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Abstract

Reduced-order models provide a means for greatly accelerating the detailed simulations that will be
required to manage COs storage operations. In this work, we investigate the use of one such method,
POD-TPWL, which has previously been shown to be effective in oil reservoir simulation problems.
This method combines trajectory piecewise linearization (TPWL), in which the solution to a new
(test) problem is represented through a linearization around the solution to a previously-simulated
(training) problem, with proper orthogonal decomposition (POD), which enables solution states
to be expressed in terms of a relatively small number of parameters. We describe the application
of POD-TPWL for COo-water systems simulated using a compositional procedure. Stanford’s
Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) performs the
full-order training simulations and provides the output (derivative matrices and system states)
required by the POD-TPWL method. A new POD-TPWL capability introduced in this work is
the use of horizontal injection wells that operate under rate (rather than bottom-hole pressure)
control. Simulation results are presented for COs injection into a synthetic aquifer and into a
simplified model of the Mount Simon formation. Test cases involve the use of time-varying well
controls that differ from those used in training runs. Results of reasonable accuracy are consistently
achieved for relevant well quantities. Runtime speedups of around a factor of 370 relative to full-
order AD-GPRS simulations are achieved, though the preprocessing needed for POD-TPWL model
construction corresponds to the computational requirements for about 2.3 full-order simulation
runs. A preliminary treatment for POD-TPWL modeling in which test cases differ from training
runs in terms of geological parameters (rather than well controls) is also presented. Results in this
case involve only small differences between training and test runs, though they do demonstrate that
the approach is able to capture basic solution trends. The impact of some of the detailed numerical
treatments within the POD-TPWL formulation is considered in an Appendix.
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Executive Summary

The methods and results presented in this topical report represent the accomplishments under
Task 4 of the overall project on ‘Simplified Predictive Models for CO2 Sequestration Performance
Assessment.” Task 4 was concerned with Reduced-Order Method (ROM) based Models, and the
research associated with this task was performed at Stanford University. The need for reduced-
order modeling is motivated by the observation that, although flow simulation can be used to
design and manage COy sequestration projects, the large number of detailed runs required for
some applications (such as computational optimization and uncertainty assessment) can lead to
great computational expense. Computationally-efficient procedures, including numerical reduced-
order models, which have been applied in related areas such as oil reservoir simulation, may thus
be very useful for these problems.

In this work, we explore the use of trajectory piecewise linearization (TPWL) combined with
proper orthogonal decomposition (POD) for simulating CO4 storage problems. POD-TPWL models
of this type have been successfully used for oil-water and oil-gas compositional reservoir simulation
problems. The basic approach with POD-TPWL is to first perform one (or a few) full-order
‘training’ runs, which entail high-fidelity (full-order) flow simulations under a prescribed set of
well controls (e.g., time-varying bottom-hole pressures or rates). For subsequent (test) runs, which
involve different well control settings, the solution at each time step is represented based on a
linearization around a training solution. The use of POD, which allows us to represent solution
states (e.g., pressure and overall mole fraction in every grid block) in terms of a small number
of parameters, along with a constraint reduction procedure, which projects the set of governing
equations into a low-dimensional subspace, provides a high degree of efficiency.

The full-order simulations applied in this work use a two-phase, two-component (COy and
water) formulation within Stanford’s Automatic Differentiation-based General Purpose Research
Simulator (AD-GPRS). This simulator was modified to output the state and derivative matrices
required to construct the POD-TPWL model. New features introduced in this work, in addition
to the application of POD-TPWL to COs sequestration simulations, are the use of rate-control
specifications for wells and the incorporation of horizontal injectors into the model. Because of the
way in which AD-GPRS represents wells, the use of rate-controlled wells in POD-TPWL requires
additional matrix manipulations in the model construction step.

COg storage with both a synthetic (channelized) aquifer and an approximate model of the Mount
Simon formation (planned for use with FutureGen 2.0) is considered for test cases that involve wells
controlled by both time-varying bottom-hole pressures and rates. Generally accurate results are
obtained for well quantities and for CO5 plume location, though the accuracy of the POD-TPWL
model is seen to degrade as the controls used in test cases deviate from those applied in training
runs. Runtime speedups with POD-TPWL for these cases are about a factor of 370 relative to
high-fidelity AD-GPRS simulations. The overhead required to construct the POD-TPWL model
(including training runs) is equivalent to about the time required for 2.3 full-order runs.

The POD-TPWL model is then extended to allow parameters associated with the geologic
model to be perturbed in test runs. Preliminary results using this capability in two-dimensional
models, in which all block-to-block transmissibilities are multiplied by a constant value relative
to the training run, demonstrate that the POD-TPWL model is able to capture general trends in
the relevant well quantities. The differences between test- and training-case results are, however,
very small in the scenarios considered. Results are also presented for a COg-enhanced oil recovery
problem, which demonstrates the use of POD-TPWL for problems where COs is both utilized and
sequestered.

An Appendix to this report presents a detailed assessment of constraint reduction procedures

viii



for POD-TPWL models of the type considered here. As noted above, the constraint reduction
procedure projects the set of governing equations into an appropriate subspace of much lower di-
mension. The approach used in previous POD-TPWL models of oil-water systems was the Galerkin
projection procedure, in which the left-projection matrix is the transpose of the POD basis matrix
used to concisely represent the system states. In this work, we show that the use of a (different) so-
called Petrov-Galerkin procedure leads to much better stability properties in POD-TPWL models
of oil-water and oil-gas compositional systems. This is the approach used in all of the CO4 storage
simulations presented in this report.
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ROM based Models
for CO9 Sequestration 1 INTRODUCTION

1 Introduction

The carbon dioxide generated by the combustion of fossil fuels in power stations represents a large
component of worldwide greenhouse gas emissions. These emissions are major contributors to
global climate change, so it is important that they be reduced substantially. The use of carbon
capture and storage (CCS), in which COq is separated from the flue gas stream exiting the power
plant and then injected into deep subsurface formations, represents a means for reducing COq
emissions to the atmosphere [8]. There are two large CCS projects that have been operating for
many years, namely the Sleipner project in the Norwegian North Sea [2], started in 1996, and the
Weyburn project in Canada [73], started in 2000. Another large CO4 storage project, the In Salah
project in Algeria [76], started in 2004 but suspended COsg injection in 2011. Projects of similar
scale have also been proposed in the United States, such as that associated with (recently canceled)
FutureGen 2.0 [7].

Large-scale subsurface flow simulation can be used to design and manage CO4 storage projects,
and a number of modeling tools have been introduced; e.g., [26, 29, 30, 57, 58]. Formations
under consideration for use in CO5 storage include depleted oil and gas reservoirs and deep saline
aquifers (the latter are much more widely available). Issues of concern in carbon storage include
those associated with injectivity and pressure buildup (i.e., can sufficient COg be injected without
activating faults or fracturing the cap rock), tracking the location of the CO2 plume, and minimizing
the possibility for leakage of COg2 or brine into fresh-water aquifers (or into the atmosphere).

Several researchers have applied computational optimization procedures in order to minimize
the risk of leakage from the storage formation. This includes the work of Nghiem et al. [50, 51], who
optimized injection strategies for individual wells, and studies by Cameron & Durlofsky [13, 14],
who optimized well locations and time-varying injection rates for multiple horizontal injectors, with
the goal of minimizing the amount (or the overall mobility) of COg2 at the top of the formation. In
the latter study [14], the impact of geological uncertainty was considered, both in the placement
of injection wells and in their subsequent operation. History matching was also performed, in
conjunction with optimization, within a ‘closed-loop’ framework.

Studies of this type are limited, however, by the need to perform (potentially) thousands of
simulation runs. In many optimization problems, the required simulations often resemble one
another fairly closely, since well control parameters are varied gradually during the course of the
optimization. This suggests that computationally-efficient alternative procedures, such as reduced-
order models (ROMs) or other types of ‘proxy’ or ‘surrogate’ models, may be appropriate for these
problems. Numerical ROM procedures have been widely investigated within the context of oil
reservoir simulation (as discussed below), though their use for CO2 storage problems has not yet
been considered. The goal of this work is to test the application of one such ROM, namely POD-
TPWL (proper orthogonal decomposition — trajectory piecewise linearization), for simulations of
COg storage.

Although numerical ROMs of the type considered here do not appear to have been applied

for CO9 storage problems, a number of other proxy models, which use simplified physics and
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statistical fits, have been developed. Burton et al. [11], for example, implemented a simplified-
physics model for CO; injection based on modified Buckley-Leverett theory [52], which provided
reasonable accuracy in gas saturation distribution. Oruganti & Mishra [56] evaluated this model by
comparing its performance with results from a numerical simulator, and this led them to develop
a modified version of the model with improved accuracy. All of these models, however, are for a
single well injecting into a homogeneous formation, so their direct use for, e.g., rate optimization
in multiwell problems, will be limited.

Simplified-physics models have also been developed by Nordbotten et al. [53-55] and Gasda et
al. [33]. These researchers used vertical equilibrium assumptions to construct simplified analytical,
numerical and numerical-analytical hybrid models, which are able to simulate COs migration at
reduced computational cost. These models only considered vertical wells, however, and it is not
clear if and when they are applicable (or what modifications are required) for horizontal injectors. In
addition, these approaches approximate some important physical effects, such as the dissolution of
COg into brine and saturation variations within the brine phase. In many cases these are reasonable
approximations, but in some situations they may lead to inaccuracy.

Wriedt et al. [75] developed a response surface methodology using a Box-Behnken experimental
design to quantify model response for COg injection problems. Anbar [1] proposed an approach
with a design based on space-filling maxmin Latin Hypercube sampling to provide estimates of the
COq storage capacity of an aquifer. Schuetter et al. [64, 65] tested and analyzed these statistical
proxy models, and observed that they were able to provide acceptable results in the cases tested.
However, these approaches can lose accuracy when the response surfaces are very smooth (in which
case the output is not sensitive to the parameters), or when a test case falls at or near the ‘edge’
of the input space. In general, to assure a high degree of accuracy in output quantities, a large
number of samples are required (which means a large number of full-order simulations must be
performed).

In our work here, we consider ROMs in which the proxy model is constructed by applying a
set of specific numerical procedures to the full system of discretized equations. Such approaches
commonly employ proper orthogonal decomposition (POD), which enables the representation of the
full-order states (e.g., pressure and saturation in every grid block in a two-phase flow problem) in a
low-dimensional subspace. A number of ROM procedures employ only POD (e.g., [18, 43, 67, 70]),
though these approaches have been found to provide limited speedup (e.g., a factor of ten at best)
for nonlinear problems of the type considered here.

Nonlinearity can be treated efficiently through the use of linearization (discussed below) or by
introducing an approximation of the nonlinear terms. The latter approach includes the discrete
empirical interpolation method (DEIM), which entails the interpolation of nonlinear terms following
their evaluation at a few selected locations. DEIM has been applied in the context of porous media
problems by Chaturantabut & Sorensen [22] and Ghasemi et al. [36]. These approaches are quite
promising, though so far they have only been applied to porous media problems with relatively

simple physics. In addition, DEIM techniques are more invasive with respect to the simulator than
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the POD-TPWL procedure developed here.

POD-TPWL methods handle nonlinear effects through (piecewise) linearization. With this
approach, new solutions are represented using a truncated Taylor series expansion around previously
simulated solutions. The solution states and the system of equations are projected into a low-
dimensional subspace using POD-based procedures. The method requires overhead corresponding
to the time required for a few full-order simulations (most of this time is spent performing full-order
‘training’ runs), though subsequent (test) runs are extremely fast. The basic TPWL approach was
introduced by Rewienski and White [62] for the modeling of nonlinear circuits and micromachined
devices. Within a reservoir simulation setting, POD-TPWL has been applied to oil-water problems
by Cardoso & Durlofsky [16, 17], He et al. [41] and Fragoso et al. [31], to idealized thermal problems
by Rousset et al. [63], and to oil-gas compositional problems by He & Durlofsky [39, 40]. Reasonable
levels of accuracy have been achieved for simulations in which the well controls in test runs are
relatively ‘close’ to those used in training runs. Runtime speedups of up to a factor of ~ 500 have
been reported [16]. The method has also been successfully applied for well control optimization
[16, 17, 31, 39], though some ‘retraining’ may be required when the test controls differ substantially
from those used in the initial training runs.

The surrogate-modeling approaches discussed above are applicable in certain cases, but all
have limitations which restrict their use. For example, as noted earlier, the simplified-physics
models in [11] and [56] were for single wells operating in homogeneous formations. It may be
challenging to generalize these approaches to heterogeneous models with multiple wells. Statistical
proxy models also have important limitations, including the need for large numbers of ‘training’
runs (samples) in problems that are characterized by many parameters (especially when detailed
output information is desired). Within the context of numerical ROMs, neither POD-DEIM nor
POD-TPWL procedures have been developed for carbon storage applications. POD-TPWL has,
however, been successfully applied for compositional reservoir simulation. These models have not
included horizontal or rate-controlled wells, and both of these capabilities will be important for
realistic carbon storage simulations.

Our goal in this study is to develop and apply a POD-TPWL procedure for geological car-
bon sequestration problems. We will consider COq-water compositional systems, with injection
accomplished via multiple horizontal wells, which could be controlled by specifying either bottom-
hole pressure or rate. This capability will be tested using both a synthetic aquifer model and an
approximate model for the Mount Simon formation (which was the injection target for Future-
Gen 2.0). Both models involve nonuniform grids covering very large domains (to represent regional
aquifers). We will also implement a prototype approach for treating geological perturbations within
the POD-TPWL framework.

This report proceeds as follows. In Section 2, we present the governing equations for the flow
of CO2 and water in subsurface formations. The POD-TPWL formulation for this system is then
described. In Section 3, POD-TPWL results are presented for both a synthetic model with two

horizontal CO9 injectors, and for an idealized Mount Simon model involving four horizontal CO»
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injectors. The formulation and initial results for POD-TPWL models with geological perturbations
are presented in Section 4. In Section 5 we provide concluding remarks and some suggestions for
future research.

Appendix A presents a detailed assessment of constraint reduction procedures within the context
of POD-TPWL models for oil-gas and oil-water systems. This Appendix will appear as a paper
in International Journal for Numerical Methods in Engineering. Within the body of this report,
this work is referenced as He and Durlofsky [40]. Results demonstrating the use of POD-TPWL
for CO2 EOR (enhanced oil recovery), which represents a potential means to simultaneously utilize

and store anthropogenic CO,, are presented in Appendix B.

2 POD-TPWL for CO,-Water Systems

In this section, we present the full-order compositional model for the COs-water problem, including
the choice of primary variables. The formulation and workflow for the COs-water POD-TPWL
model are then described. The formulation and presentation here closely resemble those for the
oil-gas compositional POD-TPWL implementation presented by He and Durlofsky [39, 40], and
those papers should be consulted for full details.

2.1 COy-Water Flow Equations

The COs-water system considered in this work could be treated using either a black-oil or a com-
positional formulation. Here we use a compositional approach. We proceed in this way because the
compositional model treats the solubility of COs as a function of both pressure and composition in
the water phase, rather than as a function of pressure only, as in the black-oil model implemented
in Stanford’s AD-GPRS (which is the simulator used in this work). This treatment provides a more
accurate representation of dissolution trapping of COs, which is an important trapping mechanism.

The system contains two components — CO2, designated g (for gas), and water, designated w.
Both components can exist in either the gas or water phases, which are also denoted by g and w.

The mass balance equation for each component ¢ (¢ = g, w) can be written as:

0
a[¢(swpw$c + Sgpgye)] — V- [k(AwpuwzcV Py + AgpgycVP,)]

+ Z(wacqgj + pgycq;v) =0.

w

(1)

Here t denotes time, ¢ is porosity, S, and Sy, indicate gas and water phase saturation, and x. and y.
represent the molar fractions of component ¢ in the water and gas phases. Other variables include
the permeability tensor k, phase mobility A\; (where \; = k;;/p;, with j = g or w, k,; denotes
relative permeability to phase j, and f; is phase viscosity), and phase density p;. The variable q;-“

denotes the source term for well w. The phase potential ®; is defined as
(I)j =Pj— pjg(D - Dref)7 (2)
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where p; is phase pressure, D is depth, D, is a reference depth, and g is gravitational acceleration.

The compositional system described by Eq. 1 is fully defined after the introduction of phase
equilibrium and other (simple) constraints (e.g., Sy + S = 1). See [38] for details. Note that,
in this study, we take the capillary pressure between the gas and water phases to be zero. This
simplification may be reasonable for injection-period simulations of the type performed here, but
capillary pressure effects (particularly capillary heterogeneity) have been shown to be important
during the equilibration phase [45]. These effects should be included in future implementations.

As described in [3], the full system (in general) involves n.n, + 2n, equations and variables for
each grid block, where n. and n, denote the number of components and phases. In our COg-water
model, n, = n, = 2. We thus have a total of eight unknowns in the general case (which are py, puw,
Sy, Sw and z. and y. in both phases, for ¢ = g, w). Neglecting capillary pressure, this reduces to
seven unknowns. The system is, however, fully defined by only two variables (the so-called primary
variables), which are determined by solving Eq. 1 for both components. Various choices can be used
for the primary variables, as discussed in [39]. Consistent with that work, the primary variables
used here are pressure and overall molar fraction for the water component, denoted z,, and given
by 2w = Sg¥uw + Swxw. This formulation is referred to as the molar formulation, which is discussed
in detail by [72].

As in previous POD-TPWL implementations for reservoir simulation [16, 39, 41, 63], the full-
order simulation equations are discretized using the usual finite volume formulation with a fully-
implicit time discretization. Following discretization, the set of nonlinear algebraic equations can

be expressed as:
g(x" x" u"t) =0, 3)

where g is the residual vector we seek to drive to zero, x represents the system states (p and z,
in every grid block), n indicates the previous time level and n + 1 the next time level, and u™*!
designates the control parameters, which define the well (source) terms. In an actual simulation,
n 1

x" is known and u™*! is specified, and the goal is to compute x"*!. In previous POD-TPWL
implementations, wells were controlled by specifying bottom-hole pressure (BHP). In this work,
we introduce the use of well rate specifications, which is useful for CO4 storage problems since we
often wish to inject a particular volume of CO4 at each time step.

The nonlinear system defined by Eq. 3 is typically solved using Newton’s method. This en-
tails, at each iteration for every time step, constructing the (sparse) Jacobian matrix, which is of
dimensions 2n; X 2ny, and then solving a linear system of dimension 2n;, where ny is the number
of grid blocks in the model (the factor of two enters since there are two primary equations and
unknowns per grid block). In models involving relatively few components (as is the case here), this
linear solution is typically the most time consuming part of the flow simulation. The attraction of
POD-TPWL is that we avoid the construction and solution of this high-dimensional (2n; x 2n;)

system during the inline (runtime) computations.
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2.2 POD-TPWL Formulation

The POD-TPWL procedure entails linearization of the (discrete) equations, the construction of
basis matrices to represent the states concisely, constraint reduction to reduce the number of equa-
tions that must be solved, and a point selection scheme to determine the previous state/controls
around which to linearize. We now describe each of these treatments. See [39, 40| for full details.

In trajectory piecewise linearization (with or without POD), the idea is to use the states and
derivative matrices generated and saved during so-called training runs for the representation of
solutions to problems that involve a different set of controls. Simulations with new controls are
referred to as test runs. In the equations presented below, the superscripts ¢ and ¢ + 1 denote
consecutive time steps in the training simulations, and n and n + 1 indicate consecutive time steps
in test simulations.

We proceed by representing the residual vector for a test run in terms of a Taylor series expansion

around the residual vector for a training run. Applying Eq. 3, we then have

8gi+1
Oxi+1

8gi+1
oxt

8gi+1
aui—i-l

gl =0~g

i+1 + (Xn+1 _ xiJrl) + (Xn _ Xi) + (un+1 _ uiJrl)7 (4)
where git! = g(x*!, x, u't!) = 0 since this is a (previously simulated) training run solution, and
gt = g(x"*1, x™, u™t) is also set to O since this is the equation we wish to solve. Note that the
Taylor series expansion is truncated at first order.

After rearrangement, Eq. 4 can be written as:
Ji+1(xn+1 _ Xi+1) — _[Ai+1(xn _ Xi) + Bi+1(un+1 _ ui—i—l)} (5)

with the three matrices defined as

1 _ Og'™ 1 0™ L O™t
+1 _ i+1 _ +1 _
7= oxit+1’ AT = oxi BT = ouitl’ (6)

Note that J**! is the Jacobian matrix at time step i + 1 of the training simulation, evaluated for
the converged system.

In order to achieve a high degree of computational efficiency, we now seek to approximate
the 2ny x 2ny linear system given by Eq. 5 in a low-dimensional subspace. Two additional steps
are required in order to accomplish this — the representation of states using proper orthogonal
decomposition, and the application of constraint reduction to project the set of linear equations to

a low dimension. We now describe these two procedures.
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2.2.1 POD and Constraint Reduction

In proper orthogonal decomposition (POD), a basis matrix ® is introduced to enable the represen-

tation of the state variables x in terms of a reduced state vector &:
x ~ PE. (7)

We construct ® by performing singular value decomposition (SVD) of so-called snapshot matrices
formed during training simulations. Following [39], this procedure is performed separately for the
two state variables p and z,. Recall that the full-order training runs provide the full solution at
each time step. The states determined during these runs are entered as columns in the snapshot
matrices X, and X; i.e., we construct

Xp=[p'p% Y Xe =2y, 20, 7). (8)
where the vectors p’ and z!, indicate the pressure and overall water molar fraction in each of the
ny grid blocks at time step ¢ in a training run. The total number of snapshots is L; these could all
derive from one training run, or they could be generated using multiple training runs. Each of the
snapshot matrices is thus of dimensions n; x L.

From the SVDs of X, and X, (which are performed separately), we obtain the left singular
vectors, which comprise the columns of the basis matrices ®, and ®,. Each matrix could contain
a maximum of L columns, though we typically do not retain all L columns. Rather, based on an
energy criterion, or limited numerical experimentation [39, 40], we retain [, columns in ®,, and [,
columns in @, (generally, 1, # [.).

Using these matrices, the state variables are represented as:

x = tp 51’] , (9)

&
where £, and &, are the reduced variables for pressure and overall water molar fraction. Defining

®, 0

~ PE =
¢ 0 &,

l =1, + [, this projection reduces the number of primary unknowns from 2ny; to [, with [ < 2n,.
Note that the entries in the overall ® matrix are ordered as shown in Eq. 9 if we order the
unknowns with pressure in all blocks appearing first, followed by molar fraction of water in all
blocks (i.e., P1,D2, - Pnys Zw 15 Zw,2, - - - s 2wy )- 1t we order the unknowns as (p1, zw,1), (P2, 2w.2),
ooy (Pny» 2w,y ), then the entries in ®, and ®, are interspersed within the overall ® matrix. See
[18] for the detailed structure of ® with this ordering.

Inserting the representation for the states in Eq. 9 into (linearized) Eq. 5 leads to a system of
2ny, equations in [ variables. In order to reduce the number of equations to [ (to render the system
well posed), we premultiply the resulting set of equations by a matrix W7 where superscript T

denotes transpose. The matrix W, which is referred to as the constraint reduction matrix, is of

DOE Award No. DE-FE0009051, Task #4 7



ROM based Models
for CO9 Sequestration 2 POD-TPWLFOR COo-WATER SYSTEMS

dimensions 2n; X [. The low-order linearized equation is now given by:
TP (en+! — ¢l = _@T[ATFIP(e" — ¢') + B (u"H! — u't))), (10)
which involves [ equations and [ unknowns. This equation can be expressed as
gl = gl _ (Jitl)TL AT (g — ¢) 4 BEF (! — with)], (11)
where the reduced derivative matrices are defined as
Jirl = (T it AL = (B TATIG, Bitl = (@RI (12)

Here, Jit! and A+l are both of dimensions I x [, and Bi*! is of dimensions I x n,, where n, is the
number of control variables. For typical well control problems, there are many more grid blocks
than wells, so n, < ny.

The choice of constraint reduction matrix is considered in detail in [40] (Appendix A). There it
was shown that, for some types of problems, the commonly applied Galerkin projection procedure
(in which ¥ = @, where ® is the basis matrix for the state variables) can lead to numerical
instability in the POD-TPWL model. Rather than use Galerkin projection, He and Durlofsky [39,
40] suggested the use of a Petrov-Galerkin procedure in which Wil = J*+1&. This approach,
motivated by results presented in [19], was shown to lead to much more stable POD-TPWL models.
It is important to note, however, that numerical stability is still not guaranteed with this procedure.

As noted above, one or more training runs can be used to provide snapshots for the construction
of the POD basis. Following [39], in this work we typically use two training runs for snapshot
generation. However, we save and reduce the Jacobian (and other derivative) matrices from only
one of these training simulations. This run is referred to as the primary training run. By using

this procedure, we save on preprocessing computation and storage.

2.2.2 POD-TPWL Point Selection

At each time step in a POD-TPWL run, the sequential training states ¢ and ¢ + 1 around which we
linearize must be determined (see Egs. 11 and 12). We refer to this determination as point selection
(i.e., we select the training point around which the linearization is performed). This linearization
point is found by minimizing a measure of distance between the current (reduced) test-run state
and all points in the primary training run.

Following [39], we define this distance (d™7) as

d™9 = d7 4 ~yd (13)
Here d2 and dgij denote the relative difference in (reduced) mole fraction and in estimated pore

volume injected (PVI), respectively, and ~ is a weighting parameter (we take v = 10). The specific
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definitions for these two contributions are

Cqen_ gl . Pgndt — [ gidt
dz,j _ |£Z £Z| mn,J _ |f0 q fO q ’ (14)

a €2+ €’ T fgnq”dtwLe

where &7 and &) are reduced overall molar fraction (of water) for the test run at time step n and for
the saved point j in the primary training run. The variables ¢" and ¢’ designate the total injection
rate (over all wells) at time step n in the test run and at time step j in the training run. The €
term, set as 0.01, is relevant only at very early times. By finding the value of j that minimizes d"™J
in Eq. 13, we find the state (and its associated derivative matrices) in the primary training run
that is closest to the current test state in terms of £, and PVI. Eq. 14 is directly applicable when
rates are specified in the test runs. If BHPs are specified, rates must be computed from the well

model. The way in which this is accomplished is discussed later (see Eq. 16 below).

2.2.3 POD-TPWL Workflow

Prior to using POD-TPWL to simulate test cases, the reduced-order model must be constructed
from training run results. This entails preprocessing (offline) computations, which include training
runs, construction of the basis matrices ®, and ®., and construction of the reduced derivative
matrices appearing in Eqgs. 11 and 12. Stanford’s Automatic Differentiation-based General Pur-
pose Research Simulator, AD-GPRS [79], has been modified to provide the necessary derivative
information. For the cases considered here, the additional computation required to construct the
POD-TPWL model can entail nearly 1/3 of the time required for a full-order training run. Thus,
assuming two training runs are performed, the overall preprocessing POD-TPWL overhead corre-
sponds to about the time for 2.3 full-order simulations. For the COs storage simulations considered
here, runtime speedups using POD-TPWL of nearly a factor of 400 are observed. Thus, if the
model is to be run many times, the POD-TPWL procedure can be very cost effective. If, however,
only a few runs are required, it is more efficient to simply run the full-order model.

During POD-TPWL runs (i.e., inline computations), at each time step, the training states ¢
and 7 + 1 are first found (by minimizing d™/), after which Eq. 11 is solved to determine £"*+1. If
actual states are required, these can be constructed by applying x"+! ~ ®£"+!. Typically, states
are only required at well blocks, where they are used to compute flow rates. As discussed by [39],
a flash must be performed to construct secondary variables such as saturation. See [39] for a flow

chart of the offline and inline computations and for additional implementation details.

2.2.4 Rate-Controlled Wells

New features introduced in this work include the use of horizontal wells and the control of wells
through rate (rather than BHP) specifications. Handling horizontal wells is relatively straightfor-
ward and mostly involves input and output specifications. The use of well rate as a control variable

is more complicated, as described below.
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Prior to discussing rate-controlled wells, it is useful to first provide some details regarding the
use of BHPs as the control parameters, since AD-GPRS essentially models wells in both cases using
BHPs, which are then related to rates. For BHP-controlled wells, the derivative matrices needed
to construct the POD-TPWL model are dg'*!/9x!™! (J**1) and dg*!/ou'™! (B+!), as is evident
from Eqgs. 5 and 6. Note that the matrix dg'*!/0x’ (A**1) does not enter this discussion because it
is not affected by changing well control from BHPs to rates. It is convenient to define an ‘extended’

Jacobian matrix Jeyxt containing both J and B:

Jow = [Jrn Jrw|=[3 BJ. (15)

where we have dropped superscript 7 + 1 for simplicity. Here the subscript on Jrr (which is of
dimensions 2ny X 2ny) indicates that it is the derivative of the reservoir equations with respect to
primary reservoir variables, and that on Jry (of dimensions 2n; x n,,, where n,, is the number of
wells) indicates that it is the derivative of the reservoir equations with respect to well BHPs. These
matrices are precisely as defined in Eq. 6.

BHPs enter the formulation because the overall source term ¢}’ (which is a phase injection or

production rate) is represented in terms of the standard well equation:
Ns
Q}U = z Wls)\j,s(ps _pw,s)a (16)
s=1

where ng is the number of blocks in which the well is completed (open to flow), W, is the well
index for block s (which is essentially the transmissibility between the well and the block), A
is the phase mobility in block s, p, is the well-block pressure, and p,, s is the wellbore pressure
in block s. BHP corresponds to the wellbore pressure at a particular location, such as the first
well completion. If we have a horizontal well and pressure losses along the well are neglected (as
they are here), then py, s is constant along the well. Once the primary variables in well blocks are
determined and a flash has been performed, well flow rates can be calculated using Eq. 16 (these
flow rates are at subsurface conditions; to determine rates at surface conditions an additional flash
must be performed).

For cases with well rate (rather than BHP) specifications, we require matrices that are analogous
to Jrr and Jrw in Eq. 15. We use a tilde for cases where well rates are specified, and denote the

extended Jacobian matrix Jey as:
Joxt = {jRR jRC] ) (17)

where, as in Eq. 15, Jrr (2np x 2np) is the derivative of the reservoir equations with respect to
primary reservoir variables, and Jre (2np X Ny, where n,, is the number of controls) is the derivative
of the reservoir equations with respect to rate-control variables. Here we specify one rate control
per well, 80 ny = ny,.

The matrix J ge is different from J gy in Eq. 15 because the problem now involves derivatives

of the reservoir equations with respect to rate controls instead of BHPs. Less obvious is the fact
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that J g also differs from Jzp. This is because, when we specify a well flow rate qj’, the well block
pressure (ps in Eq. 16), which is a primary reservoir variable, does not appear in the source term.
By contrast, when BHP is specified, ps does appear, so there is an additional contribution in Jgrpg
that is not in Jgg.

In concept, it should be straightforward to directly construct Jpr and Jre, just as we do for
Jrr and Jrw. This is nontrivial, however, because of the way in which AD-GPRS represents
wells under rate control. Specifically, in this case AD-GPRS still represents qj’ using Eq. 16, but it
also includes additional equations (well equations) that relate q}“ and BHP. These equations are a

simple rearrangement of Eq. 16; i.e.,

Ns
Z WIS)\j,S(pS - pw,s) - qjl'u =0, Jj=g, w. (18)
s=1

Because more equations are now treated in AD-GPRS, additional derivatives appear. We thus

define the ‘augmented’ Jacobian matrix J* as:

I = (19)

Jrr Jrw JrRC
Jwr Jww Jwe|’

where Jrr and Jrw are as defined in Eq. 15, Jro (2ny X ny,) is the derivative of the reservoir
equations with respect to the rate-control variables, Jyr (1, X 2np) is the derivative of the well
equations with respect to reservoir variables, Jyw (ny, X ny,) is the derivative of the well equations
with respect to well BHPs, and Jy ¢ (ny X ny,) is the derivative of the well equations with respect
to rate-control variables. Because the rate-control variable q;»” does not appear explicitly in the
reservoir equation (due to the AD-GPRS treatment), we have Jrc = 0. In addition, because the
derivative of the well equation (Eq. 18) with respect to its rate specification q;” is —1, the matrix
Jwe in Eq. 19 is simply the negative identity matrix (i.e., Jyyo = —1I).

In order to determine the desired matrices Jpg and J RrRC, We apply a Schur complement proce-

dure to J* in Eq. 19. This entails premultiplying J* by a matrix S, with the goal of eliminating

_ 1
g _ [I JRWJWW] ’ (20)

Jrw. Defining
0 I

and constructing a modified ‘augmented’ Jacobian matrix J* = SJ*, we have:

J* [JRR —JrwdyiwIdwr 0 Jpo— JRWJ;VlWJWC] (21)

Jwnr Jww Jwe
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We can now partition J* into submatrices as:

- J J J
g+ — |Jrr Jrw  Jro| (22)
Jwr Jww Jwe

Comparing this with Eq. 21, we see that
Jrr =Jrr — Jew Iy Iwr, (23)
Jrw =0, (24)
Jre = Ige — Irw Iyt dwe, (25)
where Jro = 0 and Jwo = —I, as noted earlier. Eq. 24 indicates that the direct dependency of

the reservoir equations on well BHPs has been eliminated (which was our goal since wells are now
controlled by rates). Importantly, the matrices Jrr and Jpe are the derivatives required for Jext
in Eq. 17 for well-rate control problems.

In our actual implementation, AD-GPRS provides J* in Eq. 19. The required matrices J g and
Jre are computed by performing the calculations shown in Egs. 23 and 25. These computations

are inexpensive since n,, is small.

3 Numerical Simulation Results

In this section, we present results using the POD-TPWL model for COs-water systems, with both
BHPs and rates as control parameters. Two examples will be considered — one is a large-scale
synthetic aquifer model, and the other is a simplified model of the CO4 injection site that was
planned for FutureGen 2.0. As noted in Section 2, compared with previous applications of POD-
TPWL [39, 41], new features included here are the use of horizontal wells, the application of well
rate specifications, and the use of a grid with blocks that vary significantly in size over the domain.

We note that POD-TPWL results for a CO2 EOR (compositional) problem, which includes the

use of horizontal wells, are presented in Appendix B.

3.1 Model 1: Synthetic Aquifer

The problem set up for this case is based on a previous model used by Cameron & Durlofsky [13]
to optimize carbon storage operations. However, many of the specifics, including the permeability
field and the well settings, differ from those used in [13].

3.1.1 Problem Set Up

The simulation model, shown in Fig. 1, includes a storage aquifer, of physical dimensions 10.9 km x
10.9 km x 100 m, immersed within a large-scale regional model, of physical dimensions 232 km x
232 km x 100 m. The storage aquifer is modeled on a 25 x 25 x 10 grid (total of 6250 grid blocks),
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while the full system is represented on a 39 x 39 x 10 grid (total of 15,210 grid blocks). In the
storage aquifer, grid blocks are of size 436 m x 436 m x 10 m. Block sizes increase as we move out
from the storage aquifer, as is evident in Fig. 1 (left). Note that the grid is still fairly dense just
outside the storage aquifer. COs injection is accomplished using two horizontal wells, as shown in
Fig. 1 (right).

Regional model: 39x39x10 Storage aquifer: 25x25x10

 232km

Figure 1: Simulation grid (left, areal view) and horizontal injection wells (right)

The permeability and porosity fields are sampled from the Stanford VI synthetic geological
model [20], which represents a highly heterogeneous channelized system. Fig. 2 displays logk for
this system (permeability is isotropic so k = kI). The vertical variation in the channel structure is

evident in Fig. 2b.

= MW s~ oW

(a) Horizontal permeability (b) Layered view

Figure 2: Permeability field for storage aquifer (log k is shown)

As discussed in Section 2, we use a compositional simulation model with two components (COq
and water) and two phases (gas and water). Thus, this system contains 15,210 x 2 = 30,420

primary variables. The relative permeabilities for the water and gas phases are defined using the
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Brooks-Corey relation. We set residual gas saturation Sg. = 0.1, irreducible water saturation
Swi = 0, and use exponents of 2 for both phases. Capillary pressure is neglected. The (isothermal)
aquifer temperature is set to 372 K; surface conditions correspond to temperature and pressure of
293 K and 1.013 bar.

The initial aquifer pressure at the top layer is 170 bar. The overall molar fractions of the initial
in-situ fluid are 0.001 CO2 and 0.999 water. The injected fluid is 0.999 COs and 0.001 water.
The two horizontal COs injection wells are located in layers 7 and 8 of the storage aquifer (near
the bottom of the model). Each of the wells is completed in three grid blocks. The model is run
for a total of 10,000 days, which is about 27 years. We will present results using both BHP and
rate specifications. The cumulative injected volume of COs is about 1% - 4% of the pore volume
of the storage aquifer in cases with rate control. Much larger volumes are injected in cases with
BHP control, which is not consistent with practical operations but is useful for purposes of testing
POD-TPWL for this problem.

3.1.2 POD-TPWL Results with BHP Controls (Model 1)

In our application of POD-TPWL, we first perform two full-order training runs, which are used
to construct the POD-TPWL model (one of these is the primary training run, as discussed in
Section 2.2). We then perform a sequence of test runs, where the time-varying BHP controls differ
from those used in the training runs. As in [41], the degree of perturbation from the primary
training run is quantified using the parameter a. A value of o = 0 indicates the training case
(which the POD-TPWL model should match exactly), and o = 1 indicates the case with the
largest perturbation, referred to as the target case. For values of a between 0 and 1, the test-case

BHP for a particular well at time ¢ (designated ul) is given by:

uiest = (1 - O‘)uiraining + au‘iargetv (26)

t
training

show the time-varying BHPs for the training and target runs. The BHPs in the training case are

where u and uiarget are the training and target BHPs for the well at time ¢. Figs. 3a and b
generated randomly, while the BHPs in the target case increase stepwise-linearly in time. These
BHP profiles are intended to represent the types of time-varying BHP schedules that might be
computed from an optimization procedure (such as that reported in [13]).

A total of 264 snapshots are collected from the two full-order training runs. In the POD-TPWL
model, we use [, = 90 reduced pressure variables and [, = 120 reduced overall water molar fraction
variables, for a total of [ = 210 variables. This represents a substantial reduction compared to the
reference AD-GPRS model, which entails 30,420 primary variables.

Figs. 4, 5 and 6 display the CO2 injection rates (at surface conditions) for the two horizontal
injectors for three different test cases, which correspond to a = 0.3,0.5 and 0.8. In these and
subsequent plots, the black dotted curves represent results for the primary training case (these are

the results around which we linearize to compute the solution for the POD-TPWL test case), the
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Figure 3: Time-varying BHPs for training and target simulations (Model 1)
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Figure 4: CO9 injection rates for test case with o = 0.3 (Model 1)
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10000

4
o235
E /
2 3}
g |
e
=25
F
o 2 ——AD-GPRS
15 ---Training
-e-POD-TPWL
1
0 2000 4000 6000 8000 10000
Time (day)
(a) Well 1
x 10’
5_
T4
5] —-—
o |/ L
23/
w
52
o ——AD-GPRS
---Training
1 -=-POD-TPWL
0 2000 4000 6000 8000
Time (day)
(a) Well 1

DOE Award No. DE-FE0009051, Task #4

16

x 10
4.5
= 4
RS
mE 3.5
% 3;"
oo
=25
o |
T 2
) ——AD-GPRS
« .
1.5 ---Training
1 -+-POD-TPWL
0 2000 4000 6000 8000 10000
Time (day)
(b) Well 2

Figure 6: CO3 injection rates for test case with a = 0.8 (Model 1)



ROM based Models
for CO9 Sequestration 3 NUMERICAL SIMULATION RESULTS

red curves define the full-order reference AD-GPRS solution for the test case, and the blue curves
depict the POD-TPWL results.

From these figures, we see that there are, in general, considerable differences between the
training and test solutions. These differences increase with increasing a, as would be expected.
Note also that the injection rates at later times in the test runs are significantly higher than those
in the training run. The POD-TPWL results are, however, in consistently close agreement with
the full-order solution in all three cases. This is encouraging, as it suggests that POD-TPWL may

indeed be suitable for use in CO4 storage applications.

3.1.3 POD-TPWL Results with Rate Controls (Model 1)

We now consider cases with rate specifications. We again test the POD-TPWL model using linear
combinations of training (o = 0) and target (o« = 1) runs. The rate profiles at subsurface conditions
(372 K, ~ 13.5 bar) are shown in Fig. 7. The perturbations applied in this case are larger than
those applied to the BHP controls in Section 3.1.2. The total injection rate for each well is about
1.5 million metric tons of CO5 per year. The cumulative CO2 injected after 10,000 days is close
to 3% of the pore volume of the storage aquifer. The POD basis matrix is constructed from 254

snapshots collected from two full-order training runs. For this case we use [, = [, = 80.

8000" 6000
well 1
7000 g b 31010/ S R T T well 2
2 6000 = 5000
] [
kS k)
°E 5000 " 4500
2 2
© 4000 & 4000
L 3500(
3000 s
......... well 2 3000
2000t . . " . . . . )
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time (day) Time (day)
(a) Training run (o = 0) (b) Target run (o = 1)

Figure 7: Time-varying rate specifications for training and target simulations (Model 1)

Since we now prescribe injection rates, the relevant well quantity to assess is BHP. Injection well
BHPs for test cases with a = 0.5 and 1.0 are shown in Figs. 8 and 9. In general, the POD-TPWL
results (blue curves) display reasonable accuracy relative to the reference full-order simulation (red
curves). As « increases, POD-TPWL error is seen to increase. In Fig. 9b, inaccuracies are observed
in the POD-TPWL model for Well 2 at around 5000 days (this is also evident in Fig. 8b). We
believe that errors of this type occur due to our point selection treatment. Basically, we do not
allow the time step corresponding to the selected training-run point to decrease in time. This is

generally an appropriate restriction, but it can lead to inaccuracy at some time steps.
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Figure 9: CO; injection well BHPs for test case with o = 1.0 (Model 1)

For the a = 1.0 test case, we also present, in Fig. 10, color maps for overall molar fraction of
CO3 at 4000 days. These results are shown for layers 7 and 8, which contain the two injection
wells. Red indicates high COs concentration, and blue denotes high water concentration. The
COg distribution for the training run is shown in Figs. 10a and b, AD-GPRS (full-order) test-
case results are shown in Figs. 10c and d, and POD-TPWL results are presented in Figs. 10e and
f. The differences between the training and test runs are relatively small, but it is evident that
POD-TPWL is able to provide results that (fairly closely) resemble the full-order test runs.

Finally, in Fig. 11, we compare the states (z4) generated from POD-TPWL to those from AD-
GPRS. These results are at times of 4000 days and 10,000 days. The points fall reasonably close to
the 45-degree line (this line indicates perfect agreement), though there is some scatter, especially
for small z,. Overall, however, this plot indicates that POD-TPWL is able to provide reasonable
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Figure 10: Color maps for CO2 overall molar fraction at 4000 days with a = 1.0 (Model 1)
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estimates of the z, state variable.

For this case, the full-order AD-GPRS simulations typically require around 18 minutes to run
on one compute node with 16 cores with Intel® dual Sandy Bridge™ CPUs. POD-TPWL models
require only about 3 seconds on one core, which represents a runtime speedup factor of about 360.
We reiterate that POD-TPWL model construction (the offline portion of the procedure) entails

computation corresponding to about 2.3 full-order runs.
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Figure 11: Comparison of COy overall molar fraction between POD-TPWL and AD-GPRS at
4000 days and 10,000 days for test case with o = 1.0 (Model 1)
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3.2 Model 2: Mount Simon Formation

The site proposed for the CO5 storage associated with DOE’s FutureGen 2.0 project is located
in Morgan County, Illinois [7]. The target COg2 injection zone was a high-permeability region
within the upper portion of the Mount Simon sandstone. Unfortunately, after over four years of
development, this project has been canceled. However, the substantial amount of data collected
and the modeling performed to date are still valuable. The model considered in this section is a

simplified version of the Mount Simon simulation model constructed by Bonneville et al. [7].

3.2.1 Problem Set Up

The simulation model is shown in Fig. 12. It includes a storage aquifer of dimensions 3.1 mi (5 km) x
3.1 mi (5 km) x 1346 ft (410 m), which is immersed within a large-scale regional model of dimensions
100 mi x 100 mi x 1346 ft. The storage aquifer is modeled on a 30 x 30 x 30 grid (total of 27,000 grid
blocks), while the full system is represented on a 46 x 46 x 30 grid (total of 63,480 grid blocks). In the
storage aquifer, grid blocks are 525 ft (160 m) on a side. Grid-block thickness varies significantly,
from 10 ft to 190 ft. COsz injection is accomplished using four horizontal wells (consistent with
proposed operations [7]), as shown in Fig. 12b. The permeability and porosity fields are completely
layered, so there is property variation only in the vertical direction (the model is shown in Fig. 13).
For this case, we take k; = k; and k, = 0.1k,. This model represents a less detailed version of the

Mount Simon geological model considered in [7], which contains 51 layers.

(a) Storage aquifer and regional model (b) Four horizontal wells

Figure 12: Areal grid and well locations for simplified Mount Simon model

Our simulation model again contains CO9 and water components in gas and water phases. The
initial aquifer pressure is 124 bar. The four horizontal wells are located in layer 25 of the model.
Injection wells I1 and 14 are of length 1575 ft (480 m), and wells 12 and I3 are of length 2625 ft
(800 m). We control the wells by specifying both time-varying BHPs and rates. The model is run
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Figure 13: Permeability field for simplified Mount Simon model (log &, is shown, k, in mD)

for a total of 8000 days (about 22 years) in BHP-control cases, and for 7300 days (about 20 years)
in rate-control cases. Other model properties are the same as in Model 1. The full-order system in

this case contains 63,480 x 2 = 126,960 primary variables.

3.2.2 POD-TPWL Results with BHP Controls (Model 2)

This case involves training with BHPs that increase in time and testing with BHPs that include
a random component. Figs. 14a and b show the time-varying BHPs for the training (o = 0) and
target (o = 1) runs. Note that the target BHPs differ for each of the four injection wells. A total
of 214 snapshots are collected from the two full-order training runs. In the POD-TPWL model, we
set [, = 90 and [, = 120.
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Figure 14: Time-varying BHPs for training and target simulations (Model 2)
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Test-case results for a« = 0.3 and 0.8 are shown in Figs. 15 and 16. Time-varying injection
rates are shown for all four wells. The POD-TPWL results in Fig. 15 are quite accurate relative

to reference AD-GPRS results, though some error is apparent in Fig. 16. The general level of

agreement is nonetheless relatively close, even though results for the training simulation differ

considerably from those for the test run with o = 0.8.
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Figure 15: COz injection rates for test case with a = 0.3 (Model 2)

3.2.3 POD-TPWL Results with Rate Controls (Model 2)

We now consider results in which well injection rates are specified. The rate profiles at subsurface
conditions (372 K, ~ 14 bar) for both cases are shown in Fig. 17. In both the training and test
runs, all wells are specified to inject the same volume of COs, though this is not a requirement of

the implementation. The total injection rate for all four wells is approximately 1.1 million metric
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Figure 16: CO2 injection rates for test case with o = 0.8 (Model 2)
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tons of CO9 per year. The cumulative CO5 injected after 7300 days is close to 3.5% of the pore
volume of the storage aquifer. Here, we use [, = [, = 80 in the POD-TPWL model (a total of 200

snapshots were generated in the two full-order training runs).
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Figure 17: Time-varying rate specifications for training and target simulations (Model 2)

For this case we present results only for a« = 1. Test-case results for injection well BHPs for
the four wells are shown in Fig. 18. Overall, the POD-TPWL results display reasonable accu-
racy relative to AD-GPRS predictions, though some inaccuracy is observed at late time (after
around 6500 days). We believe this is again due to the point selection scheme applied here. The
development of a more robust point selection scheme will be considered in future work.

Color maps for CO; overall molar fraction (z4) for the test case at 4000 days and 6000 days
(for layer 25) are presented in Fig. 19. It is evident that z, is high near the four injectors and
that it decreases sharply as we move away from the wells. The differences between the full-order
training and test runs are not that significant in these plots. We do, however, see that the POD-
TPWL solution resembles the AD-GPRS solution fairly closely at 6000 days (Figs. 19d and f),
where differences between the training and test runs are apparent.

The differences between the POD-TPWL and AD-GPRS solutions can be seen more directly
by constructing difference maps. In Figs. 20a and b, we present the absolute value of the (block-
by-block) difference in z, between the AD-GPRS training and test simulations. Although the z,
scale spans a much smaller range here compared to that in Fig. 19, we see that there are clear
differences between the training and test runs. Shown in Figs. 20c and d are differences between
the AD-GPRS and POD-TPWL test solutions. If the POD-TPWL model was perfectly accurate,
these plots would be dark blue. Error in z, is clearly apparent, however, both in the near-well
region where z,4 is large, and at the edges of the plume, though it is relatively small in magnitude
over most of the domain. The latter error may reflect the difficulty of capturing front locations
precisely using POD-TPWL, which was also observed in [39]. It is possible, however, that fronts

could be better resolved through use of a point selection scheme that gives more weight to front
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Figure 18: CO2 injection well BHPs for test case with o = 1.0 (Model 2)
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Figure 19: Color maps for COg overall molar fraction z, in layer 25 (Model 2)

DOE Award No. DE-FE0009051, Task #4 27



ROM based Models

for CO9 Sequestration 3 NUMERICAL SIMULATION RESULTS

0.05 0.05

0.04 0.04

0.03 S 2000 0.03

0.02 0.02

0.01 0.01
0

X (met

0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
y (meter) y (meter)
(a) Difference between AD-GPRS training (b) Difference between AD-GPRS training
and test runs, 4000 days and test runs, 6000 days
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
y (meter) y (meter)
(c) Difference between POD-TPWL (d) Difference between POD-TPWL
and AD-GPRS test runs, 4000 days and AD-GPRS test runs, 6000 days
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location (as opposed to the scheme described in Section 2.2.2, which does not explicitly consider
this quantity).

Finally, we present cross plots comparing POD-TPWL and AD-GPRS results for the states (p
and z, in every block) at two different times. These results are shown, at 4000 and 6000 days,
in Fig. 21. The pressure results are extremely accurate, while the overall molar fraction results
display some scatter, but nonetheless retain a reasonable level of accuracy.

For this example, the run times for the AD-GPRS and POD-TPWL models are 16 minutes and
2.5 seconds, respectively. Thus POD-TPWL provides a speedup of about a factor of 380 in this

case.
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Figure 21: Comparison of pressure and COs molar fraction between POD-TPWL and full-order
reference solutions (Model 2)
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3.3 Summary

In this section, we presented POD-TPWL results for two example cases involving horizontal COq
injection wells. The test cases entailed both time-varying BHP and injection rate schedules. POD-
TPWL results were shown to provide reasonable accuracy relative to reference (full-order) AD-
GPRS results, though POD-TPWL model error was seen to increase as the deviation of the test
case from the training case increased. It is possible that some of the errors in the POD-TPWL
models can be reduced through use of a more sophisticated point selection scheme. Runtime
speedups observed using POD-TPWL (relative to the full-order simulations) were around a factor
of 370.

4 Geological Perturbation

In this section, we will develop POD-TPWL models in which the perturbed ‘control’ variables are
not well parameters, but are instead geological parameters. This general problem was considered
by He et al. [42] within the context of oil-water reservoir simulation, and our formulation here
follows that work. There are however some important differences between the development in [42]
and the implementation here, particularly the fact that Galerkin projection was used for constraint
reduction in [42], while here we use the Petrov-Galerkin procedure described in Section 2.

This work is in a relatively early stage, so the results presented in this section should be viewed

as somewhat preliminary.

4.1 POD-TPWL Formulation

Consistent with the notation in Section 2, the set of discretized nonlinear algebraic equations is
now expressed as:

g(x"",x",~) = 0. (27)

Here, in place of the well control parameter u appearing in Eq. 3, is the geological parameter .
All other variables have the same definitions as in Section 2. The geological parameters used in the
training run are designated ~,,. The goal is now to generate results for test runs with different sets
of geological parameters, which are denoted by ~.

Consistent with Eq. 4, we now express new (test) solutions in terms of a Taylor series expansion,

truncated at first order:

) 8gi+1 ) agiJrl ) agi+1
n+1:0% i+1 A n+1l i+l A n__ i _ 28
B G (T x4 Bt ) T () (28)

g

n+1

where gt = g(x'T! x% 7,,) = 0 and g = g(x""! x" ~) = 0, as noted in Section 2. Rearrang-

ing, we have
T =) = AT (X" = x) + BT (v = )], (29)
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where i+1 i+1 i+1
. Og’ . Og’ . Og*
JZ+1 = aii‘i‘l, Al-i_1 = SXZ s B’H_1 = 757 . (30)
w

Following the introduction of the POD representation (x = ®&) and Petrov-Galerkin constraint
reduction (P! = J**1®), the POD-TPWL model is expressed as:

g =gt — (I THAT(E - €) + B (v — )l (31)

where
J:;-Fl _ \I/TJH_l(I)’ Ai—i—l _ \I/TAH_l‘i’, quﬂ—l—l _ \IITBH_I. (32)

We now consider the representation of the geological parameters. Following [42], we define
~ to be log-transmissibility; i.e., v = log T, where T is the vector (of dimension ny) containing
all of the directional transmissibilities. Note that transmissibilities are associated with block-to-
block interfaces, so np differs from the number of grid blocks. The term involving the geological
parameters in the POD-TPWL representation is thus given by:
i+1 Pgit!

& (y- ) = B Dr(y- ) 33)

Bi+l — ) =
(v — ) 07

where T, designates the vector of transmissibilities for the training run and D7, is a diagonal

matrix whose diagonal elements coincide with T,,. Using Eq. 33, Eq. 31 can now be written as:

gt =gt — (I AT E - €) + BT (v — ), (34)
with Dgit1
Bi-i-l — ‘I’TLD )
r 3’)’w T (35)

This defines the POD-TPWL model with geological control parameters. Point selection is accom-

plished as described in Section 2.2.2.

4.2 Problem Set Up

We test this procedure on a vertical cross-section of the purely-layered Mount Simon model consid-
ered in Section 3. The storage aquifer is represented on a 30 x 30 grid (see Fig. 22a; this represents
the training geology). The full regional system contains 46 x 30 blocks. We again set k, = 0.1k, in
the training run. Gravitational effects are neglected in these runs (due to a current limitation in
the linkage between POD-TPWL with geological perturbations and AD-GPRS).

COg injection is from two horizontal wells, as shown in Fig. 22b, which are each of length
1575 ft. Both wells inject COo with time-varying rate controls for 3000 days. The cumulative COq
injected at the end of 3000 days is about 1.3% of the pore volume of the storage aquifer. The rate
controls at surface conditions (293 K, 1.013 bar) for both wells are shown in Fig. 23. Note that the

rate schedule is the same for both the training and test cases. The other model properties are the
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Figure 23: Injection rates in training and test cases (rates are the same for both wells)

The POD basis matrix is constructed from 80 snapshots generated during two full-order training
runs. The AD-GPRS full-order system for this case contains 2760 primary variables (2 x 1380). In
the POD-TPWL model, we use l,, = [, = 37. The control variable « in Eq. 34 in this case is also of
dimension 2760. Theoretically, this dimension should be the number of block-to-block connections
in the system, which is (46 — 1) x 30 446 x (30 — 1) = 2684. However, to simplify the linkage with
AD-GPRS, we introduce a small amount of redundancy in the data. In all of the test cases, we
keep the well index equal to its value in the training simulation. This is meant to reflect the fact

that the geology is reasonably certain in regions intersected by wells.
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4.3 POD-TPWL Results

We now present POD-TPWL results for test cases with different types of geological perturbations.
Three different examples are considered, in which we perturb, relative to the training case (1)
the transmissibilities of all interfaces in the model, (2) only the vertical transmissibilities, and (3)
the transmissibilities in a few selected layers. Because the wells are symmetrically located within
the model and the injection schedules for the two wells are identical (and because the model is
completely layered), both wells display identical time-varying BHPs. Therefore we present results
only for Well 1.

In the first set of test cases, we multiply all permeabilities (and thus all transmissibilities) by
constant factors (0.5, 1.5, 2.0, 5.0) relative to the training case. BHP results for these runs are
shown in Fig. 24. The various curves are as defined in Section 3. The test-case BHPs differ from
the training-run BHPs by very little in these runs — typically by only a few psi or less. This may
be because the well indices are the same in the test cases as in the training run. The POD-TPWL
model does, however, provide results that capture the basic trends, though error is apparent for
the case with the largest perturbation (Fig. 24d).

We next present results for a test case in which the vertical transmissibilities are all multiplied
by 0.1 relative to their values in the training case. Injection well BHP results for this run are shown
in Fig. 25. We again see only small differences between training and test results. The POD-TPWL
model captures the general trend of the AD-GPRS results, though some error is apparent between
1500 and 2000 days.

In our final test case, the transmissibilities in layers 23 to 27 are all multiplied by a factor of 10.
These layers can be viewed as key layers because the wells are completed in layer 25. Results for
this case are shown in Fig. 26. Consistent with previous examples, we observe generally accurate
POD-TPWL results for time-varying BHP, though the training- and test-case results are again

quite close.
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Figure 24: Injection well BHPs for test cases with all transmissibilities perturbed by constant
factors (Well 1)
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Figure 26: Injection well BHPs for test case with perturbed transmissibilities in layers 23-27

(Well 1)

DOE Award No. DE-FE0009051, Task #4 35



ROM based Models
for CO9 Sequestration 5 SUMMARY AND CONCLUSIONS

4.4 Summary

In this section, we extended the POD-TPWL model to cases involving geological perturbations.
In the test cases presented, there were only small differences between the training and test-case
simulation results for CO3 injection well BHPs, though the test-case BHPs were accurately captured
by the POD-TPWL model in most instances. The case that displayed the least accurate POD-
TPWL results involved the use of a global permeability /transmissibility multiplier of 5.0, which is
relatively large. The runtime speedups for the cases in this section were modest compared with
those achieved in Section 3. Specifically, here we obtained speedup factors of only about 50 (from
around 2 minutes for full-order AD-GPRS runs to 2-3 seconds for POD-TPWL). The decreased
speedup may be due in part to the fact that the full-order model is fairly simple. Greater speedups
will likely be achieved if larger and more complicated models are tested, especially if we use a
Karhunen-Loeve representation of transmissibility, as in [42]. The Karhunen-Loéve representation
enables geological models to be defined in terms of a reduced set of parameters, and is analogous
to the POD-based representation used for the states (i.e., x = ®&).

The results presented in this section are preliminary, though they do suggest that the basic POD-
TPWL model for geological perturbation has been implemented (essentially) correctly. Further

development and testing of this capability will be the subject of future work.

5 Summary and Conclusions

In this report, a compositional POD-TPWL reduced-order model was presented for COy seques-
tration problems. This work built on an earlier POD-TPWL formulation, which considered oil-gas
compositional systems within a reservoir simulation setting [39, 40]. POD-TPWL techniques entail
the representation of states using a POD-based procedure and the treatment of nonlinearity us-
ing linearization around previously simulated (training) solutions. The set of governing equations
is projected into an appropriate subspace using a constraint reduction procedure. In this work,
consistent with [39, 40], a Petrov-Galerkin treatment was used for this purpose.

New features introduced into the POD-TPWL formulation presented here include the use of
rate-controlled wells (rather than BHP-controlled wells, as have been used in previous implemen-
tations) and horizontal wells (in contrast to previous POD-TPWL models which only used vertical
wells). The implementation with rate controls is much more involved than with BHP controls
as it requires manipulation of AD-GPRS matrices in order to provide the derivatives used in the
POD-TPWL model. Rate control is important for COs storage problems since we typically have a
target volume of COq to inject at each time step. A prototype implementation involving the use
of geological parameters as the control parameters was also introduced. This model is similar to
that in [42] except here we used a Petrov-Galerkin constraint reduction procedure (in contrast to
the Galerkin procedure in [42]).

POD-TPWL results for BHP- and rate-controlled test runs (test runs differ from the train-

ing cases used to construct the POD-TPWL model) were presented for two example cases — a
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synthetic channelized aquifer model and a simplified Mount Simon model. The POD-TPWL solu-
tions typically showed reasonably close agreement with full-order (AD-GPRS) reference solutions.
POD-TPWL model error was seen to increase as the difference between the training- and test-case
controls increased, as would be expected since the method is based on a linearization procedure.

The computational times associated with the full-order (AD-GPRS) and POD-TPWL solutions,
as well as the time required for POD-TPWL model construction, are shown in Table 1. Results
are presented for the three COq storage cases considered (timings are very similar for BHP- and
rate-controlled runs). The runtime speedup for POD-TPWL relative to AD-GPRS is also shown.
We see that POD-TPWL model construction requires 0.17 and 0.35 of the time required for one
AD-GPRS simulation for Models 1 and 2 (a smaller fraction of AD-GPRS runtime is required for
the geological perturbation case). The computations entailed in POD-TPWL model construction
include loading the derivative matrices and snapshots, performing SVDs of the snapshot matrices,
computing reduced matrices (e.g., JiH! = ()T JH1P) etc.

Runtime speedups of about a factor of 370 were observed for Models 1 and 2, which highlights
the benefit of solving low-order linear problems rather than high-order nonlinear problems. Less
dramatic speedup was achieved in the runs with geological perturbations, but those results do
suggest that the basic functionality has been implemented (essentially) correctly. We note that, for
more complicated multicomponent simulations, such as those presented in Appendix B, the POD-
TPWL model construction time is longer — nearly the time required for one full-order simulation

run.

Table 1: Timings for various modeling components (in seconds)

Model 1 | Model 2 ‘ Geol. Pert. Case

AD-GPRS runtime 1080 960 100
POD-TPWL model construction 180 340 15
POD-TPWL runtime 3 2.5 2

POD-TPWL runtime speedup 360 384 50

There are a number of directions that should be considered in future work. As noted in Sec-
tion 3, the point selection procedure used in this study displays limitations in some cases, and a
more general treatment should be developed. It will also be useful to test the relative performance
of POD-TPWL models, in terms of their ability to capture plume fronts, with different point se-
lection schemes. As indicated in Section 4, geological models can be represented compactly, and
the use of such representations in the POD-TPWL model with geological perturbations should be
further explored. This was considered in [42], but not for COq storage problems. A recent method,
referred to as optimization-based principal component analysis [71], enables the approximate (con-
cise) representation of non-Gaussian permeability fields, and this approach should be incorporated
into our POD-TPWL model. The POD-TPWL model should also be applied for optimizations of
the type considered in [13]. This will require the development of appropriate retraining strategies

since, as the optimization proceeds, the controls will eventually differ considerably from those used
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in the training run. Finally, it may be useful to consider other numerical reduced-order methods
such as POD-DEIM (e.g., [36]) for CO2 storage problems.
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A Constraint Reduction for POD-TPWL

This Appendix presents a detailed assessment of POD-TPWL constraint reduction procedures in
oil-gas and oil-water models. It corresponds to a paper that has been accepted for publication in
International Journal for Numerical Methods in Engineering (doi:10.1002/nme.4874). Because this
Appendix was written as a separate paper, there is some overlap between the text and equations
here and that in the body of this report (there are also some slight stylistic differences). As noted
earlier, within the body of the report, the work in Appendix A is referenced as He and Durlofsky [40].

A.1 Summary of Appendix A

The properties and numerical performance of reduced-order models based on trajectory piecewise
linearization (TPWL) and proper orthogonal decomposition (POD) are assessed. The target appli-
cation is subsurface flow modeling, though our findings should be applicable to a range of problems.
The errors arising at each step in the POD-TPWL procedure are described. The impact of con-
straint reduction on accuracy and stability is considered in detail. Constraint reduction entails
projection of the overdetermined system into a low-dimensional subspace, in which the system is
solvable. Optimality conditions for constraint reduction, in terms of error minimization, are de-
rived. Galerkin and Petrov-Galerkin projections are shown to correspond to optimality in norms
that involve weighting with the Jacobian matrix. Two new treatments, inverse projection and
weighted inverse projection, are suggested. These methods minimize error in appropriate norms,
though they require substantial preprocessing computations. Numerical results are presented for
oil reservoir simulation problems. Galerkin projection provides reasonable accuracy for simpler
oil-water systems, though it becomes unstable in more challenging cases. Petrov-Galerkin projec-
tion is observed to behave stably in all cases considered. Weighted inverse projection also behaves
stably, and it provides the highest accuracy. Runtime speedups of 150-400 are achieved using these
POD-TPWL models.

A.2 Introduction

The development of reduced-order modeling procedures for nonlinear problems is a topic of great
interest in many application areas. The issues and approaches considered in this Appendix are rele-
vant to a wide range of problems, though our focus here is on subsurface flow modeling — specifically
oil reservoir simulation. Within that setting, detailed finite-volume-based flow simulators, which
track the movement of multiple components in multiple phases through porous subsurface forma-
tions, are typically used to model the production of oil and gas. Important applications within this
area, such as production optimization, uncertainty assessment and data assimilation, require large
numbers of simulation runs. These applications, like many in other engineering fields, are extremely
demanding computationally using standard full-order simulations, and they could benefit greatly
from the use of fast, accurate and robust reduced-order models (ROMs).

Essentially, the ROMs considered in this work include three key components: state reduction,

DOE Award No. DE-FE0009051, Task #4 39



ROM based Models
for CO9 Sequestration A CONSTRAINT REDUCTION FOR POD-TPWL

nonlinearity treatment, and constraint reduction. State reduction entails the expression of full-
order states (i.e., the vector of state variables in all grid blocks in the model) in terms of a small set
of reduced variables. Nonlinearity treatment involves the approximate representation of nonlinear
effects. Approaches include the construction of approximate/reduced nonlinear terms or Jacobian
matrices, and/or the use of some type of (piecewise) linearization procedure. Constraint reduction,
which is the focus of this work, is required because, after the introduction of state reduction, there
are many more equations than unknowns. It is the constraint reduction matrix that defines the
low-dimensional subspace in which the residue of the original system is driven to zero. As we will
see, the choice of this matrix can have a large impact on the accuracy and stability of the resulting
ROM.

The use of state reduction is based on the assumption that the state vectors of the full-order
system essentially lie in a lower-dimensional subspace. This is often a reasonable assumption be-
cause the states that can arise are defined through initial conditions and system dynamics, which
are not infinitely variable. With this assumption, a basis for the subspace, which projects the
full-order (high-fidelity) state into a low-order representation, can be constructed. In many ROM
procedures, including the one considered here, the state reduction basis matrix ® is constructed
through use of proper orthogonal decomposition (POD). With this approach, a data matrix, con-
taining as its columns ‘snapshots’ (solution vectors) computed during ‘training’ simulations, is first
constructed. The left singular vectors of the singular value decomposition of the data matrix define
the columns of the basis matrix ®. POD-based ROMs have been used in a number of application
areas [9, 12, 47, 66, 70], including subsurface flow simulation [18, 67]. Other approaches, such
as balanced truncation [28, 43, 49] and Krylov subspace methods [32, 68, 69, 77], have also been
successfully applied.

State reduction procedures decrease the number of unknowns that must be determined at each
time step in a dynamic simulation. However, for nonlinear time-variant problems, the speedups
achieved through the use of state reduction alone are typically quite modest. Specifically, for
reservoir simulation problems, speedup factors of at most 10 have been achieved using this ap-
proach [18, 67]. This is because some of the order-reduction computations have a computational
complexity that scales with the dimension of the full-order problem. If such computations are
performed at each (nonlinear) iteration at every time step, as is the case in [18, 67|, the observed
speedup will be limited.

Various treatments have been proposed to further accelerate ROMs for nonlinear problems.
These include the discrete empirical interpolation method (DEIM) and trajectory piecewise lin-
earization (TPWL). DEIM, first proposed by Chaturantabut and Sorensen [21, 22], reduces the
dimension of nonlinear functions in the governing partial differential equation (PDE) using an em-
pirically derived basis. During the inline (runtime) stage, reduced-order nonlinear functions are
determined through computations involving only a small number of grid blocks, which greatly re-
duces inline computational demands. Carlberg et al. [19] further extended the method to treat

nonlinear algebraic systems obtained from application of Newton’s method. They applied a com-
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pressive tensor approximation to enable the fast construction of reduced Jacobian matrices, which
were then used in inline computations. DEIM has been applied successfully for different appli-
cations [19, 22, 44|, though its implementation does require nonlinear terms to be evaluated at
particular grid blocks during inline processing. This is intrusive with respect to the full-order sim-
ulator, which could pose a problem in the use of DEIM with general purpose reservoir simulators.
We note finally that a prototype DEIM procedure has been developed for reservoir flow [37], though
only small two-dimensional models have thus far been considered.

Trajectory piecewise linearization (TPWL), proposed by Rewienski and White [62], handles
nonlinearity by constructing local (piecewise) linearizations around previously simulated (training)
solutions. Because new (test) runs entail linearization around training ‘points,” the order reduction
computations can all be performed offline (i.e., in a preprocessing step). Thus the inline compu-
tations involve only low-dimensional linear solutions. TPWL has been combined with POD and
applied for a number of subsurface flow problems. These include oil-water models [16, 17, 41],
idealized thermal simulation cases [63], compositional systems [39], and ensemble-based data as-
similation [42]. Construction of the POD-TPWL model for reservoir simulation problems requires
preprocessing (offline) computations equivalent to about 3—4 full-order simulations, though runtime
speedups of 200-1000 were reported in the studies noted above.

As indicated earlier, constraint reduction entails the projection of the overdetermined system
into a low-dimensional subspace in which the residue is driven to zero. This subspace is defined
by the constraint reduction matrix ¥. For ROMs based on Krylov subspace or balanced trunca-
tion (including balanced POD [46, 74], in which POD is used to approximate the Gramians in the
balanced truncation method), the appropriate constraint reduction matrix is provided from the-
ory [38]. For POD-based methods, there is no unambiguous choice for ¥, and different approaches
have been used.

In the initial POD-TPWL method for reservoir simulation [16], a Galerkin projection scheme [4],
in which ¥ = ® (recall that ® is the dimension-reduction matrix), was applied. However, as shown
in [41], this approach can lead to numerical stability problems in some cases. In [41], a procedure
was devised to select the columns in ® to improve system stability. This approach was shown
to perform well for the oil-water cases considered, but it does not guarantee stability. Bond and
Daniel [5] proposed that the constraint reduction matrix ¥ be designed to guarantee the stability
of the reduced system through satisfaction of Lyapunov stability criteria. However, if only stability
is considered, the reduced-order model may be inaccurate. If accuracy is also taken into account,
a matrix optimization problem must be solved to obtain the optimal ¥, and this is very expensive
for large systems. A Petrov-Galerkin projection scheme was recently used for POD-based DEIM
by Carlberg et al. [19]. This approach provided numerical stability at reasonable computational
cost (though stability is still not guaranteed). A Petrov-Galerkin procedure was also used in [10]
for linear model reduction, and recently in [39] for POD-TPWL compositional reservoir simulation.
This approach has not, however, been studied systematically within the context of POD-TPWL.

In this work we assess the accuracy and stability of various constraint reduction treatments for
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POD-TPWL models. The approaches presented should be relevant for POD-TPWL procedures in a
range of application areas, though our implementation and numerical results are for subsurface flow
problems. Following a brief assessment of the POD-TPWL errors that arise from state reduction
and linearization, we discuss the characteristics of several constraint reduction procedures. Opti-
mality conditions for these approaches, which are based on error minimization, are presented. The
methods considered include Galerkin projection, Petrov-Galerkin projection, and two new meth-
ods, inverse projection and weighted inverse projection. We also provide linear stability criteria
for POD-TPWL models. The numerical accuracy and stability of the different constraint reduc-
tion procedures are compared for oil-water and oil-gas compositional flow examples. Our results
demonstrate the relative advantages of the different approaches and suggest directions for future
research.

This Appendix proceeds as follows. In Section A.3 we briefly discuss the reservoir simulation
problems targeted in this work. In Section A.4 the POD-TPWL model is derived, and the error
incurred at each step is discussed. Optimal constraint reduction procedures are derived in Sec-
tion A.5, and stability requirements are discussed in Section A.6. In Section A.7, the performance
of Galerkin projection and Petrov-Galerkin projection are investigated in detail for three test cases.
The two new constraint reduction methods, inverse projection and weighted inverse projection, are
developed in Section A.8. Numerical results for these approaches are also presented. A summary

of our findings and suggestions for future work are provided in Section A.9.

A.3 Problem Description

Our specific interest here is in the simulation of oil-water and oil-gas compositional systems. Oil-
water systems are commonly used to model oil production driven by the injection of water (referred
to as waterflooding), while compositional systems are used to model enhanced oil recovery processes,
which often involve the injection of gas, as well as COsq storage operations. Our descriptions here
are brief; for more details see, e.g., [3, 16, 27, 35, 38, 72, 78].

The governing equations for oil-water systems consist of statements of mass conservation for oil
and water, combined with Darcy’s law, which relates the flow of each fluid phase to the pressure
gradient. These equations include accumulation, flux, and source/sink terms, and can be written
as: 5

5¢ (9i55) =V - [pjAik (Vpj = pjgV D) + 45 =0, j=o, w, (36)

where the subscript j designates the fluid phase (o indicates oil and w water). Here ¢ is time, ¢
is porosity (volume fraction of the pore space), p; is the phase density, S; is the phase saturation
(volume fraction of phase j within the pore space) , A; is the phase mobility, which is typically a
nonlinear function of Sj, k is the absolute permeability tensor (k is essentially a flow conductivity
and is a property of the rock), p; is the phase pressure, g is the gravitational acceleration, D is
the depth, and q;".“ is the source/sink term (the superscript w indicates that this term is driven by

wells). The system is closed by adding the saturation constraint (S, + S, = 1) and the capillary
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pressure relationship p.(Sy) = po — pw. The primary unknowns in Equation 36 are often taken to
be the oil phase pressure p, and water phase saturation S,,. Other quantities (p,, and S,) can be
easily computed block-by-block once p, and S, are determined. See [16] for more details on the
oil-water problem formulation in the context of POD-TPWL. Note that equations of the form of
Equation 36 arise in many problems involving flow and transport.

For compositional systems, we track a total of n. components (as opposed to two components
in oil-water systems). The governing equations for oil-gas compositional systems resemble Equa-
tion 36, in that they entail statements of mass conservation for each component and Darcy’s law
for each phase, though they are complicated by the fact that components partition between the
oil and gas phases. Phase equilibrium equations for each component are therefore additionally
required to determine the fraction of each component in each phase. For isothermal compositional
systems with n. components in two phases, there are a total of 2n. + 4 unknown variables in each
grid block [39]. Practical systems are typically modeled with ~4-10 components, so computational
demands for large models can be substantial.

In compositional models there are, however, only n. primary equations and n. primary un-
knowns for each grid block. This set of equations must be solved as a fully-coupled system. The
remaining n. + 4 unknowns decouple and can be solved block-by-block. The n. primary equa-
tions are typically the mass conservation equations [27, 72, 78]. Various choices for the n. primary
variables are possible. Most common is the so-called natural formulation, in which the primary
variables consist of the oil phase pressure p, and n. — 1 phase-dependent variables (such as the
mole fraction of component ¢ in the gas phase). The natural formulation, however, requires variable
switching when a phase disappears. This introduces complications in the context of reduced-order
modeling since it is much more straightforward for the ROM procedure to treat the same types
of variables in the test and training simulations. We thus apply the less commonly used molar
formulation [72], in which the primary variables are p, and n. — 1 overall mole fractions. These
quantities are well defined at all times in all grid blocks, so variable switching is not required.

The governing equations and detailed discretizations differ for oil-water and compositional prob-
lems. Nonetheless, the fully-implicit discretized representations, for a wide range of problems in-
cluding these, can be written as a general set of nonlinear algebraic equations in the following
form:

g'tl=g¢g (x”“,x", u”“) =0. (37)

Here g is the residual vector we seek to drive to zero, n and n+ 1 denote time level, u is the set of
control parameters, and x designates the state vector (primary variables in each grid block). We
denote the number of grid blocks as n; and the dimension of the state vector x (that is, the total
number of primary variables) as n,. In oil-water systems, x contains oil pressure p (from here on
we use p in place of p,) and water saturation S,, in each grid block, so n, = 2n;. In compositional
systems, x contains pressure p and the overall mole fraction, designated z., for n. — 1 components.
In this case, n, = nny. In Equation 37, u is the set of specified control parameters that drive

the oil recovery process. These are taken here to be the pressures of injection or production wells

DOE Award No. DE-FE0009051, Task #4 43



ROM based Models
for CO9 Sequestration A CONSTRAINT REDUCTION FOR POD-TPWL

(referred to as bottom-hole pressures or BHPs), though they could also be injection or production
flow rates. In either case, these terms enter through the source terms in the governing equations
(e.g., ¢; in Equation 36) and thus strongly impact the numerical solutions. In all cases, x" is
known from the previous time step or the initial condition, and the goal is to compute x"+1.

In the full-order simulation, Equation 37 is solved using Newton’s method. This entails, at each

iteration, the solution of the high-dimensional linear system

Jo =—g, (38)

1

where J is the Jacobian matrix, given by J = g—;g{ evaluated at the current estimate of x"™!, and

§ = x"thvtl _ xnt+lv is the update vector, where v designates iteration. Convergence is achieved
n+1 i

once an appropriate norm of g s less than a specified tolerance, and the solution states are then

designated x"+1.

For practical reservoir simulation problems, n, ~ O(10* — 10%). In addition, the high degree of
nonlinearity of Equation 37 can result in substantial numbers of Newton iterations, small time steps,
and frequent time-step cuts. The combination of nonlinearity and high dimensionality leads to very
large computational demands, especially when thousands or tens of thousands of simulations must
be performed, as may be the case for production optimization computations. The POD-TPWL
approach we now describe can provide a much more efficient (though approximate) solution of

Equation 37.

A.4 POD-TPWL Model and Assessment of Error

In this section we will consider general POD-TPWL models, applicable to a wide range of systems.
We will assess the errors incurred at each step of the POD-TPWL procedure. These include
linearization error, state reduction error, constraint reduction error, and error propagated from the
previous time step (which we relate to stability). Most aspects of this discussion are quite general,
though some are specific to the particular models and fluid systems under consideration. Detailed
derivations of POD-TPWL models for oil-water [16, 41] and compositional systems [39] have been
presented previously and should be consulted for more details.

Error in reduced-order models has been analyzed by a number of investigators. Rathinam
and Petzold [59], for example, presented an error analysis for POD-based reduced-order ODE
systems. Chaturantabut and Sorensen [23] provided a state-space error estimate for nonlinear
model reduction based on POD-DEIM. Our discussion here will be focused on POD-TPWL.

In the following discussion, the POD-TPWL equations are derived from the original system

of equations (Equation 37) by introducing a series of approximations. Solutions associated with

n+1

different levels of approximation will be denoted x2*" (o = 1,2, 3,4), with increasing « indicating

a more approximate solution. Consistent with this, we denote the exact solution to the full set
of nonlinear algebraic equations (Equation 37) as xgﬂ. The solution that contains linearization

error is designated X?H, the solution that contains linearization error and state reduction error
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is denoted XSH, the solution that contains linearization, state reduction and constraint reduction

error is designated xgﬂ, and the solution that contains all of these errors plus error propagated

from the previous time step is denoted XZH.

A.4.1 Trajectory Piecewise Linearization

In order to construct the POD-TPWL model, we must first perform one or more full-order ‘training’

simulations for some specific control parameters, which we designate u’*!. This corresponds to

generating solutions to the following equation:
gl = g(x™* x', ut) =0, i=0,...,n —1, (39)

where n; is the number of time steps. Note that we use superscripts ¢ and i + 1 to indicate
sequential ‘points’ (in time) in a training simulation; i.e., x’ and x**! are the solutions of the
training simulation at time steps ¢ and ¢ + 1.

In order to construct the solution for a new set of controls (designated u™*1!), rather than solve
Equation 37 iteratively using Newton’s method, we instead represent the new residual vector g"*!
in terms of a Taylor series expansion around the training solution. We refer to the new simulation

as a ‘test’ simulation. Neglecting higher-order terms, we write:

gn+1 — 0~ gi_‘—l T agi-‘rl (Xn+1 B Xi+1) i aLHl (Xn . XZ) + 8gi+1 (un-‘rl o ui+1) . (40)

oxitl ox’ Ouitl

Here x" indicates the solution at the previous time level in the test simulation, x”*! indicates the

test solution that we wish to compute, and x* and x**!

are sequential solutions in the training
simulation.
From Equation 39 we know that git! = 0. This allows us to express Equation 40, after some

rearrangement, as follows

Jitlgntl = gitlyitl _ AR (x — xP) 4 BT (u ! - uitl)] (41)
where i1 i+1 i+1
Ji+1 _ E)g““ i+1 _ % 41 — 8gl (42)
Oxit1’ oxi outtl’

Here J*! € R™*™ is the Jacobian matrix at time step i 4 1 (evaluated upon convergence) of the
training simulation, A“t! € R™*™ and B! € R™ > where n, is the dimension of the control
vector u (typically there are significantly fewer wells than grid blocks, so n, << n,). Note that
X, the exact solution of Equation 37 at the previous time step, appears in Equation 41. This is
because the error we are now considering corresponds to the error incurred in a single time step.
Later, in Section A.4.4, we will incorporate the error propagated from the previous time step into
our analysis.

?4’1

We denote the solution to Equation 41 as x7™" ~. This equation approximates the high-dimensional
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nonlinear system in Equation 37 as a high-dimensional linear system. The (linearization) error in-

curred in this step is referred to as ef;"!, where ef" ! = x{! — x1.

A.4.2 Proper Orthogonal Decomposition

Equation 41 is linear but it is still expressed in the high-dimensional space. To reduce the number
of unknowns, we now apply POD. This enables us to write x = ®&, where ® € R™*! is the
basis matrix and & € R*! is the reduced state vector. Because [ << n,, the system state can be
expressed in terms of a relatively small number of variables.

Proper orthogonal decomposition (POD) has been used in the context of reduced-order modeling
by a number of researchers; see, e.g., [9, 12, 18, 47, 66, 67, 70]. In POD, the columns of the basis
matrix ® are the leading singular vectors of the snapshot matrices X. Snapshot matrices contain,
as their columns, the solution vectors computed during one or more training simulations. In this
work we typically use two or three training runs to provide a sufficient number of snapshots for the
POD basis construction.

As discussed in [16] and [39], we apply POD separately to pressure snapshots and water satura-
tion snapshots (in oil-water problems), or to pressure snapshots and overall mole fraction snapshots

(in compositional problems). For oil-water systems we have

p
%@:
R

where @, € R™*!» and &g € R™*!s are the basis matrices for pressure and water saturation

®, 0
0 &g

&p
s ] ’ (43)

respectively, &, € Ri»*L and &g € RS> are the reduced state vectors for pressure and water
saturation, and ® € R™*!, where | = l, + g, is the basis matrix for the entire state vector £. Note
that, in general, the number of columns in @, differs from that in ®g (i.e., [, # lg).

Similarly, for compositional systems we have

P
z d
x=| ! ~ PE = p 0 & , (44)
: 0 & &
Zp.—1

where ®, € R™((e—1xl= g the basis matrix for the overall mole fraction variables, &, € R=*1 is
the corresponding reduced state vector, and ® € R™*! where [ = l, + 1., is the basis matrix for
the entire state vector §. Procedures for specifying {, and lg, or I, and [, which can be based on
‘energy’ criteria or stability considerations (the latter are discussed in Section A.6 and illustrated
in Section A.7.4) are described in [16, 39, 41]. We note finally that all columns of the submatrices
in @, as well as the columns of the overall ® matrix, are orthonormal (meaning ®7'® = I).

We now introduce the reduced representation x = ®£ to the right hand side of Equation 41,

DOE Award No. DE-FE0009051, Task #4 46



ROM based Models
for CO9 Sequestration A CONSTRAINT REDUCTION FOR POD-TPWL

which gives

Ji+1xn+1 _ J’H*l@EiJrI _ [AiJrl@ (£6L _ 51) + Bi+1 (un+1 _ uiJrl)} ) (45)
The solution to Equation 45 is denoted xg‘H. The additional error incurred in this step is due to
state reduction and can be expressed as ey 1= X’f’“ — XSH. Note that &j is the reduced represen-

tation of xgj, the true solution at time step n; i.e., §§ = <I>Tx6L (note that the subscript convention
for € corresponds to that used for x). Therefore £ is not at the same level of approximation as
x" (= Xg'H) in Equation 45. This is the case because & is the projection of the true solution of
Equation 37 at time step n, while XSH includes both linearization error and state reduction error.
For simplicity, we denote the right hand side of Equation 45 as b"*! (this notation will be used in

the subsequent analysis). Then Equation 45 becomes simply J*Hx"+1 = bntL.

A.4.3 Constraint Reduction

Applying the POD representation to the left hand side of Equation 45 results in an overdetermined
system, which has n, equations but only ! unknowns. This approximation introduces a residual

term r, which appears as follows:
Ji+1q)£n+1 — Ji+1q>£i+1 _ [Ai+1¢ (E’g _ El) + Bi+1 (un+1 _ ui+1)} +r. (46)

In general there is no solution for £"*! that can render the residual term to be identically zero.
Therefore, Equation 46 is usually solved by requiring r to be zero in an [-dimensional subspace
whose basis matrix is denoted ¥+ (ie., (¥F)Tr = 0). The matrix ¥it! ¢ R™*! is called
the constraint reduction matrix, also referred to as the left projection matrix or the test function.

Premultiplying Equation 46 by (™17 with (¥+1)Tr = 0 yields, after some rearrangement
gl = Ei—i—l _ (J:}rl)*l [Ai-&-l (ESL B £i) + B£+1 (un+1 _ ui+1)] 7 (47)
where the reduced derivative matrices are defined as
Jitl = (\I,i—i-l)T JHe, At = (\I,i—l—l)T A, Bt = (‘I,H—l)T Bitl (48)

Here Jo! € R is the reduced Jacobian matrix, At € R/ and Bi! € R,

The choice of ¥+ is not unique. In previous work involving POD-TPWL models for oil-water
systems, Galerkin projection was applied [16, 41, 42], meaning we take WiT! = ®. As discussed
earlier, this can lead to unstable POD-TPWL models [41]. Recent work has demonstrated that
Petrov-Galerkin projection, where Wt! = J**1& represents a viable (and more numerically stable)
alternative [19, 39]. In this work we will investigate the accuracy and stability of these, and other,
constraint reduction methods.

Equation 47 defines the POD-TPWL model given the true reduced solution (&) at the previous
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time step. This equation can also be written as
gl = (J£+1)—1 (‘I,iJrl)T bt (49)

with b"™! as defined above. We refer to £€"t! in Equations 47 and 49 as £§+1. The full-order
solution at this level of approximation, denoted X?H, can be reconstructed as X’:}H = <I>£§L+1. The
error incurred in this step is defined as eggr 1= XS—H — xg”rl, and is referred to as the constraint

reduction error.

A.4.4 Error Propagation

The term & in Equation 47 is the projection of the true solution x{, which is generally not available.
In an actual POD-TPWL computation, &7 is replaced by £", which corresponds to the POD-TPWL

solution at time step n. We thus write:
gl — gitl (J:}l)—l [Aiﬂ (£n B Ei) + BiJrl (un+1 . ui+1)] . (50)

Equation 50 defines the POD-TPWL model we actually solve. By combining linearization and
order reduction, the original high-order nonlinear system of equations has been transformed to a
linear expression in [ variables (I is typically ~100-1000), which can be evaluated in seconds [16, 42].

To apply Equation 50 we must first determine the saved state and control point (&1, £, uit?)
around which to linearize. This is usually accomplished by minimizing a measure of distance,
denoted d™7, between the test solution & at time step n and any saved point &’ in the training
simulation, that is, ¢ = argmin; (d”’j ) Distance definitions are typically problem specific. Here
we use the definition given in [39], which entails a weighted combination of the relative difference
in dimensionless time (pore volume injected in this context) and in the reduced water saturation
or total mole fraction states (€g or &,). See [39] for further details.

In Equation 50, €™ corresponds to the POD-TPWL solution at the previous time step, which we

designate £J. The solution to Equation 50 is thus designated 531”1, and its corresponding full-order
state is x| . The difference between &2 and £} can be expressed as

& — & = @7 (xj —x]) = ®efy. (51)

The fact that ef}, is nonzero results in a difference between the reduced solutions Eg“ and SZH,

and thus a difference between the full-order solutions x?“ and XZ—H. The error incurred at this
step is defined as e§4+ - XgLH — XZH, which can be viewed as the error inherited from the previous
time step. It is given by

et =Xt -t

—® (e - g
= —® (I") A (& - &)

_ i+1_n
=M €04,

(52)
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where Mt = — (Ji“)_l Ai+1<I>T. The third step in Equation 52 corresponds to subtracting
Equation 50 (for &) from Equation 47 (for £571).
A.4.5 Total Error of POD-TPWL Model

The total error ej; ' of the POD-TPWL solution x; ' (reconstructed from the solution of Equa-

tion 50, £”+1) relative to the true solution of Equation 37, XZ)H—I, can be expressed as

egjl _ X61+1 ZJrl
= G ) T ) G ) (g -
— egiﬁ-l + en—i—l + en—i—l + en+1 (53)
=eptt +el T + el + Mitlep,.
In other words, the total error egj 1'is the sum of the linearization error e01+ the state reduction

error e1+1 the constraint reduction error eQJ 1 and the error propagated from the previous time

step, M”’1 . The norm of the total error is bounded by the sum of the norms of these four error

components, that is
legi I < [lefa™ | + llevs | + [less™ || + M ey | (54)

The linearization error ef;

is related to the nonlinearity of the problem and the distance
between the current solution and the point in the training run used for linearization. This error
component can be reduced by using additional training simulations for linearization (or occasional
retraining), by using a better point selection scheme, or by modeling higher-order terms [24]. The
second-order terms (SOTs) appearing in the Taylor-series expansion of Equation 37 involve sparse
third-order tensors multiplied by two vectors of differences. For example, the second-order term
it+1

)

with respect to (x**1, u*t!) can be written as

82gi+1

n 7 T
SOT:(X +1—X+1) W(

un-i-l _ uz’+1) ) (55)
These second-order derivatives are not usually available in subsurface flow simulators, though it
should be possible to construct them using simulators based on automatic differentiation, such as
Stanford’s Automatic Differentiation-based General Purpose Research Simulator (AD-GPRS) [79].
In addition, for specific applications, some of the second-order terms vanish. For example, for
reservoir simulation problems, the cross terms involving second derivatives with respect to (x°,
xt1) and (x%, u't!) are usually zero. Furthermore, for models with standard well treatments in
which well pressures (BHPs) are the control parameters, the second-order derivative with respect
to u't! is zero. Thus only some of the SOTs would need to be considered.

The state reduction error eﬁr ! results from applying order reduction to the states. Equations 45

and 41 are linear systems with the same coefficient matrix but different right hand sides. Therefore,
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let™ || < x5 [ 1AB] /b
hand side of Equation 45, and Ab is the difference between the right hand sides of Equations 45
and 41 [25]. The magnitude of || Ab|| is determined by the state reduction basis matrix ®. Therefore,

within the framework of POD, the state reduction error e’fj ! can be decreased by improving the

, where & is the condition number of J*™*!, b"*! is the right

quality of ®. This can be accomplished, for example, by collecting more snapshots from additional
training simulations. Another approach, proposed in [41], is to keep variables in important grid
blocks (e.g., well blocks) in the full-order space, meaning these variables are not represented via
x = ®£. This treatment was shown to provide more accurate results in many cases.

The error terms egfr L and e?; 1 are incurred prior to the introduction of constraint reduction

in Equation 47, so they do not depend on the matrix ¥'*!. The error eggr 1is however incurred
by the state and constraint reduction at time step n + 1, so it does depend on ¥*t!. The error

e?jl = M“‘leg4 is the error propagated from the previous time step. It also depends on ¥t via

the matrix M‘*'. An optimal choice of ¥t should minimize the sum of e;‘; 1 and egLI 1 The
optimal ™! will however depend on the error at the previous time step (ef},), which is, in general,
not available. Therefore our strategy here is to choose a constraint reduction matrix ¥*! that
minimizes the one-step error term eggr ! while also ensuring that the resulting POD-TPWL model
behaves stably, which means the error from previous time steps will not grow unphysically with

time.

A.5 Optimal Constraint Reduction Procedures

We now derive optimal constraint reduction matrices that minimize the one-step error eggr Lin

different norms. In our development here, since we only consider one time step, we drop the

superscripts ¢ + 1 and n + 1.

A.5.1 General Development

The optimality condition can be written as
T = arg min lexslle = arg min Ix2 — X35, (56)

where W* designates the optimum (we drop the superscript * in subsequent equations). Here ||-||g
is a norm defined as |le||g = Vel ®e, with e € R™*! and @ € R™*"™  where © is a symmetric
positive definite (SPD) matrix and n, is the dimension of the full-order state x. The requirement
for © to be SPD ensures that the minimum of ||| is uniquely e = 0.

We denote the objective function of the minimization problem in Equation 56 as f(¥), that
is, f(¥) = HeggHze = |Ix2 —X3H%. From Equation 45 we have xo = J~'b, while x3 can be

reconstructed from the solution of Equation 47 as x3 = ®&3 (which we denote simply as ®€ in this
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section). Therefore, f(¥) can be expressed as

F(®) = %2 — x3le
= [71b - @¢[ 67)
=T b -26)TOI b - d¢).

The first-order optimality condition for the minimization problem in Equation 56 is % = 0. From

the chain rule and the fact that & = &(W¥) (since & depends on ¥ via J,, A, and B,), we have

g—‘{, = %g—\%, in which case % = 0 is sufficient to conclude that g—é = 0. The condition %é =0
gives

oTedt - 2T0OI b =0, (58)
or equivalently,

¢=(@"0d) 370 b (59)

We also have a direct expression for £ from Equation 49:
¢ = (¥738) " ¥, (60)

Equations 60 and 59 must both hold for an arbitrary vector b. Therefore the following matrix

equation for ¥ applies
(¥73%) " o7 = (370d) " dTeJ . (61)

The solution to Equation 61 is, by inspection,
v —pTeI . (62)

Note that 7 = C®TOJ !, for any full-rank C € R is also a solution to Equation 61. The
choice of C will not affect the solution for £ since C™'C immediately appears in Equation 60 (here
we take C =1I).

Equation 62 provides a general solution for w7 that satisfies the optimality condition in Equa-
tion 56. The solution for ¥ in Equation 62 depends on the matrix ® and in general involves the
matrix J~!. In practice, special choices of ® which eliminate J~! are often employed. Examples
are Galerkin projection and Petrov-Galerkin projection, which we will describe in detail below.
Other choices for ®, which do not eliminate J~!, will lead to higher computational cost, but they
may have better theoretical properties and display better numerical performance. We will discuss

two such treatments, inverse projection and weighted inverse projection, in Section A.8.

A.5.2 Galerkin Projection

Galerkin projection corresponds to the case where ® = J. Equation 62 then becomes W7 = &7

Galerkin projection has been used in many previous POD-based order reduction procedures [12,
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15, 16, 22, 41, 48, 60, 67].

Galerkin projection enforces so-called Galerkin orthogonality, which means that the residual
vector of Equation 45 is orthogonal to the state subspace ®. It also minimizes the objective
function (623)TJ es3. When the matrix J is SPD, this projection method is optimal in the sense
defined in Equation 56. However, if J is not SPD, (623)T Jess will not be a norm definition for ess
since it could be negative. In subsurface flow simulations involving multiple phases, the Jacobian
matrix is in general not SPD. Therefore Galerkin projection is in general not a strict minimizer of
the norm of eosg3.

However, despite this theoretical limitation, previous applications of POD for subsurface flow [12,
15, 16, 22, 41, 48, 60, 67] using Galerkin projection often show reasonable accuracy, especially in
terms of the well production and injection rates. This may be due to the fact that the Galerkin
orthogonality condition requires the residual vector to be orthogonal to the columns of ®. Re-
call that the columns of ® capture the variations in the states since they are computed through
application of POD. Therefore, variables with larger variation tend to have larger weights in the
basis vectors. As a result, the corresponding equations are weighted more heavily and are thus
solved more accurately. In reservoir simulation applications, variables with large variation often
correspond to well blocks and to blocks in the near-well regions. The additional weighting applied

to these blocks may enable Galerkin projection to provide accurate well rate predictions.

A.5.3 Petrov-Galerkin Projection

If © is taken as J7J, Equation 62 becomes ¥’ = &7JT. This projection method, called Petrov-
Galerkin projection, has been used in [10] for order reduction of large-scale systems with high-
dimensional parametric input and in [19] for order reduction within the context of DEIM. Petrov-
Galerkin projection has some interesting properties. First, because J7J is SPD, the resulting ¥
satisfies Equation 56 and minimizes the norm of es3, with the norm defined as ||eH§T ;=elJ Je.
Second, Petrov-Galerkin projection is equivalent to solving the normal equation for the overdeter-
mined system in Equation 46, which minimizes the 2-norm of the residual vector.

The optimality condition for Petrov-Galerkin projection can also be interpreted in another way.
With the Petrov-Galerkin method, Equation 56 is equivalent to

¥* = arg min HeggH?ITJ = arg min || Jegs]|3 . (63)
v v

In other words, this approach minimizes the 2-norm of Jess. Writing the singular value decom-
position of J as J = U X ng, where U is an orthogonal matrix containing as its columns the
left-singular vectors of J, 3 7 is a diagonal matrix with the singular values of J on the diagonal, and
V ; is an orthogonal matrix containing as its columns the right-singular vectors of J (or equivalently,

the eigenvectors of J7J ), Equation 63 can be expressed as

¥* = arg min HEJV§823H2 . (64)
v
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Equation 64 indicates that the Petrov-Galerkin method transforms the error vector into a
coordinate defined by V ;, weights each element of the new vector with the corresponding singular
value, and then minimizes the 2-norm of the weighted transformed error vector. In subsurface flow
simulation, the Jacobian matrix J is usually very ill-conditioned and its singular values vary widely,
spanning up to 10 orders of magnitude. Therefore the weighting scheme using singular values can be
highly skewed. In other words, some components in the error vector will be very strongly weighted
while others may be very weakly weighted. Therefore, although the Petrov-Galerkin method is
optimal in the sense defined in Equation 56, the skewed weighting embedded in the method may

result in inaccuracy in the resulting POD-TPWL model for some quantities.

A.6 Stability Criteria

In addition to accuracy and efficiency considerations, the constraint reduction matrix ¥ should
also be selected to ensure the stability of the resulting POD-TPWL method. In theory, we could
attempt to construct a SPD matrix © in Equation 62 that also satisfies the Lyapunov stability
criteria. This would provide a guaranteed stable and optimally accurate . This approach, however,
would entail coupling Equation 62 with the Lyapunov equations and solving the resulting matrix
equations. Such an approach is unlikely to be computationally tractable for high-dimensional
subsurface flow problems. Therefore, in this work we start with constraint reduction methods that
satisfy Equation 62, and then consider methods to assess and enhance their stability.

The stability of reduced-order models based on TPWL was first considered in [62], which ad-
dressed order reduction of nonlinear ordinary differential equation (ODE) systems. In that work,
the piecewise linear reduced-order ODE system was deemed stable when the coefficient matrix of
the linear ODE system at each linearization step is a Hurwitz matrix (all eigenvalues have neg-
ative real part). Bond and Daniel [5] considered reduced-order models for linear time-invariant
ODE systems and proposed that ¥ be chosen to guarantee stability by satisfying the Lyapunov
equations of the reduced system. However, their approach involves solving a matrix optimization
problem, which for our models would entail an optimization of n, x [ variables under constraints
for each time step of the training simulation. As indicated above, this amount of computation will
be prohibitive for models of reasonable size.

He et al. [41] considered the stability of POD-TPWL for fully discretized (PDE) systems in the
context of reservoir simulation. There it was shown that, in order for the POD-TPWL model to
be stable, the amplification factor at each time step of a particular matrix should be less than 1.
This analysis will now be described within the framework of error assessment.

The stability of the POD-TPWL formulation can be analyzed from the error propagation ex-

pression (Equation 53), which can be rewritten as

n+1l __ i+1_n n+1
ey =M"Tey +epy (65)
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where
Mitl — _@ (Ji-i-l)*l AT (66)

with M1 € R™>*™ (note that M**! appeared originally in Equation 52). Equation 65 indicates
that the total error of the POD-TPWL model at time step n + 1 is the total error at time step n
amplified by the matrix M‘*!, which is referred to as the amplification matrix, plus the one-step
error els (efs ! = el + el + el ) incurred at time step n + 1. It is important to observe
that M*! in Equation 66 is defined as a projection of the matrix product — (J ffl)_l Aﬁf*‘l, whose
dimension is [ x . Therefore, although Mt € R™*™ its rank is at most [.

We denote the spectral radius of Mt as ~**! and refer to it as the amplification factor. For
a matrix M that does not vary with time (i.e., M'*! = M), the error e}}; in Equation 65 will not
grow exponentially if and only if the amplification factor v*1 is less than or equal to 1 [34]. In
a piecewise linear system M'T! generally changes at each time step. However, the amplification
factor 4**!1 was still shown to be a strong indicator of stability. Specifically, it was demonstrated
in [41] that an isolated v**! that is greater than 1 may amplify the error at a specific time step and
create a spike in the solution. Several consecutive time steps with v**! > 1 may cause the solution
to become unphysical. In practice, however, the occasional occurrence of +**1 values that only
slightly exceed 1 does not appear to cause numerical instability. Therefore, to ensure that the error
does not amplify over time, we require that 7**! not exceed 1 by more than a small threshold; e.g.,
71 < 1.05. This will be used as the criterion to assure (essentially) stable POD-TPWL behavior
in this work. We note that [62] and [6] also used the spectral radius of an amplification matrix as
a stability indicator for piecewise linear reduced-order ODE systems.

Since M“*! is a high-dimensional matrix, its spectral radius can be expensive to compute.
Fortunately, because of the rank-deficiency of M™! (M™! has a maximum rank of 1), we do not
need to analyze this high-dimensional matrix to assess POD-TPWL stability. Rather, we define
M+l € RIX! as

MEH = — (Jiﬂ)*l FNARS (67)
We now show that M1 and M“™! have the same nonzero eigenvalues, and thus the same spectral
radius.

From the definitions of M*! and M%"! in Equations 66 and 67, we see that M'™! = ®M 1 @7,
In addition, using the fact that @ is orthonormal (i.e., ®7'® =I), we have

Mit! = (3T@)MH (37 ®) = 7 (@Mi+37)d = T M+ B. (68)

Using the expressions above, the fact that the matrices M**! and M4 have the same nonzero
eigenvalues and thus the same spectral radius can be shown as follows. Let y be an eigenvector
of M with nonzero eigenvalue ), that is, M‘"'y = \y. Using this, along with the relationship
between MT! and Mf‘ﬁ'l, and premultiplying by @7, we have

@TMH—ly _ @T‘PM?H—’JQT}’ _ Mi—i_l(ﬁTy _ )\@Ty (69)
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This means ®Ty is an eigenvector of M with eigenvalue A. Similarly, if 7 is an eigenvector of

M with nonzero eigenvalue \, we have
M @n = dMIH @7 ®n = My = APy, (70)

which means ®n is an eigenvector for M'™! with eigenvalue A. Therefore, M'™! and M:™! have
the same nonzero eigenvalues and thus the same spectral radius 4**'. In practice, ¥*t! can thus
be calculated efficiently by computing the largest eigenvalue of the low-dimensional matrix M,
as described in [41].

Given the derivative matrices J**! and A**! and simulation results for all training simulations,
the amplification matrix only depends on the number of reduced variables (I, and ls for oil-water
problems, and [, and [, for compositional problems), which determine ® and the constraint reduc-
tion matrix W. For general choices of [, and lg (or ) and W, the resulting POD-TPWL model can
be unstable. It was shown in [41] that for oil-water problems the stability behavior of the POD-
TPWL model using Galerkin projection can be very sensitive to the choice of [, and /5. Improved
results for oil-water problems were achieved in [41] by finding the (I, [g) combination that provides
the best stability properties. This approach entails specifying minimum and maximum values for
l, and lg, calculating the maximum amplification factor for all time steps 7 in the training run
(max; y*) for all (I, ls) combinations considered, and selecting the (I, Ls) combination that pro-
vides the lowest max;v*. This can be accomplished efficiently (in low-dimensional space) because
the reduced derivative matrices J&™ and A% for different (I, ls) combinations are just subma-
trices of the reduced derivative matrices for the largest values of [, and [g considered. Note that
this (I, ls) selection method will only be effective when max; v is below the specified maximum
(e.g., 1.05).

This procedure provides an offline indication of POD-TPWL solution stability using only low-
order computations. This stability indicator can be applied for any constraint reduction procedure,
and we will use it for all of the approaches considered in this Appendix. Along these lines, the sta-
bility of POD-TPWL using Petrov-Galerkin projection has not, to our knowledge, been previously
studied. In Section A.7 we will see that Petrov-Galerkin projection provides much better stability
than Galerkin projection for challenging cases. In addition, in Section A.8, we will show that the
two new projection methods introduced here, inverse projection and weighted inverse projection,
also provide POD-TPWL models that behave stably.

A.7 Numerical Implementation and Results

We now describe some key aspects of the POD-TPWL implementation and the way in which we
quantify error. Numerical results are then presented for two oil-water models and one compositional

model. Additional results and discussion can be found in [38].
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A.7.1 POD-TPWL Implementation

The POD-TPWL method has been implemented for compatibility with Stanford’s Automatic
Differentiation-based General Purpose Research Simulator (AD-GPRS) [79]. AD-GPRS was mod-
ified to output the state and derivative information required to construct the POD-TPWL model.

During the offline (preprocessing) stage, two or three training simulations are performed using
AD-GPRS for specific sets of input (BHP) control parameters. One of the training runs is des-
ignated the primary training simulation. This run provides state vectors and derivative matrices
for use in subsequent (inline) computations. The other (secondary) training runs are used only to
provide snapshots for the construction of the basis matrix ®. Secondary training runs are needed
because the number of snapshots from a single simulation run, which corresponds to the number of
time steps in that run, is typically not enough to provide a high-quality POD basis matrix. More
specifically, we have found that around 300 snapshots are needed to construct the POD basis for
the problems considered in this Appendix. Given that a typical run entails 100-200 time steps,
this corresponds to 2-3 training runs. We do not apply any special procedures to determine the
controls used in the primary or secondary training runs (these controls are all generated randomly
over the range of interest), though it is possible that better POD-TPWL accuracy could be achieved
through use of a more formal approach.

In the basic implementation of the offline procedure, the state vector at each time step of
each training simulation, as well as the derivative matrices J?, A’ and B’ at each time step of
the primary training simulation, are saved to disk. The POD basis is then constructed from the
snapshot matrices. Finally, the reduced states (£ = ®7x?) and derivative matrices are formed,
with the latter computed using Equation 48.

If full-order derivative matrices are written as output, the storage requirements for the prepro-
cessing computations can be very large. In [39], a reduced-storage offline procedure is described, in
which only the reduced-order matrices J%, A% and B are written to disk. This approach requires
that the primary training simulation be run twice — once to provide snapshots before construction
of the basis matrix ®, and once after. The computational cost for the second of these runs can be
reduced substantially, however, since the converged states are already known (meaning no iteration
or linear solutions are required). See [39] for more details on both the basic and reduced-storage
offline procedures.

In the inline stage, Equation 50 is evaluated for control parameters u”+! that differ from those

used in the training runs. After the reduced state €"t! is computed, the full-order state x"*!

can
be reconstructed at selected locations (e.g., well blocks), and other quantities of interest, such as
the phase flow rates for each well, can be calculated. For compositional problems, the calculation
of well flow rate additionally requires that a flash calculation be performed at the well blocks to
determine secondary variables such as oil saturation. More details can be found in [39].

As indicated above, in addition to performing the training simulations, in the offline stage
we must also output detailed information at each time step of the primary training simulation,

construct the POD basis, and reduce the training states and derivatives. The reduction of the state
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vectors and derivative matrices constitutes the majority of the additional offline overhead. For both
the Galerkin and Petrov-Galerkin constraint reduction procedures, this offline cost is approximately
equal to the cost of an additional full-order simulation. Once the POD-TPWL model is constructed,
however, an inline run typically takes only a few seconds. Thus POD-TPWL is most suitable for
use in applications requiring a large number of simulations with different input control parameters,

as is the case for production optimization computations.

A.7.2 Error Definitions

In order to assess the accuracy of POD-TPWL models, we compute the mismatch (error) in well flow
rates between the full-order AD-GPRS solution (Qfy;) and the POD-TPWL simulation (Qpu:)-
Phase flow-rate errors for a particular well are computed at each time step, then integrated over
time, and then normalized by the time-integrated flow rate for that well from the full-order solution.
Errors from all wells of the same type (injection or production) are then averaged to provide overall
error values. For example, the overall average error for oil production rate, designated E,, is

computed as:

2 o 1@ s — @)l At
Zf(] ‘ ofull 0tpwl| ’ (71)

woi=1 fO ofull

where subscript o designates oil, superscript j indicates a particular production well, ny,, is the
total number of production wells, and T is the total simulation time. The integration is performed
using the trapezoidal rule.

For oil-water models, we compute the error in oil production rate E,, water production rate F,,
and water injection rate E;,. For compositional models we calculate the error for oil production
rate F,, gas production rate F,; and gas injection rate L;,. These errors are computed using
expressions analogous to Equation 71.

We also calculate the average state error over all time steps and all grid blocks. For example,

the average error in pressure £, is defined as

ng 1y

= g Z > Pk puit = Phogput| (72)

=1 k=1

where n; is the number of time steps in the simulation, n; is the number of grid blocks, p}'f Full 1 the
full-order pressure solution for block k at time step ¢, and p?thl is the analogous quantity for the
POD-TPWL model, constructed through application of x = ®£. Similar expressions are used for
other variables. For oil-water models we compute the average error in pressure and water saturation
(Ep and Eg), and for compositional models the average error in pressure and mole fraction of the

injected component (E, and E,).
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A.7.3 Case 1: Oil-Water Flow with Equal Phase Densities

The reservoir model for Cases 1 and 2, shown in Figure 27, is a portion of the so-called Stanford VI
reservoir model developed in [20]. The model represents a fluvial depositional system, with high-
permeability (sand) channels embedded in a low-permeability background shale. The dimensions
of the grid are 30 x 40 x 17, for a total of 20,400 cells. The model contains two injection wells and
four production wells, as indicated in Figure 27. The production wells are perforated (open to flow)
in the upper five layers and the injection wells in the lower three layers. The wells are controlled
through specification of time-varying bottom-hole pressure (BHP).

The relative permeability functions, which quantify the relative amounts of water and oil flow

in each grid block, are as follows:

Sw - ch 2 So - Smn 2
= (125, 2%50) o= (6 25 (73)

where oil saturation S, = 1 — S5,,. The parameters S, and S,,, specified to be 0.02 and 0.3
respectively, account for the fact that both phases cease to flow below some threshold saturation.
The oil and water viscosities (p, and p,,) are 3 c¢p and 1 cp respectively. These, together with
the relative permeability functions, define the phase mobility functions in Equation 36 (specifically,
Ao = kro/tio and Ay = kpy/pw). The oil and water phase densities are both specified to be
1000 kg/m3. The initial reservoir pressure is 5880 psi (405.4 bar) and the initial water saturation
is 0.1.

P3

1.1 13795 2757.9 41364 56148

Figure 27: Reservoir model for Cases 1 and 2 (permeability in the z-direction is shown)

Three training simulations are performed to construct the POD-TPWL model, one of which
is used as the primary training run. The BHP controls of the two injectors and four producers
are shown in Figure 28. Well settings are varied every 200 days and are generated randomly over

a prescribed range. We take this range to be relatively narrow in the examples in this Appendix
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in order to focus on constraint reduction error and stability behavior. From the three training
simulations, 334 snapshots are collected to construct the basis matrix ®. We use 70 reduced
pressure variables and 100 reduced water saturation variables (I, = 70, lg = 100). Figure 29 shows
the randomly generated BHPs for the test case, which differ from the training-run BHPs. We
note that the training and test-case BHP profiles are meant to resemble those generated during a
computational optimization procedure, where the goal is to determine the time-varying BHPs that

maximize a prescribed measure of reservoir performance.
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Figure 28: Time-varying BHPs for the primary training simulation for Cases 1 and 2
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Figure 29: Time-varying BHPs for the test simulation for Cases 1 and 2

As discussed in [41], for oil-water systems with equal phase densities, the POD-TPWL model
with Galerkin projection tends to behave stably for most (I, [s) combinations. Figure 30 shows
the amplification factor 7% at each time step i for both Galerkin projection (GLK) and Petrov-
Galerkin projection (PG). The label ‘GLK_70_100 in the legend indicates the result using Galerkin
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projection with 70 reduced pressure variables and 100 reduced water saturation variables. The
labels for other constraint reduction methods follow this format. It is clear from Figure 30 that the
time-varying 4* for both methods for this case are very close to 1. Indeed, they are below 1 for the
entire simulation period, meaning that the resulting POD-TPWL models are always stable. Note
that there are small spikes in v* every 200 days. These are due to the very small time steps used
in the training run when the BHPs are changed. For an infinitely small time step, the Jacobian
matrix J will equal the negative of the A matrix, and the resulting amplification matrix will be
the identity matrix, with 4* of 1. We note that, although we show results only for [, = 70 and
ls = 100, similar stable performance can be observed for different [, and lg over a reasonable range

(as will be illustrated later).
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Figure 30: Amplification factor «* for each time step in Case 1

We now compare the performance of the Galerkin and Petrov-Galerkin methods for Case 1.
Figure 31 shows the oil production rate for Producer 1, and Figure 32 shows the water injection
rate for Injector 1. The black dotted line depicts the result from the primary training simulation,
about which we linearize. Shown in red is the full-order (reference) AD-GPRS solution for the test
case. It is clear that the test and training solutions differ. Galerkin and Petrov-Galerkin projection
results are shown in blue (open circles) and green (open squares), respectively. Both approaches
provide accurate results in this case, though Galerkin projection can be seen to be slightly more
accurate for water injection (see, e.g., results at early time in Figure 32). The results in Figures 31
and 32 are representative of those for the other wells.

Table 2 summarizes the flow rate errors and average state errors from POD-TPWL using the
two constraint reduction methods. For the same values of [, and lg, Galerkin projection provides
better accuracy for this case than Petrov-Galerkin projection in all five error measures. This may

be due to inaccuracy resulting from the skewed weighting inherent in Petrov-Galerkin projection,
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as discussed in Section A.5.3.

For this example, the full-order parallelized AD-GPRS simulation requires about 290 seconds
to run on a cluster node with eight cores (dual quad-core NehalemTM). The POD-TPWL model,
with either Galerkin or Petrov-Galerkin projection, requires approximately 0.7 seconds on a single
core of the same processor. This corresponds to a runtime speedup of a factor of about 400. As
noted earlier, preprocessing requires three training simulations plus overhead computations equal

to about an additional full-order simulation.
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Figure 31: Oil production rate for Producer 1 in Case 1. Results for Test (AD-GPRS), GLK_70_100
and PG_70_100 essentially overlay one another

Table 2: Summary of error for Case 1

| B, | By | Ew |E,(psi)| Egs
GLK_70-100 | 0.0054 | 0.0058 | 0.0015 | 1.57 | 0.00066
PG_70.100 | 0.0113 | 0.0156 | 0.0052 | 7.07 | 0.00130

A.7.4 Case 2: Oil-Water Flow with Unequal Phase Densities

In Case 1 both projection methods were stable. However, stability may become an issue when
more complicated physics is introduced. This will be illustrated in Case 2, which is identical to
Case 1 except that now the oil and water phase densities are set to 800 kg/m? and 1000 kg/m3,
respectively. The difference in density results (physically) in gravity-driven countercurrent flow,
which leads to changes in the structure of the Jacobian matrix because of upstream weighting [3].

As in Case 1, we perform three training simulations to construct the POD-TPWL model; one
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Figure 32: Water injection rate for Injector 1 in Case 1. Results for Test (AD-GPRS) and
GLK_70_100 essentially overlay one another

of these is the primary training run. The time-varying BHP controls for the training and test
simulations are the same as in Case 1 (see Figures 28 and 29). From the three training simulations,
335 snapshots are collected. We again take [, = 70 and lg = 100.

Figure 33 shows the oil production rate for Producer 1, and Figure 34 shows the water injection
rate for Injector 1. It can be seen that the results using Petrov-Galerkin projection match the true
test-case solution fairly closely, though some differences are evident. The results using Galerkin
projection, by contrast, display substantial fluctuations in the early stage of the simulation. Similar
fluctuations for the Galerkin projection run are also observed in flow rates for the other wells (not
shown here).

The different performance of the Galerkin and Petrov-Galerkin projections for this case can
be explained by Figure 35, which shows the amplification factor 4% at each time step for the two
methods. For the Petrov-Galerkin method, the value of ¥* is below or very near 1 for the entire
simulation period. Thus the Petrov-Galerkin method performs stably throughout the simulation.
Again, the peaks visible every 200 days are due to the small time steps used when the BHP controls
change. For the Galerkin method, the value of 4’ is much larger than 1 at early time, and at some
time steps it is as high as 14.5 (note the vertical axis only extends to 1.5). This instability causes
the fluctuations evident in Figure 34. At later time the amplification factor decreases to around 1
and the fluctuations disappear.

Note that the stability results in Figure 35 are specifically for [, = 70 and g = 100. As discussed

above, the choice of [, and lg affects stability behavior. Figure 36 depicts in log scale the values

DOE Award No. DE-FE0009051, Task #4 62



ROM based Models
for CO9 Sequestration A CONSTRAINT REDUCTION FOR POD-TPWL

™ ——Test (AD-GPRS)
0 AN —oemm
= gi 9
235 07»- P PG_70_100
B | A Training (AD-GPRS)
@ 30r¢ '
3]
o
< 25
o
2 20
@)
o 15
10

500 1000
Time (day)

o

Figure 33: Oil production rate for Producer 1 in Case 2
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Figure 34: Water injection rate for Injector 1 in Case 2
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Figure 35: Amplification factor 4* for each time step in Case 2

of max; " for different combinations of I, and lg for Galerkin (lower left) and Petrov-Galerkin
(lower right) projection methods for Case 2. These plots will be referred to as stability maps. Note
that the limits of the color bars for the two plots are very different (the minimum value for each
color bar, which corresponds to the minimum value in the corresponding map, is indicated). As
discussed earlier, for a problem with a constant matrix M in which time tends to infinity, we would
require log;o(max; v*) < 0 to assure stability. However, in practice, stable behavior in POD-TPWL
models is observed as long as log;(max;~*) is close to zero (e.g., log;y(max; v*) < 0.02 for our
examples; this precise value may be problem/control-setting dependent). This is the case for two
reasons. First, because our models entail O(100) time steps, very small growth rates do not lead
to unbounded errors. Second, because the amplification matrix (M*™! or M%) varies from time
step to time step, and because Figure 36 depicts the maximum log;,~* over all time steps, the
requirement that log;y(max; v*) be less than zero is overly strict. In the following, we thus refer to
cases for which max; v* < 1.05, which corresponds to log;,(max; v*) < 0.021, as behaving stably.

The log;,(max; v*) for Galerkin projection for Case 2 is displayed in Figure 36¢. It can be seen
from the plots that for Galerkin projection POD-TPWL stability is very sensitive to the choice
of (I, lg), and there is no clear trend. Many of the [, and lg combinations lead to instability
(as they correspond to large max; '), while there are some l, and lg combinations for which the
POD-TPWL model should behave stably. On the other hand, as shown in Figure 36d, for Petrov-
Galerkin projection the value of log;,(max; ') for any combination of l, and ls is very close to
zero (the largest value being 0.0004). Thus this method behaves stably for all combinations of [,
and lg considered.

Also shown in Figure 36 are the stability maps for Galerkin (upper left) and Petrov-Galerkin
(upper right) for Case 1 (equal phase densities). It is clear that for Case 1, Petrov-Galerkin

DOE Award No. DE-FE0009051, Task #4 64



ROM based Models
for CO9 Sequestration A CONSTRAINT REDUCTION FOR POD-TPWL

projection should behave stably for all (I,, lg) considered, and Galerkin projection should behave
stably over a large range of l, and lg. Comparison of Figures 36a and 36c demonstrates that
the inclusion of more complicated physics has the potential to adversely affect the performance of
POD-TPWL models that apply Galerkin projection for constraint reduction. This problem may
be related to the fact that the Jacobian matrix is not SPD, as discussed in Section A.5.2.
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Figure 36: Maps of log;,(max; v*) for Cases 1 and 2

Because the stability characteristics of POD-TPWL models that apply Galerkin projection
can be sensitive to the choice of [, and lg, the model can be ‘stabilized’ (in a practical sense)
through the careful selection of [, and lg, assuming there exists an (I, lg) combination with
log;g(max;7*) < 0.021. Such an approach was applied in [41]. For the current example, for I, = 75
and lg = 80, the value of log;,(max; v*) is below this threshold (see Figure 36c), which suggests
that the resulting POD-TPWL model will behave stably. Figure 37 shows the water injection rate
for Injector 1 for both projection methods with [, = 75 and lg = 80. It is clear that the results

using Galerkin projection no longer exhibit fluctuations (compare Figures 34 and 37), and that the
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Petro-Galerkin results continue to be stable, as would be expected from Figure 36d. These results
illustrate the efficacy of constructing the POD-TPWL stability maps shown in Figure 36.

Table 3 shows the error for the Petrov-Galerkin method and the stably-behaving Galerkin
method. The results indicate that the stabilized Galerkin projection is more accurate for this case

(with the exception of Eg), which is consistent with the observations for Case 1.
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Figure 37: Water injection rate for Injector 1 in Case 2, with [, and [ selected based on Figure 36¢c

Table 3: Summary of error for Case 2

| Bs | By | Ew |BE,(psi)| Es
0.0216 | 0.0152 | 0.0050 | 13.6 | 0.00212
0.0225 | 0.0255 | 0.0112 | 15.0 | 0.00204

GLK_75_80
PG_75_80

A.7.5 Case 3: Compositional Simulation

Case 3 involves a four-component system in which we model the injection of COs into an oil
reservoir. The original fluid in place, in terms of overall mole fractions, consists of 0.01 CO,, 0.11
of the C; component, 0.29 of the C4 component, and 0.59 of the Cig component. Pure COs is
injected. The reservoir model for this case is defined on a 32 x 40 x 8 grid, which translates to
10,240 grid blocks and thus 40,960 primary variables (10,240 x 4). The permeability field, shown in
Figure 38, was generated geostatistically using sequential Gaussian simulation within the SGeMS
geological modeling package [61]. The model contains four producers at the four corners and one
injector in the middle, forming a five-spot pattern. The producers are perforated in the lower four

layers and the injector in the upper four layers.
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Figure 38: Reservoir model for Case 3 (log-permeability is shown)

We perform two training runs, one of which is the primary training simulation, to construct
the POD-TPWL model. The BHP controls for the injector and four producers are shown in
Figure 39. These BHPs are varied every 100 days and are generated randomly. From the two
training simulations, 275 snapshots are collected to build the basis matrix ®. We specify [, = 120

and [, = 150. Figure 40 shows the BHPs for the test case, which are also randomly generated.
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Figure 39: Time-varying BHPs for the primary training simulation for Case 3

Figure 41 shows the stability maps for the Galerkin and Petrov-Galerkin methods for this case.
Note that the scales of the color bars for the two figures are very different. For Petrov-Galerkin
projection, all (I,, [,) combinations lead to models that behave stably. For Galerkin projection,
for all (I, l,) combinations considered, log;o(max; ") is always much larger than 0 (the lowest
max; 7" value being about 27). This means that for any of these (I, [,) combinations, the resulting

POD-TPWL model will have one or more unstable steps. Therefore, for this case, we cannot apply
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Figure 40: Time-varying BHPs for the test simulation for Case 3

the basis selection procedure used for Case 2 to construct a stably-behaving POD-TPWL model
using Galerkin projection.

In addition, although not shown here, for all (l,, [,) combinations considered, the Galerkin
method displays log;,(max; v*) > 0 for all time steps. The reason why compositional systems are
less stable than oil-water systems with Galerkin projection is not entirely clear, but it may be
due, at least in part, to the large density difference between the oil and gas phases (which leads
to strong gravity-driven countercurrent flow) and to the high nonlinearity resulting from complex

phase behavior. This issue should be investigated in future work.
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Figure 41: Maps of log;o(max; y?) for Case 3

Figures 42 and 43 show the oil and gas production rates for Producer 1, while Figure 44 displays
the gas injection rate for Injector 1. Test-case results using Petrov-Galerkin projection are shown

along with results using weighted inverse projection, which will be discussed in the next section.
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Only results for the first 600 days of the simulation are shown. This allows us to focus on the
period where gas production rates are increasing and the most error occurs. The POD-TPWL
model exhibits reasonable overall accuracy, though errors are evident for different quantities at
different times. For example, the oil production rate in Figure 42 displays some inaccuracy from
300400 days, as do gas injection rates (Figure 44) over the first 200 days. The solution, however,
clearly behaves stably, and the results are of sufficient accuracy to be useful for many applications.
These results are representative of those for other wells. Runtime speedup for this case is around
a factor of 150, which is lower than that for Cases 1 and 2. The lower speedup here results from
the flash calculation, which is not handled efficiently in our current POD-TPWL model. This cost

can, however, be significantly reduced through an efficient implementation.
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Figure 42: Oil production rate for Producer 1 in Case 3

A.8 Inverse Projection and Weighted Inverse Projection Constraint Reduction
Methods

In Section A.5 we showed that, to minimize constraint reduction error ess, optimal constraint
reduction methods should be of the form ¥7 = ®T®J . We use ® = J in the case of Galerkin
projection and ® = JTJ in the case of Petrov-Galerkin projection. Both choices eliminate the
J~! term and are thus very efficient to compute. Other choices for ® also exist, however. Though
they typically entail higher computational costs, they may have theoretical advantages and display
superior performance. In this section we consider two such projection methods, inverse projection

and weighted inverse projection.
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Figure 43: Gas production rate for Producer 1 in Case 3
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Figure 44: Gas injection rate for Injector 1 in Case 3
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A.8.1 Method Development

An intuitive choice for © is the identity matrix. Then the optimal projection matrix is given by
W7 = TJ 1. We refer to this approach as the inverse projection (IP) method.
An important property of the IP method is that it minimizes the 2-norm of the constraint

reduction error es3. That is, it satisfies
U* = argmin ||eys]|3 . (74)
v

Compared to the norms appearing in the optimality conditions for the Galerkin and Petrov-Galerkin
methods, the 2-norm appearing here is preferable since it does not depend on the specific structure
of J.

In many reservoir simulation applications, such as production optimization, we are particularly
interested in the states in well blocks because these values directly affect injection and production
rates. We can assign larger weights to the elements of the error vector corresponding to these blocks
in Equation 56 by defining ® = WTW, where W is a diagonal weighting matrix. The resulting
projection matrix is 7 = ®TWITWJI~L. We refer to this method as weighted inverse projection
(WIP). WIP degenerates to IP when W = I. WIP minimizes the weighted error vector in the
2-norm,

U* = arg min |[Weys||3 . (75)
v

In the examples in this work involving WIP, we assign a value of 5 to the diagonal elements of
W corresponding to well block states and 1 to the remaining diagonal elements. This 5 to 1 ratio
was determined through limited numerical experimentation. The values of W can be further tuned
to improve accuracy in particular grid blocks.

The IP and WIP methods offer theoretical advantages by virtue of their optimality conditions.
Achieving this benefit, however, requires additional computational effort. This is because, for both
the TP and WIP methods, the J=! term in the expression for ¥ is not multiplied by J, so it does
not cancel as in the Galerkin and Petrov-Galerkin procedures.

In practice, J~! does not need to be calculated explicitly. The matrix ¥ only appears in the
calculation of the reduced derivatives in Equation 48. Substituting Equation 62 into Equation 48

(and dropping the superscript i + 1) we have
J,=®"0®, A, =®"0J'A®, B,=d"0J'B. (76)

Interestingly, the calculation of J, now does not involve J. The term J A ® in matrix A, can be
calculated by solving Jx4 = A®, which is an n, x n, system with [ right hand sides, where [ is
the total number of reduced variables. Similarly, the term J™'B in matrix B, can be calculated by
solving Jxp = B, which is an n, x n, system with n, right hand sides, where n,, is the dimension
of the control parameter u. In total, we will thus need to solve the high-dimensional linear system

with [ + n, right hand sides at each time step. For a case with I = 200 and n,, = 10, the cost
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of constructing A, and B, for the IP or WIP method is the equivalent of about 10-20 full-order
simulations for a compositional problem and 20-40 full-order simulations for an oil-water problem
(this difference arises because full-order compositional simulations usually require more Newton
iterations and time-step cuts than oil-water problems). Preprocessing for IP and WIP is thus
much more expensive than for Galerkin and Petrov-Galerkin methods (though runtimes, and thus
runtime speedup, are comparable). However, in applications where the POD-TPWL model can be
used in place of hundreds of full-order runs, the IP and WIP methods may be viable options.

We note finally that the computational cost of IP and WIP may be reduced significantly by
approximating J~! with another matrix Q, so that we can use Q in place of J~!. Potential choices
for Q are the various preconditioners used for solving Jx = b. This should be considered in future

work.

A.8.2 Numerical Results using IP and WIP

The IP and WIP methods will now be applied to Cases 1-3. The problem setups are identical to
those described earlier.

In terms of stability, the IP and WIP methods behave stably for all three cases, and their
stability characteristics are not sensitive to the choice of [, and lg (or [.). As an example, Figure 45
shows the stability maps for the IP and WIP methods for Case 3, which was the most challenging
case for the Galerkin method. It can be seen that for both methods, log;,(max; v?) is very close to

zero for all combinations of [, and [, considered.
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Figure 45: Maps of log;o(max; y?) for IP and WIP for Case 3
To assess their accuracy, results using IP and WIP are now compared to those using the Galerkin
and Petrov-Galerkin methods for Cases 1-3. Table 4 summarizes the errors for Case 1. In this case,

the injection and production rate results using IP are less accurate than those using the Galerkin

method. However, the IP method provides better results in terms of the average state error for both
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pressure and water saturation. This is because the IP method is, by design, optimal in minimizing
the constraint reduction error globally, rather than at the well blocks. WIP, which places additional
weight on the well blocks, improves upon the IP injection and production rate results (especially

for Ej,) while maintaining state errors similar to those of the IP method.
Table 4: Summary of error for Case 1, with IP and WIP

| E, Ew | Ew | E,(psi)| Es
GLK_70_100 | 0.0054 | 0.0058 | 0.0015 | 1.57 [ 0.00066
PG_70.100 | 0.0113 | 0.0156 | 0.0052 | 7.07 | 0.00130
IP_70.100 | 0.0059 | 0.0064 | 0.0044 | 0.62 | 0.00057
WIP_70_100 | 0.0050 | 0.0062 | 0.0013 | 0.58 | 0.00060

Tables 5 and 6 present the errors for Cases 2 and 3. For Case 2, the IP method provides more
accurate results than the Galerkin and Petrov-Galerkin methods in all five metrics. The WIP
method provides the most accurate well rate predictions among all methods tested, and leads to
average state errors that are again comparable to those of the IP method. For Case 3, the IP and
WIP methods continue to provide more accurate results than those obtained using Petrov-Galerkin

projection.
Table 5: Summary of error for Case 2, with IP and WIP

| E, Ew | Eiw | E,(psi)| Eg
GLK_75_80 | 0.0216 | 0.0152 | 0.0050 | 13.6 [ 0.00212
PG_75.80 | 0.0225 | 0.0255 | 0.0112 | 15.0 | 0.00204
IP_75.80 | 0.0058 | 0.0077 | 0.0041 | 1.43 | 0.00084
WIP_75.80 | 0.0055 | 0.0076 | 0.0013 | 0.759 | 0.00085

Table 6: Summary of error for Case 3, with IP and WIP

E, | E, Ey | B (psi) | E.
PG_120.150 | 0.0400 | 0.0160 | 0.0187 | 5.68 | 0.00894
IP_120.150 | 0.0239 | 0.0103 | 0.0081 | 1.50 | 0.00393
WIP_120_150 | 0.0219 | 0.0085 | 0.0077 | 1.41 | 0.00395

Figures 42-44 display the performance of the WIP method relative to the Petrov-Galerkin
method for Case 3. It is clear that WIP leads to improved results compared to Petrov-Galerkin
projection, most notably in oil production rate from 300-400 days, in gas production rate from
100200 days, and in gas injection rate before 300 days.

The results in this section indicate that the use of (weighted) inverse projection for constraint
reduction leads to POD-TPWL models that are more accurate than those generated using Galerkin
or Petrov-Galerkin projection. In addition, in common with Petrov-Galerkin projection, IP and
WIP provide POD-TPWL models that behave stably. The IP and WIP methods, as currently

implemented, require much more preprocessing than the Petrov-Galerkin procedure, so the overall
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level of speedup they provide is limited. Future work should target the fast construction of the
reduced matrices A, and B,. Progress in this direction would enable the efficient use of IP and
WIP for large models.

A.9 Concluding Remarks

In this Appendix we assessed the various errors that arise in POD-TPWL models. These errors
derive from state reduction, nonlinearity treatment (accomplished here using piecewise lineariza-
tion) and constraint reduction. Our focus was on constraint reduction, which is applied to project
the overdetermined high-dimensional system of equations into a low-dimensional subspace. Once
constraint reduction and state reduction (accomplished here through use of POD) are applied, the
low-dimensional set of equations is fully determined. The choice of constraint reduction procedure
was shown to affect POD-TPWL error and stability behavior. In previous work on the use of
POD-TPWL for subsurface flow, Galerkin projection has mainly been applied, though recent work
has used Petrov-Galerkin projection for compositional reservoir simulation [39]. Here we showed
that both the Galerkin and Petrov-Galerkin projection methods can be derived from the optimality
condition of the constraint reduction error, though the Galerkin method does not satisfy the opti-
mality condition when the Jacobian matrix is not SPD (which it is not in oil-water or compositional
flow problems).

The performance of the Galerkin and Petrov-Galerkin methods was compared for two oil-water
cases and one oil-gas compositional case. For oil-water systems with gravity-driven countercurrent
flow, it was observed that the stability behavior of Galerkin projection is sensitive to the number
of reduced variables (I,, lg) used. In these cases, it may however be possible to find an (I,
lg) combination for which Galerkin projection behaves stably. For compositional simulation, the
Galerkin method was unstable for any of the (l,,, [,) combinations tested. By contrast, the Petrov-
Galerkin method was shown to behave stably for all cases considered (both here and in [39]).
In addition, its stability characteristics were not found to be sensitive to the number of reduced
variables used. Therefore, for complex reservoir simulation problems, Petrov-Galerkin projection
appears to be more reliable compared to Galerkin projection. This observation is consistent with the
findings in [19], where Galerkin and Petrov-Galerkin projection were compared for reduced-order
models for turbulent flow and nonlinear structural dynamics problems. We note, however, that
theoretical guarantees regarding the stability of Petrov-Galerkin projection for nonlinear problems
do not, to our knowledge, exist.

There are other methods that satisfy the optimality conditions for constraint reduction, and two
such procedures were considered. Inverse projection (IP) minimizes the 2-norm of the constraint
reduction error, while weighted inverse projection (WIP) minimizes the 2-norm of the error vector
with extra weight at selected blocks. The WIP method is by design optimal for well flow rate
calculations (when well blocks are weighted more heavily), and it was shown to provide the best
overall accuracy among all of the constraint reduction methods considered. However, because they

involve the inverse Jacobian matrix J~1, the IP and WIP methods incur high computational costs
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for the construction of the POD-TPWL model. Specifically, preprocessing (overhead) costs for
these methods are equivalent to about 10-40 full-order simulations. Improving the efficiency of
these methods should be a topic for future research.

Although our specific focus in this Appendix was on subsurface flow, a variety of problems
are governed by conservation laws similar to Equation 36, so many of our detailed findings should
be more broadly relevant. In addition, because most aspects of the development presented in
this Appendix are not specific to a particular application, we expect our general approaches and
findings to be applicable to a range of problems modeled using POD-TPWL. More specifically, the
step-by-step error assessment, optimality results for the various constraint reduction treatments,
stability analysis, and the procedure for low-dimensional stability map construction, should all be
applicable for POD-TPWL methods in general. Our findings regarding the stability advantages of
Petrov-Galerkin projection relative to Galerkin projection should hold for other problems in which
the Jacobian matrix is not SPD. We also believe that the IP and WIP approaches for constraint
reduction may provide higher accuracy for a range of applications (though they require efficiency
improvements, as noted above). A few treatments are, however, application specific. These include
the selection of the number of training runs and the controls applied in these runs, the number of
snapshots required, the detailed construction of the basis matrix ®, and the specific definition of
‘distance’ used to determine the nearest saved state.

Future work should consider the development of constraint reduction methods that are opti-
mally accurate and guaranteed to be stable by, for example, combining the optimality condition
presented in this work with the Lyapunov stability equation. The quantification and reduction of
the other errors that arise in POD-TPWL models should also be addressed. The linearized treat-
ment could conceivably be improved by incorporating (or estimating) higher-order corrections at
selected locations and times. For subsurface flow applications it will additionally be of interest to
consider cases with more wells (e.g., 10-100). With larger numbers of wells, there is more variability
in the states that can occur in the model. This suggests that more snapshots, from more training
runs, will be needed to represent the system. The development of techniques for the systematic
design of training runs may enable the POD-TPWL model to provide sufficient accuracy, with

reasonable overhead, for practical cases.
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B POD-TPWL for CO; EOR

The emphasis of this research has been on the application of POD-TPWL for COs-water systems.
However, we also tested the general oil-gas compositional POD-TPWL model for an example in-
volving CO2 EOR. Such simulations are relevant to carbon capture, utilization and storage (CCUS),
in which COs is used for oil recovery as it is being sequestered. In our model here, CO2 injection
is accomplished using horizontal wells. The POD-TPWL method used in this example is that of
[39]. In that work, POD-TPWL modeling of CO2 EOR was presented, but horizontal wells were
not considered.

The geological model used here is based on the Stanford VI (channelized model) [20], which
was also considered in Section 3. The simulation model here is taken directly from [39] — only the
wells were modified. The model, which contains 30 x 40 x 17 cells (total of 20,400 grid blocks) and
is of overall size 585 m x 780 m x 17 m, is shown in Fig. 46a. There are six wells in the reservoir
— four vertical producers and two horizontal injectors (see Fig. 46). The two injectors are of length
292 m and 370 m and they are located in the bottom layer of the model. The production wells
penetrate the top five layers of the model.

—
11 13795 2757.9 41364 55148
(a) Geological model (b) Well locations

Figure 46: Geological model and well locations (from [20, 39])

The model includes four components (COg2, Cq, Cy4, Cyp) in oil and gas phases (water is not
included). Thus the simulation model contains 81,600 primary variables (20,400 x 4). The initial
reservoir pressure is 100 bar at the top of the model. The overall molar fractions at the start of the
simulation are 0.01 CO», 0.11 Cy, 0.29 C4, and 0.59 C19. CO9 of purity 97% is injected at both
injectors (injected fluid also contains 1% Ci, 1% Cy4, 1% Cip). The wells are BHP controlled and
the model is run for 1600 days. All other model properties are as in [39].

Two training cases were simulated in order to construct the POD-TPWL model. The BHP

schedules for these runs are shown in Figs. 47 and 48. A total of 362 snapshots were generated. In
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the POD-TPWL model, we use I, = 90 and [, = 250. The test-case BHPs are shown in Fig. 49.
These BHPs clearly differ from those for the training runs, but their ranges are similar. As in

Section 3, these BHPs are intended to qualitatively resemble the profiles evaluated during the
course of an optimization run.
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Figure 47: Time-varying BHPs for training case 1
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Figure 48: Time-varying BHPs for training case 2

POD-TPWL results for oil and gas production rates are shown in Figs. 50 and 51. Injection
rates for the two horizontal COs injectors are shown in Fig. 52. The various curves are as described
in Section 3, and it is apparent that there are substantial differences between training and test-case
results for this example. We observe that the POD-TPWL model provides results in reasonably
close agreement with the reference AD-GPRS results. Some discrepancies are noticeable, but the

overall trends are captured quite well. In addition, the general level of accuracy appears to be
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Figure 49: Time-varying BHPs for test case

comparable to that in [39], where only vertical wells were modeled. This is a useful observation, as
these are the first POD-TPWL COs EOR runs that include horizontal wells.
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Figure 50: Oil production rates
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Figure 51: Gas production rates
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