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Abstract

Programming parallel machines is fraught with difficulties: the obfuscation of algorithms due to im-
plementation details such as communication and synchronization, the need for transparency between
language constructs and performance, the difficulty of performing program analysis to enable automatic
parallelization techniques, and the existence of important “dusty deck” codes. The SAIMI project de-
veloped abstractions that enable the orthogonal specification of algorithms and implementation details
within the context of existing DOE applications. The main idea is to enable the injection of small pro-
gramming models such as expressions involving transcendental functions, polyhedral iteration spaces with
sparse constraints, and task graphs into full programs through the use of pragmas. These smaller, more
restricted programming models enable orthogonal specification of many implementation details such as
how to map the computation on to parallel processors, how to schedule the computation, and how to
allocation storage for the computation. At the same time, these small programming models enable the
expression of the most computationally intense and communication heavy portions in many scientific
simulations. The ability to orthogonally manipulate the implementation for such computations will sig-
nificantly ease performance programming efforts and expose transformation possibilities and parameter
to automated approaches such as autotuning.

At Colorado State University, the SAIMI project was supported through DOE grant DE-SC3956 from
April 2010 through August 2015. The SAIMI project has contributed a number of important results to
programming abstractions that enable the orthogonal specification of implementation details in scientific
codes. This final report summarizes the research that was funded by the SAIMI project.

1 Overview

Solving important scientific problems through computational modeling requires high performance computing.
High performance computing requires performance on individual processors and parallel programming to take
advantage of the multitude of parallel computing architectures. Using general-purpose parallel programming
models is error prone and results in code where implementation details obfuscate the original algorithm.
Additionally implementation decisions necessary for one target platform are not necessarily applicable to
future platforms, therefore requiring significant development costs when porting applications to new systems.

There are a range of ways in which implementation details are exposed in programming models. Declar-
ative programming languages seek to avoid the exposure of implementation details. This approach avoids
obfuscation due to parallelization implementation details, but does not provide a mechanism for the ap-
plication programmer or performance programmer to take control of the implementation. Explicit parallel
programming in general purpose programming models like C or Fortran with MPI provide almost complete
control over implementation details such as the distribution and scheduling of data and computation, but the
implementation is strongly coupled with the algorithm. This control and the use of the MPI interface results



in good performance portability, but the entangling of the algorithmic and implementation specifications
can lead to significant code obfuscation.

Recent programming model research and development includes programming languages and libraries with
constructs that enable the orthogonal specification of algorithms and implementation details. Examples
include OpenMP [8], which provides pragmas for labeling a loop/algorithm as having forall parallelism
in and indicating implementation preferences; Parallel Global Address Space (PGAS) languages such as
Chapel [6, 7], which provide user-defined distributions; and Standard Templates Adaptive Parallel Library
(STAPL) [23, 3], which provide orthogonal scheduling of data structure iterators. There are also more
restrictive programming models such as the polyhedral programming model [43, 11, 25, 15, 12, 14, 4], which
enables orthogonal specification of scheduling and storage mapping within the compiler, and MapReduce [9],
which enables implementation details, such as the runtime environment, to be specified and to evolve at
runtime. Wholesale conversion of existing codes to new models is problematic due to the magnitude of the
work involved and to an initial lack of tool support. Conversion to programming models that are minimally
intrusive like OpenMP is more feasible, but the interface between algorithm and implementation specification
in such models lacks power in terms of both the algorithmic abstractions and the implementation abstractions.

In the SAIMI project, we use injectable programming models to orthogonalize programming implemen-
tation decisions such as performance transformations and raise the abstraction level for implementation
specifications. An injectable programming model is a more restricted, declarative programming model made
available within the context of a more general programming model such as C/C++ or Fortran. We are ini-
tially making the more restricted programming models available through pragmas and/or library interfaces
followed by source-to-source transformation. We are developing injectable programming models for specify-
ing performance critical algorithms and optimizations such as lookup tables, stencil computations, dense and
sparse matrix computations, and task graph computations. We envision high-level, orthogonal implementa-
tion abstractions that will enable application and performance programmers to specify the implementation
for each algorithm differently for each target architecture.

The SAIMI project research goals include (1) evaluating existing mechanisms for orthogonally specifying
implementation details, (2) raising the level of abstraction for implementation specification in existing mech-
anisms for a set of injectable programming models, and (3) developing libraries and preprocessors capable
of composing orthogonal algorithm and implementation specifications. We evaluate the programmability
and performance of our approach on performance-critical computations in various small, medium, and large
scientific computing benchmarks written in C++ and Fortran.

Some defining characteristics of the SAIMI project are the incremental approach embodied by injectable
programming models and the concept of providing abstractions for the high-level, orthogonal specification of
implementation details. A more detailed overview of the SAIMI project was published in the 2011 SciDAC
proceedings [34].

2 Project Contributions

The development of evaluation criteria and evaluation of existing programming model mechanisms for the
separation of algorithms and implementation details provided us ideas for injectable programming models
as well as mechanisms to evaluate our own contributions.

• In 2010, we proposed and published some qualitative criteria for evaluating the programmability of pro-
gramming model features with respect to the extent to which they enable the orthogonal specification
of implementation details [16, 17].

• In 2011 in collaboration with John Dennis at NCAR in Boulder we developed and published a tech
report and conference paper about the CGPOP mini application [28, 30]. CGPOP [27] is a proxy
application for the POP application.



• In 2012, we argued that the CGPOP mini app was a programmability proxy for the POP applica-
tion as well as a performance proxy and in general discussed how programmability proxies should be
determined [26].

The main approach we used to orthogonally specifying implementation details was to inject smaller pro-
gramming models into full applications with programs and specify implementation details as transformations
on the injected programs. Our various efforts all worked toward this goal.

One such example of an injected programming model was the Mesa tool which was developed to semi-
automate the application of look-up table optimizations. This tool used a pragma mechanism and realized
the expression programming model for dealing with expensive function calls such as exp(), sin(), cos(),
etc.

• In 2010, we prototyped a tool called Mesa [1] that enables programmers to specify lookup table (LUT)
optimizations orthogonally from the C++ specification of a computation. Submitted a paper [39] with
initial results on using Mesa to apply LUT optimization to a Small Angle X-Ray Scattering (SAXS)
application [2].

• In 2011, we released the Mesa tool [1, 39, 40], which was built on the ROSE compiler infrastructure.
that enables programmers to specify lookup table (LUT) optimizations orthogonally from the C++
specification of a computation.

• In 2012, we published a paper about the Mesa [1]. Mesa enabled programmers to specify lookup
table (LUT) optimizations orthogonally from the C++ specification of a computation [41]. The main
contribution was the formulation of the look-up table programming model injection problem as an
integer programming/optimization problem.

• In 2013, we published the final paper about the lookup table programming model [42]. The main
contribution was the testing of the ROSE-based, source-to-source translator that automatically deter-
mined a pareto curve of possible LUT optimizations. The programmer could then choose the accuracy
vs. performance tradeoff as appropriate for his or her application.

We also developed injectable programming models and performance optimizations for partial differential
equations solvers, whose main performance bottlenecks are stencil computations.

• In 2012, we refined parameterized tiling in the polyhedral model [24]. Also investigated how the
diamond tiling approach should theoretically scale better than pipelined tiles, which is applicable to
stencil computations [44].

• In 2013, we published the first GridWeaver paper about abstractions to orthogonally specify the con-
nectivity of semi-regular grids and stencil computations in atmospheric science applications like CG-
POP [29].

• In 2014, we started development of the Loop Chain abstraction [19], where the data access patterns for
loops are injected into existing data parallel programs. This led to the the use of the loop chain concept
to optimize across loops in a Chombo Computational Fluid Dynamics benchmark [22] and in finite
element solver benchmark used to model airplane engines [36]. Additionally, we are further developing
the Loop Chain abstraction in the context of combustion simulations in the funded NSF grant CCF-
1422725, “SHF: Small: The Loop Chain Abstraction for Balancing Locality and Parallelism”.

• Over the past year (2014-2015), we have been incorporating advanced tiling techniques into stencil
computations using a programming construct called an iterator from the Chapel programming lan-
guage. This work is especially exciting, because it can lead to advanced tiling techniques being made
available via libraries versus the need to incorporate them into compilers. For this work, Ian Bertolacci,



an undergraduate research assistant for SAIMI, won 1st place in the Undergraduate Poster Competi-
tion at Rocky Mountain Celebration of Women in Computing (RMCWiC) and won 3rd place at the
Student Research Competition at Supercomputing. Additionally we published and presented a paper
at the International Conference of Supercomputing (ICS) [5].

Representing sequences of loops with the loop chain abstraction and/or performing diamond tiling results
in tiles or tasks of computation that exhibit good data locality with partial parallelism between the tasks.
Representing the dependencies between these tasks with a task graph is quite typical, thus our research
in developing technology to support injectible programming models that depend on such a task graph
abstraction.

• To sparse tile across loops in irregular applications, it is necessary to do an initial partitioning of one
of the loops based on how iterations in the loops interact with each other. We developed a shared
memory parallel graph partitioner for use with inspector-executor strategies [18].

• Experimentation with the execution of arbitrary generated task graphs [20]. We investigated Intel’s
Concurrent Collections, Cilk++ from Cilk Arts, TBB, and the OpenMP 3.0 Task model.

Stencil computations that operate on a structured or semi-structured grid can be represented at compile
time with polyhedral or presburger sets. However, many important applications operate on unstructured or
irregular meshes and thus use some sparse data structures where the memory access patterns are not known
until runtime. Performance optimizations for such computations require an inspector phase at runtime to
determine new data orderings and schedules. Previously, we had developed the sparse polyhedral framework
for representing and manipulating inspector/executor transformations at compile time [32]. As part of the
SAIMI project, we incorporated some of the SPF technology into exisiting source-to-source compilation
tools (Chill [13]) and innovated new ways to represent inspectors to enable the determination of correct and
efficient inspectors.

• In 2010, we used ideas from the sparse polyhedral framework (originally created by the PI) to simplify
the specification of sparse matrix computations and performance optimizations thereof [10].

• In 2012, we determined the set and relation operations that are needed to expression inspector/executor
transformations in a framework with polyhedral transformations [33].

• We prototyped a compiler for generating composed inspector code while using the sparse polyhedral
framework to specify the composed transformations [35].

• In 2014, we published and presented “An Approach for Proving the Correctness of Inspector/Execu-
tor Transformations” with our collaborator Michael Norrish [21]. This introduces a way to handle
correctness and performance in inspector/executor codes.

• In collaboration with Mary Hall’s group at the University of Utah, we incorporated inspector/executor
transformations into the Chill source-to-source compiler. These transformations included transforma-
tions that when composed in various ways with loop transformations such as tiling enable a compiler
to generate the inspector that can translate between various sparse matrix formats [38, 37].

3 Personnel

In addition to the above research and publications, the SAIMI project supported the Ph.D.s of Christopher
Wilcox, Andrew Stone, and Christopher Krieger. Christopher Wilcox graduated in 2012 and is currently
a lecturer in the Computer Science Department at Colorado State University where he has recently won a
teaching award. Dr. Stone and Dr. Krieger were especially impacted by the SAIMI project because they



participated in the development of the proposal. Dr. Stone now works at Mathworks on the Matlab compiler.
Dr. Krieger is a researcher at the University of Maryland.

This work has also supported the masters of Stephanie Dinkins, and Ian Bertolacci as an undergraduate
research assistant. In addition, a research faculty member at CSU, Dr. Catherine Olschanowsky, was
partially supported through SAIMI.

In the Summer of 2013 both Andrew Stone and Christopher Krieger finished their Ph.D.s. The money
that was funding them was then used to support part of PI Strout?s sabbatical salary with permission from
DOE program managers.

4 Presentations

PI Strout and others presented aspects of the SAIMI project on numerous occasions and indicated the work
being presented was supported by the Department of Energy.

1. “SAIMI and SPF: Separating the Algorithm from the Implementation Details in Sparse Computations,”
presented at 2011 DOE Scientific Discovery through Advanced Computing (SciDAC) conference, July
12, 2011.

2. “Autotuning Needs for Run-Time Reordering Transformations,” presented at the CScADS Autotuning
Workshop, August 8, 2011.

3. “SAIMI: Separating the Algorithm from the Implementation Details,” presented at the DOE ASCAC
Meeting , August 24, 2011.

4. “The CGPOP Miniapp,” by Andrew Stone, John Dennis, and Michelle Strout. Presented by Andrew
Stone at HPC 2011 - First Annual Front Range High Performance Computing Symposium, September
23-24, 2011.

5. “The CGPOP Miniapp,” by John Dennis (NCAR), Andrew Stone (Colorado State University), Michelle
Mills Strout (Colorado State University). Presented at the DOE Scientific Discovery through Advanced
Computing (SciDAC) conference, July 12, 2011.

6. “Automating Run-Time Reordering Transformations with the Sparse Polyhedral Framework (SPF)
and Arbitrary Task Graphs,” presented at Imperial College in London, November 21, 2011.

7. “Automating Run-Time Reordering Transformations with the Sparse Polyhedral Framework (SPF),”
presented at Australian National University in Canberra, July 12, 2012.

8. Andrew I. Stone and Michelle Mills Strout. “Abstractions for Defining Semi-Regular Grids Orthog-
onally from Stencil Computations,” poster with two page abstract to appear at LCPC, September
2012.

9. David Wonnacott and Michelle Mills Strout. “On the Scalability of Loop Tiling Techniques,” talk at
the Fourth Annual CnC Workshop, December 2012.

10. In 2013, our collaborator Dave Wonnacott presented the tiling scalability work at IMPACT (Interna-
tional Workshop on Polyhedral Compilation Techniques) [45].

11. In 2013, presented the SAIMI work at the Workshop on Optimizing Stencil Computations (WOSC) [31].

12. “Bulk Synchronous to Asynchronous Parallelism: Using Loop Chains and Full Sparse Tiling to Get
There,” presented at Australian National University, August 16, 2013.



13. Speaker: Ian J. Bertolacci Authors: Ian J. Bertolacci, Catherine Olschanowsky, Michelle Mills Strout,
and David G. Wonnacott, In Collaboration With Bradford L. Chamberlain and Ben Harshbarger.
“Chapel Iterators: Providing Tiling for the Rest of us,” Presented at SuperComputing 2014 as part of
SC14 Chapel Lightning Talks BoF, November 2014.

14. Ian Bertolacci, advisors: Michelle Strout and Catherine Olschanowsky. “Chapel Iterators: Providing
Tiling for the Rest of Us,” won 3rd place in Supercomputing SRC for undergraduates, November 2014.

15. Michelle Strout in collaboration with Ian Bertolacci, Catherine Olschanowsky, Brad Chamberlain, Ben
Harshbarger, and David Wonnacott. “Practical Diamond Tiling for Stencil Computations Using Chapel
Iterators,” Presented at the ACM SIGPLAN 2nd Annual Chapel Implementers and Users Workshop
(CHIUW), June 2015.

5 Conclusion

The DOE Early Career grant that supported the SAIMI project and my transition from an assistant professor
to an associate professor has had a significant impact on my research and career and the careers of those who
worked on the project. The most impactful work has been the incorporation of advanced tiling techniques
within Chapel Iterator libraries and the Loop Chain abstraction. We are continuing to research and develop
techniques for applying these technologies to full applications that are important to the DOE mission.
Ground breaking work from the SAIMI project includes incorporating into the Chill program optimizer
various inspector/executor transformations for sparse and irregular applications. Collaborations and research
funded through the SAIMI project will continue to contribute to the DOE mission ASCR mission of enabling
timely science and engineering progress by leveraging computational simulation. As the PI for SAIMI, I thank
the DOE, my research collaborators, and the tax payers for funding such research.
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