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Abstract

Reduced-order models provide a means for greatly accelerating the detailed simulations that will be
required to manage CO2 storage operations. In this work, we investigate the use of one such method,
POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems.
This method combines trajectory piecewise linearization (TPWL), in which the solution to a new
(test) problem is represented through a linearization around the solution to a previously-simulated
(training) problem, with proper orthogonal decomposition (POD), which enables solution states
to be expressed in terms of a relatively small number of parameters. We describe the application
of POD-TPWL for CO2-water systems simulated using a compositional procedure. Stanford’s
Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the
full-order training simulations and provides the output (derivative matrices and system states)
required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is
the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure)
control. Simulation results are presented for CO2 injection into a synthetic aquifer and into a
simplified model of the Mount Simon formation. Test cases involve the use of time-varying well
controls that differ from those used in training runs. Results of reasonable accuracy are consistently
achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full-
order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model
construction corresponds to the computational requirements for about 2.3 full-order simulation
runs. A preliminary treatment for POD-TPWL modeling in which test cases differ from training
runs in terms of geological parameters (rather than well controls) is also presented. Results in this
case involve only small differences between training and test runs, though they do demonstrate that
the approach is able to capture basic solution trends. The impact of some of the detailed numerical
treatments within the POD-TPWL formulation is considered in an Appendix.

ii



Contents

Abstract ii

List of Figures vi

List of Tables vii

Executive Summary ix

1 Introduction 1

2 POD-TPWL for CO2-Water Systems 4
2.1 CO2-Water Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 POD-TPWL Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 POD and Constraint Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 POD-TPWL Point Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 POD-TPWL Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Rate-Controlled Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Numerical Simulation Results 12
3.1 Model 1: Synthetic Aquifer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Problem Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 POD-TPWL Results with BHP Controls (Model 1) . . . . . . . . . . . . . . 14
3.1.3 POD-TPWL Results with Rate Controls (Model 1) . . . . . . . . . . . . . . . 17

3.2 Model 2: Mount Simon Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Problem Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 POD-TPWL Results with BHP Controls (Model 2) . . . . . . . . . . . . . . 22
3.2.3 POD-TPWL Results with Rate Controls (Model 2) . . . . . . . . . . . . . . . 23

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Geological Perturbation 30
4.1 POD-TPWL Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Problem Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 POD-TPWL Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Summary and Conclusions 36

Acknowledgments 38

Appendix A Constraint Reduction for POD-TPWL 39
A.1 Summary of Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.4 POD-TPWL Model and Assessment of Error . . . . . . . . . . . . . . . . . . . . . . 44

A.4.1 Trajectory Piecewise Linearization . . . . . . . . . . . . . . . . . . . . . . . . 45
A.4.2 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 46
A.4.3 Constraint Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.4.4 Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



A.4.5 Total Error of POD-TPWL Model . . . . . . . . . . . . . . . . . . . . . . . . 49
A.5 Optimal Constraint Reduction Procedures . . . . . . . . . . . . . . . . . . . . . . . . 50

A.5.1 General Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.5.2 Galerkin Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.5.3 Petrov-Galerkin Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.6 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.7 Numerical Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.7.1 POD-TPWL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.7.2 Error Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.7.3 Case 1: Oil-Water Flow with Equal Phase Densities . . . . . . . . . . . . . . 58
A.7.4 Case 2: Oil-Water Flow with Unequal Phase Densities . . . . . . . . . . . . . 61
A.7.5 Case 3: Compositional Simulation . . . . . . . . . . . . . . . . . . . . . . . . 66

A.8 Inverse Projection and Weighted Inverse Projection Constraint Reduction Methods . 69
A.8.1 Method Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.8.2 Numerical Results using IP and WIP . . . . . . . . . . . . . . . . . . . . . . 72

A.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix B POD-TPWL for CO2 EOR 76

References 88

iv



List of Figures

1 Simulation grid (left, areal view) and horizontal injection wells (right) . . . . . . . . 13
2 Permeability field for storage aquifer (log k is shown) . . . . . . . . . . . . . . . . . . 13
3 Time-varying BHPs for training and target simulations (Model 1) . . . . . . . . . . . 15
4 CO2 injection rates for test case with α = 0.3 (Model 1) . . . . . . . . . . . . . . . . 15
5 CO2 injection rates for test case with α = 0.5 (Model 1) . . . . . . . . . . . . . . . . 16
6 CO2 injection rates for test case with α = 0.8 (Model 1) . . . . . . . . . . . . . . . . 16
7 Time-varying rate specifications for training and target simulations (Model 1) . . . . 17
8 CO2 injection well BHPs for test case with α = 0.5 (Model 1) . . . . . . . . . . . . . 18
9 CO2 injection well BHPs for test case with α = 1.0 (Model 1) . . . . . . . . . . . . . 18
10 Color maps for CO2 overall molar fraction at 4000 days with α = 1.0 (Model 1) . . . 19
11 Comparison of CO2 overall molar fraction between POD-TPWL and AD-GPRS at

4000 days and 10,000 days for test case with α = 1.0 (Model 1) . . . . . . . . . . . . 20
12 Areal grid and well locations for simplified Mount Simon model . . . . . . . . . . . . 21
13 Permeability field for simplified Mount Simon model (log kx is shown, kx in mD) . . 22
14 Time-varying BHPs for training and target simulations (Model 2) . . . . . . . . . . . 22
15 CO2 injection rates for test case with α = 0.3 (Model 2) . . . . . . . . . . . . . . . . 23
16 CO2 injection rates for test case with α = 0.8 (Model 2) . . . . . . . . . . . . . . . . 24
17 Time-varying rate specifications for training and target simulations (Model 2) . . . . 25
18 CO2 injection well BHPs for test case with α = 1.0 (Model 2) . . . . . . . . . . . . . 26
19 Color maps for CO2 overall molar fraction zg in layer 25 (Model 2) . . . . . . . . . . 27
20 Absolute differences in zg in layer 25 at 4000 and 6000 days (Model 2). Upper plots

display differences between full-order training and test results, while lower plots
display differences between POD-TPWL and AD-GPRS test solutions . . . . . . . . 28

21 Comparison of pressure and CO2 molar fraction between POD-TPWL and full-order
reference solutions (Model 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

22 Permeability field (in log k) and well locations for geological perturbation example . 32
23 Injection rates in training and test cases (rates are the same for both wells) . . . . . 32
24 Injection well BHPs for test cases with all transmissibilities perturbed by constant

factors (Well 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
25 Injection well BHPs for test case with perturbed vertical transmissibilities (Well 1) . 35
26 Injection well BHPs for test case with perturbed transmissibilities in layers 23–27

(Well 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
27 Reservoir model for Cases 1 and 2 (permeability in the x-direction is shown) . . . . 58
28 Time-varying BHPs for the primary training simulation for Cases 1 and 2 . . . . . . 59
29 Time-varying BHPs for the test simulation for Cases 1 and 2 . . . . . . . . . . . . . 59
30 Amplification factor γi for each time step in Case 1 . . . . . . . . . . . . . . . . . . . 60
31 Oil production rate for Producer 1 in Case 1. Results for Test (AD-GPRS), GLK 70 100

and PG 70 100 essentially overlay one another . . . . . . . . . . . . . . . . . . . . . 61
32 Water injection rate for Injector 1 in Case 1. Results for Test (AD-GPRS) and

GLK 70 100 essentially overlay one another . . . . . . . . . . . . . . . . . . . . . . . 62
33 Oil production rate for Producer 1 in Case 2 . . . . . . . . . . . . . . . . . . . . . . 63
34 Water injection rate for Injector 1 in Case 2 . . . . . . . . . . . . . . . . . . . . . . . 63
35 Amplification factor γi for each time step in Case 2 . . . . . . . . . . . . . . . . . . . 64
36 Maps of log10(maxi γ

i) for Cases 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . 65
37 Water injection rate for Injector 1 in Case 2, with lp and lS selected based on Figure 36c 66
38 Reservoir model for Case 3 (log-permeability is shown) . . . . . . . . . . . . . . . . . 67

v



39 Time-varying BHPs for the primary training simulation for Case 3 . . . . . . . . . . 67
40 Time-varying BHPs for the test simulation for Case 3 . . . . . . . . . . . . . . . . . 68
41 Maps of log10(maxi γ

i) for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
42 Oil production rate for Producer 1 in Case 3 . . . . . . . . . . . . . . . . . . . . . . 69
43 Gas production rate for Producer 1 in Case 3 . . . . . . . . . . . . . . . . . . . . . . 70
44 Gas injection rate for Injector 1 in Case 3 . . . . . . . . . . . . . . . . . . . . . . . . 70
45 Maps of log10(maxi γ

i) for IP and WIP for Case 3 . . . . . . . . . . . . . . . . . . . 72
46 Geological model and well locations (from [20, 39]) . . . . . . . . . . . . . . . . . . . 76
47 Time-varying BHPs for training case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 77
48 Time-varying BHPs for training case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 77
49 Time-varying BHPs for test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
50 Oil production rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
51 Gas production rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
52 CO2 injection rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



List of Tables

1 Timings for various modeling components (in seconds) . . . . . . . . . . . . . . . . . 37
2 Summary of error for Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3 Summary of error for Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4 Summary of error for Case 1, with IP and WIP . . . . . . . . . . . . . . . . . . . . . 73
5 Summary of error for Case 2, with IP and WIP . . . . . . . . . . . . . . . . . . . . . 73
6 Summary of error for Case 3, with IP and WIP . . . . . . . . . . . . . . . . . . . . . 73

vii



Executive Summary

The methods and results presented in this topical report represent the accomplishments under
Task 4 of the overall project on ‘Simplified Predictive Models for CO2 Sequestration Performance
Assessment.’ Task 4 was concerned with Reduced-Order Method (ROM) based Models, and the
research associated with this task was performed at Stanford University. The need for reduced-
order modeling is motivated by the observation that, although flow simulation can be used to
design and manage CO2 sequestration projects, the large number of detailed runs required for
some applications (such as computational optimization and uncertainty assessment) can lead to
great computational expense. Computationally-efficient procedures, including numerical reduced-
order models, which have been applied in related areas such as oil reservoir simulation, may thus
be very useful for these problems.

In this work, we explore the use of trajectory piecewise linearization (TPWL) combined with
proper orthogonal decomposition (POD) for simulating CO2 storage problems. POD-TPWL models
of this type have been successfully used for oil-water and oil-gas compositional reservoir simulation
problems. The basic approach with POD-TPWL is to first perform one (or a few) full-order
‘training’ runs, which entail high-fidelity (full-order) flow simulations under a prescribed set of
well controls (e.g., time-varying bottom-hole pressures or rates). For subsequent (test) runs, which
involve different well control settings, the solution at each time step is represented based on a
linearization around a training solution. The use of POD, which allows us to represent solution
states (e.g., pressure and overall mole fraction in every grid block) in terms of a small number
of parameters, along with a constraint reduction procedure, which projects the set of governing
equations into a low-dimensional subspace, provides a high degree of efficiency.

The full-order simulations applied in this work use a two-phase, two-component (CO2 and
water) formulation within Stanford’s Automatic Differentiation-based General Purpose Research
Simulator (AD-GPRS). This simulator was modified to output the state and derivative matrices
required to construct the POD-TPWL model. New features introduced in this work, in addition
to the application of POD-TPWL to CO2 sequestration simulations, are the use of rate-control
specifications for wells and the incorporation of horizontal injectors into the model. Because of the
way in which AD-GPRS represents wells, the use of rate-controlled wells in POD-TPWL requires
additional matrix manipulations in the model construction step.

CO2 storage with both a synthetic (channelized) aquifer and an approximate model of the Mount
Simon formation (planned for use with FutureGen 2.0) is considered for test cases that involve wells
controlled by both time-varying bottom-hole pressures and rates. Generally accurate results are
obtained for well quantities and for CO2 plume location, though the accuracy of the POD-TPWL
model is seen to degrade as the controls used in test cases deviate from those applied in training
runs. Runtime speedups with POD-TPWL for these cases are about a factor of 370 relative to
high-fidelity AD-GPRS simulations. The overhead required to construct the POD-TPWL model
(including training runs) is equivalent to about the time required for 2.3 full-order runs.

The POD-TPWL model is then extended to allow parameters associated with the geologic
model to be perturbed in test runs. Preliminary results using this capability in two-dimensional
models, in which all block-to-block transmissibilities are multiplied by a constant value relative
to the training run, demonstrate that the POD-TPWL model is able to capture general trends in
the relevant well quantities. The differences between test- and training-case results are, however,
very small in the scenarios considered. Results are also presented for a CO2-enhanced oil recovery
problem, which demonstrates the use of POD-TPWL for problems where CO2 is both utilized and
sequestered.

An Appendix to this report presents a detailed assessment of constraint reduction procedures

viii



for POD-TPWL models of the type considered here. As noted above, the constraint reduction
procedure projects the set of governing equations into an appropriate subspace of much lower di-
mension. The approach used in previous POD-TPWL models of oil-water systems was the Galerkin
projection procedure, in which the left-projection matrix is the transpose of the POD basis matrix
used to concisely represent the system states. In this work, we show that the use of a (different) so-
called Petrov-Galerkin procedure leads to much better stability properties in POD-TPWL models
of oil-water and oil-gas compositional systems. This is the approach used in all of the CO2 storage
simulations presented in this report.
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for CO2 Sequestration 1 INTRODUCTION

1 Introduction

The carbon dioxide generated by the combustion of fossil fuels in power stations represents a large

component of worldwide greenhouse gas emissions. These emissions are major contributors to

global climate change, so it is important that they be reduced substantially. The use of carbon

capture and storage (CCS), in which CO2 is separated from the flue gas stream exiting the power

plant and then injected into deep subsurface formations, represents a means for reducing CO2

emissions to the atmosphere [8]. There are two large CCS projects that have been operating for

many years, namely the Sleipner project in the Norwegian North Sea [2], started in 1996, and the

Weyburn project in Canada [73], started in 2000. Another large CO2 storage project, the In Salah

project in Algeria [76], started in 2004 but suspended CO2 injection in 2011. Projects of similar

scale have also been proposed in the United States, such as that associated with (recently canceled)

FutureGen 2.0 [7].

Large-scale subsurface flow simulation can be used to design and manage CO2 storage projects,

and a number of modeling tools have been introduced; e.g., [26, 29, 30, 57, 58]. Formations

under consideration for use in CO2 storage include depleted oil and gas reservoirs and deep saline

aquifers (the latter are much more widely available). Issues of concern in carbon storage include

those associated with injectivity and pressure buildup (i.e., can sufficient CO2 be injected without

activating faults or fracturing the cap rock), tracking the location of the CO2 plume, and minimizing

the possibility for leakage of CO2 or brine into fresh-water aquifers (or into the atmosphere).

Several researchers have applied computational optimization procedures in order to minimize

the risk of leakage from the storage formation. This includes the work of Nghiem et al. [50, 51], who

optimized injection strategies for individual wells, and studies by Cameron & Durlofsky [13, 14],

who optimized well locations and time-varying injection rates for multiple horizontal injectors, with

the goal of minimizing the amount (or the overall mobility) of CO2 at the top of the formation. In

the latter study [14], the impact of geological uncertainty was considered, both in the placement

of injection wells and in their subsequent operation. History matching was also performed, in

conjunction with optimization, within a ‘closed-loop’ framework.

Studies of this type are limited, however, by the need to perform (potentially) thousands of

simulation runs. In many optimization problems, the required simulations often resemble one

another fairly closely, since well control parameters are varied gradually during the course of the

optimization. This suggests that computationally-efficient alternative procedures, such as reduced-

order models (ROMs) or other types of ‘proxy’ or ‘surrogate’ models, may be appropriate for these

problems. Numerical ROM procedures have been widely investigated within the context of oil

reservoir simulation (as discussed below), though their use for CO2 storage problems has not yet

been considered. The goal of this work is to test the application of one such ROM, namely POD-

TPWL (proper orthogonal decomposition — trajectory piecewise linearization), for simulations of

CO2 storage.

Although numerical ROMs of the type considered here do not appear to have been applied

for CO2 storage problems, a number of other proxy models, which use simplified physics and

DOE Award No. DE-FE0009051, Task #4 1
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statistical fits, have been developed. Burton et al. [11], for example, implemented a simplified-

physics model for CO2 injection based on modified Buckley-Leverett theory [52], which provided

reasonable accuracy in gas saturation distribution. Oruganti & Mishra [56] evaluated this model by

comparing its performance with results from a numerical simulator, and this led them to develop

a modified version of the model with improved accuracy. All of these models, however, are for a

single well injecting into a homogeneous formation, so their direct use for, e.g., rate optimization

in multiwell problems, will be limited.

Simplified-physics models have also been developed by Nordbotten et al. [53–55] and Gasda et

al. [33]. These researchers used vertical equilibrium assumptions to construct simplified analytical,

numerical and numerical-analytical hybrid models, which are able to simulate CO2 migration at

reduced computational cost. These models only considered vertical wells, however, and it is not

clear if and when they are applicable (or what modifications are required) for horizontal injectors. In

addition, these approaches approximate some important physical effects, such as the dissolution of

CO2 into brine and saturation variations within the brine phase. In many cases these are reasonable

approximations, but in some situations they may lead to inaccuracy.

Wriedt et al. [75] developed a response surface methodology using a Box-Behnken experimental

design to quantify model response for CO2 injection problems. Anbar [1] proposed an approach

with a design based on space-filling maxmin Latin Hypercube sampling to provide estimates of the

CO2 storage capacity of an aquifer. Schuetter et al. [64, 65] tested and analyzed these statistical

proxy models, and observed that they were able to provide acceptable results in the cases tested.

However, these approaches can lose accuracy when the response surfaces are very smooth (in which

case the output is not sensitive to the parameters), or when a test case falls at or near the ‘edge’

of the input space. In general, to assure a high degree of accuracy in output quantities, a large

number of samples are required (which means a large number of full-order simulations must be

performed).

In our work here, we consider ROMs in which the proxy model is constructed by applying a

set of specific numerical procedures to the full system of discretized equations. Such approaches

commonly employ proper orthogonal decomposition (POD), which enables the representation of the

full-order states (e.g., pressure and saturation in every grid block in a two-phase flow problem) in a

low-dimensional subspace. A number of ROM procedures employ only POD (e.g., [18, 43, 67, 70]),

though these approaches have been found to provide limited speedup (e.g., a factor of ten at best)

for nonlinear problems of the type considered here.

Nonlinearity can be treated efficiently through the use of linearization (discussed below) or by

introducing an approximation of the nonlinear terms. The latter approach includes the discrete

empirical interpolation method (DEIM), which entails the interpolation of nonlinear terms following

their evaluation at a few selected locations. DEIM has been applied in the context of porous media

problems by Chaturantabut & Sorensen [22] and Ghasemi et al. [36]. These approaches are quite

promising, though so far they have only been applied to porous media problems with relatively

simple physics. In addition, DEIM techniques are more invasive with respect to the simulator than
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the POD-TPWL procedure developed here.

POD-TPWL methods handle nonlinear effects through (piecewise) linearization. With this

approach, new solutions are represented using a truncated Taylor series expansion around previously

simulated solutions. The solution states and the system of equations are projected into a low-

dimensional subspace using POD-based procedures. The method requires overhead corresponding

to the time required for a few full-order simulations (most of this time is spent performing full-order

‘training’ runs), though subsequent (test) runs are extremely fast. The basic TPWL approach was

introduced by Rewienski and White [62] for the modeling of nonlinear circuits and micromachined

devices. Within a reservoir simulation setting, POD-TPWL has been applied to oil-water problems

by Cardoso & Durlofsky [16, 17], He et al. [41] and Fragoso et al. [31], to idealized thermal problems

by Rousset et al. [63], and to oil-gas compositional problems by He & Durlofsky [39, 40]. Reasonable

levels of accuracy have been achieved for simulations in which the well controls in test runs are

relatively ‘close’ to those used in training runs. Runtime speedups of up to a factor of ∼ 500 have

been reported [16]. The method has also been successfully applied for well control optimization

[16, 17, 31, 39], though some ‘retraining’ may be required when the test controls differ substantially

from those used in the initial training runs.

The surrogate-modeling approaches discussed above are applicable in certain cases, but all

have limitations which restrict their use. For example, as noted earlier, the simplified-physics

models in [11] and [56] were for single wells operating in homogeneous formations. It may be

challenging to generalize these approaches to heterogeneous models with multiple wells. Statistical

proxy models also have important limitations, including the need for large numbers of ‘training’

runs (samples) in problems that are characterized by many parameters (especially when detailed

output information is desired). Within the context of numerical ROMs, neither POD-DEIM nor

POD-TPWL procedures have been developed for carbon storage applications. POD-TPWL has,

however, been successfully applied for compositional reservoir simulation. These models have not

included horizontal or rate-controlled wells, and both of these capabilities will be important for

realistic carbon storage simulations.

Our goal in this study is to develop and apply a POD-TPWL procedure for geological car-

bon sequestration problems. We will consider CO2-water compositional systems, with injection

accomplished via multiple horizontal wells, which could be controlled by specifying either bottom-

hole pressure or rate. This capability will be tested using both a synthetic aquifer model and an

approximate model for the Mount Simon formation (which was the injection target for Future-

Gen 2.0). Both models involve nonuniform grids covering very large domains (to represent regional

aquifers). We will also implement a prototype approach for treating geological perturbations within

the POD-TPWL framework.

This report proceeds as follows. In Section 2, we present the governing equations for the flow

of CO2 and water in subsurface formations. The POD-TPWL formulation for this system is then

described. In Section 3, POD-TPWL results are presented for both a synthetic model with two

horizontal CO2 injectors, and for an idealized Mount Simon model involving four horizontal CO2
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injectors. The formulation and initial results for POD-TPWL models with geological perturbations

are presented in Section 4. In Section 5 we provide concluding remarks and some suggestions for

future research.

Appendix A presents a detailed assessment of constraint reduction procedures within the context

of POD-TPWL models for oil-gas and oil-water systems. This Appendix will appear as a paper

in International Journal for Numerical Methods in Engineering. Within the body of this report,

this work is referenced as He and Durlofsky [40]. Results demonstrating the use of POD-TPWL

for CO2 EOR (enhanced oil recovery), which represents a potential means to simultaneously utilize

and store anthropogenic CO2, are presented in Appendix B.

2 POD-TPWL forCO2-Water Systems

In this section, we present the full-order compositional model for the CO2-water problem, including

the choice of primary variables. The formulation and workflow for the CO2-water POD-TPWL

model are then described. The formulation and presentation here closely resemble those for the

oil-gas compositional POD-TPWL implementation presented by He and Durlofsky [39, 40], and

those papers should be consulted for full details.

2.1 CO2-Water Flow Equations

The CO2-water system considered in this work could be treated using either a black-oil or a com-

positional formulation. Here we use a compositional approach. We proceed in this way because the

compositional model treats the solubility of CO2 as a function of both pressure and composition in

the water phase, rather than as a function of pressure only, as in the black-oil model implemented

in Stanford’s AD-GPRS (which is the simulator used in this work). This treatment provides a more

accurate representation of dissolution trapping of CO2, which is an important trapping mechanism.

The system contains two components – CO2, designated g (for gas), and water, designated w.

Both components can exist in either the gas or water phases, which are also denoted by g and w.

The mass balance equation for each component c (c = g, w) can be written as:

∂

∂t
[φ(Swρwxc + Sgρgyc)] − ∇ · [k(λwρwxc∇Φw + λgρgyc∇Φg)]

+
∑
w

(ρwxcq
w
w + ρgycq

w
g ) = 0.

(1)

Here t denotes time, φ is porosity, Sg and Sw indicate gas and water phase saturation, and xc and yc

represent the molar fractions of component c in the water and gas phases. Other variables include

the permeability tensor k, phase mobility λj (where λj = krj/µj , with j = g or w, krj denotes

relative permeability to phase j, and µj is phase viscosity), and phase density ρj . The variable qwj
denotes the source term for well w. The phase potential Φj is defined as

Φj = pj − ρjg(D −Dref), (2)
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where pj is phase pressure, D is depth, Dref is a reference depth, and g is gravitational acceleration.

The compositional system described by Eq. 1 is fully defined after the introduction of phase

equilibrium and other (simple) constraints (e.g., Sg + Sw = 1). See [38] for details. Note that,

in this study, we take the capillary pressure between the gas and water phases to be zero. This

simplification may be reasonable for injection-period simulations of the type performed here, but

capillary pressure effects (particularly capillary heterogeneity) have been shown to be important

during the equilibration phase [45]. These effects should be included in future implementations.

As described in [3], the full system (in general) involves ncnp + 2np equations and variables for

each grid block, where nc and np denote the number of components and phases. In our CO2-water

model, nc = np = 2. We thus have a total of eight unknowns in the general case (which are pg, pw,

Sg, Sw and xc and yc in both phases, for c = g, w). Neglecting capillary pressure, this reduces to

seven unknowns. The system is, however, fully defined by only two variables (the so-called primary

variables), which are determined by solving Eq. 1 for both components. Various choices can be used

for the primary variables, as discussed in [39]. Consistent with that work, the primary variables

used here are pressure and overall molar fraction for the water component, denoted zw and given

by zw = Sgyw +Swxw. This formulation is referred to as the molar formulation, which is discussed

in detail by [72].

As in previous POD-TPWL implementations for reservoir simulation [16, 39, 41, 63], the full-

order simulation equations are discretized using the usual finite volume formulation with a fully-

implicit time discretization. Following discretization, the set of nonlinear algebraic equations can

be expressed as:

g(xn+1,xn,un+1) = 0, (3)

where g is the residual vector we seek to drive to zero, x represents the system states (p and zw

in every grid block), n indicates the previous time level and n + 1 the next time level, and un+1

designates the control parameters, which define the well (source) terms. In an actual simulation,

xn is known and un+1 is specified, and the goal is to compute xn+1. In previous POD-TPWL

implementations, wells were controlled by specifying bottom-hole pressure (BHP). In this work,

we introduce the use of well rate specifications, which is useful for CO2 storage problems since we

often wish to inject a particular volume of CO2 at each time step.

The nonlinear system defined by Eq. 3 is typically solved using Newton’s method. This en-

tails, at each iteration for every time step, constructing the (sparse) Jacobian matrix, which is of

dimensions 2nb × 2nb, and then solving a linear system of dimension 2nb, where nb is the number

of grid blocks in the model (the factor of two enters since there are two primary equations and

unknowns per grid block). In models involving relatively few components (as is the case here), this

linear solution is typically the most time consuming part of the flow simulation. The attraction of

POD-TPWL is that we avoid the construction and solution of this high-dimensional (2nb × 2nb)

system during the inline (runtime) computations.
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2.2 POD-TPWL Formulation

The POD-TPWL procedure entails linearization of the (discrete) equations, the construction of

basis matrices to represent the states concisely, constraint reduction to reduce the number of equa-

tions that must be solved, and a point selection scheme to determine the previous state/controls

around which to linearize. We now describe each of these treatments. See [39, 40] for full details.

In trajectory piecewise linearization (with or without POD), the idea is to use the states and

derivative matrices generated and saved during so-called training runs for the representation of

solutions to problems that involve a different set of controls. Simulations with new controls are

referred to as test runs. In the equations presented below, the superscripts i and i + 1 denote

consecutive time steps in the training simulations, and n and n+ 1 indicate consecutive time steps

in test simulations.

We proceed by representing the residual vector for a test run in terms of a Taylor series expansion

around the residual vector for a training run. Applying Eq. 3, we then have

gn+1 = 0 ≈ gi+1 +
∂gi+1

∂xi+1
(xn+1 − xi+1) +

∂gi+1

∂xi
(xn − xi) +

∂gi+1

∂ui+1
(un+1 − ui+1), (4)

where gi+1 = g(xi+1,xi,ui+1) = 0 since this is a (previously simulated) training run solution, and

gn+1 = g(xn+1,xn,un+1) is also set to 0 since this is the equation we wish to solve. Note that the

Taylor series expansion is truncated at first order.

After rearrangement, Eq. 4 can be written as:

Ji+1(xn+1 − xi+1) = −[Ai+1(xn − xi) + Bi+1(un+1 − ui+1)], (5)

with the three matrices defined as

Ji+1 =
∂gi+1

∂xi+1
, Ai+1 =

∂gi+1

∂xi
, Bi+1 =

∂gi+1

∂ui+1
. (6)

Note that Ji+1 is the Jacobian matrix at time step i + 1 of the training simulation, evaluated for

the converged system.

In order to achieve a high degree of computational efficiency, we now seek to approximate

the 2nb × 2nb linear system given by Eq. 5 in a low-dimensional subspace. Two additional steps

are required in order to accomplish this – the representation of states using proper orthogonal

decomposition, and the application of constraint reduction to project the set of linear equations to

a low dimension. We now describe these two procedures.
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2.2.1 POD and Constraint Reduction

In proper orthogonal decomposition (POD), a basis matrix Φ is introduced to enable the represen-

tation of the state variables x in terms of a reduced state vector ξ:

x ≈ Φξ. (7)

We construct Φ by performing singular value decomposition (SVD) of so-called snapshot matrices

formed during training simulations. Following [39], this procedure is performed separately for the

two state variables p and zw. Recall that the full-order training runs provide the full solution at

each time step. The states determined during these runs are entered as columns in the snapshot

matrices Xp and Xz; i.e., we construct

Xp = [p1,p2, · · · ,pL], Xz = [z1w, z
2
w, · · · , zLw], (8)

where the vectors pi and ziw indicate the pressure and overall water molar fraction in each of the

nb grid blocks at time step i in a training run. The total number of snapshots is L; these could all

derive from one training run, or they could be generated using multiple training runs. Each of the

snapshot matrices is thus of dimensions nb × L.

From the SVDs of Xp and Xz (which are performed separately), we obtain the left singular

vectors, which comprise the columns of the basis matrices Φp and Φz. Each matrix could contain

a maximum of L columns, though we typically do not retain all L columns. Rather, based on an

energy criterion, or limited numerical experimentation [39, 40], we retain lp columns in Φp and lz

columns in Φz (generally, lp 6= lz).

Using these matrices, the state variables are represented as:

x =

[
xp

xz

]
≈ Φξ =

[
Φp 0

0 Φz

][
ξp

ξz

]
, (9)

where ξp and ξz are the reduced variables for pressure and overall water molar fraction. Defining

l = lp + lz, this projection reduces the number of primary unknowns from 2nb to l, with l � 2nb.

Note that the entries in the overall Φ matrix are ordered as shown in Eq. 9 if we order the

unknowns with pressure in all blocks appearing first, followed by molar fraction of water in all

blocks (i.e., p1, p2, . . . , pnb
, zw,1, zw,2, . . . , zw,nb

). If we order the unknowns as (p1, zw,1), (p2, zw,2),

. . ., (pnb
, zw,nb

), then the entries in Φp and Φz are interspersed within the overall Φ matrix. See

[18] for the detailed structure of Φ with this ordering.

Inserting the representation for the states in Eq. 9 into (linearized) Eq. 5 leads to a system of

2nb equations in l variables. In order to reduce the number of equations to l (to render the system

well posed), we premultiply the resulting set of equations by a matrix ΨT , where superscript T

denotes transpose. The matrix Ψ, which is referred to as the constraint reduction matrix, is of
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dimensions 2nb × l. The low-order linearized equation is now given by:

ΨTJi+1Φ(ξn+1 − ξi+1) = −ΨT [Ai+1Φ(ξn − ξi) + Bi+1(un+1 − ui+1)], (10)

which involves l equations and l unknowns. This equation can be expressed as

ξn+1 = ξi+1 − (Ji+1
r )−1[Ai+1

r (ξn − ξi) + Bi+1
r (un+1 − ui+1)], (11)

where the reduced derivative matrices are defined as

Ji+1
r = (Ψi+1)TJi+1Φ, Ai+1

r = (Ψi+1)TAi+1Φ, Bi+1
r = (Ψi+1)TBi+1. (12)

Here, Ji+1
r and Ai+1

r are both of dimensions l× l, and Bi+1
r is of dimensions l×nu, where nu is the

number of control variables. For typical well control problems, there are many more grid blocks

than wells, so nu � nb.

The choice of constraint reduction matrix is considered in detail in [40] (Appendix A). There it

was shown that, for some types of problems, the commonly applied Galerkin projection procedure

(in which Ψi+1 = Φ, where Φ is the basis matrix for the state variables) can lead to numerical

instability in the POD-TPWL model. Rather than use Galerkin projection, He and Durlofsky [39,

40] suggested the use of a Petrov-Galerkin procedure in which Ψi+1 = Ji+1Φ. This approach,

motivated by results presented in [19], was shown to lead to much more stable POD-TPWL models.

It is important to note, however, that numerical stability is still not guaranteed with this procedure.

As noted above, one or more training runs can be used to provide snapshots for the construction

of the POD basis. Following [39], in this work we typically use two training runs for snapshot

generation. However, we save and reduce the Jacobian (and other derivative) matrices from only

one of these training simulations. This run is referred to as the primary training run. By using

this procedure, we save on preprocessing computation and storage.

2.2.2 POD-TPWL Point Selection

At each time step in a POD-TPWL run, the sequential training states i and i+ 1 around which we

linearize must be determined (see Eqs. 11 and 12). We refer to this determination as point selection

(i.e., we select the training point around which the linearization is performed). This linearization

point is found by minimizing a measure of distance between the current (reduced) test-run state

and all points in the primary training run.

Following [39], we define this distance (dn,j) as

dn,j = dn,jz + γdn,jT . (13)

Here dn,jz and dn,jT denote the relative difference in (reduced) mole fraction and in estimated pore

volume injected (PVI), respectively, and γ is a weighting parameter (we take γ = 10). The specific
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definitions for these two contributions are

dn,jz =
|ξnz − ξjz|
|ξnz |+ ε

, dn,jT =
|
∫ tn
0 qndt−

∫ tn
0 qjdt|∫ tn

0 qndt+ ε
, (14)

where ξnz and ξjz are reduced overall molar fraction (of water) for the test run at time step n and for

the saved point j in the primary training run. The variables qn and qj designate the total injection

rate (over all wells) at time step n in the test run and at time step j in the training run. The ε

term, set as 0.01, is relevant only at very early times. By finding the value of j that minimizes dn,j

in Eq. 13, we find the state (and its associated derivative matrices) in the primary training run

that is closest to the current test state in terms of ξz and PVI. Eq. 14 is directly applicable when

rates are specified in the test runs. If BHPs are specified, rates must be computed from the well

model. The way in which this is accomplished is discussed later (see Eq. 16 below).

2.2.3 POD-TPWL Workflow

Prior to using POD-TPWL to simulate test cases, the reduced-order model must be constructed

from training run results. This entails preprocessing (offline) computations, which include training

runs, construction of the basis matrices Φp and Φz, and construction of the reduced derivative

matrices appearing in Eqs. 11 and 12. Stanford’s Automatic Differentiation-based General Pur-

pose Research Simulator, AD-GPRS [79], has been modified to provide the necessary derivative

information. For the cases considered here, the additional computation required to construct the

POD-TPWL model can entail nearly 1/3 of the time required for a full-order training run. Thus,

assuming two training runs are performed, the overall preprocessing POD-TPWL overhead corre-

sponds to about the time for 2.3 full-order simulations. For the CO2 storage simulations considered

here, runtime speedups using POD-TPWL of nearly a factor of 400 are observed. Thus, if the

model is to be run many times, the POD-TPWL procedure can be very cost effective. If, however,

only a few runs are required, it is more efficient to simply run the full-order model.

During POD-TPWL runs (i.e., inline computations), at each time step, the training states i

and i + 1 are first found (by minimizing dn,j), after which Eq. 11 is solved to determine ξn+1. If

actual states are required, these can be constructed by applying xn+1 ≈ Φξn+1. Typically, states

are only required at well blocks, where they are used to compute flow rates. As discussed by [39],

a flash must be performed to construct secondary variables such as saturation. See [39] for a flow

chart of the offline and inline computations and for additional implementation details.

2.2.4 Rate-Controlled Wells

New features introduced in this work include the use of horizontal wells and the control of wells

through rate (rather than BHP) specifications. Handling horizontal wells is relatively straightfor-

ward and mostly involves input and output specifications. The use of well rate as a control variable

is more complicated, as described below.
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Prior to discussing rate-controlled wells, it is useful to first provide some details regarding the

use of BHPs as the control parameters, since AD-GPRS essentially models wells in both cases using

BHPs, which are then related to rates. For BHP-controlled wells, the derivative matrices needed

to construct the POD-TPWL model are ∂gi+1/∂xi+1 (Ji+1) and ∂gi+1/∂ui+1 (Bi+1), as is evident

from Eqs. 5 and 6. Note that the matrix ∂gi+1/∂xi (Ai+1) does not enter this discussion because it

is not affected by changing well control from BHPs to rates. It is convenient to define an ‘extended’

Jacobian matrix Jext containing both J and B:

Jext =
[
JRR JRW

]
=
[
J B

]
, (15)

where we have dropped superscript i + 1 for simplicity. Here the subscript on JRR (which is of

dimensions 2nb × 2nb) indicates that it is the derivative of the reservoir equations with respect to

primary reservoir variables, and that on JRW (of dimensions 2nb × nw, where nw is the number of

wells) indicates that it is the derivative of the reservoir equations with respect to well BHPs. These

matrices are precisely as defined in Eq. 6.

BHPs enter the formulation because the overall source term qwj (which is a phase injection or

production rate) is represented in terms of the standard well equation:

qwj =

ns∑
s=1

WIsλj,s(ps − pw,s), (16)

where ns is the number of blocks in which the well is completed (open to flow), WIs is the well

index for block s (which is essentially the transmissibility between the well and the block), λj,s

is the phase mobility in block s, ps is the well-block pressure, and pw,s is the wellbore pressure

in block s. BHP corresponds to the wellbore pressure at a particular location, such as the first

well completion. If we have a horizontal well and pressure losses along the well are neglected (as

they are here), then pw,s is constant along the well. Once the primary variables in well blocks are

determined and a flash has been performed, well flow rates can be calculated using Eq. 16 (these

flow rates are at subsurface conditions; to determine rates at surface conditions an additional flash

must be performed).

For cases with well rate (rather than BHP) specifications, we require matrices that are analogous

to JRR and JRW in Eq. 15. We use a tilde for cases where well rates are specified, and denote the

extended Jacobian matrix J̃ext as:

J̃ext =
[
J̃RR J̃RC

]
, (17)

where, as in Eq. 15, J̃RR (2nb × 2nb) is the derivative of the reservoir equations with respect to

primary reservoir variables, and J̃RC (2nb×nu, where nu is the number of controls) is the derivative

of the reservoir equations with respect to rate-control variables. Here we specify one rate control

per well, so nu = nw.

The matrix J̃RC is different from JRW in Eq. 15 because the problem now involves derivatives

of the reservoir equations with respect to rate controls instead of BHPs. Less obvious is the fact
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that J̃RR also differs from JRR. This is because, when we specify a well flow rate qwj , the well block

pressure (ps in Eq. 16), which is a primary reservoir variable, does not appear in the source term.

By contrast, when BHP is specified, ps does appear, so there is an additional contribution in JRR

that is not in J̃RR.

In concept, it should be straightforward to directly construct J̃RR and J̃RC , just as we do for

JRR and JRW . This is nontrivial, however, because of the way in which AD-GPRS represents

wells under rate control. Specifically, in this case AD-GPRS still represents qwj using Eq. 16, but it

also includes additional equations (well equations) that relate qwj and BHP. These equations are a

simple rearrangement of Eq. 16; i.e.,

ns∑
s=1

WIsλj,s(ps − pw,s)− qwj = 0, j = g, w. (18)

Because more equations are now treated in AD-GPRS, additional derivatives appear. We thus

define the ‘augmented’ Jacobian matrix J∗ as:

J∗ =

[
JRR JRW JRC

JWR JWW JWC

]
, (19)

where JRR and JRW are as defined in Eq. 15, JRC (2nb × nu) is the derivative of the reservoir

equations with respect to the rate-control variables, JWR (nw × 2nb) is the derivative of the well

equations with respect to reservoir variables, JWW (nw×nw) is the derivative of the well equations

with respect to well BHPs, and JWC (nw × nu) is the derivative of the well equations with respect

to rate-control variables. Because the rate-control variable qwj does not appear explicitly in the

reservoir equation (due to the AD-GPRS treatment), we have JRC = 0. In addition, because the

derivative of the well equation (Eq. 18) with respect to its rate specification qwj is −1, the matrix

JWC in Eq. 19 is simply the negative identity matrix (i.e., JWC = −I).

In order to determine the desired matrices J̃RR and J̃RC , we apply a Schur complement proce-

dure to J∗ in Eq. 19. This entails premultiplying J∗ by a matrix S, with the goal of eliminating

JRW . Defining

S =

[
I −JRWJ−1

WW

0 I

]
, (20)

and constructing a modified ‘augmented’ Jacobian matrix J̃∗ = SJ∗, we have:

J̃∗ =

[
JRR − JRWJ−1

WWJWR 0 JRC − JRWJ−1
WWJWC

JWR JWW JWC

]
. (21)

DOE Award No. DE-FE0009051, Task #4 11



ROM based Models
for CO2 Sequestration 3 NUMERICAL SIMULATION RESULTS

We can now partition J̃∗ into submatrices as:

J̃∗ =

[
J̃RR J̃RW J̃RC

J̃WR J̃WW J̃WC

]
. (22)

Comparing this with Eq. 21, we see that

J̃RR = JRR − JRWJ−1
WWJWR, (23)

J̃RW = 0, (24)

J̃RC = JRC − JRWJ−1
WWJWC , (25)

where JRC = 0 and JWC = −I, as noted earlier. Eq. 24 indicates that the direct dependency of

the reservoir equations on well BHPs has been eliminated (which was our goal since wells are now

controlled by rates). Importantly, the matrices J̃RR and J̃RC are the derivatives required for J̃ext

in Eq. 17 for well-rate control problems.

In our actual implementation, AD-GPRS provides J∗ in Eq. 19. The required matrices J̃RR and

J̃RC are computed by performing the calculations shown in Eqs. 23 and 25. These computations

are inexpensive since nw is small.

3 Numerical Simulation Results

In this section, we present results using the POD-TPWL model for CO2-water systems, with both

BHPs and rates as control parameters. Two examples will be considered — one is a large-scale

synthetic aquifer model, and the other is a simplified model of the CO2 injection site that was

planned for FutureGen 2.0. As noted in Section 2, compared with previous applications of POD-

TPWL [39, 41], new features included here are the use of horizontal wells, the application of well

rate specifications, and the use of a grid with blocks that vary significantly in size over the domain.

We note that POD-TPWL results for a CO2 EOR (compositional) problem, which includes the

use of horizontal wells, are presented in Appendix B.

3.1 Model 1: Synthetic Aquifer

The problem set up for this case is based on a previous model used by Cameron & Durlofsky [13]

to optimize carbon storage operations. However, many of the specifics, including the permeability

field and the well settings, differ from those used in [13].

3.1.1 Problem Set Up

The simulation model, shown in Fig. 1, includes a storage aquifer, of physical dimensions 10.9 km×
10.9 km × 100 m, immersed within a large-scale regional model, of physical dimensions 232 km ×
232 km× 100 m. The storage aquifer is modeled on a 25× 25× 10 grid (total of 6250 grid blocks),
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while the full system is represented on a 39 × 39 × 10 grid (total of 15,210 grid blocks). In the

storage aquifer, grid blocks are of size 436 m× 436 m× 10 m. Block sizes increase as we move out

from the storage aquifer, as is evident in Fig. 1 (left). Note that the grid is still fairly dense just

outside the storage aquifer. CO2 injection is accomplished using two horizontal wells, as shown in

Fig. 1 (right).

Figure 1: Simulation grid (left, areal view) and horizontal injection wells (right)

The permeability and porosity fields are sampled from the Stanford VI synthetic geological

model [20], which represents a highly heterogeneous channelized system. Fig. 2 displays log k for

this system (permeability is isotropic so k = kI). The vertical variation in the channel structure is

evident in Fig. 2b.

(a) Horizontal permeability (b) Layered view

Figure 2: Permeability field for storage aquifer (log k is shown)

As discussed in Section 2, we use a compositional simulation model with two components (CO2

and water) and two phases (gas and water). Thus, this system contains 15, 210 × 2 = 30, 420

primary variables. The relative permeabilities for the water and gas phases are defined using the
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Brooks-Corey relation. We set residual gas saturation Sgr = 0.1, irreducible water saturation

Swi = 0, and use exponents of 2 for both phases. Capillary pressure is neglected. The (isothermal)

aquifer temperature is set to 372 K; surface conditions correspond to temperature and pressure of

293 K and 1.013 bar.

The initial aquifer pressure at the top layer is 170 bar. The overall molar fractions of the initial

in-situ fluid are 0.001 CO2 and 0.999 water. The injected fluid is 0.999 CO2 and 0.001 water.

The two horizontal CO2 injection wells are located in layers 7 and 8 of the storage aquifer (near

the bottom of the model). Each of the wells is completed in three grid blocks. The model is run

for a total of 10,000 days, which is about 27 years. We will present results using both BHP and

rate specifications. The cumulative injected volume of CO2 is about 1% - 4% of the pore volume

of the storage aquifer in cases with rate control. Much larger volumes are injected in cases with

BHP control, which is not consistent with practical operations but is useful for purposes of testing

POD-TPWL for this problem.

3.1.2 POD-TPWL Results with BHP Controls (Model 1)

In our application of POD-TPWL, we first perform two full-order training runs, which are used

to construct the POD-TPWL model (one of these is the primary training run, as discussed in

Section 2.2). We then perform a sequence of test runs, where the time-varying BHP controls differ

from those used in the training runs. As in [41], the degree of perturbation from the primary

training run is quantified using the parameter α. A value of α = 0 indicates the training case

(which the POD-TPWL model should match exactly), and α = 1 indicates the case with the

largest perturbation, referred to as the target case. For values of α between 0 and 1, the test-case

BHP for a particular well at time t (designated uttest) is given by:

uttest = (1− α)uttraining + αuttarget, (26)

where uttraining and uttarget are the training and target BHPs for the well at time t. Figs. 3a and b

show the time-varying BHPs for the training and target runs. The BHPs in the training case are

generated randomly, while the BHPs in the target case increase stepwise-linearly in time. These

BHP profiles are intended to represent the types of time-varying BHP schedules that might be

computed from an optimization procedure (such as that reported in [13]).

A total of 264 snapshots are collected from the two full-order training runs. In the POD-TPWL

model, we use lp = 90 reduced pressure variables and lz = 120 reduced overall water molar fraction

variables, for a total of l = 210 variables. This represents a substantial reduction compared to the

reference AD-GPRS model, which entails 30,420 primary variables.

Figs. 4, 5 and 6 display the CO2 injection rates (at surface conditions) for the two horizontal

injectors for three different test cases, which correspond to α = 0.3, 0.5 and 0.8. In these and

subsequent plots, the black dotted curves represent results for the primary training case (these are

the results around which we linearize to compute the solution for the POD-TPWL test case), the
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(a) Training run (α = 0) (b) Target run (α = 1)

Figure 3: Time-varying BHPs for training and target simulations (Model 1)

(a) Well 1 (b) Well 2

Figure 4: CO2 injection rates for test case with α = 0.3 (Model 1)
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(a) Well 1 (b) Well 2

Figure 5: CO2 injection rates for test case with α = 0.5 (Model 1)

(a) Well 1 (b) Well 2

Figure 6: CO2 injection rates for test case with α = 0.8 (Model 1)
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red curves define the full-order reference AD-GPRS solution for the test case, and the blue curves

depict the POD-TPWL results.

From these figures, we see that there are, in general, considerable differences between the

training and test solutions. These differences increase with increasing α, as would be expected.

Note also that the injection rates at later times in the test runs are significantly higher than those

in the training run. The POD-TPWL results are, however, in consistently close agreement with

the full-order solution in all three cases. This is encouraging, as it suggests that POD-TPWL may

indeed be suitable for use in CO2 storage applications.

3.1.3 POD-TPWL Results with Rate Controls (Model 1)

We now consider cases with rate specifications. We again test the POD-TPWL model using linear

combinations of training (α = 0) and target (α = 1) runs. The rate profiles at subsurface conditions

(372 K, ∼ 13.5 bar) are shown in Fig. 7. The perturbations applied in this case are larger than

those applied to the BHP controls in Section 3.1.2. The total injection rate for each well is about

1.5 million metric tons of CO2 per year. The cumulative CO2 injected after 10,000 days is close

to 3% of the pore volume of the storage aquifer. The POD basis matrix is constructed from 254

snapshots collected from two full-order training runs. For this case we use lp = lz = 80.

(a) Training run (α = 0) (b) Target run (α = 1)

Figure 7: Time-varying rate specifications for training and target simulations (Model 1)

Since we now prescribe injection rates, the relevant well quantity to assess is BHP. Injection well

BHPs for test cases with α = 0.5 and 1.0 are shown in Figs. 8 and 9. In general, the POD-TPWL

results (blue curves) display reasonable accuracy relative to the reference full-order simulation (red

curves). As α increases, POD-TPWL error is seen to increase. In Fig. 9b, inaccuracies are observed

in the POD-TPWL model for Well 2 at around 5000 days (this is also evident in Fig. 8b). We

believe that errors of this type occur due to our point selection treatment. Basically, we do not

allow the time step corresponding to the selected training-run point to decrease in time. This is

generally an appropriate restriction, but it can lead to inaccuracy at some time steps.
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(a) Well 1 (b) Well 2

Figure 8: CO2 injection well BHPs for test case with α = 0.5 (Model 1)

(a) Well 1 (b) Well 2

Figure 9: CO2 injection well BHPs for test case with α = 1.0 (Model 1)

For the α = 1.0 test case, we also present, in Fig. 10, color maps for overall molar fraction of

CO2 at 4000 days. These results are shown for layers 7 and 8, which contain the two injection

wells. Red indicates high CO2 concentration, and blue denotes high water concentration. The

CO2 distribution for the training run is shown in Figs. 10a and b, AD-GPRS (full-order) test-

case results are shown in Figs. 10c and d, and POD-TPWL results are presented in Figs. 10e and

f. The differences between the training and test runs are relatively small, but it is evident that

POD-TPWL is able to provide results that (fairly closely) resemble the full-order test runs.

Finally, in Fig. 11, we compare the states (zg) generated from POD-TPWL to those from AD-

GPRS. These results are at times of 4000 days and 10,000 days. The points fall reasonably close to

the 45-degree line (this line indicates perfect agreement), though there is some scatter, especially

for small zg. Overall, however, this plot indicates that POD-TPWL is able to provide reasonable
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(a) Training run, layer 7 (b) Training run, layer 8

(c) Test case with AD-GPRS, layer 7 (d) Test case with AD-GPRS, layer 8

(e) Test case with POD-TPWL, layer 7 (f) Test case with POD-TPWL, layer 8

Figure 10: Color maps for CO2 overall molar fraction at 4000 days with α = 1.0 (Model 1)
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estimates of the zg state variable.

For this case, the full-order AD-GPRS simulations typically require around 18 minutes to run

on one compute node with 16 cores with Intel R© dual Sandy BridgeTM CPUs. POD-TPWL models

require only about 3 seconds on one core, which represents a runtime speedup factor of about 360.

We reiterate that POD-TPWL model construction (the offline portion of the procedure) entails

computation corresponding to about 2.3 full-order runs.

(a) 4000 days (b) 10,000 days

Figure 11: Comparison of CO2 overall molar fraction between POD-TPWL and AD-GPRS at
4000 days and 10,000 days for test case with α = 1.0 (Model 1)
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3.2 Model 2: Mount Simon Formation

The site proposed for the CO2 storage associated with DOE’s FutureGen 2.0 project is located

in Morgan County, Illinois [7]. The target CO2 injection zone was a high-permeability region

within the upper portion of the Mount Simon sandstone. Unfortunately, after over four years of

development, this project has been canceled. However, the substantial amount of data collected

and the modeling performed to date are still valuable. The model considered in this section is a

simplified version of the Mount Simon simulation model constructed by Bonneville et al. [7].

3.2.1 Problem Set Up

The simulation model is shown in Fig. 12. It includes a storage aquifer of dimensions 3.1 mi (5 km)×
3.1 mi (5 km)×1346 ft (410 m), which is immersed within a large-scale regional model of dimensions

100 mi×100 mi×1346 ft. The storage aquifer is modeled on a 30×30×30 grid (total of 27,000 grid

blocks), while the full system is represented on a 46×46×30 grid (total of 63,480 grid blocks). In the

storage aquifer, grid blocks are 525 ft (160 m) on a side. Grid-block thickness varies significantly,

from 10 ft to 190 ft. CO2 injection is accomplished using four horizontal wells (consistent with

proposed operations [7]), as shown in Fig. 12b. The permeability and porosity fields are completely

layered, so there is property variation only in the vertical direction (the model is shown in Fig. 13).

For this case, we take kx = ky and kz = 0.1kx. This model represents a less detailed version of the

Mount Simon geological model considered in [7], which contains 51 layers.

(a) Storage aquifer and regional model (b) Four horizontal wells

Figure 12: Areal grid and well locations for simplified Mount Simon model

Our simulation model again contains CO2 and water components in gas and water phases. The

initial aquifer pressure is 124 bar. The four horizontal wells are located in layer 25 of the model.

Injection wells I1 and I4 are of length 1575 ft (480 m), and wells I2 and I3 are of length 2625 ft

(800 m). We control the wells by specifying both time-varying BHPs and rates. The model is run
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Figure 13: Permeability field for simplified Mount Simon model (log kx is shown, kx in mD)

for a total of 8000 days (about 22 years) in BHP-control cases, and for 7300 days (about 20 years)

in rate-control cases. Other model properties are the same as in Model 1. The full-order system in

this case contains 63, 480× 2 = 126, 960 primary variables.

3.2.2 POD-TPWL Results with BHP Controls (Model 2)

This case involves training with BHPs that increase in time and testing with BHPs that include

a random component. Figs. 14a and b show the time-varying BHPs for the training (α = 0) and

target (α = 1) runs. Note that the target BHPs differ for each of the four injection wells. A total

of 214 snapshots are collected from the two full-order training runs. In the POD-TPWL model, we

set lp = 90 and lz = 120.

(a) Training case (α = 0) (b) Target case (α = 1)

Figure 14: Time-varying BHPs for training and target simulations (Model 2)
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Test-case results for α = 0.3 and 0.8 are shown in Figs. 15 and 16. Time-varying injection

rates are shown for all four wells. The POD-TPWL results in Fig. 15 are quite accurate relative

to reference AD-GPRS results, though some error is apparent in Fig. 16. The general level of

agreement is nonetheless relatively close, even though results for the training simulation differ

considerably from those for the test run with α = 0.8.

(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

Figure 15: CO2 injection rates for test case with α = 0.3 (Model 2)

3.2.3 POD-TPWL Results with Rate Controls (Model 2)

We now consider results in which well injection rates are specified. The rate profiles at subsurface

conditions (372 K, ∼ 14 bar) for both cases are shown in Fig. 17. In both the training and test

runs, all wells are specified to inject the same volume of CO2, though this is not a requirement of

the implementation. The total injection rate for all four wells is approximately 1.1 million metric
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(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

Figure 16: CO2 injection rates for test case with α = 0.8 (Model 2)
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tons of CO2 per year. The cumulative CO2 injected after 7300 days is close to 3.5% of the pore

volume of the storage aquifer. Here, we use lp = lz = 80 in the POD-TPWL model (a total of 200

snapshots were generated in the two full-order training runs).

(a) Training case (α = 0) (b) Target case (α = 1)

Figure 17: Time-varying rate specifications for training and target simulations (Model 2)

For this case we present results only for α = 1. Test-case results for injection well BHPs for

the four wells are shown in Fig. 18. Overall, the POD-TPWL results display reasonable accu-

racy relative to AD-GPRS predictions, though some inaccuracy is observed at late time (after

around 6500 days). We believe this is again due to the point selection scheme applied here. The

development of a more robust point selection scheme will be considered in future work.

Color maps for CO2 overall molar fraction (zg) for the test case at 4000 days and 6000 days

(for layer 25) are presented in Fig. 19. It is evident that zg is high near the four injectors and

that it decreases sharply as we move away from the wells. The differences between the full-order

training and test runs are not that significant in these plots. We do, however, see that the POD-

TPWL solution resembles the AD-GPRS solution fairly closely at 6000 days (Figs. 19d and f),

where differences between the training and test runs are apparent.

The differences between the POD-TPWL and AD-GPRS solutions can be seen more directly

by constructing difference maps. In Figs. 20a and b, we present the absolute value of the (block-

by-block) difference in zg between the AD-GPRS training and test simulations. Although the zg

scale spans a much smaller range here compared to that in Fig. 19, we see that there are clear

differences between the training and test runs. Shown in Figs. 20c and d are differences between

the AD-GPRS and POD-TPWL test solutions. If the POD-TPWL model was perfectly accurate,

these plots would be dark blue. Error in zg is clearly apparent, however, both in the near-well

region where zg is large, and at the edges of the plume, though it is relatively small in magnitude

over most of the domain. The latter error may reflect the difficulty of capturing front locations

precisely using POD-TPWL, which was also observed in [39]. It is possible, however, that fronts

could be better resolved through use of a point selection scheme that gives more weight to front
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(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

Figure 18: CO2 injection well BHPs for test case with α = 1.0 (Model 2)

DOE Award No. DE-FE0009051, Task #4 26



ROM based Models
for CO2 Sequestration 3 NUMERICAL SIMULATION RESULTS

(a) Training run, 4000 days (b) Training run, 6000 days

(c) Test with AD-GPRS, 4000 days (d) Test with AD-GPRS, 6000 days

(e) Test with POD-TPWL, 4000 days (f) Test with POD-TPWL, 6000 days

Figure 19: Color maps for CO2 overall molar fraction zg in layer 25 (Model 2)
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(a) Difference between AD-GPRS training
and test runs, 4000 days

(b) Difference between AD-GPRS training
and test runs, 6000 days

(c) Difference between POD-TPWL
and AD-GPRS test runs, 4000 days

(d) Difference between POD-TPWL
and AD-GPRS test runs, 6000 days

Figure 20: Absolute differences in zg in layer 25 at 4000 and 6000 days (Model 2). Upper plots
display differences between full-order training and test results, while lower plots display differences
between POD-TPWL and AD-GPRS test solutions
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location (as opposed to the scheme described in Section 2.2.2, which does not explicitly consider

this quantity).

Finally, we present cross plots comparing POD-TPWL and AD-GPRS results for the states (p

and zg in every block) at two different times. These results are shown, at 4000 and 6000 days,

in Fig. 21. The pressure results are extremely accurate, while the overall molar fraction results

display some scatter, but nonetheless retain a reasonable level of accuracy.

For this example, the run times for the AD-GPRS and POD-TPWL models are 16 minutes and

2.5 seconds, respectively. Thus POD-TPWL provides a speedup of about a factor of 380 in this

case.

(a) Pressure at 4000 days (b) Pressure at 6000 days

(c) CO2 molar fraction at 4000 days (d) CO2 molar fraction at 6000 days

Figure 21: Comparison of pressure and CO2 molar fraction between POD-TPWL and full-order
reference solutions (Model 2)
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3.3 Summary

In this section, we presented POD-TPWL results for two example cases involving horizontal CO2

injection wells. The test cases entailed both time-varying BHP and injection rate schedules. POD-

TPWL results were shown to provide reasonable accuracy relative to reference (full-order) AD-

GPRS results, though POD-TPWL model error was seen to increase as the deviation of the test

case from the training case increased. It is possible that some of the errors in the POD-TPWL

models can be reduced through use of a more sophisticated point selection scheme. Runtime

speedups observed using POD-TPWL (relative to the full-order simulations) were around a factor

of 370.

4 Geological Perturbation

In this section, we will develop POD-TPWL models in which the perturbed ‘control’ variables are

not well parameters, but are instead geological parameters. This general problem was considered

by He et al. [42] within the context of oil-water reservoir simulation, and our formulation here

follows that work. There are however some important differences between the development in [42]

and the implementation here, particularly the fact that Galerkin projection was used for constraint

reduction in [42], while here we use the Petrov-Galerkin procedure described in Section 2.

This work is in a relatively early stage, so the results presented in this section should be viewed

as somewhat preliminary.

4.1 POD-TPWL Formulation

Consistent with the notation in Section 2, the set of discretized nonlinear algebraic equations is

now expressed as:

g(xn+1,xn,γ) = 0. (27)

Here, in place of the well control parameter u appearing in Eq. 3, is the geological parameter γ.

All other variables have the same definitions as in Section 2. The geological parameters used in the

training run are designated γω. The goal is now to generate results for test runs with different sets

of geological parameters, which are denoted by γ.

Consistent with Eq. 4, we now express new (test) solutions in terms of a Taylor series expansion,

truncated at first order:

gn+1 = 0 ≈ gi+1 +
∂gi+1

∂xi+1
(xn+1 − xi+1) +

∂gi+1

∂xi
(xn − xi) +

∂gi+1

∂γω
(γ − γω), (28)

where gi+1 = g(xi+1,xi,γω) = 0 and gn+1 = g(xn+1,xn,γ) = 0, as noted in Section 2. Rearrang-

ing, we have

Ji+1(xn+1 − xi+1) = −[Ai+1(xn − xi) + Bi+1(γ − γω)], (29)
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where

Ji+1 =
∂gi+1

∂xi+1
, Ai+1 =

∂gi+1

∂xi
, Bi+1 =

∂gi+1

∂γω
. (30)

Following the introduction of the POD representation (x = Φξ) and Petrov-Galerkin constraint

reduction (Ψi+1 = Ji+1Φ), the POD-TPWL model is expressed as:

ξn+1 = ξi+1 − (Ji+1
r )−1[Ai+1

r (ξn − ξi) + Bi+1
r (γ − γω)], (31)

where

Ji+1
r = ΨTJi+1Φ, Ai+1

r = ΨTAi+1Φ, Bi+1
r = ΨTBi+1. (32)

We now consider the representation of the geological parameters. Following [42], we define

γ to be log-transmissibility; i.e., γ = log T, where T is the vector (of dimension nT ) containing

all of the directional transmissibilities. Note that transmissibilities are associated with block-to-

block interfaces, so nT differs from the number of grid blocks. The term involving the geological

parameters in the POD-TPWL representation is thus given by:

Bi+1(γ − γω) =
∂gi+1

∂γω
(γ − γω) =

∂gi+1

∂Tω
DTω(γ − γω), (33)

where Tω designates the vector of transmissibilities for the training run and DTω is a diagonal

matrix whose diagonal elements coincide with Tω. Using Eq. 33, Eq. 31 can now be written as:

ξn+1 = ξi+1 − (Ji+1
r )−1[Ai+1

r (ξn − ξi) + B̃i+1
r (γ − γω)], (34)

with

B̃i+1
r = ΨT ∂gi+1

∂γω
DTω . (35)

This defines the POD-TPWL model with geological control parameters. Point selection is accom-

plished as described in Section 2.2.2.

4.2 Problem Set Up

We test this procedure on a vertical cross-section of the purely-layered Mount Simon model consid-

ered in Section 3. The storage aquifer is represented on a 30× 30 grid (see Fig. 22a; this represents

the training geology). The full regional system contains 46× 30 blocks. We again set kz = 0.1kx in

the training run. Gravitational effects are neglected in these runs (due to a current limitation in

the linkage between POD-TPWL with geological perturbations and AD-GPRS).

CO2 injection is from two horizontal wells, as shown in Fig. 22b, which are each of length

1575 ft. Both wells inject CO2 with time-varying rate controls for 3000 days. The cumulative CO2

injected at the end of 3000 days is about 1.3% of the pore volume of the storage aquifer. The rate

controls at surface conditions (293 K, 1.013 bar) for both wells are shown in Fig. 23. Note that the

rate schedule is the same for both the training and test cases. The other model properties are the
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(a) Horizontal permeability for training case (b) Well locations

Figure 22: Permeability field (in log k) and well locations for geological perturbation example

same as in the Mount Simon example in Section 3.

Figure 23: Injection rates in training and test cases (rates are the same for both wells)

The POD basis matrix is constructed from 80 snapshots generated during two full-order training

runs. The AD-GPRS full-order system for this case contains 2760 primary variables (2× 1380). In

the POD-TPWL model, we use lp = lz = 37. The control variable γ in Eq. 34 in this case is also of

dimension 2760. Theoretically, this dimension should be the number of block-to-block connections

in the system, which is (46− 1)× 30 + 46× (30− 1) = 2684. However, to simplify the linkage with

AD-GPRS, we introduce a small amount of redundancy in the data. In all of the test cases, we

keep the well index equal to its value in the training simulation. This is meant to reflect the fact

that the geology is reasonably certain in regions intersected by wells.
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4.3 POD-TPWL Results

We now present POD-TPWL results for test cases with different types of geological perturbations.

Three different examples are considered, in which we perturb, relative to the training case (1)

the transmissibilities of all interfaces in the model, (2) only the vertical transmissibilities, and (3)

the transmissibilities in a few selected layers. Because the wells are symmetrically located within

the model and the injection schedules for the two wells are identical (and because the model is

completely layered), both wells display identical time-varying BHPs. Therefore we present results

only for Well 1.

In the first set of test cases, we multiply all permeabilities (and thus all transmissibilities) by

constant factors (0.5, 1.5, 2.0, 5.0) relative to the training case. BHP results for these runs are

shown in Fig. 24. The various curves are as defined in Section 3. The test-case BHPs differ from

the training-run BHPs by very little in these runs – typically by only a few psi or less. This may

be because the well indices are the same in the test cases as in the training run. The POD-TPWL

model does, however, provide results that capture the basic trends, though error is apparent for

the case with the largest perturbation (Fig. 24d).

We next present results for a test case in which the vertical transmissibilities are all multiplied

by 0.1 relative to their values in the training case. Injection well BHP results for this run are shown

in Fig. 25. We again see only small differences between training and test results. The POD-TPWL

model captures the general trend of the AD-GPRS results, though some error is apparent between

1500 and 2000 days.

In our final test case, the transmissibilities in layers 23 to 27 are all multiplied by a factor of 10.

These layers can be viewed as key layers because the wells are completed in layer 25. Results for

this case are shown in Fig. 26. Consistent with previous examples, we observe generally accurate

POD-TPWL results for time-varying BHP, though the training- and test-case results are again

quite close.
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(a) Multiply by 0.5 (b) Multiply by 1.5

(c) Multiply by 2.0 (d) Multiply by 5.0

Figure 24: Injection well BHPs for test cases with all transmissibilities perturbed by constant
factors (Well 1)
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Figure 25: Injection well BHPs for test case with perturbed vertical transmissibilities (Well 1)

Figure 26: Injection well BHPs for test case with perturbed transmissibilities in layers 23–27
(Well 1)
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4.4 Summary

In this section, we extended the POD-TPWL model to cases involving geological perturbations.

In the test cases presented, there were only small differences between the training and test-case

simulation results for CO2 injection well BHPs, though the test-case BHPs were accurately captured

by the POD-TPWL model in most instances. The case that displayed the least accurate POD-

TPWL results involved the use of a global permeability/transmissibility multiplier of 5.0, which is

relatively large. The runtime speedups for the cases in this section were modest compared with

those achieved in Section 3. Specifically, here we obtained speedup factors of only about 50 (from

around 2 minutes for full-order AD-GPRS runs to 2-3 seconds for POD-TPWL). The decreased

speedup may be due in part to the fact that the full-order model is fairly simple. Greater speedups

will likely be achieved if larger and more complicated models are tested, especially if we use a

Karhunen-Loève representation of transmissibility, as in [42]. The Karhunen-Loève representation

enables geological models to be defined in terms of a reduced set of parameters, and is analogous

to the POD-based representation used for the states (i.e., x = Φξ).

The results presented in this section are preliminary, though they do suggest that the basic POD-

TPWL model for geological perturbation has been implemented (essentially) correctly. Further

development and testing of this capability will be the subject of future work.

5 Summary and Conclusions

In this report, a compositional POD-TPWL reduced-order model was presented for CO2 seques-

tration problems. This work built on an earlier POD-TPWL formulation, which considered oil-gas

compositional systems within a reservoir simulation setting [39, 40]. POD-TPWL techniques entail

the representation of states using a POD-based procedure and the treatment of nonlinearity us-

ing linearization around previously simulated (training) solutions. The set of governing equations

is projected into an appropriate subspace using a constraint reduction procedure. In this work,

consistent with [39, 40], a Petrov-Galerkin treatment was used for this purpose.

New features introduced into the POD-TPWL formulation presented here include the use of

rate-controlled wells (rather than BHP-controlled wells, as have been used in previous implemen-

tations) and horizontal wells (in contrast to previous POD-TPWL models which only used vertical

wells). The implementation with rate controls is much more involved than with BHP controls

as it requires manipulation of AD-GPRS matrices in order to provide the derivatives used in the

POD-TPWL model. Rate control is important for CO2 storage problems since we typically have a

target volume of CO2 to inject at each time step. A prototype implementation involving the use

of geological parameters as the control parameters was also introduced. This model is similar to

that in [42] except here we used a Petrov-Galerkin constraint reduction procedure (in contrast to

the Galerkin procedure in [42]).

POD-TPWL results for BHP- and rate-controlled test runs (test runs differ from the train-

ing cases used to construct the POD-TPWL model) were presented for two example cases — a
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synthetic channelized aquifer model and a simplified Mount Simon model. The POD-TPWL solu-

tions typically showed reasonably close agreement with full-order (AD-GPRS) reference solutions.

POD-TPWL model error was seen to increase as the difference between the training- and test-case

controls increased, as would be expected since the method is based on a linearization procedure.

The computational times associated with the full-order (AD-GPRS) and POD-TPWL solutions,

as well as the time required for POD-TPWL model construction, are shown in Table 1. Results

are presented for the three CO2 storage cases considered (timings are very similar for BHP- and

rate-controlled runs). The runtime speedup for POD-TPWL relative to AD-GPRS is also shown.

We see that POD-TPWL model construction requires 0.17 and 0.35 of the time required for one

AD-GPRS simulation for Models 1 and 2 (a smaller fraction of AD-GPRS runtime is required for

the geological perturbation case). The computations entailed in POD-TPWL model construction

include loading the derivative matrices and snapshots, performing SVDs of the snapshot matrices,

computing reduced matrices (e.g., Ji+1
r = (Ψi+1)TJi+1Φ), etc.

Runtime speedups of about a factor of 370 were observed for Models 1 and 2, which highlights

the benefit of solving low-order linear problems rather than high-order nonlinear problems. Less

dramatic speedup was achieved in the runs with geological perturbations, but those results do

suggest that the basic functionality has been implemented (essentially) correctly. We note that, for

more complicated multicomponent simulations, such as those presented in Appendix B, the POD-

TPWL model construction time is longer – nearly the time required for one full-order simulation

run.

Table 1: Timings for various modeling components (in seconds)

Model 1 Model 2 Geol. Pert. Case

AD-GPRS runtime 1080 960 100
POD-TPWL model construction 180 340 15
POD-TPWL runtime 3 2.5 2
POD-TPWL runtime speedup 360 384 50

There are a number of directions that should be considered in future work. As noted in Sec-

tion 3, the point selection procedure used in this study displays limitations in some cases, and a

more general treatment should be developed. It will also be useful to test the relative performance

of POD-TPWL models, in terms of their ability to capture plume fronts, with different point se-

lection schemes. As indicated in Section 4, geological models can be represented compactly, and

the use of such representations in the POD-TPWL model with geological perturbations should be

further explored. This was considered in [42], but not for CO2 storage problems. A recent method,

referred to as optimization-based principal component analysis [71], enables the approximate (con-

cise) representation of non-Gaussian permeability fields, and this approach should be incorporated

into our POD-TPWL model. The POD-TPWL model should also be applied for optimizations of

the type considered in [13]. This will require the development of appropriate retraining strategies

since, as the optimization proceeds, the controls will eventually differ considerably from those used

DOE Award No. DE-FE0009051, Task #4 37



ROM based Models
for CO2 Sequestration 5 SUMMARY AND CONCLUSIONS

in the training run. Finally, it may be useful to consider other numerical reduced-order methods

such as POD-DEIM (e.g., [36]) for CO2 storage problems.
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A Constraint Reduction for POD-TPWL

This Appendix presents a detailed assessment of POD-TPWL constraint reduction procedures in

oil-gas and oil-water models. It corresponds to a paper that has been accepted for publication in

International Journal for Numerical Methods in Engineering (doi:10.1002/nme.4874). Because this

Appendix was written as a separate paper, there is some overlap between the text and equations

here and that in the body of this report (there are also some slight stylistic differences). As noted

earlier, within the body of the report, the work in Appendix A is referenced as He and Durlofsky [40].

A.1 Summary of Appendix A

The properties and numerical performance of reduced-order models based on trajectory piecewise

linearization (TPWL) and proper orthogonal decomposition (POD) are assessed. The target appli-

cation is subsurface flow modeling, though our findings should be applicable to a range of problems.

The errors arising at each step in the POD-TPWL procedure are described. The impact of con-

straint reduction on accuracy and stability is considered in detail. Constraint reduction entails

projection of the overdetermined system into a low-dimensional subspace, in which the system is

solvable. Optimality conditions for constraint reduction, in terms of error minimization, are de-

rived. Galerkin and Petrov-Galerkin projections are shown to correspond to optimality in norms

that involve weighting with the Jacobian matrix. Two new treatments, inverse projection and

weighted inverse projection, are suggested. These methods minimize error in appropriate norms,

though they require substantial preprocessing computations. Numerical results are presented for

oil reservoir simulation problems. Galerkin projection provides reasonable accuracy for simpler

oil-water systems, though it becomes unstable in more challenging cases. Petrov-Galerkin projec-

tion is observed to behave stably in all cases considered. Weighted inverse projection also behaves

stably, and it provides the highest accuracy. Runtime speedups of 150–400 are achieved using these

POD-TPWL models.

A.2 Introduction

The development of reduced-order modeling procedures for nonlinear problems is a topic of great

interest in many application areas. The issues and approaches considered in this Appendix are rele-

vant to a wide range of problems, though our focus here is on subsurface flow modeling — specifically

oil reservoir simulation. Within that setting, detailed finite-volume-based flow simulators, which

track the movement of multiple components in multiple phases through porous subsurface forma-

tions, are typically used to model the production of oil and gas. Important applications within this

area, such as production optimization, uncertainty assessment and data assimilation, require large

numbers of simulation runs. These applications, like many in other engineering fields, are extremely

demanding computationally using standard full-order simulations, and they could benefit greatly

from the use of fast, accurate and robust reduced-order models (ROMs).

Essentially, the ROMs considered in this work include three key components: state reduction,
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nonlinearity treatment, and constraint reduction. State reduction entails the expression of full-

order states (i.e., the vector of state variables in all grid blocks in the model) in terms of a small set

of reduced variables. Nonlinearity treatment involves the approximate representation of nonlinear

effects. Approaches include the construction of approximate/reduced nonlinear terms or Jacobian

matrices, and/or the use of some type of (piecewise) linearization procedure. Constraint reduction,

which is the focus of this work, is required because, after the introduction of state reduction, there

are many more equations than unknowns. It is the constraint reduction matrix that defines the

low-dimensional subspace in which the residue of the original system is driven to zero. As we will

see, the choice of this matrix can have a large impact on the accuracy and stability of the resulting

ROM.

The use of state reduction is based on the assumption that the state vectors of the full-order

system essentially lie in a lower-dimensional subspace. This is often a reasonable assumption be-

cause the states that can arise are defined through initial conditions and system dynamics, which

are not infinitely variable. With this assumption, a basis for the subspace, which projects the

full-order (high-fidelity) state into a low-order representation, can be constructed. In many ROM

procedures, including the one considered here, the state reduction basis matrix Φ is constructed

through use of proper orthogonal decomposition (POD). With this approach, a data matrix, con-

taining as its columns ‘snapshots’ (solution vectors) computed during ‘training’ simulations, is first

constructed. The left singular vectors of the singular value decomposition of the data matrix define

the columns of the basis matrix Φ. POD-based ROMs have been used in a number of application

areas [9, 12, 47, 66, 70], including subsurface flow simulation [18, 67]. Other approaches, such

as balanced truncation [28, 43, 49] and Krylov subspace methods [32, 68, 69, 77], have also been

successfully applied.

State reduction procedures decrease the number of unknowns that must be determined at each

time step in a dynamic simulation. However, for nonlinear time-variant problems, the speedups

achieved through the use of state reduction alone are typically quite modest. Specifically, for

reservoir simulation problems, speedup factors of at most 10 have been achieved using this ap-

proach [18, 67]. This is because some of the order-reduction computations have a computational

complexity that scales with the dimension of the full-order problem. If such computations are

performed at each (nonlinear) iteration at every time step, as is the case in [18, 67], the observed

speedup will be limited.

Various treatments have been proposed to further accelerate ROMs for nonlinear problems.

These include the discrete empirical interpolation method (DEIM) and trajectory piecewise lin-

earization (TPWL). DEIM, first proposed by Chaturantabut and Sorensen [21, 22], reduces the

dimension of nonlinear functions in the governing partial differential equation (PDE) using an em-

pirically derived basis. During the inline (runtime) stage, reduced-order nonlinear functions are

determined through computations involving only a small number of grid blocks, which greatly re-

duces inline computational demands. Carlberg et al. [19] further extended the method to treat

nonlinear algebraic systems obtained from application of Newton’s method. They applied a com-
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pressive tensor approximation to enable the fast construction of reduced Jacobian matrices, which

were then used in inline computations. DEIM has been applied successfully for different appli-

cations [19, 22, 44], though its implementation does require nonlinear terms to be evaluated at

particular grid blocks during inline processing. This is intrusive with respect to the full-order sim-

ulator, which could pose a problem in the use of DEIM with general purpose reservoir simulators.

We note finally that a prototype DEIM procedure has been developed for reservoir flow [37], though

only small two-dimensional models have thus far been considered.

Trajectory piecewise linearization (TPWL), proposed by Rewienski and White [62], handles

nonlinearity by constructing local (piecewise) linearizations around previously simulated (training)

solutions. Because new (test) runs entail linearization around training ‘points,’ the order reduction

computations can all be performed offline (i.e., in a preprocessing step). Thus the inline compu-

tations involve only low-dimensional linear solutions. TPWL has been combined with POD and

applied for a number of subsurface flow problems. These include oil-water models [16, 17, 41],

idealized thermal simulation cases [63], compositional systems [39], and ensemble-based data as-

similation [42]. Construction of the POD-TPWL model for reservoir simulation problems requires

preprocessing (offline) computations equivalent to about 3–4 full-order simulations, though runtime

speedups of 200–1000 were reported in the studies noted above.

As indicated earlier, constraint reduction entails the projection of the overdetermined system

into a low-dimensional subspace in which the residue is driven to zero. This subspace is defined

by the constraint reduction matrix Ψ. For ROMs based on Krylov subspace or balanced trunca-

tion (including balanced POD [46, 74], in which POD is used to approximate the Gramians in the

balanced truncation method), the appropriate constraint reduction matrix is provided from the-

ory [38]. For POD-based methods, there is no unambiguous choice for Ψ, and different approaches

have been used.

In the initial POD-TPWL method for reservoir simulation [16], a Galerkin projection scheme [4],

in which Ψ = Φ (recall that Φ is the dimension-reduction matrix), was applied. However, as shown

in [41], this approach can lead to numerical stability problems in some cases. In [41], a procedure

was devised to select the columns in Φ to improve system stability. This approach was shown

to perform well for the oil-water cases considered, but it does not guarantee stability. Bond and

Daniel [5] proposed that the constraint reduction matrix Ψ be designed to guarantee the stability

of the reduced system through satisfaction of Lyapunov stability criteria. However, if only stability

is considered, the reduced-order model may be inaccurate. If accuracy is also taken into account,

a matrix optimization problem must be solved to obtain the optimal Ψ, and this is very expensive

for large systems. A Petrov-Galerkin projection scheme was recently used for POD-based DEIM

by Carlberg et al. [19]. This approach provided numerical stability at reasonable computational

cost (though stability is still not guaranteed). A Petrov-Galerkin procedure was also used in [10]

for linear model reduction, and recently in [39] for POD-TPWL compositional reservoir simulation.

This approach has not, however, been studied systematically within the context of POD-TPWL.

In this work we assess the accuracy and stability of various constraint reduction treatments for
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POD-TPWL models. The approaches presented should be relevant for POD-TPWL procedures in a

range of application areas, though our implementation and numerical results are for subsurface flow

problems. Following a brief assessment of the POD-TPWL errors that arise from state reduction

and linearization, we discuss the characteristics of several constraint reduction procedures. Opti-

mality conditions for these approaches, which are based on error minimization, are presented. The

methods considered include Galerkin projection, Petrov-Galerkin projection, and two new meth-

ods, inverse projection and weighted inverse projection. We also provide linear stability criteria

for POD-TPWL models. The numerical accuracy and stability of the different constraint reduc-

tion procedures are compared for oil-water and oil-gas compositional flow examples. Our results

demonstrate the relative advantages of the different approaches and suggest directions for future

research.

This Appendix proceeds as follows. In Section A.3 we briefly discuss the reservoir simulation

problems targeted in this work. In Section A.4 the POD-TPWL model is derived, and the error

incurred at each step is discussed. Optimal constraint reduction procedures are derived in Sec-

tion A.5, and stability requirements are discussed in Section A.6. In Section A.7, the performance

of Galerkin projection and Petrov-Galerkin projection are investigated in detail for three test cases.

The two new constraint reduction methods, inverse projection and weighted inverse projection, are

developed in Section A.8. Numerical results for these approaches are also presented. A summary

of our findings and suggestions for future work are provided in Section A.9.

A.3 Problem Description

Our specific interest here is in the simulation of oil-water and oil-gas compositional systems. Oil-

water systems are commonly used to model oil production driven by the injection of water (referred

to as waterflooding), while compositional systems are used to model enhanced oil recovery processes,

which often involve the injection of gas, as well as CO2 storage operations. Our descriptions here

are brief; for more details see, e.g., [3, 16, 27, 35, 38, 72, 78].

The governing equations for oil-water systems consist of statements of mass conservation for oil

and water, combined with Darcy’s law, which relates the flow of each fluid phase to the pressure

gradient. These equations include accumulation, flux, and source/sink terms, and can be written

as:
∂

∂t
(φρjSj)−∇ · [ρjλjk (∇pj − ρjg∇D)] + qwj = 0, j = o, w, (36)

where the subscript j designates the fluid phase (o indicates oil and w water). Here t is time, φ

is porosity (volume fraction of the pore space), ρj is the phase density, Sj is the phase saturation

(volume fraction of phase j within the pore space) , λj is the phase mobility, which is typically a

nonlinear function of Sj , k is the absolute permeability tensor (k is essentially a flow conductivity

and is a property of the rock), pj is the phase pressure, g is the gravitational acceleration, D is

the depth, and qwj is the source/sink term (the superscript w indicates that this term is driven by

wells). The system is closed by adding the saturation constraint (So + Sw = 1) and the capillary
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pressure relationship pc(Sw) = po − pw. The primary unknowns in Equation 36 are often taken to

be the oil phase pressure po and water phase saturation Sw. Other quantities (pw and So) can be

easily computed block-by-block once po and Sw are determined. See [16] for more details on the

oil-water problem formulation in the context of POD-TPWL. Note that equations of the form of

Equation 36 arise in many problems involving flow and transport.

For compositional systems, we track a total of nc components (as opposed to two components

in oil-water systems). The governing equations for oil-gas compositional systems resemble Equa-

tion 36, in that they entail statements of mass conservation for each component and Darcy’s law

for each phase, though they are complicated by the fact that components partition between the

oil and gas phases. Phase equilibrium equations for each component are therefore additionally

required to determine the fraction of each component in each phase. For isothermal compositional

systems with nc components in two phases, there are a total of 2nc + 4 unknown variables in each

grid block [39]. Practical systems are typically modeled with ∼4–10 components, so computational

demands for large models can be substantial.

In compositional models there are, however, only nc primary equations and nc primary un-

knowns for each grid block. This set of equations must be solved as a fully-coupled system. The

remaining nc + 4 unknowns decouple and can be solved block-by-block. The nc primary equa-

tions are typically the mass conservation equations [27, 72, 78]. Various choices for the nc primary

variables are possible. Most common is the so-called natural formulation, in which the primary

variables consist of the oil phase pressure po and nc − 1 phase-dependent variables (such as the

mole fraction of component c in the gas phase). The natural formulation, however, requires variable

switching when a phase disappears. This introduces complications in the context of reduced-order

modeling since it is much more straightforward for the ROM procedure to treat the same types

of variables in the test and training simulations. We thus apply the less commonly used molar

formulation [72], in which the primary variables are po and nc − 1 overall mole fractions. These

quantities are well defined at all times in all grid blocks, so variable switching is not required.

The governing equations and detailed discretizations differ for oil-water and compositional prob-

lems. Nonetheless, the fully-implicit discretized representations, for a wide range of problems in-

cluding these, can be written as a general set of nonlinear algebraic equations in the following

form:

gn+1 = g
(
xn+1,xn,un+1

)
= 0. (37)

Here g is the residual vector we seek to drive to zero, n and n+ 1 denote time level, u is the set of

control parameters, and x designates the state vector (primary variables in each grid block). We

denote the number of grid blocks as nb and the dimension of the state vector x (that is, the total

number of primary variables) as nv. In oil-water systems, x contains oil pressure p (from here on

we use p in place of po) and water saturation Sw in each grid block, so nv = 2nb. In compositional

systems, x contains pressure p and the overall mole fraction, designated zc, for nc− 1 components.

In this case, nv = ncnb. In Equation 37, u is the set of specified control parameters that drive

the oil recovery process. These are taken here to be the pressures of injection or production wells
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(referred to as bottom-hole pressures or BHPs), though they could also be injection or production

flow rates. In either case, these terms enter through the source terms in the governing equations

(e.g., qwj in Equation 36) and thus strongly impact the numerical solutions. In all cases, xn is

known from the previous time step or the initial condition, and the goal is to compute xn+1.

In the full-order simulation, Equation 37 is solved using Newton’s method. This entails, at each

iteration, the solution of the high-dimensional linear system

Jδ = −g, (38)

where J is the Jacobian matrix, given by J = ∂g
∂x evaluated at the current estimate of xn+1, and

δ = xn+1,ν+1 − xn+1,ν is the update vector, where ν designates iteration. Convergence is achieved

once an appropriate norm of gn+1 is less than a specified tolerance, and the solution states are then

designated xn+1.

For practical reservoir simulation problems, nv ∼ O(104 − 106). In addition, the high degree of

nonlinearity of Equation 37 can result in substantial numbers of Newton iterations, small time steps,

and frequent time-step cuts. The combination of nonlinearity and high dimensionality leads to very

large computational demands, especially when thousands or tens of thousands of simulations must

be performed, as may be the case for production optimization computations. The POD-TPWL

approach we now describe can provide a much more efficient (though approximate) solution of

Equation 37.

A.4 POD-TPWL Model and Assessment of Error

In this section we will consider general POD-TPWL models, applicable to a wide range of systems.

We will assess the errors incurred at each step of the POD-TPWL procedure. These include

linearization error, state reduction error, constraint reduction error, and error propagated from the

previous time step (which we relate to stability). Most aspects of this discussion are quite general,

though some are specific to the particular models and fluid systems under consideration. Detailed

derivations of POD-TPWL models for oil-water [16, 41] and compositional systems [39] have been

presented previously and should be consulted for more details.

Error in reduced-order models has been analyzed by a number of investigators. Rathinam

and Petzold [59], for example, presented an error analysis for POD-based reduced-order ODE

systems. Chaturantabut and Sorensen [23] provided a state-space error estimate for nonlinear

model reduction based on POD-DEIM. Our discussion here will be focused on POD-TPWL.

In the following discussion, the POD-TPWL equations are derived from the original system

of equations (Equation 37) by introducing a series of approximations. Solutions associated with

different levels of approximation will be denoted xn+1
α (α = 1, 2, 3, 4), with increasing α indicating

a more approximate solution. Consistent with this, we denote the exact solution to the full set

of nonlinear algebraic equations (Equation 37) as xn+1
0 . The solution that contains linearization

error is designated xn+1
1 , the solution that contains linearization error and state reduction error
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is denoted xn+1
2 , the solution that contains linearization, state reduction and constraint reduction

error is designated xn+1
3 , and the solution that contains all of these errors plus error propagated

from the previous time step is denoted xn+1
4 .

A.4.1 Trajectory Piecewise Linearization

In order to construct the POD-TPWL model, we must first perform one or more full-order ‘training’

simulations for some specific control parameters, which we designate ui+1. This corresponds to

generating solutions to the following equation:

gi+1 = g(xi+1,xi,ui+1) = 0, i = 0, . . . , nt − 1, (39)

where nt is the number of time steps. Note that we use superscripts i and i + 1 to indicate

sequential ‘points’ (in time) in a training simulation; i.e., xi and xi+1 are the solutions of the

training simulation at time steps i and i+ 1.

In order to construct the solution for a new set of controls (designated un+1), rather than solve

Equation 37 iteratively using Newton’s method, we instead represent the new residual vector gn+1

in terms of a Taylor series expansion around the training solution. We refer to the new simulation

as a ‘test’ simulation. Neglecting higher-order terms, we write:

gn+1 = 0 ≈ gi+1 +
∂gi+1

∂xi+1

(
xn+1 − xi+1

)
+
∂gi+1

∂xi
(
xn − xi

)
+
∂gi+1

∂ui+1

(
un+1 − ui+1

)
. (40)

Here xn indicates the solution at the previous time level in the test simulation, xn+1 indicates the

test solution that we wish to compute, and xi and xi+1 are sequential solutions in the training

simulation.

From Equation 39 we know that gi+1 = 0. This allows us to express Equation 40, after some

rearrangement, as follows

Ji+1xn+1 = Ji+1xi+1 −
[
Ai+1

(
xn0 − xi

)
+ Bi+1

(
un+1 − ui+1

)]
, (41)

where

Ji+1 =
∂gi+1

∂xi+1
, Ai+1 =

∂gi+1

∂xi
, Bi+1 =

∂gi+1

∂ui+1
. (42)

Here Ji+1 ∈ Rnv×nv is the Jacobian matrix at time step i+ 1 (evaluated upon convergence) of the

training simulation, Ai+1 ∈ Rnv×nv , and Bi+1 ∈ Rnv×nu , where nu is the dimension of the control

vector u (typically there are significantly fewer wells than grid blocks, so nu << nv). Note that

xn0 , the exact solution of Equation 37 at the previous time step, appears in Equation 41. This is

because the error we are now considering corresponds to the error incurred in a single time step.

Later, in Section A.4.4, we will incorporate the error propagated from the previous time step into

our analysis.

We denote the solution to Equation 41 as xn+1
1 . This equation approximates the high-dimensional
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nonlinear system in Equation 37 as a high-dimensional linear system. The (linearization) error in-

curred in this step is referred to as en+1
01 , where en+1

01 = xn+1
0 − xn+1

1 .

A.4.2 Proper Orthogonal Decomposition

Equation 41 is linear but it is still expressed in the high-dimensional space. To reduce the number

of unknowns, we now apply POD. This enables us to write x = Φξ, where Φ ∈ Rnv×l is the

basis matrix and ξ ∈ Rl×1 is the reduced state vector. Because l << nv, the system state can be

expressed in terms of a relatively small number of variables.

Proper orthogonal decomposition (POD) has been used in the context of reduced-order modeling

by a number of researchers; see, e.g., [9, 12, 18, 47, 66, 67, 70]. In POD, the columns of the basis

matrix Φ are the leading singular vectors of the snapshot matrices X. Snapshot matrices contain,

as their columns, the solution vectors computed during one or more training simulations. In this

work we typically use two or three training runs to provide a sufficient number of snapshots for the

POD basis construction.

As discussed in [16] and [39], we apply POD separately to pressure snapshots and water satura-

tion snapshots (in oil-water problems), or to pressure snapshots and overall mole fraction snapshots

(in compositional problems). For oil-water systems we have

x =

[
p

Sw

]
≈ Φξ =

[
Φp 0

0 ΦS

][
ξp

ξS

]
, (43)

where Φp ∈ Rnb×lp and ΦS ∈ Rnb×lS are the basis matrices for pressure and water saturation

respectively, ξp ∈ Rlp×1 and ξS ∈ RlS×1 are the reduced state vectors for pressure and water

saturation, and Φ ∈ Rnv×l, where l = lp + lS , is the basis matrix for the entire state vector ξ. Note

that, in general, the number of columns in Φp differs from that in ΦS (i.e., lp 6= lS).

Similarly, for compositional systems we have

x =


p

z1
...

znc−1

 ≈ Φξ =

[
Φp 0

0 Φz

][
ξp

ξz

]
, (44)

where Φz ∈ Rnb(nc−1)×lz is the basis matrix for the overall mole fraction variables, ξz ∈ Rlz×1 is

the corresponding reduced state vector, and Φ ∈ Rnv×l, where l = lp + lz, is the basis matrix for

the entire state vector ξ. Procedures for specifying lp and lS , or lp and lz, which can be based on

‘energy’ criteria or stability considerations (the latter are discussed in Section A.6 and illustrated

in Section A.7.4) are described in [16, 39, 41]. We note finally that all columns of the submatrices

in Φ, as well as the columns of the overall Φ matrix, are orthonormal (meaning ΦTΦ = I).

We now introduce the reduced representation x = Φξ to the right hand side of Equation 41,
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which gives

Ji+1xn+1 = Ji+1Φξi+1 −
[
Ai+1Φ

(
ξn0 − ξi

)
+ Bi+1

(
un+1 − ui+1

)]
. (45)

The solution to Equation 45 is denoted xn+1
2 . The additional error incurred in this step is due to

state reduction and can be expressed as en+1
12 = xn+1

1 −xn+1
2 . Note that ξn0 is the reduced represen-

tation of xn0 , the true solution at time step n; i.e., ξn0 = ΦTxn0 (note that the subscript convention

for ξ corresponds to that used for x). Therefore ξn0 is not at the same level of approximation as

xn+1 (= xn+1
2 ) in Equation 45. This is the case because ξn0 is the projection of the true solution of

Equation 37 at time step n, while xn+1
2 includes both linearization error and state reduction error.

For simplicity, we denote the right hand side of Equation 45 as bn+1 (this notation will be used in

the subsequent analysis). Then Equation 45 becomes simply Ji+1xn+1 = bn+1.

A.4.3 Constraint Reduction

Applying the POD representation to the left hand side of Equation 45 results in an overdetermined

system, which has nv equations but only l unknowns. This approximation introduces a residual

term r, which appears as follows:

Ji+1Φξn+1 = Ji+1Φξi+1 −
[
Ai+1Φ

(
ξn0 − ξi

)
+ Bi+1

(
un+1 − ui+1

)]
+ r. (46)

In general there is no solution for ξn+1 that can render the residual term to be identically zero.

Therefore, Equation 46 is usually solved by requiring r to be zero in an l-dimensional subspace

whose basis matrix is denoted Ψi+1 (i.e., (Ψi+1)T r = 0). The matrix Ψi+1 ∈ Rnv×l is called

the constraint reduction matrix, also referred to as the left projection matrix or the test function.

Premultiplying Equation 46 by (Ψi+1)T , with (Ψi+1)T r = 0 yields, after some rearrangement

ξn+1 = ξi+1 −
(
Ji+1
r

)−1 [
Ai+1
r

(
ξn0 − ξi

)
+ Bi+1

r

(
un+1 − ui+1

)]
, (47)

where the reduced derivative matrices are defined as

Ji+1
r =

(
Ψi+1

)T
Ji+1Φ, Ai+1

r =
(
Ψi+1

)T
Ai+1Φ, Bi+1

r =
(
Ψi+1

)T
Bi+1. (48)

Here Ji+1
r ∈ Rl×l is the reduced Jacobian matrix, Ai+1

r ∈ Rl×l, and Bi+1
r ∈ Rl×nu .

The choice of Ψi+1 is not unique. In previous work involving POD-TPWL models for oil-water

systems, Galerkin projection was applied [16, 41, 42], meaning we take Ψi+1 = Φ. As discussed

earlier, this can lead to unstable POD-TPWL models [41]. Recent work has demonstrated that

Petrov-Galerkin projection, where Ψi+1 = Ji+1Φ, represents a viable (and more numerically stable)

alternative [19, 39]. In this work we will investigate the accuracy and stability of these, and other,

constraint reduction methods.

Equation 47 defines the POD-TPWL model given the true reduced solution (ξn0 ) at the previous
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time step. This equation can also be written as

ξn+1 =
(
Ji+1
r

)−1 (
Ψi+1

)T
bn+1, (49)

with bn+1 as defined above. We refer to ξn+1 in Equations 47 and 49 as ξn+1
3 . The full-order

solution at this level of approximation, denoted xn+1
3 , can be reconstructed as xn+1

3 = Φξn+1
3 . The

error incurred in this step is defined as en+1
23 = xn+1

2 − xn+1
3 , and is referred to as the constraint

reduction error.

A.4.4 Error Propagation

The term ξn0 in Equation 47 is the projection of the true solution xn0 , which is generally not available.

In an actual POD-TPWL computation, ξn0 is replaced by ξn, which corresponds to the POD-TPWL

solution at time step n. We thus write:

ξn+1 = ξi+1 −
(
Ji+1
r

)−1 [
Ai+1
r

(
ξn − ξi

)
+ Bi+1

r

(
un+1 − ui+1

)]
. (50)

Equation 50 defines the POD-TPWL model we actually solve. By combining linearization and

order reduction, the original high-order nonlinear system of equations has been transformed to a

linear expression in l variables (l is typically ∼100–1000), which can be evaluated in seconds [16, 42].

To apply Equation 50 we must first determine the saved state and control point (ξi+1, ξi,ui+1)

around which to linearize. This is usually accomplished by minimizing a measure of distance,

denoted dn,j , between the test solution ξ at time step n and any saved point ξj in the training

simulation, that is, i = arg minj
(
dn,j

)
. Distance definitions are typically problem specific. Here

we use the definition given in [39], which entails a weighted combination of the relative difference

in dimensionless time (pore volume injected in this context) and in the reduced water saturation

or total mole fraction states (ξS or ξz). See [39] for further details.

In Equation 50, ξn corresponds to the POD-TPWL solution at the previous time step, which we

designate ξn4 . The solution to Equation 50 is thus designated ξn+1
4 , and its corresponding full-order

state is xn+1
4 . The difference between ξn0 and ξn4 can be expressed as

ξn0 − ξn4 = ΦT (xn0 − xn4 ) = ΦTen04. (51)

The fact that en04 is nonzero results in a difference between the reduced solutions ξn+1
3 and ξn+1

4 ,

and thus a difference between the full-order solutions xn+1
3 and xn+1

4 . The error incurred at this

step is defined as en+1
34 = xn+1

3 −xn+1
4 , which can be viewed as the error inherited from the previous

time step. It is given by

en+1
34 = xn+1

3 − xn+1
4

= Φ
(
ξn+1
3 − ξn+1

4

)
= −Φ

(
Ji+1
r

)−1
Ai+1
r (ξn0 − ξn4 )

= Mi+1en04,

(52)
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where Mi+1 = −Φ
(
Ji+1
r

)−1
Ai+1
r ΦT . The third step in Equation 52 corresponds to subtracting

Equation 50 (for ξn+1
4 ) from Equation 47 (for ξn+1

3 ).

A.4.5 Total Error of POD-TPWL Model

The total error en+1
04 of the POD-TPWL solution xn+1

4 (reconstructed from the solution of Equa-

tion 50, ξn+1
4 ) relative to the true solution of Equation 37, xn+1

0 , can be expressed as

en+1
04 = xn+1

0 − xn+1
4

= (xn+1
0 − xn+1

1 ) + (xn+1
1 − xn+1

2 ) + (xn+1
2 − xn+1

3 ) + (xn+1
3 − xn+1

4 )

= en+1
01 + en+1

12 + en+1
23 + en+1

34

= en+1
01 + en+1

12 + en+1
23 + Mi+1en04.

(53)

In other words, the total error en+1
04 is the sum of the linearization error en+1

01 , the state reduction

error en+1
12 , the constraint reduction error en+1

23 , and the error propagated from the previous time

step, Mi+1en04. The norm of the total error is bounded by the sum of the norms of these four error

components, that is

∥∥en+1
04

∥∥ ≤ ∥∥en+1
01

∥∥+
∥∥en+1

12

∥∥+
∥∥en+1

23

∥∥+
∥∥Mi+1en04

∥∥ . (54)

The linearization error en+1
01 is related to the nonlinearity of the problem and the distance

between the current solution and the point in the training run used for linearization. This error

component can be reduced by using additional training simulations for linearization (or occasional

retraining), by using a better point selection scheme, or by modeling higher-order terms [24]. The

second-order terms (SOTs) appearing in the Taylor-series expansion of Equation 37 involve sparse

third-order tensors multiplied by two vectors of differences. For example, the second-order term

with respect to (xi+1, ui+1) can be written as

SOT =
(
xn+1 − xi+1

)T ∂2gi+1

∂xi+1∂ui+1

(
un+1 − ui+1

)
. (55)

These second-order derivatives are not usually available in subsurface flow simulators, though it

should be possible to construct them using simulators based on automatic differentiation, such as

Stanford’s Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) [79].

In addition, for specific applications, some of the second-order terms vanish. For example, for

reservoir simulation problems, the cross terms involving second derivatives with respect to (xi,

xi+1) and (xi, ui+1) are usually zero. Furthermore, for models with standard well treatments in

which well pressures (BHPs) are the control parameters, the second-order derivative with respect

to ui+1 is zero. Thus only some of the SOTs would need to be considered.

The state reduction error en+1
12 results from applying order reduction to the states. Equations 45

and 41 are linear systems with the same coefficient matrix but different right hand sides. Therefore,
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∥∥en+1
12

∥∥ ≤ κ
∥∥xn+1

2

∥∥ ‖∆b‖ /
∥∥bn+1

∥∥, where κ is the condition number of Ji+1, bn+1 is the right

hand side of Equation 45, and ∆b is the difference between the right hand sides of Equations 45

and 41 [25]. The magnitude of ‖∆b‖ is determined by the state reduction basis matrix Φ. Therefore,

within the framework of POD, the state reduction error en+1
12 can be decreased by improving the

quality of Φ. This can be accomplished, for example, by collecting more snapshots from additional

training simulations. Another approach, proposed in [41], is to keep variables in important grid

blocks (e.g., well blocks) in the full-order space, meaning these variables are not represented via

x = Φξ. This treatment was shown to provide more accurate results in many cases.

The error terms en+1
01 and en+1

12 are incurred prior to the introduction of constraint reduction

in Equation 47, so they do not depend on the matrix Ψi+1. The error en+1
23 is however incurred

by the state and constraint reduction at time step n + 1, so it does depend on Ψi+1. The error

en+1
34 = Mi+1en04 is the error propagated from the previous time step. It also depends on Ψi+1 via

the matrix Mi+1. An optimal choice of Ψi+1 should minimize the sum of en+1
23 and en+1

34 . The

optimal Ψi+1 will however depend on the error at the previous time step (en04), which is, in general,

not available. Therefore our strategy here is to choose a constraint reduction matrix Ψi+1 that

minimizes the one-step error term en+1
23 , while also ensuring that the resulting POD-TPWL model

behaves stably, which means the error from previous time steps will not grow unphysically with

time.

A.5 Optimal Constraint Reduction Procedures

We now derive optimal constraint reduction matrices that minimize the one-step error en+1
23 in

different norms. In our development here, since we only consider one time step, we drop the

superscripts i+ 1 and n+ 1.

A.5.1 General Development

The optimality condition can be written as

Ψ∗ = arg min
Ψ

‖e23‖2Θ = arg min
Ψ

‖x2 − x3‖2Θ , (56)

where Ψ∗ designates the optimum (we drop the superscript ∗ in subsequent equations). Here ‖·‖Θ
is a norm defined as ‖e‖Θ =

√
eTΘe, with e ∈ Rnv×1 and Θ ∈ Rnv×nv , where Θ is a symmetric

positive definite (SPD) matrix and nv is the dimension of the full-order state x. The requirement

for Θ to be SPD ensures that the minimum of ‖e‖2Θ is uniquely e = 0.

We denote the objective function of the minimization problem in Equation 56 as f(Ψ), that

is, f(Ψ) = ‖e23‖2Θ = ‖x2 − x3‖2Θ. From Equation 45 we have x2 = J−1b, while x3 can be

reconstructed from the solution of Equation 47 as x3 = Φξ3 (which we denote simply as Φξ in this
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section). Therefore, f(Ψ) can be expressed as

f(Ψ) = ‖x2 − x3‖2Θ
=
∥∥J−1b−Φξ

∥∥2
Θ

= (J−1b−Φξ)TΘ(J−1b−Φξ).

(57)

The first-order optimality condition for the minimization problem in Equation 56 is ∂f
∂Ψ = 0. From

the chain rule and the fact that ξ = ξ(Ψ) (since ξ depends on Ψ via Jr, Ar and Br), we have
∂f
∂Ψ = ∂f

∂ξ
∂ξ
∂Ψ , in which case ∂f

∂ξ = 0 is sufficient to conclude that ∂f
∂Ψ = 0. The condition ∂f

∂ξ = 0

gives

ΦTΘΦξ −ΦTΘJ−1b = 0, (58)

or equivalently,

ξ =
(
ΦTΘΦ

)−1
ΦTΘJ−1b. (59)

We also have a direct expression for ξ from Equation 49:

ξ =
(
ΨTJΦ

)−1
ΨTb. (60)

Equations 60 and 59 must both hold for an arbitrary vector b. Therefore the following matrix

equation for Ψ applies (
ΨTJΦ

)−1
ΨT =

(
ΦTΘΦ

)−1
ΦTΘJ−1. (61)

The solution to Equation 61 is, by inspection,

ΨT = ΦTΘJ−1. (62)

Note that ΨT = CΦTΘJ−1, for any full-rank C ∈ Rl×l, is also a solution to Equation 61. The

choice of C will not affect the solution for ξ since C−1C immediately appears in Equation 60 (here

we take C = I).

Equation 62 provides a general solution for ΨT that satisfies the optimality condition in Equa-

tion 56. The solution for ΨT in Equation 62 depends on the matrix Θ and in general involves the

matrix J−1. In practice, special choices of Θ which eliminate J−1 are often employed. Examples

are Galerkin projection and Petrov-Galerkin projection, which we will describe in detail below.

Other choices for Θ, which do not eliminate J−1, will lead to higher computational cost, but they

may have better theoretical properties and display better numerical performance. We will discuss

two such treatments, inverse projection and weighted inverse projection, in Section A.8.

A.5.2 Galerkin Projection

Galerkin projection corresponds to the case where Θ = J. Equation 62 then becomes ΨT = ΦT .

Galerkin projection has been used in many previous POD-based order reduction procedures [12,
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15, 16, 22, 41, 48, 60, 67].

Galerkin projection enforces so-called Galerkin orthogonality, which means that the residual

vector of Equation 45 is orthogonal to the state subspace Φ. It also minimizes the objective

function (e23)
T Je23. When the matrix J is SPD, this projection method is optimal in the sense

defined in Equation 56. However, if J is not SPD, (e23)
T Je23 will not be a norm definition for e23

since it could be negative. In subsurface flow simulations involving multiple phases, the Jacobian

matrix is in general not SPD. Therefore Galerkin projection is in general not a strict minimizer of

the norm of e23.

However, despite this theoretical limitation, previous applications of POD for subsurface flow [12,

15, 16, 22, 41, 48, 60, 67] using Galerkin projection often show reasonable accuracy, especially in

terms of the well production and injection rates. This may be due to the fact that the Galerkin

orthogonality condition requires the residual vector to be orthogonal to the columns of Φ. Re-

call that the columns of Φ capture the variations in the states since they are computed through

application of POD. Therefore, variables with larger variation tend to have larger weights in the

basis vectors. As a result, the corresponding equations are weighted more heavily and are thus

solved more accurately. In reservoir simulation applications, variables with large variation often

correspond to well blocks and to blocks in the near-well regions. The additional weighting applied

to these blocks may enable Galerkin projection to provide accurate well rate predictions.

A.5.3 Petrov-Galerkin Projection

If Θ is taken as JTJ, Equation 62 becomes ΨT = ΦTJT . This projection method, called Petrov-

Galerkin projection, has been used in [10] for order reduction of large-scale systems with high-

dimensional parametric input and in [19] for order reduction within the context of DEIM. Petrov-

Galerkin projection has some interesting properties. First, because JTJ is SPD, the resulting Ψ

satisfies Equation 56 and minimizes the norm of e23, with the norm defined as ‖e‖2JT J = eTJTJe.

Second, Petrov-Galerkin projection is equivalent to solving the normal equation for the overdeter-

mined system in Equation 46, which minimizes the 2-norm of the residual vector.

The optimality condition for Petrov-Galerkin projection can also be interpreted in another way.

With the Petrov-Galerkin method, Equation 56 is equivalent to

Ψ∗ = arg min
Ψ

‖e23‖2JT J = arg min
Ψ

‖Je23‖22 . (63)

In other words, this approach minimizes the 2-norm of Je23. Writing the singular value decom-

position of J as J = UJΣJVT
J , where UJ is an orthogonal matrix containing as its columns the

left-singular vectors of J, ΣJ is a diagonal matrix with the singular values of J on the diagonal, and

VJ is an orthogonal matrix containing as its columns the right-singular vectors of J (or equivalently,

the eigenvectors of JTJ), Equation 63 can be expressed as

Ψ∗ = arg min
Ψ

∥∥ΣJVT
J e23

∥∥2
2
. (64)
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Equation 64 indicates that the Petrov-Galerkin method transforms the error vector into a

coordinate defined by VJ , weights each element of the new vector with the corresponding singular

value, and then minimizes the 2-norm of the weighted transformed error vector. In subsurface flow

simulation, the Jacobian matrix J is usually very ill-conditioned and its singular values vary widely,

spanning up to 10 orders of magnitude. Therefore the weighting scheme using singular values can be

highly skewed. In other words, some components in the error vector will be very strongly weighted

while others may be very weakly weighted. Therefore, although the Petrov-Galerkin method is

optimal in the sense defined in Equation 56, the skewed weighting embedded in the method may

result in inaccuracy in the resulting POD-TPWL model for some quantities.

A.6 Stability Criteria

In addition to accuracy and efficiency considerations, the constraint reduction matrix Ψ should

also be selected to ensure the stability of the resulting POD-TPWL method. In theory, we could

attempt to construct a SPD matrix Θ in Equation 62 that also satisfies the Lyapunov stability

criteria. This would provide a guaranteed stable and optimally accurate Ψ. This approach, however,

would entail coupling Equation 62 with the Lyapunov equations and solving the resulting matrix

equations. Such an approach is unlikely to be computationally tractable for high-dimensional

subsurface flow problems. Therefore, in this work we start with constraint reduction methods that

satisfy Equation 62, and then consider methods to assess and enhance their stability.

The stability of reduced-order models based on TPWL was first considered in [62], which ad-

dressed order reduction of nonlinear ordinary differential equation (ODE) systems. In that work,

the piecewise linear reduced-order ODE system was deemed stable when the coefficient matrix of

the linear ODE system at each linearization step is a Hurwitz matrix (all eigenvalues have neg-

ative real part). Bond and Daniel [5] considered reduced-order models for linear time-invariant

ODE systems and proposed that Ψ be chosen to guarantee stability by satisfying the Lyapunov

equations of the reduced system. However, their approach involves solving a matrix optimization

problem, which for our models would entail an optimization of nv × l variables under constraints

for each time step of the training simulation. As indicated above, this amount of computation will

be prohibitive for models of reasonable size.

He et al. [41] considered the stability of POD-TPWL for fully discretized (PDE) systems in the

context of reservoir simulation. There it was shown that, in order for the POD-TPWL model to

be stable, the amplification factor at each time step of a particular matrix should be less than 1.

This analysis will now be described within the framework of error assessment.

The stability of the POD-TPWL formulation can be analyzed from the error propagation ex-

pression (Equation 53), which can be rewritten as

en+1
04 = Mi+1en04 + en+1

03 , (65)
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where

Mi+1 = −Φ
(
Ji+1
r

)−1
Ai+1
r ΦT , (66)

with Mi+1 ∈ Rnv×nv (note that Mi+1 appeared originally in Equation 52). Equation 65 indicates

that the total error of the POD-TPWL model at time step n + 1 is the total error at time step n

amplified by the matrix Mi+1, which is referred to as the amplification matrix, plus the one-step

error en+1
03 (en+1

03 = en+1
01 + en+1

12 + en+1
23 ) incurred at time step n + 1. It is important to observe

that Mi+1 in Equation 66 is defined as a projection of the matrix product −
(
Ji+1
r

)−1
Ai+1
r , whose

dimension is l × l. Therefore, although Mi+1 ∈ Rnv×nv , its rank is at most l.

We denote the spectral radius of Mi+1 as γi+1 and refer to it as the amplification factor. For

a matrix M that does not vary with time (i.e., Mi+1 = M), the error en04 in Equation 65 will not

grow exponentially if and only if the amplification factor γi+1 is less than or equal to 1 [34]. In

a piecewise linear system Mi+1 generally changes at each time step. However, the amplification

factor γi+1 was still shown to be a strong indicator of stability. Specifically, it was demonstrated

in [41] that an isolated γi+1 that is greater than 1 may amplify the error at a specific time step and

create a spike in the solution. Several consecutive time steps with γi+1 > 1 may cause the solution

to become unphysical. In practice, however, the occasional occurrence of γi+1 values that only

slightly exceed 1 does not appear to cause numerical instability. Therefore, to ensure that the error

does not amplify over time, we require that γi+1 not exceed 1 by more than a small threshold; e.g.,

γi+1 < 1.05. This will be used as the criterion to assure (essentially) stable POD-TPWL behavior

in this work. We note that [62] and [6] also used the spectral radius of an amplification matrix as

a stability indicator for piecewise linear reduced-order ODE systems.

Since Mi+1 is a high-dimensional matrix, its spectral radius can be expensive to compute.

Fortunately, because of the rank-deficiency of Mi+1 (Mi+1 has a maximum rank of l), we do not

need to analyze this high-dimensional matrix to assess POD-TPWL stability. Rather, we define

Mi+1
r ∈ Rl×l as

Mi+1
r = −

(
Ji+1
r

)−1
Ai+1
r . (67)

We now show that Mi+1 and Mi+1
r have the same nonzero eigenvalues, and thus the same spectral

radius.

From the definitions of Mi+1 and Mi+1
r in Equations 66 and 67, we see that Mi+1 = ΦMi+1

r ΦT .

In addition, using the fact that Φ is orthonormal (i.e., ΦTΦ = I), we have

Mi+1
r = (ΦTΦ)Mi+1

r (ΦTΦ) = ΦT (ΦMi+1
r ΦT )Φ = ΦTMi+1Φ. (68)

Using the expressions above, the fact that the matrices Mi+1 and Mi+1
r have the same nonzero

eigenvalues and thus the same spectral radius can be shown as follows. Let y be an eigenvector

of Mi+1 with nonzero eigenvalue λ, that is, Mi+1y = λy. Using this, along with the relationship

between Mi+1 and Mi+1
r , and premultiplying by ΦT , we have

ΦTMi+1y = ΦTΦMi+1
r ΦTy = Mi+1

r ΦTy = λΦTy. (69)
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This means ΦTy is an eigenvector of Mi+1
r with eigenvalue λ. Similarly, if η is an eigenvector of

Mi+1
r with nonzero eigenvalue λ, we have

Mi+1Φη = ΦMi+1
r ΦTΦη = ΦMi+1

r η = λΦη, (70)

which means Φη is an eigenvector for Mi+1 with eigenvalue λ. Therefore, Mi+1 and Mi+1
r have

the same nonzero eigenvalues and thus the same spectral radius γi+1. In practice, γi+1 can thus

be calculated efficiently by computing the largest eigenvalue of the low-dimensional matrix Mi+1
r ,

as described in [41].

Given the derivative matrices Ji+1 and Ai+1 and simulation results for all training simulations,

the amplification matrix only depends on the number of reduced variables (lp and lS for oil-water

problems, and lp and lz for compositional problems), which determine Φ and the constraint reduc-

tion matrix Ψ. For general choices of lp and lS (or lz) and Ψ, the resulting POD-TPWL model can

be unstable. It was shown in [41] that for oil-water problems the stability behavior of the POD-

TPWL model using Galerkin projection can be very sensitive to the choice of lp and lS . Improved

results for oil-water problems were achieved in [41] by finding the (lp, lS) combination that provides

the best stability properties. This approach entails specifying minimum and maximum values for

lp and lS , calculating the maximum amplification factor for all time steps i in the training run

(maxi γ
i) for all (lp, lS) combinations considered, and selecting the (lp, lS) combination that pro-

vides the lowest maxi γ
i. This can be accomplished efficiently (in low-dimensional space) because

the reduced derivative matrices Ji+1
r and Ai+1

r for different (lp, lS) combinations are just subma-

trices of the reduced derivative matrices for the largest values of lp and lS considered. Note that

this (lp, lS) selection method will only be effective when maxi γ
i is below the specified maximum

(e.g., 1.05).

This procedure provides an offline indication of POD-TPWL solution stability using only low-

order computations. This stability indicator can be applied for any constraint reduction procedure,

and we will use it for all of the approaches considered in this Appendix. Along these lines, the sta-

bility of POD-TPWL using Petrov-Galerkin projection has not, to our knowledge, been previously

studied. In Section A.7 we will see that Petrov-Galerkin projection provides much better stability

than Galerkin projection for challenging cases. In addition, in Section A.8, we will show that the

two new projection methods introduced here, inverse projection and weighted inverse projection,

also provide POD-TPWL models that behave stably.

A.7 Numerical Implementation and Results

We now describe some key aspects of the POD-TPWL implementation and the way in which we

quantify error. Numerical results are then presented for two oil-water models and one compositional

model. Additional results and discussion can be found in [38].
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A.7.1 POD-TPWL Implementation

The POD-TPWL method has been implemented for compatibility with Stanford’s Automatic

Differentiation-based General Purpose Research Simulator (AD-GPRS) [79]. AD-GPRS was mod-

ified to output the state and derivative information required to construct the POD-TPWL model.

During the offline (preprocessing) stage, two or three training simulations are performed using

AD-GPRS for specific sets of input (BHP) control parameters. One of the training runs is des-

ignated the primary training simulation. This run provides state vectors and derivative matrices

for use in subsequent (inline) computations. The other (secondary) training runs are used only to

provide snapshots for the construction of the basis matrix Φ. Secondary training runs are needed

because the number of snapshots from a single simulation run, which corresponds to the number of

time steps in that run, is typically not enough to provide a high-quality POD basis matrix. More

specifically, we have found that around 300 snapshots are needed to construct the POD basis for

the problems considered in this Appendix. Given that a typical run entails 100–200 time steps,

this corresponds to 2–3 training runs. We do not apply any special procedures to determine the

controls used in the primary or secondary training runs (these controls are all generated randomly

over the range of interest), though it is possible that better POD-TPWL accuracy could be achieved

through use of a more formal approach.

In the basic implementation of the offline procedure, the state vector at each time step of

each training simulation, as well as the derivative matrices Ji, Ai and Bi at each time step of

the primary training simulation, are saved to disk. The POD basis is then constructed from the

snapshot matrices. Finally, the reduced states (ξi = ΦTxi) and derivative matrices are formed,

with the latter computed using Equation 48.

If full-order derivative matrices are written as output, the storage requirements for the prepro-

cessing computations can be very large. In [39], a reduced-storage offline procedure is described, in

which only the reduced-order matrices Jir, Ai
r and Bi

r are written to disk. This approach requires

that the primary training simulation be run twice — once to provide snapshots before construction

of the basis matrix Φ, and once after. The computational cost for the second of these runs can be

reduced substantially, however, since the converged states are already known (meaning no iteration

or linear solutions are required). See [39] for more details on both the basic and reduced-storage

offline procedures.

In the inline stage, Equation 50 is evaluated for control parameters un+1 that differ from those

used in the training runs. After the reduced state ξn+1 is computed, the full-order state xn+1 can

be reconstructed at selected locations (e.g., well blocks), and other quantities of interest, such as

the phase flow rates for each well, can be calculated. For compositional problems, the calculation

of well flow rate additionally requires that a flash calculation be performed at the well blocks to

determine secondary variables such as oil saturation. More details can be found in [39].

As indicated above, in addition to performing the training simulations, in the offline stage

we must also output detailed information at each time step of the primary training simulation,

construct the POD basis, and reduce the training states and derivatives. The reduction of the state
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vectors and derivative matrices constitutes the majority of the additional offline overhead. For both

the Galerkin and Petrov-Galerkin constraint reduction procedures, this offline cost is approximately

equal to the cost of an additional full-order simulation. Once the POD-TPWL model is constructed,

however, an inline run typically takes only a few seconds. Thus POD-TPWL is most suitable for

use in applications requiring a large number of simulations with different input control parameters,

as is the case for production optimization computations.

A.7.2 Error Definitions

In order to assess the accuracy of POD-TPWL models, we compute the mismatch (error) in well flow

rates between the full-order AD-GPRS solution (Qfull) and the POD-TPWL simulation (Qtpwl).

Phase flow-rate errors for a particular well are computed at each time step, then integrated over

time, and then normalized by the time-integrated flow rate for that well from the full-order solution.

Errors from all wells of the same type (injection or production) are then averaged to provide overall

error values. For example, the overall average error for oil production rate, designated Eo, is

computed as:

Eo =
1

npw

npw∑
j=1

∫ T
0 |Q

j
o,full −Q

j
o,tpwl| dt∫ T

0 Qjo,full dt
, (71)

where subscript o designates oil, superscript j indicates a particular production well, npw is the

total number of production wells, and T is the total simulation time. The integration is performed

using the trapezoidal rule.

For oil-water models, we compute the error in oil production rate Eo, water production rate Ew

and water injection rate Eiw. For compositional models we calculate the error for oil production

rate Eo, gas production rate Eg and gas injection rate Eig. These errors are computed using

expressions analogous to Equation 71.

We also calculate the average state error over all time steps and all grid blocks. For example,

the average error in pressure Ep is defined as

Ep =
1

ntnb

nt∑
i=1

nb∑
k=1

∣∣pik,full − pik,tpwl∣∣ , (72)

where nt is the number of time steps in the simulation, nb is the number of grid blocks, pik,full is the

full-order pressure solution for block k at time step i, and pik,tpwl is the analogous quantity for the

POD-TPWL model, constructed through application of x = Φξ. Similar expressions are used for

other variables. For oil-water models we compute the average error in pressure and water saturation

(Ep and ES), and for compositional models the average error in pressure and mole fraction of the

injected component (Ep and Ez).
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A.7.3 Case 1: Oil-Water Flow with Equal Phase Densities

The reservoir model for Cases 1 and 2, shown in Figure 27, is a portion of the so-called Stanford VI

reservoir model developed in [20]. The model represents a fluvial depositional system, with high-

permeability (sand) channels embedded in a low-permeability background shale. The dimensions

of the grid are 30× 40× 17, for a total of 20,400 cells. The model contains two injection wells and

four production wells, as indicated in Figure 27. The production wells are perforated (open to flow)

in the upper five layers and the injection wells in the lower three layers. The wells are controlled

through specification of time-varying bottom-hole pressure (BHP).

The relative permeability functions, which quantify the relative amounts of water and oil flow

in each grid block, are as follows:

krw =

(
Sw − Swc

1− Sor − Swc

)2

, kro =

(
So − Sor

1− Sor − Swc

)2

, (73)

where oil saturation So = 1 − Sw. The parameters Swc and Sor, specified to be 0.02 and 0.3

respectively, account for the fact that both phases cease to flow below some threshold saturation.

The oil and water viscosities (µo and µw) are 3 cp and 1 cp respectively. These, together with

the relative permeability functions, define the phase mobility functions in Equation 36 (specifically,

λo = kro/µo and λw = krw/µw). The oil and water phase densities are both specified to be

1000 kg/m3. The initial reservoir pressure is 5880 psi (405.4 bar) and the initial water saturation

is 0.1.

Figure 27: Reservoir model for Cases 1 and 2 (permeability in the x-direction is shown)

Three training simulations are performed to construct the POD-TPWL model, one of which

is used as the primary training run. The BHP controls of the two injectors and four producers

are shown in Figure 28. Well settings are varied every 200 days and are generated randomly over

a prescribed range. We take this range to be relatively narrow in the examples in this Appendix
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in order to focus on constraint reduction error and stability behavior. From the three training

simulations, 334 snapshots are collected to construct the basis matrix Φ. We use 70 reduced

pressure variables and 100 reduced water saturation variables (lp = 70, lS = 100). Figure 29 shows

the randomly generated BHPs for the test case, which differ from the training-run BHPs. We

note that the training and test-case BHP profiles are meant to resemble those generated during a

computational optimization procedure, where the goal is to determine the time-varying BHPs that

maximize a prescribed measure of reservoir performance.

(a) Injector BHPs (b) Producer BHPs

Figure 28: Time-varying BHPs for the primary training simulation for Cases 1 and 2

(a) Injector BHPs (b) Producer BHPs

Figure 29: Time-varying BHPs for the test simulation for Cases 1 and 2

As discussed in [41], for oil-water systems with equal phase densities, the POD-TPWL model

with Galerkin projection tends to behave stably for most (lp, lS) combinations. Figure 30 shows

the amplification factor γi at each time step i for both Galerkin projection (GLK) and Petrov-

Galerkin projection (PG). The label ‘GLK 70 100’ in the legend indicates the result using Galerkin
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projection with 70 reduced pressure variables and 100 reduced water saturation variables. The

labels for other constraint reduction methods follow this format. It is clear from Figure 30 that the

time-varying γi for both methods for this case are very close to 1. Indeed, they are below 1 for the

entire simulation period, meaning that the resulting POD-TPWL models are always stable. Note

that there are small spikes in γi every 200 days. These are due to the very small time steps used

in the training run when the BHPs are changed. For an infinitely small time step, the Jacobian

matrix J will equal the negative of the A matrix, and the resulting amplification matrix will be

the identity matrix, with γi of 1. We note that, although we show results only for lp = 70 and

lS = 100, similar stable performance can be observed for different lp and lS over a reasonable range

(as will be illustrated later).

Figure 30: Amplification factor γi for each time step in Case 1

We now compare the performance of the Galerkin and Petrov-Galerkin methods for Case 1.

Figure 31 shows the oil production rate for Producer 1, and Figure 32 shows the water injection

rate for Injector 1. The black dotted line depicts the result from the primary training simulation,

about which we linearize. Shown in red is the full-order (reference) AD-GPRS solution for the test

case. It is clear that the test and training solutions differ. Galerkin and Petrov-Galerkin projection

results are shown in blue (open circles) and green (open squares), respectively. Both approaches

provide accurate results in this case, though Galerkin projection can be seen to be slightly more

accurate for water injection (see, e.g., results at early time in Figure 32). The results in Figures 31

and 32 are representative of those for the other wells.

Table 2 summarizes the flow rate errors and average state errors from POD-TPWL using the

two constraint reduction methods. For the same values of lp and lS , Galerkin projection provides

better accuracy for this case than Petrov-Galerkin projection in all five error measures. This may

be due to inaccuracy resulting from the skewed weighting inherent in Petrov-Galerkin projection,
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as discussed in Section A.5.3.

For this example, the full-order parallelized AD-GPRS simulation requires about 290 seconds

to run on a cluster node with eight cores (dual quad-core Nehalem
TM

). The POD-TPWL model,

with either Galerkin or Petrov-Galerkin projection, requires approximately 0.7 seconds on a single

core of the same processor. This corresponds to a runtime speedup of a factor of about 400. As

noted earlier, preprocessing requires three training simulations plus overhead computations equal

to about an additional full-order simulation.

Figure 31: Oil production rate for Producer 1 in Case 1. Results for Test (AD-GPRS), GLK 70 100
and PG 70 100 essentially overlay one another

Table 2: Summary of error for Case 1

Eo Ew Eiw Ep (psi) ES
GLK 70 100 0.0054 0.0058 0.0015 1.57 0.00066
PG 70 100 0.0113 0.0156 0.0052 7.07 0.00130

A.7.4 Case 2: Oil-Water Flow with Unequal Phase Densities

In Case 1 both projection methods were stable. However, stability may become an issue when

more complicated physics is introduced. This will be illustrated in Case 2, which is identical to

Case 1 except that now the oil and water phase densities are set to 800 kg/m3 and 1000 kg/m3,

respectively. The difference in density results (physically) in gravity-driven countercurrent flow,

which leads to changes in the structure of the Jacobian matrix because of upstream weighting [3].

As in Case 1, we perform three training simulations to construct the POD-TPWL model; one
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Figure 32: Water injection rate for Injector 1 in Case 1. Results for Test (AD-GPRS) and
GLK 70 100 essentially overlay one another

of these is the primary training run. The time-varying BHP controls for the training and test

simulations are the same as in Case 1 (see Figures 28 and 29). From the three training simulations,

335 snapshots are collected. We again take lp = 70 and lS = 100.

Figure 33 shows the oil production rate for Producer 1, and Figure 34 shows the water injection

rate for Injector 1. It can be seen that the results using Petrov-Galerkin projection match the true

test-case solution fairly closely, though some differences are evident. The results using Galerkin

projection, by contrast, display substantial fluctuations in the early stage of the simulation. Similar

fluctuations for the Galerkin projection run are also observed in flow rates for the other wells (not

shown here).

The different performance of the Galerkin and Petrov-Galerkin projections for this case can

be explained by Figure 35, which shows the amplification factor γi at each time step for the two

methods. For the Petrov-Galerkin method, the value of γi is below or very near 1 for the entire

simulation period. Thus the Petrov-Galerkin method performs stably throughout the simulation.

Again, the peaks visible every 200 days are due to the small time steps used when the BHP controls

change. For the Galerkin method, the value of γi is much larger than 1 at early time, and at some

time steps it is as high as 14.5 (note the vertical axis only extends to 1.5). This instability causes

the fluctuations evident in Figure 34. At later time the amplification factor decreases to around 1

and the fluctuations disappear.

Note that the stability results in Figure 35 are specifically for lp = 70 and lS = 100. As discussed

above, the choice of lp and lS affects stability behavior. Figure 36 depicts in log scale the values
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Figure 33: Oil production rate for Producer 1 in Case 2

Figure 34: Water injection rate for Injector 1 in Case 2
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Figure 35: Amplification factor γi for each time step in Case 2

of maxi γ
i for different combinations of lp and lS for Galerkin (lower left) and Petrov-Galerkin

(lower right) projection methods for Case 2. These plots will be referred to as stability maps. Note

that the limits of the color bars for the two plots are very different (the minimum value for each

color bar, which corresponds to the minimum value in the corresponding map, is indicated). As

discussed earlier, for a problem with a constant matrix M in which time tends to infinity, we would

require log10(maxi γ
i) < 0 to assure stability. However, in practice, stable behavior in POD-TPWL

models is observed as long as log10(maxi γ
i) is close to zero (e.g., log10(maxi γ

i) . 0.02 for our

examples; this precise value may be problem/control-setting dependent). This is the case for two

reasons. First, because our models entail O(100) time steps, very small growth rates do not lead

to unbounded errors. Second, because the amplification matrix (Mi+1 or Mi+1
r ) varies from time

step to time step, and because Figure 36 depicts the maximum log10 γ
i over all time steps, the

requirement that log10(maxi γ
i) be less than zero is overly strict. In the following, we thus refer to

cases for which maxi γ
i < 1.05, which corresponds to log10(maxi γ

i) < 0.021, as behaving stably.

The log10(maxi γ
i) for Galerkin projection for Case 2 is displayed in Figure 36c. It can be seen

from the plots that for Galerkin projection POD-TPWL stability is very sensitive to the choice

of (lp, lS), and there is no clear trend. Many of the lp and lS combinations lead to instability

(as they correspond to large maxi γ
i), while there are some lp and lS combinations for which the

POD-TPWL model should behave stably. On the other hand, as shown in Figure 36d, for Petrov-

Galerkin projection the value of log10(maxi γ
i) for any combination of lp and lS is very close to

zero (the largest value being 0.0004). Thus this method behaves stably for all combinations of lp

and lS considered.

Also shown in Figure 36 are the stability maps for Galerkin (upper left) and Petrov-Galerkin

(upper right) for Case 1 (equal phase densities). It is clear that for Case 1, Petrov-Galerkin
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projection should behave stably for all (lp, lS) considered, and Galerkin projection should behave

stably over a large range of lp and lS . Comparison of Figures 36a and 36c demonstrates that

the inclusion of more complicated physics has the potential to adversely affect the performance of

POD-TPWL models that apply Galerkin projection for constraint reduction. This problem may

be related to the fact that the Jacobian matrix is not SPD, as discussed in Section A.5.2.

(a) Galerkin projection for Case 1 (minimum
value on color bar: 4.8 × 10−6)

(b) Petrov-Galerkin projection for Case 1
(minimum value on color bar: −8.0 × 10−6)

(c) Galerkin projection for Case 2 (minimum
value on color bar: 1.7 × 10−2)

(d) Petrov-Galerkin projection for Case 2
(minimum value on color bar: −1.1 × 10−5)

Figure 36: Maps of log10(maxi γ
i) for Cases 1 and 2

Because the stability characteristics of POD-TPWL models that apply Galerkin projection

can be sensitive to the choice of lp and lS , the model can be ‘stabilized’ (in a practical sense)

through the careful selection of lp and lS , assuming there exists an (lp, lS) combination with

log10(maxi γ
i) < 0.021. Such an approach was applied in [41]. For the current example, for lp = 75

and lS = 80, the value of log10(maxi γ
i) is below this threshold (see Figure 36c), which suggests

that the resulting POD-TPWL model will behave stably. Figure 37 shows the water injection rate

for Injector 1 for both projection methods with lp = 75 and lS = 80. It is clear that the results

using Galerkin projection no longer exhibit fluctuations (compare Figures 34 and 37), and that the
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Petro-Galerkin results continue to be stable, as would be expected from Figure 36d. These results

illustrate the efficacy of constructing the POD-TPWL stability maps shown in Figure 36.

Table 3 shows the error for the Petrov-Galerkin method and the stably-behaving Galerkin

method. The results indicate that the stabilized Galerkin projection is more accurate for this case

(with the exception of ES), which is consistent with the observations for Case 1.

Figure 37: Water injection rate for Injector 1 in Case 2, with lp and lS selected based on Figure 36c

Table 3: Summary of error for Case 2

Eo Ew Eiw Ep (psi) ES
GLK 75 80 0.0216 0.0152 0.0050 13.6 0.00212
PG 75 80 0.0225 0.0255 0.0112 15.0 0.00204

A.7.5 Case 3: Compositional Simulation

Case 3 involves a four-component system in which we model the injection of CO2 into an oil

reservoir. The original fluid in place, in terms of overall mole fractions, consists of 0.01 CO2, 0.11

of the C1 component, 0.29 of the C4 component, and 0.59 of the C10 component. Pure CO2 is

injected. The reservoir model for this case is defined on a 32 × 40 × 8 grid, which translates to

10,240 grid blocks and thus 40,960 primary variables (10,240 × 4). The permeability field, shown in

Figure 38, was generated geostatistically using sequential Gaussian simulation within the SGeMS

geological modeling package [61]. The model contains four producers at the four corners and one

injector in the middle, forming a five-spot pattern. The producers are perforated in the lower four

layers and the injector in the upper four layers.
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Figure 38: Reservoir model for Case 3 (log-permeability is shown)

We perform two training runs, one of which is the primary training simulation, to construct

the POD-TPWL model. The BHP controls for the injector and four producers are shown in

Figure 39. These BHPs are varied every 100 days and are generated randomly. From the two

training simulations, 275 snapshots are collected to build the basis matrix Φ. We specify lp = 120

and lz = 150. Figure 40 shows the BHPs for the test case, which are also randomly generated.

(a) Injector BHPs (b) Producer BHPs

Figure 39: Time-varying BHPs for the primary training simulation for Case 3

Figure 41 shows the stability maps for the Galerkin and Petrov-Galerkin methods for this case.

Note that the scales of the color bars for the two figures are very different. For Petrov-Galerkin

projection, all (lp, lz) combinations lead to models that behave stably. For Galerkin projection,

for all (lp, lz) combinations considered, log10(maxi γ
i) is always much larger than 0 (the lowest

maxi γ
i value being about 27). This means that for any of these (lp, lz) combinations, the resulting

POD-TPWL model will have one or more unstable steps. Therefore, for this case, we cannot apply
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(a) Injector BHPs (b) Producer BHPs

Figure 40: Time-varying BHPs for the test simulation for Case 3

the basis selection procedure used for Case 2 to construct a stably-behaving POD-TPWL model

using Galerkin projection.

In addition, although not shown here, for all (lp, lz) combinations considered, the Galerkin

method displays log10(maxi γ
i) > 0 for all time steps. The reason why compositional systems are

less stable than oil-water systems with Galerkin projection is not entirely clear, but it may be

due, at least in part, to the large density difference between the oil and gas phases (which leads

to strong gravity-driven countercurrent flow) and to the high nonlinearity resulting from complex

phase behavior. This issue should be investigated in future work.

(a) Galerkin projection (minimum value on
color bar: 1.43)

(b) Petrov-Galerkin projection (minimum value
on color bar: 8.9 × 10−5)

Figure 41: Maps of log10(maxi γ
i) for Case 3

Figures 42 and 43 show the oil and gas production rates for Producer 1, while Figure 44 displays

the gas injection rate for Injector 1. Test-case results using Petrov-Galerkin projection are shown

along with results using weighted inverse projection, which will be discussed in the next section.
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Only results for the first 600 days of the simulation are shown. This allows us to focus on the

period where gas production rates are increasing and the most error occurs. The POD-TPWL

model exhibits reasonable overall accuracy, though errors are evident for different quantities at

different times. For example, the oil production rate in Figure 42 displays some inaccuracy from

300–400 days, as do gas injection rates (Figure 44) over the first 200 days. The solution, however,

clearly behaves stably, and the results are of sufficient accuracy to be useful for many applications.

These results are representative of those for other wells. Runtime speedup for this case is around

a factor of 150, which is lower than that for Cases 1 and 2. The lower speedup here results from

the flash calculation, which is not handled efficiently in our current POD-TPWL model. This cost

can, however, be significantly reduced through an efficient implementation.

Figure 42: Oil production rate for Producer 1 in Case 3

A.8 Inverse Projection and Weighted Inverse Projection Constraint Reduction

Methods

In Section A.5 we showed that, to minimize constraint reduction error e23, optimal constraint

reduction methods should be of the form ΨT = ΦTΘJ−1. We use Θ = J in the case of Galerkin

projection and Θ = JTJ in the case of Petrov-Galerkin projection. Both choices eliminate the

J−1 term and are thus very efficient to compute. Other choices for Θ also exist, however. Though

they typically entail higher computational costs, they may have theoretical advantages and display

superior performance. In this section we consider two such projection methods, inverse projection

and weighted inverse projection.
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Figure 43: Gas production rate for Producer 1 in Case 3

Figure 44: Gas injection rate for Injector 1 in Case 3
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A.8.1 Method Development

An intuitive choice for Θ is the identity matrix. Then the optimal projection matrix is given by

ΨT = ΦTJ−1. We refer to this approach as the inverse projection (IP) method.

An important property of the IP method is that it minimizes the 2-norm of the constraint

reduction error e23. That is, it satisfies

Ψ∗ = arg min
Ψ

‖e23‖22 . (74)

Compared to the norms appearing in the optimality conditions for the Galerkin and Petrov-Galerkin

methods, the 2-norm appearing here is preferable since it does not depend on the specific structure

of J.

In many reservoir simulation applications, such as production optimization, we are particularly

interested in the states in well blocks because these values directly affect injection and production

rates. We can assign larger weights to the elements of the error vector corresponding to these blocks

in Equation 56 by defining Θ = WTW, where W is a diagonal weighting matrix. The resulting

projection matrix is ΨT = ΦTWTWJ−1. We refer to this method as weighted inverse projection

(WIP). WIP degenerates to IP when W = I. WIP minimizes the weighted error vector in the

2-norm,

Ψ∗ = arg min
Ψ

‖We23‖22 . (75)

In the examples in this work involving WIP, we assign a value of 5 to the diagonal elements of

W corresponding to well block states and 1 to the remaining diagonal elements. This 5 to 1 ratio

was determined through limited numerical experimentation. The values of W can be further tuned

to improve accuracy in particular grid blocks.

The IP and WIP methods offer theoretical advantages by virtue of their optimality conditions.

Achieving this benefit, however, requires additional computational effort. This is because, for both

the IP and WIP methods, the J−1 term in the expression for Ψ is not multiplied by J, so it does

not cancel as in the Galerkin and Petrov-Galerkin procedures.

In practice, J−1 does not need to be calculated explicitly. The matrix Ψ only appears in the

calculation of the reduced derivatives in Equation 48. Substituting Equation 62 into Equation 48

(and dropping the superscript i+ 1) we have

Jr = ΦTΘΦ, Ar = ΦTΘJ−1AΦ, Br = ΦTΘJ−1B. (76)

Interestingly, the calculation of Jr now does not involve J. The term J−1AΦ in matrix Ar can be

calculated by solving JxA = AΦ, which is an nv × nv system with l right hand sides, where l is

the total number of reduced variables. Similarly, the term J−1B in matrix Br can be calculated by

solving JxB = B, which is an nv × nv system with nu right hand sides, where nu is the dimension

of the control parameter u. In total, we will thus need to solve the high-dimensional linear system

with l + nu right hand sides at each time step. For a case with l = 200 and nu = 10, the cost
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of constructing Ar and Br for the IP or WIP method is the equivalent of about 10–20 full-order

simulations for a compositional problem and 20–40 full-order simulations for an oil-water problem

(this difference arises because full-order compositional simulations usually require more Newton

iterations and time-step cuts than oil-water problems). Preprocessing for IP and WIP is thus

much more expensive than for Galerkin and Petrov-Galerkin methods (though runtimes, and thus

runtime speedup, are comparable). However, in applications where the POD-TPWL model can be

used in place of hundreds of full-order runs, the IP and WIP methods may be viable options.

We note finally that the computational cost of IP and WIP may be reduced significantly by

approximating J−1 with another matrix Q, so that we can use Q in place of J−1. Potential choices

for Q are the various preconditioners used for solving Jx = b. This should be considered in future

work.

A.8.2 Numerical Results using IP and WIP

The IP and WIP methods will now be applied to Cases 1–3. The problem setups are identical to

those described earlier.

In terms of stability, the IP and WIP methods behave stably for all three cases, and their

stability characteristics are not sensitive to the choice of lp and lS (or lz). As an example, Figure 45

shows the stability maps for the IP and WIP methods for Case 3, which was the most challenging

case for the Galerkin method. It can be seen that for both methods, log10(maxi γ
i) is very close to

zero for all combinations of lp and lz considered.

(a) IP method (minimum value on color bar:
5.4 × 10−5)

(b) WIP method (minimum value on color bar:
3.3 × 10−3)

Figure 45: Maps of log10(maxi γ
i) for IP and WIP for Case 3

To assess their accuracy, results using IP and WIP are now compared to those using the Galerkin

and Petrov-Galerkin methods for Cases 1–3. Table 4 summarizes the errors for Case 1. In this case,

the injection and production rate results using IP are less accurate than those using the Galerkin

method. However, the IP method provides better results in terms of the average state error for both
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pressure and water saturation. This is because the IP method is, by design, optimal in minimizing

the constraint reduction error globally, rather than at the well blocks. WIP, which places additional

weight on the well blocks, improves upon the IP injection and production rate results (especially

for Eiw) while maintaining state errors similar to those of the IP method.

Table 4: Summary of error for Case 1, with IP and WIP

Eo Ew Eiw Ep (psi) ES
GLK 70 100 0.0054 0.0058 0.0015 1.57 0.00066
PG 70 100 0.0113 0.0156 0.0052 7.07 0.00130
IP 70 100 0.0059 0.0064 0.0044 0.62 0.00057
WIP 70 100 0.0050 0.0062 0.0013 0.58 0.00060

Tables 5 and 6 present the errors for Cases 2 and 3. For Case 2, the IP method provides more

accurate results than the Galerkin and Petrov-Galerkin methods in all five metrics. The WIP

method provides the most accurate well rate predictions among all methods tested, and leads to

average state errors that are again comparable to those of the IP method. For Case 3, the IP and

WIP methods continue to provide more accurate results than those obtained using Petrov-Galerkin

projection.

Table 5: Summary of error for Case 2, with IP and WIP

Eo Ew Eiw Ep (psi) ES
GLK 75 80 0.0216 0.0152 0.0050 13.6 0.00212
PG 75 80 0.0225 0.0255 0.0112 15.0 0.00204
IP 75 80 0.0058 0.0077 0.0041 1.43 0.00084
WIP 75 80 0.0055 0.0076 0.0013 0.759 0.00085

Table 6: Summary of error for Case 3, with IP and WIP

Eo Eg Eig Ep (psi) Ez
PG 120 150 0.0400 0.0160 0.0187 5.68 0.00894
IP 120 150 0.0239 0.0103 0.0081 1.50 0.00393
WIP 120 150 0.0219 0.0085 0.0077 1.41 0.00395

Figures 42–44 display the performance of the WIP method relative to the Petrov-Galerkin

method for Case 3. It is clear that WIP leads to improved results compared to Petrov-Galerkin

projection, most notably in oil production rate from 300–400 days, in gas production rate from

100–200 days, and in gas injection rate before 300 days.

The results in this section indicate that the use of (weighted) inverse projection for constraint

reduction leads to POD-TPWL models that are more accurate than those generated using Galerkin

or Petrov-Galerkin projection. In addition, in common with Petrov-Galerkin projection, IP and

WIP provide POD-TPWL models that behave stably. The IP and WIP methods, as currently

implemented, require much more preprocessing than the Petrov-Galerkin procedure, so the overall
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level of speedup they provide is limited. Future work should target the fast construction of the

reduced matrices Ar and Br. Progress in this direction would enable the efficient use of IP and

WIP for large models.

A.9 Concluding Remarks

In this Appendix we assessed the various errors that arise in POD-TPWL models. These errors

derive from state reduction, nonlinearity treatment (accomplished here using piecewise lineariza-

tion) and constraint reduction. Our focus was on constraint reduction, which is applied to project

the overdetermined high-dimensional system of equations into a low-dimensional subspace. Once

constraint reduction and state reduction (accomplished here through use of POD) are applied, the

low-dimensional set of equations is fully determined. The choice of constraint reduction procedure

was shown to affect POD-TPWL error and stability behavior. In previous work on the use of

POD-TPWL for subsurface flow, Galerkin projection has mainly been applied, though recent work

has used Petrov-Galerkin projection for compositional reservoir simulation [39]. Here we showed

that both the Galerkin and Petrov-Galerkin projection methods can be derived from the optimality

condition of the constraint reduction error, though the Galerkin method does not satisfy the opti-

mality condition when the Jacobian matrix is not SPD (which it is not in oil-water or compositional

flow problems).

The performance of the Galerkin and Petrov-Galerkin methods was compared for two oil-water

cases and one oil-gas compositional case. For oil-water systems with gravity-driven countercurrent

flow, it was observed that the stability behavior of Galerkin projection is sensitive to the number

of reduced variables (lp, lS) used. In these cases, it may however be possible to find an (lp,

lS) combination for which Galerkin projection behaves stably. For compositional simulation, the

Galerkin method was unstable for any of the (lp, lz) combinations tested. By contrast, the Petrov-

Galerkin method was shown to behave stably for all cases considered (both here and in [39]).

In addition, its stability characteristics were not found to be sensitive to the number of reduced

variables used. Therefore, for complex reservoir simulation problems, Petrov-Galerkin projection

appears to be more reliable compared to Galerkin projection. This observation is consistent with the

findings in [19], where Galerkin and Petrov-Galerkin projection were compared for reduced-order

models for turbulent flow and nonlinear structural dynamics problems. We note, however, that

theoretical guarantees regarding the stability of Petrov-Galerkin projection for nonlinear problems

do not, to our knowledge, exist.

There are other methods that satisfy the optimality conditions for constraint reduction, and two

such procedures were considered. Inverse projection (IP) minimizes the 2-norm of the constraint

reduction error, while weighted inverse projection (WIP) minimizes the 2-norm of the error vector

with extra weight at selected blocks. The WIP method is by design optimal for well flow rate

calculations (when well blocks are weighted more heavily), and it was shown to provide the best

overall accuracy among all of the constraint reduction methods considered. However, because they

involve the inverse Jacobian matrix J−1, the IP and WIP methods incur high computational costs
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for the construction of the POD-TPWL model. Specifically, preprocessing (overhead) costs for

these methods are equivalent to about 10–40 full-order simulations. Improving the efficiency of

these methods should be a topic for future research.

Although our specific focus in this Appendix was on subsurface flow, a variety of problems

are governed by conservation laws similar to Equation 36, so many of our detailed findings should

be more broadly relevant. In addition, because most aspects of the development presented in

this Appendix are not specific to a particular application, we expect our general approaches and

findings to be applicable to a range of problems modeled using POD-TPWL. More specifically, the

step-by-step error assessment, optimality results for the various constraint reduction treatments,

stability analysis, and the procedure for low-dimensional stability map construction, should all be

applicable for POD-TPWL methods in general. Our findings regarding the stability advantages of

Petrov-Galerkin projection relative to Galerkin projection should hold for other problems in which

the Jacobian matrix is not SPD. We also believe that the IP and WIP approaches for constraint

reduction may provide higher accuracy for a range of applications (though they require efficiency

improvements, as noted above). A few treatments are, however, application specific. These include

the selection of the number of training runs and the controls applied in these runs, the number of

snapshots required, the detailed construction of the basis matrix Φ, and the specific definition of

‘distance’ used to determine the nearest saved state.

Future work should consider the development of constraint reduction methods that are opti-

mally accurate and guaranteed to be stable by, for example, combining the optimality condition

presented in this work with the Lyapunov stability equation. The quantification and reduction of

the other errors that arise in POD-TPWL models should also be addressed. The linearized treat-

ment could conceivably be improved by incorporating (or estimating) higher-order corrections at

selected locations and times. For subsurface flow applications it will additionally be of interest to

consider cases with more wells (e.g., 10–100). With larger numbers of wells, there is more variability

in the states that can occur in the model. This suggests that more snapshots, from more training

runs, will be needed to represent the system. The development of techniques for the systematic

design of training runs may enable the POD-TPWL model to provide sufficient accuracy, with

reasonable overhead, for practical cases.
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B POD-TPWL for CO2 EOR

The emphasis of this research has been on the application of POD-TPWL for CO2-water systems.

However, we also tested the general oil-gas compositional POD-TPWL model for an example in-

volving CO2 EOR. Such simulations are relevant to carbon capture, utilization and storage (CCUS),

in which CO2 is used for oil recovery as it is being sequestered. In our model here, CO2 injection

is accomplished using horizontal wells. The POD-TPWL method used in this example is that of

[39]. In that work, POD-TPWL modeling of CO2 EOR was presented, but horizontal wells were

not considered.

The geological model used here is based on the Stanford VI (channelized model) [20], which

was also considered in Section 3. The simulation model here is taken directly from [39] — only the

wells were modified. The model, which contains 30× 40× 17 cells (total of 20,400 grid blocks) and

is of overall size 585 m × 780 m × 17 m, is shown in Fig. 46a. There are six wells in the reservoir

– four vertical producers and two horizontal injectors (see Fig. 46). The two injectors are of length

292 m and 370 m and they are located in the bottom layer of the model. The production wells

penetrate the top five layers of the model.

(a) Geological model (b) Well locations

Figure 46: Geological model and well locations (from [20, 39])

The model includes four components (CO2, C1, C4, C10) in oil and gas phases (water is not

included). Thus the simulation model contains 81,600 primary variables (20, 400× 4). The initial

reservoir pressure is 100 bar at the top of the model. The overall molar fractions at the start of the

simulation are 0.01 CO2, 0.11 C1, 0.29 C4, and 0.59 C10. CO2 of purity 97% is injected at both

injectors (injected fluid also contains 1% C1, 1% C4, 1% C10). The wells are BHP controlled and

the model is run for 1600 days. All other model properties are as in [39].

Two training cases were simulated in order to construct the POD-TPWL model. The BHP

schedules for these runs are shown in Figs. 47 and 48. A total of 362 snapshots were generated. In
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the POD-TPWL model, we use lp = 90 and lz = 250. The test-case BHPs are shown in Fig. 49.

These BHPs clearly differ from those for the training runs, but their ranges are similar. As in

Section 3, these BHPs are intended to qualitatively resemble the profiles evaluated during the

course of an optimization run.

(a) Injection well BHPs (b) Production well BHPs

Figure 47: Time-varying BHPs for training case 1

(a) Injection well BHPs (b) Production well BHPs

Figure 48: Time-varying BHPs for training case 2

POD-TPWL results for oil and gas production rates are shown in Figs. 50 and 51. Injection

rates for the two horizontal CO2 injectors are shown in Fig. 52. The various curves are as described

in Section 3, and it is apparent that there are substantial differences between training and test-case

results for this example. We observe that the POD-TPWL model provides results in reasonably

close agreement with the reference AD-GPRS results. Some discrepancies are noticeable, but the

overall trends are captured quite well. In addition, the general level of accuracy appears to be
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(a) Injection well BHPs (b) Production well BHPs

Figure 49: Time-varying BHPs for test case

comparable to that in [39], where only vertical wells were modeled. This is a useful observation, as

these are the first POD-TPWL CO2 EOR runs that include horizontal wells.
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(a) Producer 1 (b) Producer 2

(c) Producer 3 (d) Producer 4

Figure 50: Oil production rates
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(a) Producer 1 (b) Producer 2

(c) Producer 3 (d) Producer 4

Figure 51: Gas production rates
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(a) Injector 1 (b) Injector 2

Figure 52: CO2 injection rates
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[57] K. Pruess, J. Garćıa, T. Kovscek, C. Oldenburg, J. Rutqvist, C. Steefel, and T. Xu. Code

intercomparison builds confidence in numerical simulation models for geologic disposal of CO2.

Energy, 29(9):1431–1444, 2004.
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