~x~y (I;2-+3¢2 + I;5-+3¢s + E4-+3¢4 + I;l-+3¢1) ~x~y . (4) 

Here, we have defined the leakage cross sections as 

E3-+2 = I;2-+3 = ( -
1
- ) 

2 2 

~y 3(L;t,3 + Et,2) 
(5) 

E3-+5 = Es-+3 = ( -
1
- ) 

2 2 

~x 3(Et,3 + Et,s) 
(6) 

E3-+4 = E4-+3 = ( -
1
- ) 

2 2 

~y 3(Et,3 + Et,4) 
(7) 

and 

E3-+1 = I;l-+3 = ( -
1
- ) 

2 2 

~x 3(E t,3 + L;t,l) 
(8) 

In Eqs. (5)-(8), we have used appropriate cell-averaged values for the scalar flux, cross sections, and 
radiation source. 

2 

I 3 5 

LX 
4 

Figure 1. Regular Mesh Structure 

We now give Eq. (4) a Monte Carlo interpretation. This equation can be viewed as an infinite-medium 
transport problem for a given cell. From the left side of Eq. (4), particles can undergo leakage reactions to 
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neighboring cells or be absorbed. The right side ofEq. (4) contains not only the usual radiation source term 
but also source terms corresponding to particles experiencing leakage reactions in neighboring cells. These 
leakage source terms can be interpreted as the total rate at which particles undergo leakage reactions in 
adjacent cells (i.e., the leakage cross section multiplied by the cell-averaged scalar flux multiplied by the 
the cell volume) divided by the volume of the current cell such that leaked particles are distributed evenly 
over the cell. 

2.2. Refined Mesh Structure 

Next, we consider the case where neighboring cells differ by one level of refinement. An example of this 
type of mesh is given in Fig. 2. To demonstrate our DDMC methodology, we develop discretized versions 
of Eq. (l) for for cells 3 and 7. We note that cell 7 is one level of refinement higher than cell 3, and the 
refined mesh spacing is .6.x /2 and .6.y /2. 

2 

6 

7 9 

l 3 

8 

L, 4 

Figure 2. Refined Mesh Structure 

Analogous to the derivation of Eq. ( 4 ), a finite-difference approximation of Eq. ( 1) for cell 3 [ 14, 15] and a 
rearrangement of terms yields 

(:E3-r2 + :E3-r7 + :E3-r8 + :E3-+4 + :E3-rl + :Ea,3) ¢3 = 

1 1 .6.x.6.y 
Q3 + f:1xf:1y (:E2-r3¢2 + :E4-r3¢4 + :El-+3¢1) f:1xf:1y + f:1xf:1y (:E7-r3¢7 + :E8-r3¢8) -

4
- · (9) 

In addition to the leakage cross sections given by Eqs. (5), (7), and (8), we have defined the leakage cross 
sections between the two refinement levels as 

:E3-+7 = :E3-r8 = ( -
1
- )

2 
- ---

4
----

.6.x 3(4:Et,3 + :Et,7 + :Et,s) 

and 
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Also, the DDMC equation corresponding to cell 7 is 

(E7-+6 + E7-+9 + E7-+8 + E7-+3 + Ea,7) ¢7 = 

4 ~x~y 4 
Q7 + ~x~y (E6-+7¢6 + E9-+7¢9 + Es-+7¢s) - 4- + ~x~y E3-+7¢3~x~y . (12) 

Here, the leakage cross sections on the refined mesh are given by 

E7-+6 = E6-+7 = (~ ) 
2 

3(E :_I: ) 
y t,7 t,8 

(13) 

E7-+9 = E9-+7 = (~x)
2 

3(E : E ) 
t,7 t,9 

(14) 

and 

E7--+8 = Es--+7 = (~y) 
2 

3(Et,7: E1,8 ) - (~x) 
2 

3(4Et,3 + ~t,7 + Et,s) 
(15) 

Equations (9) and (12) are amenable to Monte Carlo simulation in the same manner as Eq. (4). Note the 
extra coefficients of four and one-fourth on some of the leakage source terms in these equations. These 
coefficients are due to the factor of four difference in cell volume between refinement levels. One difficulty 
in a Monte Carlo simulations of Eq. (12) is that it is possible for the leakage cross section given by Eq. (15) 
to be negative. This undesirable situation is avoided if 

( ~y)
2 < 4Et,3 + Et,7 + Et,s 

~x - Et,7 + Et,8 
(16) 

Equation (16) is always satisfied for meshes with an aspect ratio of unity (i.e., ~x = ~y) [14]. 

2.3. Boundary Mesh Structure 

Finally, we examine the boundary of a DDMC region, as depicted in Fig. 3. We assume that an angular flux 
is incident on the left face of cell 3 due to a simultaneous Monte Carlo simulation in the neighboring 
non-diffusive region. 

To develop a DDMC equation for cell 3, we employ the asymptotic interface method [16, 17]. This 
interface technique determines how to convert Monte Carlo particles incident on the boundary of the 
DDMC region into DDMC particles and how to convert DDMC particles that leave a DDMC region into 
Monte Carlo particles. As its name implies, this interface method is based on the asymptotic diffusion-limit 
boundary condition given by Eq. (2). The asymptotic interface method has the desirable property that it can 
produce accurate solutions in the interior of DDMC regions regardless of the angular distribution of 
incident Monte Carlo particles. 

Discretizing Eqs. (1) and (2) shows the DDMC equation for cell 3 to be 

(E3-+2 + E3-+5 + E3-+4 + E3-+b + Ea,3) ¢3 = 

1 
Q3 + ~x~y (E2-+3¢2 + Es-+3¢s + E4-+3¢4) ~x~y 

+ ~ 1" { { P(IO · nj)jn · nl'l/Jb(r, O)dOdS . (17) 
xuy lav3 ,b Jn·n<O 
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2 

n 3 5 

4 

X L 
Figure 3. Boundary Mesh Structure 

Here, 8V3,b is the left face of cell 3 and n = - i is the unit-outward normal vector on this face. In addition, 
we have defined the leakage cross section E3-;b as 

E __ 1_ 2 
3--;b - 6.x 3Et,36.x + 6d ' 

(18) 

and the conversion probability to be 

4 
P(p) = 3Et 36.x + 6d (0.91 + 1.635p,) 

' 

(l9) 

Equation ( 17) has a Monte Carlo interpretation similar to that of Eq. ( 4 ). The only difference on the left 
side is a leakage cross section corresponding to DDMC particles leaving the DDMC region through the left 
face of cell 3. On the right side there is now a source term due to Monte Carlo particles incident on the 
boundary of the DDMC region. This source term corresponds to the rate at which radiation is incident on 
the cell face in a given direction times the conversion probability given by Eq. ( 19), integrated over all 
incident directions. Thus, we can sample Eq. ( 19) to determine if an incident Monte Carlo particle is 
converted into a DDMC particle. If a particle is converted, it begins transporting via DDMC in cell 3. 
Otherwise, the particle is placed on the boundary of the DDMC region and continues transporting 
according to standard Monte Carlo in the adjacent non-diffusive region. The directions of Monte Carlo 
particles not converted into DDMC particles and DDMC particles that that leave the DDMC region can be 
sampled using techniques given by Davidson et al. [18]. 

3. NUMERICAL RESULTS 

We now demonstrate the accuracy and increased efficiency, with respect to standard Monte Carlo and RW, 
of our new DDMC method for AMR meshes with a test problem consisting of both diffusive and 
non-diffusive regions. This problem features a purely scattering region with an embedded duct. The duct is 

Joint International Topical Meeting on Mathematics & Computation and 
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, CA, 2007 

6/12 



A Hybrid Monte Carlo-Diffusion Method for AMR Meshes 

void and has a dogleg midway through the purely scattering region. The geometry of this test problem is 
depicted in Fig. 4. In Regions I and III, :Et = 100 cm- 1, :Ea = 0 cm- 1, and Q = 0 cm- 3-s- 1, while in 
Region II, :Et = 0 cm- 1, :Ea = 0 cm- 1, and Q = 0 cm-3-s- 1 . An isotropic incident flux is prescribed at the 
entrance of the duct (10 em~ x ~ 15 em, y = 0 em) with an incoming current of 1 cm- 2-s- 1. All other 
boundaries are vacuum. 

y (em) 

35 

20 

15 

0 
0 

I 

II 

III 

10 15 20 25 35 

x (em) 

Figure 4. Problem Geometry 

The computational mesh for this problem is illustrated in Fig. 5. Note that this mesh has three different 
levels of refinement, a unit aspect ratio, and cell sizes ranging from 2.5 em (250 mean-free paths) to 0.625 
em (62.5 mean-free paths). We simulated this problem using standard Monte Carlo, RW, and a hybrid 
method consisting of standard Monte Carlo in the duct and DDMC in the purely scattering region. All 
three simulations only use standard Monte Carlo in the duct; the only purpose of a grid in this region is to 
collect scalar flux estimates. The purely scattering region has three different grid sizes, and thus this 
problem will test the ability of our new DDMC method to handle an AMR mesh. In each simulation, we 
use l 0 million particles. 

As stated previously, RW is another hybrid method for increasing the efficiency of Monte Carlo 
simulations in diffusive media [ 10, 11]. In RW, particles take macrosteps over spheres centered about their 
current positions. The radius of a RW sphere is chosen such that the sphere fits inside the particle's current 
spatial cell, and the macrostep is governed by an analytic solution to the diffusion equation within the 
sphere. In order to ensure the accuracy of the diffusion solution, the RW sphere radius (as measured in 
mean-free paths) is required to be larger than a specified minimum radius >.. If this minimum-radius 
criteria is not satisfied, RW is disabled and the particle transports according to standard Monte Carlo (for 
this reason, only standard Monte Carlo is used in the duct during the RW simulations). We note that, 
although the analytic diffusion solution is more accurate for larger spheres, RW will be invoked more often 
if>. is decreased. Thus, choosing a large value of >. will lead to a more accurate simulation at the expense 
of efficiency. In contrast, a smaller value of >. will improved efficiency while decreasing accuracy. In the 
calculations presented in this paper, we use two versions of RW; one with a minimum sphere radius of>.= 
5 and one with a minimum sphere radius of>. = 20. 
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The scalar flux resulting from these simulations is plotted in Figs. 6-8. These figures give the scalar flux as 
a function of x for three values of y. The first value (y = 10.3125 em) corresponds to a row of cells midway 
down the first leg of the duct, the second value (y = 15.3125 em) corresponds to the row of cells just after 
the duct makes a tum to the right, and the third value (y = 20.3125 em) corresponds to the row of cells just 
after the duct makes a tum to the left. From these figures, we see that the hybrid Monte Carlo-DDMC and 
RW with A = 20 solutions agree well with the standard Monte Carlo results, while the scalar flux calculated 
by RW using A= 5 is systematically too low. In particular, it appears that RW with A= 5 does not capture 
the boundary layer on the right side of the duct (the small increase in the scalar flux) as seen in Figs. 7 and 
8. This result is surprising, since the conventional wisdom is that RW should be able to capture 
boundary-layer effects because RW is disabled near cells faces (since the sphere radius is too small) and 
particles transport according to standard Monte Carlo. It is also interesting to note that the agreement 
between the hybrid and standard Monte Carlo calculations is quite good at x = 25 em in Fig. 7. This 
agreement is impressive, since the geometry in this comer of the duct is two-dimensional, while the 
asymptotic interface method and the corresponding boundary condition given by Eq. (2) are based on a 
one-dimensional analysis. 

In addition to yielding accurate solutions, the hybrid Monte Carlo-DDMC simulation provides a greater 
efficiency increase than RW over standard Monte Carlo. For this problem, the hybrid calculation was 484 
times faster than standard Monte Carlo, while the RW calculation using A = 5 was only 4 times faster than 
standard Monte Carlo. The RW calculation with A = 20, although accurate, was even less efficient than the 
A = 5 simulation~ it was only 1.44 times faster than standard Monte Carlo. 

4. CONCLUSIONS 

We have presented a new DDMC method for linear, steady-state, radiation transport on AMR meshes in 
two-dimensional Cartesian geometry. We have specifically examined the cases of (i) a regular mesh 
structure without refinement, (ii) a refined mesh structure where neighboring cells differ in refinement, and 
(iii) a boundary mesh structure representing the interface between diffusive and non-diffusive regions. The 
treatment of a boundary mesh structure determines how to couple DDMC, a technique used in diffusive 
regions, to standard Monte Carlo, a method employed in the remainder of the problem domain. 

With a test problem consisting of both diffusive and non-diffusive regions, we have demonstrated the 
improved efficiency of our new DDMC technique with respect to both standard Monte Carlo and RW. 
Specifically, we observed the hybrid Monte Carlo-DDMC calculation to be two order of magnitude faster 
than standard Monte Carlo, while RW outperformed standard Monte Carlo by at most a factor of four. In 
addition, DDMC yielded scalar fluxes that agreed well with standard Monte Carlo solutions. In contrast, 
RW results could be quite erroneous unless the minimum sphere radius was chosen to be sufficiently large, 
a situation that further decreased the efficiency of RW. 

We stated in the introduction of this paper that our ultimate goal is to apply this new DDMC method for 
AMR meshes to coupled radiation-hydrodynamics calculations. To meet this goal, several issues remain 
for future work. First, we must develop a technique for automatically determining which problem regions 
to simulate with DDMC without user intervention. In the test problem presented in this paper, we selected 
a priori the regions to employ DDMC in, a liberty that is not practical in real calculations. In addition, this 
DDMC method must be adapted to both curvilinear (i.e., spherical and cylindrical) geometries and 
energy-dependent problems. 
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