skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and simulation of the nuSTORM facility

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1209538· OSTI ID:1209538
 [1]
  1. Indiana Univ., Bloomington, IN (United States)

This thesis provides a full design and simulation of the nuSTORM beam line facility including the pion beam line , the pion and muon orbit combination section, and the muon decay ring. The study also includes the development of numerical optimization methods and their application to the design. At nuSTORM, one proton batch from the Main Injector (MI) is extracted and transported to the target station to bombard a solid target. A magnetic horn is used as the collection device for the secondary particles such as pions and kaons. A pion beam line is designed to transport the secondary particles downstream to the muon decay ring. In order to avoid the use of a fast kicker with a large aperture for the injection, an Orbit Combination Section (OCS) was designed to combine the reference pion orbit with the circulating muon orbit. This ful lls the stochastic injection scheme proposed in the 1980s. It is shown through the simulation that the pion beam line is able to deliver 0.011 muons per proton on target within the acceptance of the ring. In order to improve the circulating muon ux, an optimization of the magnetic collection horn was studied. A Multi-Objective Genetic Algorithm (MOGA), that was modi ed to integrate Message Passing Interface (MPI) in the process, is applied to the optimization. The number of muons within the ring acceptance from the pion decay is estimated by the pions after the collection horn. This new method was proposed to lower the requirement on the computing resources for the optimization. The study gives a new and better target and horn con guration after a full investigation of the system. The nuSTORM ring is examined with two optics designs. With di erent features, the two designs are optimized via correcting the nonlinearities with sextupolar eld distribution in the ring. A modi ed MPI-based Simulated Annealing (SA) algorithm was applied to obtain the optimal ring acceptance. The comparison with the GA shows good agreements on the achieved optimal ring acceptance. The pion and muon beams at nuSTORM were simulated and yield avor-pure and precisely measurable neutrino beams, which can be used to provide a de nite statement about the existence of a sterile neutrino.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
DOE Contract Number:
AC02-07CH11359
OSTI ID:
1209538
Report Number(s):
FERMILAB-THESIS-2015-04
Country of Publication:
United States
Language:
English

Similar Records

Optimization of the magnetic horn for the nuSTORM non-conventional neutrino beam using the genetic algorithm
Journal Article · Thu May 28 00:00:00 EDT 2015 · Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment · OSTI ID:1209538

Design and Simulation of the nuSTORM Pion Beamline
Journal Article · Sat Aug 15 00:00:00 EDT 2015 · Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment · OSTI ID:1209538

A FODO racetrack ring for nuSTORM: design and optimization
Journal Article · Mon Jul 17 00:00:00 EDT 2017 · Journal of Instrumentation · OSTI ID:1209538

Related Subjects