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Unsupervised Feature Selection on Data Streams

ABSTRACT
Massive data streams are continuously being generated from 
sources such as social media, broadcast news, etc., and typ­
ically these datapoints lie in high-dimensional spaces (such 
as the vocabulary space of a language). Timely and accu­
rate feature subset selection in these massive data streams 
has important applications in model interpretation, compu­
tational/storage cost reduction, and generalization enhance­
ment. In this paper, we introduce a novel unsupervised fea­
ture selection approach on data streams that selects impor­
tant features by making only one pass over the data while 
utilizing limited storage. The proposed algorithm uses ideas 
from matrix sketching to efficiently maintain a low-rank ap­
proximation of the observed data and applies regularized 
regression on this approximation to identify the important 
features. We theoretically prove that our algorithm is close 
to an expensive offline approach based on global singular 
value decompositions. The experimental results on a vari­
ety of text and image datasets demonstrate the excellent 
ability of our approach to identify important features even 
in presence of concept drifts and also its efficiency over other 
popular scalable feature selection algorithms.

1. INTRODUCTION
The curse of dimensionality plagues many complex learn­

ing tasks. A popular approach for overcoming this problem 
is by reducing the dimensionality of the feature space as that 
directly results in a faster computation time. At the same 
time, it is appealing to have feature interpretability, which 
some of the popular dimensionality reduction methods (e.g., 
PCA, spectral embeddings) do not possess because of their 
lack of direct connection to the observed feature space. In 
our work, we propose a novel approach to unsupervised fea­
ture selection, which is the problem of choosing a subset of 
important (original) features without any label information. 
The selected feature subset minimizes a very intuitive eval­
uation criteria while accounting for noise and redundancy. 
This in turn could lead to better 1) model interpretation,
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2) computational efficiency, and 3) generalization ability for 
the learning task.

One of the most important characteristic for any good fea­
ture selection approach is the ability to handle huge volumes 
of data. Most modern data such as documents, images, mul­
timedia from the web naturally arrives in a streaming fash­
ion. However, detecting an informative feature subset in a 
large volume of data stream is also a difficult problem due to 
the following reasons: 1) the data stream could be infinite,
so any off-line algorithm that attempts to store the entire 
stream for analysis will eventually run out of memory, 2) the 
feature importances change dynamically over time due to 
concept-drift, important features may become insignificant 
and vice-versa, and 3) for various online applications, it is 
important to obtain the feature subset in close to real-time.

Although there is considerable amount of previous lit­
erature on feature selection both in the batch [4, 16] and 
online setting [35, 26, 19], none of them handles large vol­
ume data stream effectively, given limited memory and CPU 
time, without any prior knowledge about labels. In practice, 
streams often contain inherently correlated data [22], so it 
is possible to reduce a large volume numerical stream into 
just a handful of hidden basis that compactly describe the 
key patterns of the data. We exploit this idea to reduce the 
complexity of streaming feature selection analysis.
Our Techniques. In this paper, we propose a streaming 
feature selection approach that easily adapts to the con­
cept/topic drift arising in the data stream, and at every 
timestep provides a feature importance score (weight). Our 
streaming feature selection algorithm uses ideas from ma­
trix sketching1 * to maintain a low-rank approximation of the 
entire observed data at every timestep, and this approxima­
tion is continually updated as new data arrives. For matrix 
sketching, we modify a recent algorithm (called Frequent Di­
rections) proposed by Liberty [17]. The Frequent Directions 
algorithm operates in a streaming model and constructs a 
sketch matrix using a simple idea of “shrinking” a few or­
thogonal vectors. However, just the low-rank approxima­
tion cannot by itself provide feature weighting. In our re­
search this low-rank approximation is exploited and at every 
timestep the feature importance score is generated by per­
forming a regression analysis. A regularization is added to 
prevent overfitting to the data (we explain the choice of reg­
ularization in Section 3.3). The idea of using regularized re­
gression for feature selection in an unsupervised setting was 
recently proposed by Cai et al. [4], who empirically showed

1A sketch of a matrix Z is another matrix Z' that is much
smaller than Z, but still approximates it well [17].



that it leads to a better choice of features for clustering 
and classification applications. Their main idea is to obtain 
feature importance using a regularized regression where the 
spectral embedding of the dataset is used as the regression 
target. However, the formulation presented in Cai et al. [4] 
operates in a batch setting and requires access to the entire 
affinity matrix for the regression step, which is not possi­
ble in a streaming setup. Our algorithm on the other hand, 
requires just one pass over the data, which is an essential 
requirement for any “true” streaming algorithm.

To the best of our knowledge, ours is the first unsupervised 
feature selection algorithm operating in a true data stream­
ing setting. Our feature selection algorithm is effective and 
efficient in the following ways:

(a) It is space and time efficient while requiring only one 
pass over the data. For a stream at time t consisting 
of nt (V 1) datapoints in an m-dimensional space, our 
algorithm requires only O(mnt) space (linear in the size 
of the input) and O(mnt£) time, where the sketch matrix 
is of size mx£. In practice, it suffices to set £ much smaller 
compared to m and nt. Therefore, both the memory and 
computation requirements are almost linear in the input 
size (as the input at time t is an m x nt matrix).

(b) It easily adapts to unseen patterns on the data stream and 
provides at every timestep an updated identification of 
the informative feature subset (i.e., at every timestep t it 
provides a feature ranking based on all the data that have 
arrived till time t), which gives it the ability of handling 
concept drift2 (related experiments in Section 5.4).

(c) We provide theoretical support for our algorithm (Sec­
tion 3.4), and show that it has a comparable performance 
to an expensive offline approach that uses singular value 
decompositions.

Empirical studies show that our streaming approach is 
efficient in terms of both space and time, while approaching 
the performance of popular batch algorithms on a wide array 
of datasets from both the text and image domains.

2. PRELIMINARIES
Notation. We denote [n] = 1 : n. Vectors are always 
in column-wise fashion and are denoted by boldface let­
ters. For a vector v, vT denotes its transpose and ||v|| 
denotes its Euclidean norm. For a vector (a-|,...,am) e 
Rm, diag(a-|,..., am) e Rmxm denotes a diagonal matrix 
with ai,..., am as its diagonal entries. Let Im denote an 
identity matrix of dimension m x m. We use rank(Z) to 
denote the rank of Z. For a matrix Z e Rmxn, we use 
zy to denote its (i,j)th element. Spectral norm is defined 
as ||Z|| = sup{||Zv|| : ||v|| = 1}. We also use entry-wise 
norms denoted by ||Z||p, wherep = 2 gives (Frobenius norm)
llZll2 = Lij zy, p = 1 gives llZlli = Ly kijL and p =
gives ||Z||M = maxi,j |zy|. We use Z V 0 if Z is a positive 
semidefinite (PSD) matrix and Z V Y if Z — Y V 0. Given 
a set of matrices, Z1,...,Zt, we use the notation Z[t] to 
denote the matrix obtained by horizontally concatenating
Zi,...,Zt, i.e., Z[t] = [Zi|...|Zt].

2 As we discuss later, in some feature selection applications, 
one might wish to reweigh the points to emphasize more on 
the recent points that the older points, which can also be 
easily handled in our framework.

We use Syd(Z) to denote the singular value decomposition 
of Z, i.e., Syd(Z) = UZVT. Here U is an m x m orthogonal 
matrix, Z is an m x n diagonal matrix, and V is an n x n 
orthogonal matrix. The diagonal entries of Z, where a1 V 
02 V • • • V om (given m < n), are known as the singular 
values of Z. We follow the common convention to list the 
singular values in non-increasing order. For a symmetric 
matrix S e Rmxm, we use Eig(S) to denote its eigenvalue 
decomposition, i.e., UAUT = Eig(S). Here U is an m x m 
orthogonal matrix and A is an m x m diagonal matrix whose 
(real) entries are A1,..., Am are known as the eigenvalues of 
S (again listed in non-increasing order).

The best rank-k approximation (in both the spectral and 
Ftobenius norm sense) to a matrix Z e Rmxn is Z(k) = 
^k=1 oiuivT, where oi (i < k) are the top-k singular values 
of Z, with associated left and right singular vectors ui e Rm 
and vi e Rn, respectively. We use SvDk(Z) to denote the 
truncated singular value decomposition of Z(k), i.e., Z(k) = 
SvDk(Z) = U(k)Z(k)V(k). Here Z(k) = diag(oi,..., Ok) e 
Rkxk, U(k) = [ui,..., Uk] e Rmxk, and V(k) = [vi,..., vk ] e
Rnxk. The following well-known theorem bounds the ap­
proximation error of the best rank-k approximation.

Thegrem 2.1. [Golub et al. [8]] Let Z e Rmxn with 
n > m, and let o1 V • • • V om be the singular values of Z. 
Let SvDk(Z) = UkZkVT. Then

min IIZ — X||F = IIZ
rank(X) ^k U(k) Z(k)V(y||F = ]L 0k+i

j=k+1

3. FEATURE SELECTION ON STREAMS
In this section, we propose an online feature selection al­

gorithm that operates in a streaming setting. We start by 
describing the problem of feature selection on data streams. 
Due to space constraints, we omit detailed proofs here.

3.1 Problem Formulation
We assume that the data items arrive in streams. Let 

{Yt e Rmxnt, t = 1,2,...} denote a sequence of stream­
ing items, where Yt represents the data items introduced at 
timestep t. Here m is the size of feature space, and nt V 1 is 
the number of data items arriving at time t. 3 We normalize 
Yt such that each column in Yt has a unit L2-norm. Under 
this setup, feature selection aims at selecting the most infor­
mative feature subset based on certain evaluation criteria.

3.2 Our Motivation and Framework
Our main idea is based on maintaining, at each timestep t, 

a low-rank approximation of all the seen (till time t) data 
stream. By using a regression analysis on this low rank- 
matrix, we can weigh each feature with an up-to-date im­
portance score.

In case of unsupervised feature selection, the evaluation 
criteria for selecting the feature subset is not provided ex­
plicitly, and the general idea is that we want to capture the 
most important characteristics of dataset without loosing 
too much information. To this end, we perform a spectral 
decomposition on the affinity matrix to obtain a “flat” em­
beddings of the datapoints [2]. The intuition being that it

3One could consider, a setting where only one point comes 
at a time (i.e., nt = 1), but by allowing nt V 1, we allow 
more flexibility in our setup.



is much easier to capture the global trends of the stream 
in this embedded space than in the original space. Let 
Y[t] = [Y11 ... |Yt] = UtZtVT. Since Y[t] is column-wise nor­
malized to have unit euclidean norm, Y[T] Y[t] = VtZ2 VT 
forms the cosine affinity matrix of Y[t].

Cai et al. [4] proposed an unsupervised feature selection 
approach using Vt as the target variable in regression. The 
resulting regression problem can be stated as:

mXn llY[l]X — Vt|2, (1)

where each column in X e Rmxnt contains the combination 
coefficient for different features in approximating the eigen­
vectors of YjT]Y[t] (or equivalently the right singular vectors 
of Y[t]). Note that the solution for (1) is Xt = UtZ-1 (as­
suming all the singular values in Zt are non-zero).

Now consider a rank-k approximation of Y[t] as defined by 
Theorem 2.1 (for an appropriately chosen parameter4 k), let

Y[t](k) = SVDk(Y[t]) = Ut(k) Zt(k) VtT(k).

Given the low-rank approximation of Y[t], instead of using 
Vt as the regression target, we could use Vt(k) in (1). This 
yields the following (least-squares) regression problem:

min ||YT]X — Vt(k) IlF. (2)

Note that the solution for (2) is Xt = Ut(k) Z—1 (assuming 
the top-k singular values of Zt are non-zero).

However, simply using (2) may lead to an unstable solu­
tion (if the input matrix is ill-conditioned) and also over­
fitting to the data [4]. Therefore, we add a regularization 
term, and define:

Xt = argminx=(xi,j )HYt]X — Vt(k) II2 + a X |xi,j|P , (3)
i,j

where a is the regularization parameter that controls the 
trade-off between the loss function and the p-norm (p e 
{1,2}). Generally, a regression formulation with L1 - (p =
1) and L2-norm (p = 2) regularization are referred to as 
lasso and ridge regression respectively. The general formula 
of (3) was first concretized by Cai et al. [4] for the case of 
p = 1, who referred to it as Multi-Cluster Feature Selection 
(MCFS).

Generally speaking, after we obtain Xt = (xti j) from (3), 
we can assign feature importance score wt = (wtl,..., wtm) e 
Rm (with the interpretation that the higher the score, the 
more important the feature is). One of the simplest way is 
by using the following equation introduced in [4]:

Vi e [m],wu = ^ax, |xu,h|, (4)

The aforementioned prototype algorithm for feature weight­
ing is documented in Algorithm 1. The subsequent feature 
selection process can be done by ranking the w vector (in 
non-increasing order) and choosing the top-h features with 
the largest score (given that h features are needed).
Other Kernels. Although we concentrate on the cosine 
kernel, the above framework can be generalized to other 
kernel functions. One approach would be to use the ran­
dom feature map transformations known for all radial-basis 
function kernels [24]. For instance, a Gaussian kernel can be

4We defer the discussion on setting of k to later. Readers
could think of k as a small number k ^ min(m, nt).

Algorithm 1: GenFeatWeight (prototype algorithm 
for feature weighting)

Input: Y[t] e Rmxnw , k, and p e {1,2}
Output: Feature importance score wt e Rm at time t

1 Ut(k) Zt(k) VTk) ^ SVDk(Y[t])
(with Zt(k) = diag(ot,,..., Otk))

2 Xt ^ argminx=(xi,j ) 1 Y[t]X — Vt(k) IlF + a Zi,j |xi,j|p
3 Vi e [m], wtj ^ maxi <h<k |xtiih|

approximated using random Fourier features [24] such that 
Gaussian kernel evaluation between a pair of datapoints can 
be approximated by the Euclidean inner product between 
the transformed pair. Using this randomized feature map 
one could, in a streaming fashion, transform all the data- 
points, and then work exclusively with these transformed 
datapoints in a framework similar to detailed above. 
Windowed Inputs. In our above problem formulations, all 
data till time t is used for selecting the top features at time 
t. However, some applications might require features to be 
selected based on a rolling window of inputs or by providing 
higher weights on the recent inputs, etc. Our algorithm 
could be easily adopted to these scenarios by modifying the 
matrix sketch construction. For simplicity, we ignore these 
aspects in this paper.

3.3 Lasso (p = 1) vs. Ridge (p = 2) Regression
The first efficiency issue in using (3) is due to the regular­

ization type. It is well-known that ridge regression penal­
izes regression coefficients, rather than accomplishing vari­
able/feature selection, while lasso regression to some extent 
automatically sets insignificant coefficients to be zero. How­
ever, there is no previous analysis in the framework of Algo­
rithm 1 about the performance difference obtained by using 
either lasso or ridge regressions. In this subsection, we in­
vestigate this important topic.

A simpler situation arises when the design matrix of the 
regression problem consists of orthogonal columns. In this 
case, it is easy to show theoretically that ridge and lasso 
regression select almost the same features (Corollary 3.2).

Lemma 3.1 (Restated from [40]). Let X denote the 
simple least squares coefficients, or in other words, “X ^ 
argminX||YTX — A||2. Let XR and XL denote the estimators 
obtained from lasso and ridge regressions, respectively. If 
YT has orthogonal columns, then X = YA, and we have the 
following closed-form expressions:

Vi e [m],j e [k], XL,j = sign(Xy){|Xy| — a/2}+,

XR = X/(1 + a),

where for any scalar z, z+ denotes the positive part, which 
is z if z > 0 and 0 otherwise.

Let wR and wL be the feature importance score calculated 
from XR and XL using (4). The following corollary follows 
because XL and XR are based on thresholding or scaling X.

Corollary 3.2. If wL has h non-zero weight features, 
then under the assumption of Lemma 3.1, the ranking of the 
top-h features in wL coincides with the ranking of the top-h 
features in wR .



The above corollary implies, under the column orthogonal­
ity constraint on the design matrix, the performance of ridge 
and lasso regression in Algorithm 1 (especially, for the im­
portant features), are almost the same. Therefore, we can 
potentially use the more computationally cheaper regular­
ization without significant loss in performance.
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K-means algorithm on these selected features to evaluate 
their effectiveness in identifying the (true) document classes 
(the reasoning behind performing such an evaluation is ex­
plained in Section 5). Figure 1(a) shows the clustering result 
under the Normalized Mutual Information (NMI) measure, 
and the results suggest that lasso and ridge regression have 
comparable performance in general. However, in terms of 
running time (Figure 1(b)), ridge regression is substantially 
better than lasso regression6 Since our goal is to handle 
large streaming datasets, ridge regression appears as a bet­
ter choice7, since it obtains results very similar to lasso re­
gression in the framework of Algorithm GenFeatWeight, 
but with far lesser running time. Therefore, we concentrate 
on ridge regression from here on.

The simple closed form solution for (3) with p = 2 is as 
shown in the following lemma.

Lemma 3.3. Consider the ridge regression solution,

(b)

Figure 1: Performance comparison between ridge
(p = 2) and lasso (p = 1) regression in the framework 
of (3). The top 1000 features are picked using (4). In 
Figure 1(a), red triangles show the tests when ridge 
outperforms lasso, while green circles show the tests 
when lasso outperforms ridge. Although in general 
lasso slightly outperforms ridge regression, the run­
ning time test in Figure 1(b) shows that ridge regres­
sion is far more efficient than lasso. The parameter 
a was manually tuned here (we will further analyze 
the setting of a in Section 5).

Note that the orthogonality of the design matrix is a 
very rigid constraint. However, as we will see later (Al­
gorithm StreamFeatWeight) in our setting, the design 
matrix will be of form (UZ)T, where U is a matrix with or­
thogonal columns and Z is a diagonal matrix (in our case, 
matrix of singular values). Since such a design matrix may 
not be too far from having orthonormal columns, we have a 
much higher chance of observing similar results from lasso 
and ridge regression (as in Corollary 3.2) than in a general 
regression setting 5 We conducted the following experiments 
to verify this hypothesis. We randomly sampled 45 data- 
points from three text datasets (“20 Newsgroup”, “RCV1”, 
and “Reuters21578”, refer to Section 5.1 for details about 
these datasets). For both cases of p = 1 and p = 2 in Algo­
rithm GenFeatWeight, we generated the top 1000 feature 
set from wL and wR respectively. We then used a simple

5Note that if U has orthogonal columns and Z is a diagonal 
matrix, then (UZ)T has orthogonal rows but depending on 
the singular values in Z, the columns in (UZ)T may not 
exactly be orthogonal.

Xt = argminx=(Xi,j)1 Y[l]X — Vt(k) IlF + aY- x2,j.
i,j

Then we have the following:

Xt = Ut(k) diagK,/(o^ + a),...,Otk /(o^ + a)), 

where otl ,..., otk are the top-k singular values in Y[t] (k).

Even though Algorithm GenFeatWeight is quite sim­
ple, in a streaming environment the number of data items 
in Y[t] could become extremely large, which could lead to 
both computational and memory bottlenecks in running the 
algorithm. For example, the computational complexity of 
computing a truncated rank-k SVD is O(mn[t]k) [8] (given 
Y[t] e Rmxn[tl), which is prohibitive when the number of 
columns in Y[t] becomes very large (n[t] ^ oo). Our goal 
in the next section is to propose and analyze an efficient 
approach that has similar effectiveness as Algorithm Gen­
FeatWeight in identifying top features but does so by uti­
lizing limited storage and just one pass over the data in a 
streaming setting.

3.4 Matrix Sketching for Feature Weighting
As mentioned above the main bottleneck in Algorithm Gen­

FeatWeight is in generating a low-rank approximation of 
Y[t]. To overcome this problem, we propose an approach 
based on matrix sketching that we outline next.

In his recent paper, Liberty [17] showed that by adapt­
ing the Misra-Gries approach for approximating frequency 
counts in a stream [20], one could obtain additive error 
bounds for matrix sketching. More formally, in the setting 
of [17], the input is a matrix Z e Rpxd. In each step, one row 
of Z is processed by the algorithm (called Frequent Direc­
tions) in a streaming fashion, and the algorithm iteratively 
updates a matrix Q e Rqxd (q ^ p) such that for any unit 
vector x e Rd, ||Zx||2 — ||Qx||2 < 2||Z||F/q.

Recently, Ghashami and Philips [7], reanalyzed the Fre­
quent Directions algorithm of Liberty [17], to show that it 
provides relative error bounds for low-rank matrix approx­
imation. Instead of Q, their algorithm return Qk (a rank-

6 For lasso regression, we use the algorithm proposed by 
Cai et al. [4].
7Again note that this is not to be misconstrued as a general 
statement on the effectiveness of ridge vs. lasso regression in 
other settings.



k approximation of Q) and their main result shows that
IIZIIF - IIQk|l2 A q/(q - k) -||Z - Zk||2.

Our approach for constructing a low-rank approximation 
of Y[t] (outlined between Steps 1-4 in Algorithm STREAM- 
FeatWeight) is based on extending the Frequent Direc­
tions algorithm of [17] to a more general setting where in 
every timestep, we add nt A 1 new columns8 As in Fre­
quent Directions, our algorithm requires just one pass over 
the data stream. Here, Bt e Rmx< is the matrix sketch. The 
parameter £ A k, but is generally much smaller than m or 
nt. We discuss more on the setting of £ later. The Step 
5 in Algorithm StreamFeatWeight is obtained by using 
Lemma 3.3 to solve the following ridge regression problem 
(note that the SVD of Bt _ Ht(£)Zt(£)I£, so the identity 
matrix I£ represents the right singular vectors of Bt):

Xt _ argminx=(xiij)|BtrX - [ei,..., ek]|| + a ^ x2,j, (5)
Vi

where e£ e R{ is a vector with 1 at location i, and 0 elsewhere 
(i.e., standard basis vector).

Algorithm 2: StreamFeatWeight (streaming update 
of feature weights at time t)

Input: Yt e Rmxnt, Bt-1 e Rmxt, and a e R 
Output: Feature importance score wt e Rm and 

matrix sketch Bt at time t
1 Ct w [Bt-!Yt]
2 Ut(£) It(i,^ svd£(Ct)

(with It(£) _ diag(o't1 ,..., &t£))

3 Zt(£) ^ ________  ________ __________

dia9 - &?£,..., -\/&2£-i - &2£, 0)

4 Bt ^ Ht(£) ^t(£)
5 ID t(k) ^ diag(6't1 /(o'2, + a),..., &tk/(&?k + a)) 

(where ati is the ith diagonal element in Zt(£))

6 Xt ^ UUt(k)Dt(k)
7 Vi e [m],wt£ w maxi^p^k |Xtkp |, where XXt _ (xtiip )

At any time t, the running time of Algorithm STREAM- 
FeatWeight is O(max{mnt£, m£2}) (_ O(mnt£) if we as­
sume £ A nt) by using power-iteration or rank-revealing QR 
decomposition for SVD [8] in Step 2. This computational 
complexity is much smaller than the O(mn[t]k) time com­
plexity of Algorithm StreamFeatWeight (since nt£ < 
n[t]). Between iterations, the algorithm only maintains the 
Bt matrix which takes O(m£) storage. The overall space 
complexity of Algorithm StreamFeatWeight is linear in 
the size of the input (i.e., O(mnt)) at every time t, com­
pared to Algorithm GenFeatWeight for which, at time t, 
the space complexity is O(mn[t])

The major focus of the rest of this section is to provide 
theoretical support for Algorithm StreamFeatWeight, by 
showing that the wt from Algorithm StreamFeatWeight 
is a good approximation of wt obtained from Algorithm Gen- 
FeatWeight (with p = 2).

8A similar sketching based low-rank matrix approximation 
approach was recently used in an entirely different context 
of anomaly detection by Hao and Kasiviswanathan [11]

3.4.1 Theoretical Comparison (Bounding ||wt - wt||)
We start with observation that,

| wt; - -w t| A llHt(k) Dt(k) - 11 t(k)t(k) Hf

_ IHt(k) Dt(k) - H t (k) Dt(» + Ht(k) Dt(k) - Ht(k)Dt (k) || F

< HHt(k) Dt(k) - H t (k) Dt((k) Hf + llHt(k)D t(k) 11t(k) D t(k)

< HHt(k) - H t(k) H F D t(k) H + llHt(k) IHIDt( k) - Dt(k)I F

< HHt(k) - H t(k) H F D t(k) H + Vk|Dt(k) - D t(k) | . (6)

Therefore, a bound on ||wt - wt|| follows from respective 
bounds on Ut -Ut F and Dt -Dt . Note that
since the columns in Ut(k) are orthonormal, ||Ut(k) || < 1.

Bounding ||Ut(k) - fjt(t) ||F. Here we use a recent result by 
Huang and Kasiviswanathan [11], who established an up­
per bound on ||Ut -Ut(k) ||f by modifying the analysis of
Frequent Directions by Ghashami and Philips [7] and com­
bining it with some recent matrix perturbation results. To 
formally state their result we need few more definitions. Let

K = Kk(Y[t]) = Ct, /Otk ,

where cti is the ith singular value of Y[t].
1. Define fQ as,

K2 Y 2 - B 2 r _ K H Y[t](k) Hf llBt(k) Hf
1 Q _ 2 2 

H Y[t](k) IIf llBt(k) IIf
(7)

It is easy to establish that for all t, ||Y[t](k) |2 A |Bt(k) ||2 
(using an analysis from [11]), and by definition k A 1, 
therefore fQ A 1. Furthermore, for small k’s (as in our 
setting), typically k is bounded, yielding fQ _ O(1).

2. Define Fb as,

rb _ 1 + k2
2

BtH2/HY[t]H2
(8)

Again it is easy to establish that Y[t]Y[t] V BtBtr [17], and 
therefore, ||Bt||2 < ||Y[t]||2. Typically k is also bounded 
away from 1, yielding Fb _ O(1).

Proposition 3.4 (Huang and Kasiviswanathan [11]). 
Let A£ denote the ith eigenvalue of Y[t] Y^ and L _ min£=j |A£- 
Aj| >0. If

e _ Q /^mK2yY[t]y2rarbkyY[t] - Y[tl(k) ||2 A

for Fa,Fb defined in (7), (8) respectively, then

in i n / V2L
H t(k) t(k) \/L + 8k2 HY[t] H2 VL2 + 16K4HY[t]H4

Remark: For small k’s, and assuming 1 < k < O(1) (imply­
ing rQ _ O(1) and rb _ O(1)), the above bound on £ could 
be simplified to,

£ _ Q ( VmHY[t]H2HY[t]- Y[t](k) H2 a

The assumption of L > 0 is also something that is commonly 
satisfied in practice, especially if m is reasonably smaller 
than the number of data items in Y[t].



Bounding ||Dt(k) - Dt(k) ||oo. Let cti and ati be the ith 
singular value of Y[t] and Bt respectively. We have,

t(k) t(k) _ max
ie[k]

°ti
au 2 + a

ati
a2. + a

A max
ie[k]

|fftl - I 
a2 + a

A standard application of Weyl’s inequality [8], along with a 
bound on || K2Y[t]Y^ - BtBtr || provides the following propo­
sition.

Proposition 3.5.

t(k)
a llY[t] Y[t](k) Hf /rarbk

t(k) H” a a2k + a k .

Putting it all Together (Bounding ||wt - wt||). The 
following theorem follows by combining (6) with Proposi­
tions 3.4 and 3.5.

Theorem 3.1. Let Y1,...,Yt be a sequence of matrices 
with Y[t] _[Yi|... |Yt]. Let YW(k) _ Ht(k) Zt(k) Vt1(k) be the 
best rank-k approximation of Y[t]. Let ctk and atk be the 
kth singular value of Y[t] and Bt respectively. Then wt (gen­
erated by the Algorithm GenFeatWeight) and wt (gener­
ated by Algorithm StreamFeatWeight), under conditions 
from Proposition 3.4, satisfy:

wt w t

+

A k|Y[t] -Y[t](k) IIf /TQTb~
A &2k + a £ - k

Ctk_________________V2l______________
< + a /L + 8K2HY[t]H2//L2 + 16k4||Y[t]||4

The above theorem shows that, under reasonable assump­
tions and setting of £, both Algorithms GenFeatWeight 
and StreamFeatWeight generate very identical feature 
vector weights at every timestep t. But as we discussed ear­
lier, Algorithm StreamFeatWeight is far more efficient 
both in space and time consumptions.

A point to note is that the Algorithm StreamFeatWeight 
can be used with any value of £, the above bound on £ only 
guarantees that its feature selection results are similar to 
that of Algorithm GenFeatWeight.

3.5 Discussion on Normalization
We generate Vt(k) using a cosine affinity matrix from L2- 

norm column normalized Y[t]. If we follow the same con­
struction with a slightly different normalization, Y[t] to be 
zero mean and unit variance, then we obtain as regression 
target, the principal components (PCA) of Y[t]. Each princi­
pal component captures different view of Pearson correlation 
coefficient matrix, and these principal components might be 
another good choice for the regression target. However, it is 
unclear how to construct this zero mean and unit variance 
normalization of Y[t] in a strict streaming fashion which is 
desired in this paper. The works of [18, 12] use N-1 Y^ Y[t] 
for building random walk normalized cosine affinity matrix 
where the diagonal matrix Ni,i _ Y.j (Y[1]Y[t] )r,j. Since we 
did not use the random walk normalization, Vt(k) is not ap­
proximating the normalized graph cut any more. However, 
in our case, Vt(k) is not directly used for clustering, but just 
an intermediate step to select the important feature subset.

In our experiments (Section 5), we achieve quite similar re­
sults to the MCFS approach [4], where the affinity matrix is 
normalized in a batch setting.

4. RELATED WORK
We now justify the utility of our proposed approach by 

briefly comparing it with a few existing methods.
Our basic idea is to use regression analysis for feature 

selection. Many feature selection algorithms based on this 
idea have been proposed in the past decade. These algo­
rithms operate by minimizing some appropriately defined 
objective function. Weston et al. [30] added an £0-norm con­
straint on the solution to enforce sparsity, which naturally 
leads to a natural variable (feature) selection. But mini­
mizing with £0-regularization is NP-hard, therefore £1 -norm, 
as a convex relaxation to £0-norm, was utilized in [31, 4]. 
Other norms on the regularization term such as £2-norm [6] 
and £2,1 -norm [37, 10, 16] have also been explored for fea­
ture selection. One of the latest work in this area, proposed 
by Zhu et al. [39], performs feature selection by transfering 
models learnt on external (auxiliary) data sources, but it 
requires the dimensionality of target data to be high and 
the number of datapoints to be small, which usually is not 
the case in data streaming. Few other recently proposed 
approaches in this area include [36, 13]. Although these 
methods are effective and robust to some degree, they are 
extremely inefficient, in both time and space, to be applica­
ble in a streaming setting.

Feature selection algorithms operating in a online setting 
were proposed in [35, 26, 19], but they all require multi­
ple passes over the data to converge to a stable model, and 
hence are not pass-efficient. Few other efficient feature se­
lection methods such as [9, 33, 34] seem not well-suited to 
operate in a streaming environment. In this paper, we pro­
pose a streaming algorithm that at every timestep efficiently 
assigns each feature an importance score (weight) that can 
be subsequently used to rank (or select) the (top) features.

Also in the streaming setting, the approach of projected 
clustering [1, 21] can be viewed as a technique for “local” 
feature selection. The idea here is to have each cluster spe­
cific to a particular feature subset that optimizes a quality 
criterion for that cluster. However, the feature subsets could 
be quite different across different clusters, therefore it leads 
to a complicated interpretation of clustering. Moreover, it is 
also very difficult to compare different clusters since their op­
timized subspaces are not in the same domain. On the other 
hand, our proposed approach provides a single comprehen­
sive feature subset that covers all the clusters. Thereby, it 
gives an easy interpretation for clustering different classes.

In a somewhat orthogonal setting, online feature selection 
operating on feature streams9 (instead of data streams as 
considered in this paper) have been investigated in [23, 38, 
32, 15, 29].

5. EXPERIMENTAL ANALYSIS
In this section, we experimentally demonstrate that our 

proposed Algorithm StreamFeatWeight is highly scal­
able, while still providing almost similar quantitative results 
to other expensive batch feature selection approaches.

9Roughly, in this setting, feature vectors are streamed over 
time, e.g., one new feature is introduced at every timestep t.



Dataset ^instances #features #clusters
1 Reuter21578 8,293 18,933 65
2 TDT2 9,394 36,771 30
3 20Newsgroup 18,846 26,214 20
4 RCV1 193,844 47,236 103
5 USPS 9,298 256 10
6 MNIST 70,000 784 10
7 Tiny 1,000,000 3,072 75,062

Table 1: Statistics of the experimental datasets.
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Figure 2: The effect of a on four text datasets. For 
each dataset, we randomly generate 30 subsets and 
record the average K-means (NMI) result on the top 
1000 features. The x-axis is the index i of a = 
(where k is number of clusters in each dataset). It 
can be observed that the NMI results show smooth 
changes across different a, and i = 3,4,5 are reason­
able choices.

5.1 Experiment Setup
It would be the best to evaluate feature selection results 

based on ground truth feature importance. But in real world 
applications, we cannot easily find such ground truth be­
cause: 1) it is highly subjective to select candidate features
because there are many similar features/terms, and 2) fea­
ture selection is typically an intermediate step for the rest of 
data analysis pipeline. However, we do have many datasets 
with ground truth cluster labels. This can be utilized to 
evaluate the quality of selected feature subset, by performing 
an unsupervised clustering on the feature-reduced dataset. 
If the selected feature subset is “good”, then clustering the 
data restricted to just this subset of features should yield a 
“good” clustering result. Therefore, we evaluate the unsu­
pervised feature selection algorithms by performing an un­
supervised K-means clustering on the selected feature space. 
We used the popular Normalized Mutual Information (NMI) 
as our evaluation metric (detailed definition of NMI can be 
referred to [27]). All the experiments were run on an In- 
tel(R) Xeon(R) CPU X5650 2.67GHz processor with 128GB 
memory.
Baselines. From now on, we refer to Algorithm Stream- 
FeatWeight as FSDS (Feature Selection on Data Streams). 
We chose the following unsupervised feature selection ap­
proaches as baseline methods: Multi-Cluster Feature Se­
lection (MCFS) [4], LaplacianScore [9], and Algorithm 
GenFeatWeight with p = 2 (henceforth, referred to as 
GFW-p2). MCFS (based on lasso regression) and Lapla- 
cianScore (based on finding local manifold structure) are 
both batch feature selection algorithms and were selected for 
comparison because they capture the essence of two popular 
approaches to feature selection.

Since we use clustering to measure the performance of fea­
ture selection, we also included for comparison the classical 
K-means (Kmeans) and a recent streaming variant of K- 
means (StreamKM) [25]. Both these K-means algorithms 
are operated on the whole feature set (unlike other compared 
approaches). To the best of our knowledge there are no other 
streaming unsupervised feature selection algorithms.

Datasets and Preprocessing. We evaluated the above al­
gorithms on four popular text datasets (Reuter21578, TDT2, 
20Newsgroup, and RCV1) and three image datasets (USPS, 
MNIST, and Tiny), whose statistics are summarized in Ta­
ble 5.1. 20Newsgroup is a balanced dataset that covers 20 
news topics. Reuters21578, TDT2, RCV1 are unbalanced 
datasets with quite different sizes of clusters. All these 
datasets can be found in [3]. Both the USPS and MNIST 
datasets have 10 classes of handwritten digits. Tiny is a large 
web-image collection for non-parametric object and scene 
recognition (downloaded from [28]). Among 80 million im­
ages, we randomly selected 1 million images and evaluated 
the result on 60,000 labeled images that cover 100 classes 
(from [14]). We directly performed experiments on the Tiny 
images with all the 3, 072 raw features, which are 32 x 32 
color images in RGB color channels.

MCFS and LaplacianScore algorithms are space and time 
inefficient due to computations of normalized Laplacian ma­
trix and eigenvalue decomposition (also solving lasso re­
gression for MCFS). We cannot evaluate such algorithms 
on large benchmark datasets. Therefore the majority of 
datasets were selected to compare the effectiveness of all the 
baselines. For the three image datasets, we used the approx­
imation of Gaussian kernel using random feature maps [24]. 
For every timestep t, we used the same random projection 
basis and offset setting (refer to [12] for more details about 
implementing these random feature maps).

Parameter Settings. The number of selected features, h, 
was set from 200 to 2400 (in increments of 200) for text 
datasets, and from 25 to 200 (in increments of 25) for image 
datasets (since the number of meaningful features in raw im­
ages is usually small). In our streaming setting, the number 
of singular vectors k was set to be the same as the num­
ber of clusters in the dataset, which was assumed to be a 
priori known as in prior works [9, 4], and the size of each 
data stream (nt’s) as 1000 (we will further analyze stabil­
ity against nt in Section 5.4). Our proposed algorithm has 
two specific parameters: the size of matrix sketch £ (which 
is set as the square root of the feature size as suggested by 
the analysis in Section 3.4) and the regularization parameter 
a. There are prior works in deciding the best regularization 
parameter a [5]. However, given the target problem is unsu­
pervised and the dataset is big, we performed the following 
experiments on sampled datasets to select a. We randomly 
generated 30 subsets from four text datasets respectively, 
and evaluated the average quality of the top-1000 selected 
features using Lemma 3.3 with various values of a. Since 
the singular value distributions (oj’s) of most datasets usu­
ally decay rapidly, we set a as 2Vk for i e R. The average 
NMI result is presented in Figure 2. It can be seen that the 
best results appear when i is around 3 to 5. Therefore we 
set i = 3 by default, and set a = 23ak for all our experi­
ments. For the random feature maps using Gaussian kernel, 
we set bandwidth-scale as 5000 and the projected dimension 
as pn/k] (following [12]).



For MCFS and LaplacianScore, we followed [4, 9] for their 
respective parameter settings. For the NMI evaluation step, 
we utilized the standard within-cluster sum of squares K- 
means (with 100 inner loops and 100 outer loops) to obtain 
stable cluster assignments.

5.2 General Performance Comparison
We make the following observations based on Figure 3:

(1) Compared with Kmeans/StreamKM on the whole fea­
tures space, feature selection can indeed improve clus­
tering performance on these high dimensional datasets. 
This is an argument in favor of performing feature selec­
tion (similar observations have been made elsewhere).

(2) In general, the regression-based algorithms (FSDS, GFW- 
p2, and MCFS) perform much better than the Lapla- 
cianScore algorithm. It is because LaplacianScore eval­
uates features individually, so that the selected feature 
subset may come from similar global patterns. On the 
other hand, the other three algorithms have more com­
prehensive views due to their use of regression-based fea­
ture selection.

(3) GFW-p2 has very comparable result with MCFS (which 
can be seen as evidence supporting the lasso vs. ridge 
argument in Section 3.3), although the latter performs 
better than the former in some specific spots (e.g., with 
smaller number of features in the TDT2 dataset).

(4) On average, FSDS achieves more than 99% NMI of GFW- 
p2 on the text datasets. It confirms our theoretical proof 
(Theorem 3.1) that feature weight vectors produced by 
Algorithms GenFeatWEIGHT and StreamFeatWeight 
are close to each other.

(5) Typically, FSDS achieves about 97% ~ 99% NMI of MCFS 
on the text datasets. This observation shows that in 
our problem setting (Sections 3.2 and 3.3), a streaming 
ridge-based method is capable of obtaining similar per­
formance as that of a batch lasso-based method (MCFS). 
The FSDS performs worse than MCFS when the number 
of features is small (TDT2 dataset). It could probably 
be because the regression target of MCFS that comes 
from normalized spectral analysis may boost the quality 
of the small number of the selected features. However, if 
the number of features is large enough, FSDS and MCFS 
have very comparable performances.

(6) For the experiments on the image datasets (with approxi­
mated Gaussian kernel), FSDS has similar or even better 
performance than MCFS (Figure 3(e) and 3(f)).

(7) On large datasets, such as RCV1 (Figure 3(d)) and Tiny 
(Figure 3(g)), MCFS and LaplacianScore algorithms ran 
out of memory since they require constructing the affinity 
matrix (which takes O(n2) space). Memory troubles also 
prevented GFW-p2 from completion on the Tiny dataset.

5.3 Scalability Comparison
Figure 4 shows the scalability comparison between the 

feature selection algorithms using Tiny dataset (k is set as 
10 here). FSDS requires just few minutes to generate feature 
importance scores on a dataset with a million points. We 
observed that FSDS is on average about 10 times faster than 
LaplacianScore and about 50 times faster than MCFS. Also 
FSDS outperforms GFW-p2 when the dataset size is above

10, 000 and the difference between their running times will 
grow as the dataset size increases.

On the 20Newsgroup dataset, FSDS takes about 23 sec­
onds, and is about 3, 35, and 100 times faster than GFW-p2, 
LaplacianScore, and MCFS respectively. Similarly, on the 
MNIST dataset, FSDS takes about 4 seconds, and is about 
4, 64, and 400 times faster than GFW-p2, LaplacianScore, 
and MCFS respectively
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Figure 4: Scalability experiments on the Tiny
dataset. Except FSDS (our proposed approach), 
none of the other compared approaches could scale 
beyond ~ 105 points (failing because of their ex­
tremely high memory overhead).

5.4 Stability under Concept Drift, Batch Sizes
It is well-known that streaming algorithms are generally 

sensitive to the order of data, or concept drift. To test the 
performance of FSDS in such scenarios, we used the data 
stream sorted by timestamps as input. The performance of 
FSDS in this realistic testing environment is shown in Figure 
5, with different sizes of feature set. We also compare against 
a scheme where we just use a static feature subset (#f = 200) 
without adapting to concept drift. This static feature subset 
was determined by FSDS using only the first 2, 000 samples. 
For the two unbalanced datasets Reuters21578 and TDT2, 
the larger clusters appear in the very beginning. There­
fore, initially the approach based on static feature subset 
performs quite close to FSDS. However, as time goes on 
and concept drift becomes more prominent, FSDS contin­
ues maintaining a good stable performance across all the 
three datasets, which demonstrates that FSDS is capable of 
quickly adapting to concept drift.

FSDS tests across different batch sizes (nt’s) and feature 
subset sizes indicate very stable behavior (Figure 6).

5.5 Efficient Storage
For many streaming applications, we not only want to 

identify the top-h features in the data but also want to 
store the data restricted to these top-h features at any time, 
to enable some further data mining analyses. In general, 
such analysis in streaming setting would require storing the 
whole data at each timestep as the set of the top-h features 
dynamically changes over time. However, using FSDS, we 
empirically noticed that storing the data stream restricted 
to top g x h features at each intermediate timestep, and a 
final selection of only those features which appear in the top 
g x h features in each of the intermediate timestep, suffices 
to get good results, even when g is a small number (i.e., 4). 
The results are shown in Figure 7. The number of features 
tested in these experiments are h = {200,400,600, 800,1000} 
with g = {1,2,3,4}. We also report FSDS results where we
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Figure 3: Performance of the compared algorithms on different datasets. A randomly shuffled data stream is 
used for the online algorithms. Kmeans and StreamKM algorithms were executed on the whole feature set 
(hence they always have horizontal lines). For all other approaches, the quality of feature selection methods 
is measured by executing K-means clustering on the selected feature subset. For the RCV1 and Tiny datasets, 
MCFS and LaplacianScore experiments ran into memory issues as they require storing the quadratic sized 
affinity matrix. Memory issues also prevented the completion of GFW-p2 on Tiny. Our proposed approach 
(FSDS) achieves at least 97% NMI of MCFS while operating in a highly scalable streaming setting.
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Figure 5: Concept drift test across time for FSDS. The results show that FSDS provides a stable performance 
even in presence of inherent concept drift in the data stream.
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Figure 6: Stability test for FSDS across different batch sizes and feature subset sizes.

Figure 7: Performance comparison of FSDS with different values of g.

store the entire data, and then use the data to obtain the 
final top h features (we call this strategy Full). Even set­

ting g = 1, we already achieve about 91 % NMI compared to 
the Full (FSDS) at h = 200. As we increase g, the results



get better and it suggests that it could be enough to store 
data restricted to the top O(h) features at each timestep to 
enable further analyses.

6. CONCLUSION
We proposed an unsupervised feature selection algorithm 

for handling high dimensional data points arriving in a stream­
ing fashion. Our algorithm uses ideas from matrix sketching 
to generate a continuous low-rank approximation of the in­
put, which is then used in a regularized regression framework 
to obtain the individual feature weights. The algorithm only 
requires one-pass over the data, utilizes limited storage, and 
operates in near-real time. Theoretical results and exper­
imental validation confirm that our proposed algorithm is 
efficient in both space and time for the task of streaming 
unsupervised feature selection.
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