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ABSTRACT

The response of underground structures and transportation facilities under various external
loadings and environments is critical for human safety as well as environmental protection. Since
quasi-brittle materials such as concrete and rock are commonly used for underground construction,
the constitutive modeling of these engineering materials, including post-limit behaviors, is one of
the most important aspects in safety assessment.

From experimental, theoretical, and computational points of view, this report considers the
constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular.
Based on the internal variable theory of thermodynamics, the general formulations of plasticity and
damage models are given to simulate two distinct modes of microstructural changes, inelastic flow
and degradation of material strength and stiffness, that identify the phenomenological nonlinear
behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are
explored with respect to their effects on structural analyses. Specific constitutive models are then
developed in a systematic manner according to the degree of completeness. A comprehensive
litérature survey is made to provide the up-to-date information on prediction of structural failures,
which can serve as a reference for future research. . -

* Work performed under Contract No. 88101-02 for Performance Assessment Division (6342),

Sandia National Laboratories
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1. INTRODUCTION

The response of underground structures and transportation facilities to various
external loadings is critical for environmental protection. Since quasi-brittle materials such
as concrete, rock, and soil are commonly adopted for underground construction, the
constitutive modeling and failure analysis of these engineering materials are currently under
active research in both the academic and industrial worlds.

Nonlinear stress-strain responses of engineering materials arise mainly from two
distinct modes of microstructural changes: one is inelastic flow and the other is the
damaging or degradation of material properties. The damage process dominates in the cases
of quasi-brittle materials under mechanical, thermal, and chemical effects, such as creep,
stress corrosion, and leakage of seals. Inelastic flow, which is reflected through permanent
deformation, is the consequence of a dislocation process along preferred slip planes, as in
metals, or particle motion and rearrangement, as in quasi-brittle materials. Because the
number of bonds between material particles is hardly altered during the inelastic process,
the material stiffness remains insensitive to this mode of microstructural motion, and the
change of strength is characterized by the inelastic strain hardening phenomenon. On the
other hand, the nucleation, crushing, and coalescence of microcracks and microvoids result
in debonding between particles, which is reflected through the damaging of material
stiffness and strength. In general, both modes are present and interacting, and the structure
is said to fail when macrocracks occur and propagate through it. Within the framework of
continuum theories, elastoplasticity and damage mechanics are the tools to simulate the
inelastic flow and the damaging process, respectively.

This report considers constitutive modeling of quasi-brittle materials in general and
concentrates on concrete in particular. Nonlinear behavior in the pre-peak regime of quasi-
brittle materials has been discussed extensively in the technical literature [Chen, 1982;
Desai and Siriwardane, 1984; Neville and Brooks, 1987; Yazdani and Schreyer, 1988].
The failure mechanism of quasi-brittle materials is still not clear, although experimental data
beyond the peak strength have been documented for some quasi-brittle materials [Van Mier,
1984; Shah and Gopalaratnam, 1985; Norman, 1990] and some promising results have
been obtained toward modeling damage softening with localization [Bazant and Pijaudier-
Cabot, 1988; Krajcinovic, 1989; Chen and Schreyer, 1990]. The main nonlinear features
characterizing quasi-brittle materials can be summarized as follows:

1. The enhancement of material strength and apparent ductility under
increasing confining pressure,

2. The difference between compressive and tensile strengths,

3. Hysteretic unloading loops,
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4. The inelastic volume change as reflected through shear enhanced

compaction and dilatation, and

5. The anisotropic degradation of the material strength and stiffness

accompanied by the localization of intense deformation.
In this report, both inelastic hardening and damage softening of concrete will be considered
based on the previous work. Considerable detail will be given to the pre-peak response,
which has direct application in current engineering design codes. The following is an
outline of the report.

Chapter 2 explains the notation and nomenclature that are used to express the
models and solution algorithms. Based on experimental observations summarized in
Chapter 3, the first section of Chapter 4 provides a general formulation of elastoplasticity as
a phenomenological means to reflect the micromechanical change caused by inelastic flow.
The theory of elastoplasticity is well established for metals for which the hypotheses are
simple and supported by experimental evidence. Unfortunately, appropriate hypotheses for
quasi-brittle materials are different than those for metals and are not agreed upon by
everyone. Examples involve the need for nonassociated flow rules, dilatation, shear
enhanced compaction and pressure dependence. Hence, the name "inelastic flow" is used
here for quasi-brittle materials instead of "plastic flow" as used originally for metals.
Numerical algorithms are discussed in the second section for solving the elastoplastic
constitutive equations. The parts that are unique to a particular model are identified, and
then only these parts need to be changed if the model is altered. Although the development
of constitutive models has been actively researched for the past ten years, the associated
computational aspects have barely been touched. Here, various plasticity models will be
made available to users of advanced computational codes.

After the general formulation and computational aspects of elastoplasticity are
discussed, specific models are developed where the degree of complexity is used as a guide
for ordering the subject material. Starting with the elastic-perfectly plastic models in
Chapter 5, it is shown in Chapter 6 how additional features can provide improvements for
simulating the hardening behavior of concrete. The characteristic features for each model
are described and compared with features that are representative for the class of materials
under consideration. In this context, the advantages and disadvantages of each model are
explored. Also, the material parameters associated with each model are identified and a
method for determining each parameter is given.

The experimental, theoretical, and computational aspects associated with damage
mechanics are discussed in Chapter 7. Simple damage models are then proposed in Chapter
8 to show the potential of damage mechanics in failure assessments of underground
structures.




Finally, conclusions are made. This report should be beneficial with regard to the
following:

1. The report provides an outline of the formulation and computational aspects
of plasticity and damage mechanics for an engineer who is new to this field,
2. The report will be of assistance in selecting a suitable constitutive model and

a corresponding algorithm for geotechnical design projects, and
3. The report gives the basis for modifying and incorporating additional
features into an existing constitutive model.




2. NOTATION AND NOMENCLATURE

Three notations are commonly used in continuum mechanics: direct, indicial, and
matrix. The direct notation has the advantage of forcing one to think conceptually rather
than becoming overly involved with the details of the equations. However, to solve specific
problems, coordinate systems and base vectors must be defined and then the concept of
components of vectors and tensors arise. Indicial notation is an abbreviated form for
representing vectors and tensors in terms of components and base vectors. If base vectors
are excluded, the resulting equations involve components only, and these equations can be
expressed in either indicial or matrix form. The latter is most often used in numerical
algorithms.

It is assumed that the reader has an appropriate background in tensor calculus,
matrix algebra, and continuum mechanics [Malvern, 1969; Golub and van Loan, 1983].
Hence, only special notations and nomenclature will be specified here. The governing
equations will be expressed in terms of direct notation with boldface letters denoting
tensors of first or higher orders. Indicial notation will be used if there is a possibility of
confusion concerning the use of components. The summation convention is adopted for
repeated Latin subscripts. Symbols are defined when they first appear in the text.

Because stress and strain tensors are often decomposed into a spherical and a
deviatoric part for modeling purpose, it is convenient to introduce the spherical, P?, and
deviatoric, Pd, orthogonal projections. Then the fourth-order identity tensor is
decomposed as follows:

I=P + Pd (21)
with the definitions
I= 1
—5(6,‘]561'[ +5i16jk)ei ®eJ ®ek ®e, (22-1)
and
s 1. .
P =3i®i (2.2-2)

where i is the second order identity tensor (i.e., the Kronecker delta in indicial notation).
From the definitions in Eqgs. (2.1) and (2.2), it follows that

P*:P° =P° (2.3-1)



P" :Pd = P" (2.3-2)

PP =P:P =0 (2.3-3)
P:T=T° (2.3-4)
P:T =11 (2.3-5)
P:T° =T° (2.3-6)
P:T' =0 (2.3-7)
Pi:T =17 (2.3-8)
PLT =0 (2.3-9)

in which T° and T? are the spherical and deviatoric parts of the second-order tensor T,
respectively.

The above properties of the orthogonal projections provide a convenient way to
formulate the stress-strain relations. The isotropic elasticity tensor, for example, can be
written as

E=2®i+2ul =(3A+2u)P° +2uP? (2.4)

where A and [ are Lame's constants. As can be seen from Eq. (2.4), the spherical and
deviatoric parts of material deformation can be treated separately for isotropic elasticity.




3. EXPERIMENTAL OBSERVATIONS

Depending on the level of stress, concrete may respond in a linear or nonlinear
manner. At low stress levels, it may be safely assumed that concrete is adequately
represented by a linear elastic constitutive model. At stress levels approaching 30% of the
uniaxial compressive strength, the occurrence of microcracking results in nonlinear inelastic
response and a suitable nonlinear constitutive model should be invoked.

In this chapter, representative examples of data from conventional laboratory tests
on plain concrete will be presented. Since rock behaves in a similar manner, this will give
the reader an idea of the mechanical response features typically exhibited by many quasi-
brittle materials. Because of the scatter of experimental data associated with machine
precision, testing techniques, and statistical variation of material properties, the primary
goal of constitutive modeling should be set in the prediction of essential features observed
from experiments.

The experimental data most often available are from uniaxial stress, biaxial stress,
and triaxial stress tests. A common problem encountered by the analyst, however, is the
lack of complete data even for the simplest of tests, the uniaxial compression test. Unless
requested, the lateral strains are often not recorded and thus the volume change
characteristics are unknown. When laboratory work is performed with the intent to develop
constitutive models, all components of stress and strain need to be recorded. In any case, a
fundamental question that must be answered is to what level of loading must the material be
adequately modeled.

3.1 Uniaxial Stress Behavior

Some typical uniaxial compressive stress-strain data are shown in Figure 3-1. The
peak (ultimate or failure) strength is denoted f. Depending on the particular concrete-mix
design various strengths may be obtained [White, 1977]. While different strengths are
obtainable, the compressive axial strain at which the peak stress is reached is fairly constant
at g =—0.002. The tensile (lateral or radial) strains (&,,&3) corresponding to the peak
stress are approximately 0.001. ~

For stresses up to 30% of the peak strength, concrete exhibits nearly linear-elastic
behavior. Above this level, the stress-strain curve shows decreasing curvature up to L.
The descending branch following the peak is referred to as the post-peak or apparent
softening regime. The softening of concrete is accompanied by a localized region with large




Lateral Strain Axial Strain

0.002 0.000 -0.002

Figure 3-1. Typical stress-strain data of concrete under uniaxial compression, with f
being peak strength [Kupfer et al., 1969].

deformations and is the subject of intense research at this time. It will be covered in some
detail in Chapter 7.

The different regions associated with the uniaxial stress-strain curve are basically
caused by the effects of microcracks, and the features of these regions can be specified as
follows based on micromechanical experiments via X-Ray Radiography, Laser
Holographic Interferometry, and Acoustic Emission. With loading up to about 30% of the
peak strength, the cracks existing prior to loading do not appear to grow, and hence, elastic
response is recorded. Between 30-50% of the peak strength, stable crack growth is
observed. For stresses between 50-75% of the peak strength, new cracks begin to form in
the mortar. At about 75% of the peak strength, the volumetric strain begins to increase,
namely, the sample begins to expand. This expansion is termed dilatancy and is also a
feature common to quasi-brittle materials. The progressive failure of the specimen near its
peak strength results from microcracking of the mortar and the mortar-aggregate interface.
The existence of both kinds of cracks yields zones of damage. With continued straining,
the descending branch of the stress-strain curve is obtained and macrocracks appear on the
sample surface.

Some of the information that can be obtained from uniaxial compressive testing are
Young's Modulus, E, Poisson's ratio, v, and the peak strength, fe.




Young's Modulus may also be estimated by using the ACI (American Concrete
Institute) empirical formula:

- 1.5

where E is in psi, w is the unit weight in /b/ ft3, and f; is the uniaxial compressive
strength in psi .
Poisson's ratio is defined from elastic strains as follows:

£, (3.2)

where €, and &, denote the radial (lateral) and axial (Jongitudinal) strains, respectively,
with tensile strain positive and compressive strain negative. Typical values of Poisson's
ratio for concrete range from 0.15 to 0.22, with 0.19 normally being used.

While not common, uniaxial tensile tests are sometimes performed. The ratio of
uniaxial tensile to uniaxial compressive strengths varies considerably but usually a value of
0.1 is used in concrete design.

The obvious point to be made here is that concrete is much stronger in compression
than in tension and a constitutive model should be capable of simulating this phenomenon.

3.2 Biaxial Stress Behavior

Biaxial loading implies the application of either a traction or displacement boundary
condition on two faces of a cubical specimen. The third direction is traction free. If stresses
are applied in the x; — x, plane, the failure surface can be plotted in the plane of the
principal stresses of o and o, .

It has been found that the maximum strength occurs when the biaxial compressive
stress ratio is approximately 0.5. This increase is about 25% with respect to unijaxial
compression. For equal biaxial compressive stresses, the increase is about 15%. Under
biaxial compression-tension, the ultimate compressive strength decreases almost linearly as
the tensile stress is increased. There is little difference between the biaxial tensile strength
and the uniaxial tensile strength.

In general, the ductility of concrete subjected to biaxial stress states depends on
whether these stresses are compressive or tensile. In the case of biaxial compression, the
average compressive strain at which the peak stress is reached is about -0.003 as compared




to ~0.002 in uniaxial compression. The average tensile strain at failure varies from 0.002 to
0.004 when both stresses are compressive.

In biaxial compression-tension, the magnitude at failure of the compressive and
tensile strains decreases with increasing tensile stress. Thus, concrete becomes less ductile
when the tensile stress is increased. This is as expected since we know from experience
that concrete behaves in a brittle fashion in tension.

In general, concrete fails because of tensile splitting with the fracture surfaces
orthogonal to the maximum principal tensile strain. It has been observed that the maximum
strength envelope is not greatly dependent on the loading path for normal weight concretes.
The weight of concrete is determined by the content of mixtures [White, 1977]. Figure 3-2
shows a typical biaxial failure envelope and Figure 3-3 illustrates typical stress-strain
relationships under biaxial compression, with f, being uniaxial compressive stress at peak.

The volume-change characteristics show a behavior similar to those of uniaxial
curves. Under increasing compression, the concrete first compacts and eventually dilates
because of microcracking, as shown in Figure 3-4(a) for triaxial stress behavior. The
experimental data available do not clearly indicate when dilation first occurs. Some data
indicate that it occurs just after the peak compressive stress while other data show that it
occurs well before the peak is reached. Possible explanations for these differences appear
to be the method of load application and the measurement techniques [Chen, 1982].

3.3 Hydrostatic Stress Behavior

If a hydrostatic compressive loading (07 = 0, = 03) is performed, no failure is
possible. However, the stress-strain behavior is nonlinear as indicated in Figure. 3-5.

3.4 Triaxial Stress Behavior

The typical triaxial test is performed on a cylindrical sample so that the loading is
the same in two directions. Initially, hydrostatic compression is applied to the sample, and
the resulting stress state is called confining stress. Next, increasing (triaxial compression)
or decreasing (triaxial extension) one of the loading components is accomplished until
failure is reached. In general, the larger the compressive confining stress the larger will be
the compressive failure strength. A typical example of stress-strain data under triaxial
compression for different confining stresses is shown in Figure 3-4(b). The increases in
both ductility and strength with an increase in confining pressure are features common to




=~ (i, =190 kpfcm? (2700 psi)
e—— P,y =315 kplcm? (£450psi)

ee—=e N5=590%pfcm? (8350 psi) 1 6

-02( [l
62 4 LS ¢
T N
i fo

1

{

{

i

{

1

t

]

{

{

{

{

t

of |

{

}n

435 5¢m (2in) 9
' (79in)
‘\—\; 1.2
S5
Pe

Figure 3-2. Biaxial failure envelope of concrete in o; - 0; plane, with B, being uniaxial
compressive stress at peak [Kupfer et al., 1969].

all quasi-brittle materials. Because of these pressure-dependent phenomena, quasi-brittle
materials are also called frictional materials in order to distinguish from nonfrictional
materials such as metals. Plots of normal pressure (P = 0;;/ 3) versus volumetric strain
(&¥ = g) for different confining stresses are given in Figure 3-4(a). An \interesting result is
that with the triaxial tests where shear is present, more volumetric strain is observed than
for the hydrostatic case. This phenomenon is called shear enhanced compaction.

3.5 Uniaxial Strain Behavior

Another test performed commonly on soils that sometimes is used with concrete is
the uniaxial strain test. Here, no deformation is allowed in two directions while in the other
direction the strain component is decreased. Because of the confinement, no failure strength
is observed. Although no example is given here, almost invariably greater compaction for
the same confining stress is shown by the uniaxial strain specimen as compared to the
hydrostatic response, which is simply another manifestation of shear enhanced compaction.
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Figure 3-3. Stress-strain data of concrete under biaxial compression, with Bp being
uniaxial compressive stress at peak [Kupfer et al., 1969].

3.6 Summary

It appears that for large values of compressive hydrostatic pressure the failure
surface in the deviatoric plane is circular, while at lower values, the failure surface is
somewhat triangular in shape. This triangular shape requires the use of three stress
invariants to accurately model the failure of concrete [Schreyer and Babcock, 1985].
Various failure theories based on elastoplasticity for frictional materials will be presented
later in the report. In summary:

1. The uniaxial stress test indicates that 3 phases occur during compressive loading:

(a) linear-elastic up to about 30% of the peak strength,

(b) nonlinear phase from 30-75% of , and

(c) damage associated with microcracks for loading beyond 75% of
2. In biaxial compression, the concrete is at least as strong as in uniaxial compression,

but in biaxial compression-tension, the compressive strength decreases as the

tensile stress is increased.
3. The axial strength of concrete increases as confining stress increases. The sample
also becomes more ductile at high confining stresses.
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Figure 3-4. Response of concrete under triaxial compression [Green and Swanson,
1973].
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Figure 3-4. (continued) Response of concrete under triaxial compression [Green and
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response under hydrostatic compression [Green and Swanson, 1973].

4. The presence of shear stresses (deviatoric stress) results in increased (negative)
volumetric strain called shear enhanced compaction.

5. Near failure, the concrete sample will begin expanding. This increase in (positive)
volumetric strain is called dilation or dilatation.
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4. ELASTOPLASTICITY

The theory of elastoplasticity is an approach commonly used to model both
recoverable (elastic) and irrecoverable (plastic or permanent) deformations of engineering
materials under external loads. The development of this theory stemmed from the
description of metals where permanent deformation is associated with the dislocation
process along preferred slip planes. Plasticity was then adapted to quasi-brittle materials
where permanent deformation is caused by particle motion and rearrangement. Because of
the different micromechanical structure, quasi-brittle materials exhibit some unique features
such as shear enhanced compaction, dilatation, and pressure dependence, which are in
addition to the hardening and rate dependence observed for metals. Hence, there is some
objection to the use of the theory of elastoplasticity in the case of quasi-brittle materials. In
order to model concrete in this report, the theory of elastoplasticity will be modified and
referred to as inelasticity theories because there exist several approaches. It should be
emphasized that a meaningful constitutive model must be consistent with the
micromechanical nature of the material considered, although both phenomenological and
micromechanical methods are employed for modeling purpose. In other words,
mathematical descriptions of material behavior with certain assumptions should always
satisfy relevant physical theories. Because of the limitations of current experimental
techniques, however, the understanding of the micromechanical natures of engineering
materials is still not complete. Hence, the accuracy of the constitutive models developed at a
given time represents the level of science and technology corresponding to that time.

It is assumed that the reader is generally familiar with the theory of elastoplasticity
[Hill, 1950; Malvern, 1969; Martin, 1975; Chen, 1982]. Therefore, basic equations in a
general format are summarized without detailed specifications in the first section, but more
attention will be given to the discussion of a constitutive equation solver in the second
section of this chapter. The ensuing chapters address specific inelastic models developed
from the general elastoplastic formulations, which are suitable for concrete.

4.1 General Formulation

In the theory of elastoplasticity, it is postulated that there exists a domain in stress
space. The hypersurface bounding the domain is called the plastic yield surface, which is
assumed to be closed and convex. The yield surface divides the constitutive feature into
three regimes: a region inside the surface that defines elasticity, a region on the surface that
defines elastoplasticity, and a region outside the surface that can not be reached. If the yield
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surface remains fixed during plastic deformations, it simulates the perfectly plastic behavior
of materials. If the yield surface expands out from a lower bound to a higher bound, the
surface reflects hardening behavior. The lower bound is known as the elastic surface
because there are no plastic deformations below this bound. The higher bound is called the
peak, ultimate, or failure limit surface. If the yield surface contracts from the peak limit
surface to some residual value in a controlled manner, it models one part of the apparent
softening behavior, namely, the material strength softens with the loading process. The
modeling of softening will not be discussed until Chapter 7. The yield surface is considered
to be a function of both stress and certain internal variables that record the part of the stress
history involving plastic behavior and other sources affecting yielding. Generally, the yield
surface can be written as

f(c,1,)=0 i=12..,n (4.1)

where o is the stress tensor, and I; are internal variables that can be functions of zeroth or
higher order tensors and represent the internal constitution of the material. If the stress
appears in Eq. (4.1) only through the stress invariants, the yield surface is said to be
isotropic, otherwise it is anisotropic.

In order to simulate those paths that are load dependent, the classical theory of
elastoplasticity is based on a differential form. Usually, the total strain is known, and the
stress, elastic strain, and plastic strain are solved from the differential equations governing
elastoplastic behavior. According to the theory of elastoplasticity, the governing equations
for the inelastic models can be developed as follows.

For small deformation cases, it can be assumed that no differentiation among the
various stress and strain tensors is required, and that the differential of total strain € can be

decomposed into elastic and inelastic parts:
de = de® + d¢' (4.2)

where the differential of the elastic strain, de€ , is related to the differential stress, do,
through a linear isotropic elasticity tensor, E , as follows:

do=E : de¢ =[(3A +21)P° +21P? 1 4¢°

=3B de® +2G de®® =do® +do* (4.3)
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where B, is the bulk modulus, and G = y, the shear modulus. The differential of the
inelastic strain, de?, is given by a flow rule

de! =dA M(o, I) i=12,...n (4.4)

where M is a unit tensor function of stress and internal variables (i.e., M : M = 1) that
describes the direction of the differential of the inelastic strain. If N is the unit normal to
the yield surface in the stress space, that is,

1 Jf
N= N 9o 4.5)
where N is the magnitude of the gradient defined by
F ¥
N=(=—:—)?
(aa 30') 4.6)

then the flow rule is said to be associated (a consequence of Drucker's postulate) if
M=N 4.7)

Otherwise, the flow rule is nonassociated. It has been known from experimental
observations that the associated flow rule (normality rule) holds generally for metals but not
for quasi-brittle materials [Vermeer and de Borst, 1984]. The parameter dA is larger than

zero for inelastic deformations and chosen such that the inelastic consistency condition

df(o,1;)=0 (4.8)

is satisfied, which guarantees that the stress remains on the yield surface during inelastic
deformations. The internal variables are determined by a suitable set of hardening rules:

dl, = dAl(o, ) i=12,..n (4.9)

where h; are inelastic moduli.
The loading, neutral loading, and unloading criteria of an inelastic model may be
expressed in a compact manner by
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<0, dA >0, dAf=0 (4.10)

If f<0, then dA =0 and the process is elastic loading or unloading. If dA>0,then f=0
and the process is inelastic loading. If both f and d equal zero, neutral loading occurs
without any inelastic deformation.

With the use of differential constitutive equations consisting of Egs. (4.2), (4.3),
(4.4), (4.8), and (4.9) together with the loading and unloading criteria defined by Eq.
(4.10), the stress, elastic strain, and inelastic strain tensors can be obtained for given
increments in the total strain tensor. The difference between different inelastic models
depends on the specific yield surface, flow rule, and hardening rules.

4.2 Constitutive Equation Solver

Because the inelastic models are often highly nonlinear, an incremental-iterative
integration scheme is required to solve the constitutive equations. This section will first
give integration rules, and then address the application of the rules in two general cases:
integration schemes with and without the use of the tangent stiffness tensor.

4.2.1 Integration Rules

In the analysis of nonlinear inelastic problems, the precision with which differential
constitutive equations are integrated has a direct impact on the overall accuracy of the
analysis. Since the differential form is approximated by incremental forms in numerical
algorithms, an acceptable incremental-iterative algorithm must satisfy three basic
requirements [Ortiz and Popov, 1985]: (a) consistency with the constitutive equations to be
integrated, (b) numerical stability, and (c) incremental inelastic consistency condition.
Requirements (a) and (b) are necessary for attaining convergence of the numerical solution
as the incremental step becomes vanishingly small [Gear, 1971]. Requirement (c) is the
algorithmic counterpart of the differential inelastic consistency condition, Eq. (4.8).

Two families of algorithms exist for the integration of inelastic constitutive
equations: the generalized trapezoidal and midpoint rules. These two rules are acceptable in
the sense of requirements (a) to (c) and commonly used in commercial codes. For the
constitutive equations summarized as follows:

de = de® + de' (4.11-1)
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do =E:de°® (4.11-2)

de' =d \M(o, 1) (4.11-3)
dl; = dAh(o, ;) (4.11-4)
df(o,I;)=0 (4.11-5)

the trapezoidal rule generalized for integrating Eqgs. (4-11) takes the form of

—_ . i i
Op =0, + E: [(8,, - £n—1) - (8,, - £n—1)]

' ' 4.12-1)
£ =g +AA[(1- )M, + oM,,] (4.12-2)
(£), = (1), + A (1 - @)(h),_, + (), | (4.12-3)
=0 (4.12-4)

where
M,_ =M[o,_;,(I}),] (4.13-1)
M, = M(0,,(I)),] (4.13-2)
(hi)n—l = hi[ O-n—l’(li)n—l] (4.13-3)
(W)= hlo,,(1),] (4.13-4)

The numerical values of &,_;,&y—1, Op—1, and (1,-)"_ ; are known at the previous time, £,_;,

whereas s,’;, o,, and (%) ,» heed to be solved for the updated total strains &, that are given
at the beginning of the current time, t, = t,.; + At , with At being the time step. The
incremental inelastic parameter, A7 , is determined by the use of the incremental inelastic
consistency condition: f;; - fu-7 = 0, which results from Eq. (4.12-4). The trapezoidal rule
is explicit for & = 0 , and implicit for 0 < o< . The geometric interpretation of the

algorithm can be made clear by combining Egs. (4.12-1) and (4.12-2) into

6, = 0, — AA(1 -Q)E:M,_;— A\ 0E: M, (4.14)

where

Oy = Gy +E: (€, — €4 )) (4.15)
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represents the elastic prediction for the updated stress. The final state of stress is obtained

by mapping the elastically predicted stress onto an updated yield surface through two

tensorial subtractions along the initial flow direction My,.; and the final flow direction My, .
As an alternative family of algorithms, the generalized midpoint rule is given by

Op = Op_] +E:[(£n _en—l) —(Ef, _8;.1-1)] (4.16-1)

g =€ +AIM, ., (4.16-2)

(), = (1) ey #AA (1) 110 (4.16-3)

f,=0 (4.16-4)
where

M,,, =M[I-&)0,_;+a0,, (I-a)I),_;+ 0o, (4.17-1)

B)psg =Wl = @) Gy +0: 0y, (1= )T g + 0(I;),] (4.17-2)

As in the case of the generalized trapezoidal rule, this algorithm is explicit for & = 0 and
implicit for 0 < o <1 . The unknowns e,i,,O;I, (I,-)n, and AA are solved through Egs.
(4.16) to (4.17) for the updated total strains &, . The geometric interpretation of the
midpoint rule can also be seen by combining Egs. (4.16-1) and (4.16-2) into

6, =0, - AL E:M,,, (4.18)

Both the generalized trapezoidal and midpoint rules are applicable to associated or
nonassociated inelastic models described by Eqgs. (4.11) and include well-known
integration schemes as particular cases such as the radial return, mean normal, and closest
point schemes. Ortiz and Popov [1985] have shown that these two rules satisfy the
incremental inelastic consistency, are consistent with the constitutive equations to be
integrated (first-order accurate) for ¢ ranging from 0 to 1, and are second-order accurate if

1
a= 3 in the linear case. The trapezoidal rule is unconditionally stable for a = o, where

. 1 .
o, varies from a value of 3 for a surface of constant curvature such as the von Mises

surface, to a value of I for surfaces with corners. Hence, the stability of the trapezoidal
rule is very sensitive to the degree of distortion of the yield surface. On the other hand, the

1
midpoint rule is unconditionally stable for all surfaces if & = rR Thus, it appears that the
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midpoint rule is a better choice for numerical integration than the trapezoidal rule, although
these two rules coincide for the particular case of the associated von Mises model.

In order to solve a static problem with a direct method or a dynamic problem with
an implicit time integrator [Belytschko, 1983; Hughes, 1983], an inelastic structural
stiffness matrix often needs to be formulated based on an inelastic stiffness tensor. From
the differential form of the constitutive equations, it is a natural approach to construct an
inelastic tangent stiffness tensor instead of a secant tensor. As a result, the structural
tangent stiffness matrix becomes singular at limit or bifurcation points, which will be
explored further in Chapter 7. If an explicit time integrator [Belytschko, 1983; Hughes,
1983] is used for a dynamic problem or the dynamic relaxation method [Underwood,
1983] is employed for a static problem, there is no need to invoke a stiffness tensor and
the constitutive equations can be solved directly by the use of either the trapezoidal or the
midpoint rule. Although the explicit time integrator is preferred in large scale computation
because of the cost in forming a stiffness matrix, the theoretical insight from the stiffness
matrix might be lost and the time step must be chosen according to certain stability
criterion. Next, the integration schemes with and without the formation of stiffness tensor
are discussed for solving the inelastic constitutive equations and for providing the basis
necessary to understand the literature on the subject.

4.2.2 Algorithms with Tangent Stiffness Tensor

The tangent stiffness tensor T is defined such that differentials of stress and total
strain are related through

do=T:de 4.19)

while the secant stiffness tensor S relates total strain to stress through
o=S:¢ (4.20)

The inelastic tangent stiffness tensor can be derived based on differential governing
equations, (4.11), as shown below. However, this is not the case for the secant stiffness
tensor when using the classical approach of elastoplasticity.

In order to obtain an explicit expression for the tangent stiffness tensor, consider
first the consistency condition:
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F —do+ Z o dl, =0 (4.21)

df(o,I)= =5 2o

With the use of Egs. (4.5) and (4.11-4), an alternative form of the consistency condition is

df(o,1;) = NN: do +dA Sh 5f— = (4.22)
i=]

From the first three equations of (4.11), it follows that

do = E:(de — dAM) (4.23)
An inner product of Eq. (4.23) with NN yields

NN:do= NN:E:de—-dANN:E:M (4.24)

If the term NN:do is eliminated between Egs. (4.22) and (4.24), the resulting equation
gives the following expression for dA :

N:E:de
dA = o (4.25)
E:
N:EM-SLS

The substitution of Eq. (4.25) into Eq. (4.23) and factoring out the term de yields the
tangent stiffness tensor

E:M®N:E
T=E- o (4.26)
N:E:M-
DT

The specific form of Eq. (4.26) for an inelastic model can be written as soon as N, M, h;

and gjlf- are given. It can be observed that
i
1. If the flow rule is associated, then N =M and T retain the same
symmetry properties as E .
2. If the denominator of the last term in Eq. (4.26) is infinite, the tangent

stiffness tensor is equal to the elasticity tensor.
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3. If the denominator is small enough, there is a possibility that T will be
singular and the structural tangent stiffness matrix will be ill-conditioned.
Nonlinear features of engineering materials can be analyzed with the use of 7. A
failure limit point in stress space is characterized by the condition that

T:de=0 (4.27)

for nonzero de if T is symmetric. The collection of all such points constitutes a failure
limit surface in stress space. If T is not symmetric, a bifurcation point is identified by the
condition in Eq. (4.27), and the failure limit point is obtained by using the symmetric part
of T in Eq. (4.27). A bifurcation point is defined to be a point on the solution path where
the governing equation admits more than one solution. The bifurcation point can occur
before or after the failure limit point is reached. Structural failure problems, such as
buckling and failure zones, can be attributed to the existence of critical points (i.e., limit

and bifurcation points). For the inelastic tangent stiffness tensor given by Eq. (4.26), the

n h af

term ¥ —L-L plays a very important role in determining critical points. In order to

i=1
illustrate this, suppose T is symmetric and de is proportional to N. Then

E:N (N:E:N)

h1 Bf
cE:

T:N=E:N-

2l of
D
=V thI F E:N (4.28)
CN-EN-3h

i=IN dI;

Since E is a positive definite tensor, N:E:N >0 for N # 0, and a limit point exists if the

term i%a—{=o . As can be seen, where a limit point will appear depends on the
i=1 i
functional forms of f and 4; .
In order to reflect explicitly the loading/unloading criteria of an inelastic model in a

computational code, the tangent stiffness tensor given by Eq. (4.26) is usually written as

E:MQN:E (4.29)

T(o, ;)= E - H[f] ™

where H[ ] denotes the Heaviside function and the notations

23




A=N:E:M (4.30-1)

__3hdf 4.30-2
B= EJNaI,- (4.30-2)

have been introduced for convenience. If f< 0, T=E . Otherwise, the tangent stiffness
tensor includes both elastic and inelastic effects.

Because T is generally a nonlinear function of o and [;, an incremental-iterative
integration scheme is required to find the corresponding stress increments and internal
variables for given total strain increments. To be efficient, for each increment the current T
should be formulated at the end of the iteration loop instead of at each iteration, and then the
structural stiffness matrix can be updated based on the current stiffness tensor T'. Because
of the nonlinearity of the general structural stiffness matrix, another incremental-iterative
integration scheme is needed to solve the unknown incremental displacement vector, which
in turn gives the total strain increment. Therefore, for nonlinear analyses using the
displacement-based finite element method [Bathe, 1982], two incremental-iterative
integration loops are needed: one in the stress-strain space and the other in the load-
displacement space. Although the integration scheme in any space should satisfy
consistency and stability requirements to achieve convergence, there exist some different
numerical issues in these two different spaces. For example, singularity or bifurcation
problems may occur in the load-displacement space but not in the stress-strain space, and
vice versa. The overall accuracy of nonlinear structural analyses depends not only on the
unique characteristics ‘of each space but also on the relation between two spaces. Hence, the
knowledge of the features of solution schemes used in both spaces is essential for large
scale computation. Recently, active research has been conducted toward reviewing and
developing solution procedures for nonlinear structural analyses, especially for failure
simulation characterized by bifurcation and limit points [Chen and Schreyer, 1989 and
1990]. In this report, no attempt will be made to explore the integration scheme used in the
load-displacement space, and instead, two incremental-iterative schemes will be discussed
in Subsection 4.2.3 for integrating the differential stress-strain relation. For special cases
such as small increments in the total strain or linear inelastic models, however, there are
two single-step integration methods without iteration, which, based on the trapezoidal rule,
replace the differential form of Eq. (4.19) by the following incremental form within a time
step At

t
Ao = [T:de=[(1-a)T,_ +0T;|:Ac (4.31)
t=at
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where « ranges from O to I . An Euler forward method is obtained for & = 0, while an
Euler backward method takes o = I. It should be noted that T is unknown in advance if T
is not constant.

The single-step Euler forward method is very simple and fairly accurate for linear
models; however, very small increments in the total strain should be prescribed for
nonlinear models in order to keep numerical errors small. Overshooting also exists, which
is caused by transitions of the stiffness tensor between two different regimes, such as from
elastic to hardening regimes. The following is an outline of the Euler forward method.

Algorithm 1,
For each increment At , the states of stress, total strain, elastic strain, inelastic

strain, and internal variables at the end of the previous increment are known and denoted as
Oty En_pp En_1s 85,_ p and (1; ),,_ ; » respectively, and the current increment in the total
strain, Ag, is prescribed.
Step 1
Assume in the predictor phase that the step is elastically loading or unloading, and
calculate the stress increment Ao through the elasticity tensor:

Agf = Ag
A =0
Ao = E: A€

Step 2
Evaluate the yield surface, f [o’ L), 1] , with the test stress

o =0, ;+4c

where oy.; and (I,-)n_ ; are known from the previous increment.
Step 3
Check the yield criterion:
If f [o",(I,.)"_ 1] < 0, then the solution is elastic. Go to Step 5. Otherwise, the

inelastic regime has been reached.

Step 4
In this inelastic corrector phase, calculate the inelastic solution through the
inelastic tangent stiffness tensor:
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Step 5

Step 6

Ao =T,_;:Ae
Aef =El: Ao
A€’ = Ae — A€®

Update variables at the end of the increment:

o, =0,_; +AC
£, =&,_; +AE€

£ =€ _; +Ae®
8,'; =8,i,~1 + A€’

and
(), =(L;),_,+ AL = (L), +8A(h),_,

where

N:E)

AL =H] f](—A+—g'—’—:A£

A=(N:E:M),_,

&y of
B=- 312
(E}N ol )n_ ]

Evaluate the current tangent stiffness tensor

T, =E_H[f](E:M®N:E)n

A+B

that will be used in the next increment. The current tangent stiffness matrix

construction is based on T, .

Exit or go to Step 1 for the next increment. #

Another single-step integration scheme, which can be conceived as a mixed Euler

forward/backward method, is derived as follows. According to the definition of the yield
surface, Eq. (4.1), the Taylor series of f around the previous state ( G, I; )n_ ; is given by
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af ) af .
= — ——| A + higher ord 4.
Jn=Ja-1 +(30' » Aa+§i3[ali)n_1 ; + higher order terms ~ (4.32)

If f is linear in the principal stress and internal variable spaces, and M and h; are constant,
it follows that the higher order terms in Eq. (4.32) vanish and

A =AM (4.33-1)
Al = AR (4.33-2)

By putting f, = 0, the errors from transitions between two different regimes and other
sources are not carried along and a rigorous return to the yield surface is guaranteed. Thus,
from Eqgs. (4.5), (4.32), and (4.33), we arrive at

fo;+NN:Ac+ Aazgflih,. =0 (4.34)

in which the subscript n - I has been dropped except for fy.; , because of the assumption
of linearity. If nonlinear models are considered, it should be kept in mind that all the terms
in Eq. (4.34) are evaluated at the previous state, and therefore the truncated Taylor series
will incur numerical errors. Since

Ao =0, -0, ;=E:(Ae -AAM) (4.35)

an inner product of Eq. (4.35) with NN and a substitution of the result into Eq. (4.34)
yields

————f""l + N:E: A€
A== (4.36)
A+B

where A and B are defined by Eq. (4.30). For the test stress computed in the elastic
predictor phase,

o' =0,_;+E:Ae (4.37)

a correction must be applied to make the final stress o, remain on the yield surface if o d

appears to lie outside the yield surface. To do so, we can combine Egs. (4.37) and (4.35)

27




together and delete the term o;,_; . With the use of Eq. (4.36), the final stress can be found
through

&I—+N:E:A£

6, =0 - E:M (438)

The current increments in the inelastic strain and internal variables can then be obtained.
The following is an outline of the corresponding algorithm, which offers a rigorous return
to the yield surface for linear models and produces fewer errors than Algorithm 1 for
nonlinear models although a few more calculations are needed.

Algorithm 2
For each increment At , the states of stress, total strain, elastic strain, inelastic

strain, and internal variables at the end of the previous increment are known and denoted as
Ot En1 Erls f:f,_ p and (1; ),,_ ; » respectively, and the current increment in the total
strain, Ag, is prescribed.
Step 1
Assume in the predictor phase that the step is elastically loading or unloading, and
calculate the test stress o through the elasticity tensor:

Agf = Ae

Ag' =0

o =0, ;+E:A¢
Step 2

Evaluate the yield surface, f [oJ A5, 1] , with the test stress ¢! and internal
variables (I;),_, -

Step 3
Check the yield criterion:
If f [6’ (L), ]] <0, then the solution is elastic, G, =" . Go to Step 5.
Otherwise, the inelastic regime has been reached.

Step 4
In this inelastic corrector phase, calculate the inelastic solution as follows:

j--i-N:E
M=lN_____| :4e
A+B

n-1
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o,=0 —AAE:M,_,
Ag' = AMM,,_,
Ag® = Ae - A€’

Step 5
Update variables at the end of the increment:

£, =&, +AE
£, =&,_; +A€*
€, =&,_; +A€'
(Ii)n = (Ii)n_] + AII

Step 6

n h
Find N,: E,E: My, A=(N:E:M), and B=(—2£ﬁ-) for formulating

i=IN dI; ),
the current tangent stiffness matrix and A4 in the next increment, which can be

omitted if no changes occur in these variables.
Exit or go to Step 1 for the next increment. #

The two single-step algorithms discussed above are robust for the case where a
stiffness tensor has to be formed. Algorithm 2 is much more accurate than Algorithm 1
because of the self-correcting feature of Eq. (4.34). Algorithm 1 uses the tangent stiffness
tensor in Step 4, but Algorithm 2 does not require explicitly the use of the stiffness tensor.
If a given inelastic model is highly nonlinear, however, it is recommended to use the
incremental-iterative integration schemes given in the next subsection. The current tangent
stiffness tensor T, is constructed at the end of the iteration loop if it is required to
formulate a stiffness matrix in a structural solution scheme.

4.2.3 Algorithms without Tangent Stiffness Tensor

If an explicit time integrator is adopted to obtain numerical solutions to the dynamic
field equations or the dynamic relaxation method is employed for a static problem, there is
no need to obtain a tangent stiffness tensor and the differential constitutive equations can be
solved directly by using either the generalized trapezoidal or the midpoint rule. One such
method is the incremental-iterative approach outlined in Algorithm 3, given later, where the
choice of the trapezoidal or midpoint rule can be made. As stated in Subsection 4.2.1, the
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incremental inelastic parameter, AA , is determined by the equation, f = 0, which requires
the inelastic consistency condition. If f is nonlinear, the Newton-Raphson method or its
further approximation, the secant method [Atkinson, 1978; Bathe, 1982], can be utilized to
find the root A for f = f(o,1;)= f(0,1) =0 and then the increment AA can be solved
with respect to the previous state. With the subscript j denoting the iteration loop, the
Newton-Raphson method takes the form of

(%),
where
U o[
( 1 ),- = }’:( o h,)j (4.40)

Numerically, Eq. (4.40) is often approximated with

(3_f) JJimh izl (4.41)

Substitution of Eq. (4.41) into Eq. (4.39) results in the secant method

A=A
,1.1=/1._.f..1_.!'_1 j21 (4.42)
]t J Jf]'_f:j—]

Algorithm 3 is unconditionally stable provided a2 ¢, where o, depends on the
integration rule and the yield surface. But the initial guess for A, which relies on the
prescribed total strain increment, must be within the region of convergence of the iterative
Newton-Raphson or secant method.

Usually, AA is solved without iteration, since it may not be necessary to obtain an
exact value for AA at each iteration step of the iteration loop for solving constitutive
equations for a given increment in the total strain. As a result of a one-step Newton-
Raphson method, Algorithm 4 shows an alternative approach called the cutting plane
method, which is often more efficient than Algorithm 3. In effect, the approach is an

automatic subincrementing procedure because the one-step Newton-Raphson method
produces a subincrement in A, 8A; = A; —A,_; , with the subscript k being the iteration
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index for solving constitutive equations and § denoting here the subincrement of a
variable. The total increment in A is then given by A\ =Y A . The method is simple and
k

explicit, but it is conditionally stable. Special care must be taken for regions of the yield
surface where the radius of curvature is small.

The following are the outlines of Algorithms 3 and 4. The prescribed total strain
increment is assumed to be reasonably small because of the use of the Newton-Raphson or
secant method in finding AZ . If resulting numerical solutions appear to diverge, it is often

a good practice to bisect the original total strain increment and try again.

Algorithm 3,
For each increment At , the states of stress, total strain, elastic strain, inelastic

strain, and internal variables at the end of previous increment are known and denoted as
On_1,En-1,85_pp€h_p, and (I;),_, , respectively, and the current total strain &, is
prescribed. The iteration loop for solving the constitutive equation starts with the index k =
0. Let oyel, and (I;), be the current iterative estimates for o,,eh, and (L), .
respectively. A small positive tolerance parameter, fol , is used to ensure the convergence
of numerical solutions. The parameter, ¢, ranging from 0 to I, identifies the algorithm
according to the definition of the trapezoidal or midpoint rule.

Step 1

Ifk =0, then

& =€
(), =(T),_,
For k >0, calculate the stress oy through the elasticity tensor E :
oy =E:(e, &)
Step 2
Evaluate the yield surface f; = f[ck, (1) k] and check the yield criterion:

If f >tol, orlf,1>tol for k21, then go to Step 3. Otherwise, the solution is

converged; update the following variables:
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O, = Oy,

(), =T,

£, = £k

Etez =&, — Efz

Exit or go to Step 1 for the next increment.

Step 3
To implement the trapezoidal rule, go to Step 4; to implement the midpoint rule, go

to Step 5.
Step 4

(B:), =~ a)hz[o'n-i: (Ii),;_I] + O‘hi[o'k: (Ii)k]
Mlg =(1- a)M[o*,,_,, (Ii)n_1]+ aM[Gk’ (Ii)k]

Go to Step 6.
Step 5

(), = ]I - @0, + a0y, (1= a)(&),_, +olL),]

Mg = M[(} - )0, + 0oy, (1- a)(Ii)n_1 + a(l,-)k]

Step 6
Solve f [O‘k, (L) k] =0 for A, by using either the Newton-Raphson or secant

method (iterative or one-step), and let AA, =A; —4,_;-
Step 7

(Ii)k.;.] = (Ii),,_l + Alk(hi)i-

Eper = g+ ALMS,
Advance the subscript: k =k + 1, and go to Step 1. #

Algorithm 4.
For each increment Af , the states of stress, total strain, elastic strain, inelastic
strain, and internal variables at the end of previous increment are known and denoted as

i

€ . . .
Cn-1€n_1&y_1, €y, and ( Ii),,_l , respectively, and the current total strain &, 18
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prescribed. The iteration loop for solving the constitutive equation starts with the index k =

0. Let o, &.,and (L), be the current iterative estimates for o, &}, and (L), ,

respectively. A small positive tolerance parameter, fol , is used to ensure the convergence

of numerical solutions.

Step 1

Step 2

Step 3

Ifk =0, then

i _ o
Er =&y g

(I, )k = (I: )n— I
For k > 0, calculate the stress o through the elasticity tensor E :

o, = E: (s,t - e}c)

Evaluate the yield surface fi = f [O‘k, (I,-) k] and check the yield criterion:
If fy >tol, orlfi|>tol for k> I, then go to Step 3. Otherwise, the solution is

converged; update the following variables:

0, =0

(I,-)" = (Ii)k

€y = €t

Exit or go to Step 1 for the next increment.

Calculate the subincrement 64 by using the Newton-Raphson method:

()~
S, = — Tk
(3,

where A = Agsg - Ax with Ag =Ap.; .Fork >0 and 4,1 >0,0rk >1 and
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An-1 = 0. The secant method can be used instead of the Newton-Raphson method,

as follows:
A=A
Ay =—fr—=—51
Je = fr-1
Step 4

(h,)k = ’li[ak’ (Ii)k]
M, = M[oy, (L), |

Step 5

(5)e s = (B) + OAily

Eprs = Ei + O M,
Advance the subscript: k =k + 1, and go to Step 1. #

In summary, this chapter discusses the general formulation of inelastic models
based on the framework of classical elastoplasticity, which is given in terms of differential
forms by Egs. (4.11-1) to (4.11-5). A specific model can be established as long as the
specific yield surface, flow rule, and hardening rules are defined. In order to solve
differential constitutive equations, the generalized trapezoidal and midpoint rules are
provided as a basis for designing algorithms. Algorithms 1 and 2 are robust and quite
accurate for the case where both a linear model is used and a stiffness tensor is required.
For other cases, Algorithms 3 and 4 are recommended, and a stiffness tensor can be

constructed for updated values of N, M, ;, and %— at the end of the iteration loop, if the
i
tensor is needed.
In the next two chapters, various models ranging from the category of elastic-
perfect plasticity to that of elastic-strain hardening plasticity are investigated with emphasis

on their applicability to concrete. The yield surface, flow rule, and hardening rules are

defined for each model, and the expressions of N: E,E:M,N:E: M, and —gjli are given if

H

it is efficient to.construct a tangent stiffness tensor in structural analysis.
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5. ELASTIC-PERFECTLY PLASTIC MODELS

The elastic-perfect plasticity models are the simplest category among many in
classical plasticity, and still commonly employed in design codes, especially for the limit
design of metal structures and some simple structures made of quasi-brittle materials. Other
categories of elastoplastic models, with more features and the increased degree of
complexity, are developed from this starting point. The basic assumption of elastic-
perfectly plasticity is that the material behaves elastically until the limit surface is reached
(i.e., the elastic surface coincides with the limit surface). Then the yield surface remains
fixed during continued deformation. Hence, the yield surface and flow rule are assumed to
be functions of stress only, and no hardening rules are needed. The assumption of isotropy
is also invoked.

5.1 von Mises Model

One of the simplest elastic-perfectly plastic models is the associated von Mises

model defined by
f(o)=3J,-H* (5.1-1)
M(o)=N(o) (5.1-2)

where the second invariant of the deviatoric stress tensor, J> , is given by

J) =—;-o"’:ad 5.2)

and the coefficient 3 is chosen so that 1/31 , = 0, the value of the stress for uniaxial stress

problems. H is a material constant to be determined from experiments. As can be seen
from Eqs. (5.1-1) and (5.2), H is equal to the uniaxial peak strength, where no difference
is made between uniaxial compression and tension. In fact, this model assumes that
yielding begins when the distortional energy reaches a value that equals the distortional
energy at yield in the uniaxial stress state. On the deviatoric (octahedral or pi-) plane, the
yield surface described by f = 0 is a circle. From definitions (5.1) to (5.2), it follows that

of
S5 =30" (5.3-1)
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Nol& __ o

" Ndo ( 4. o"i)é (5.3-2)

N:E=E:M =—9d—-,-.-(3BP‘ +2GP%) =—£"d—, (5.3-3)
(o4:0%)2 (o4:04)

N:E:M=2G (5.3-4)

Stress-strain curves for triaxial compression obtained with this model are shown in
Figure 5-1, with typical values assigned for material constants where H =f is adopted so
that the theory predicts the failure strength, f; , in uniaxial compression. Since the von
Mises model is formulated in the deviatoric space as can be observed from Egs. (5.1),
(5.2), and (5.3), no information in the spherical space can be determined because of the
independence of two spaces. Thus, the model displays no enhancement in strength with an
increase in mean pressure, no yielding under the state of hydrostatic stress, and no
volumetric inelastic deformation for any state of stress because

P5: 6

(o*:04)?

PS:de' = dAP*: M = dA =0 (5.4)

N |~

In addition, no shear enhanced compaction, no dilatation, and no difference between
tension and compression can be simulated. Hence, the model is of limited usefulness for
geotechnical materials, although it is very simple for program testing and is of considerable
use for metals.

5.2 Prager-Drucker Model

In order to remedy one of the limitations of the von Mises model, the pressure
independence of material strength, a model proposed by Prager and Drucker involves the

assumption that H is a linear function of mean pressure P = —%"-. An associated Prager-

Drucker model then takes the form of

7(0)=3J,— H? = 31, - (of, + BP) (5.5-1)
M(0) = N(o) (5.5-2)
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Figure 5-1. Stress-strain curves for triaxial compression predicted by the perfectly plastic

von Mises model, with P = -—;- o;; and ey = gjj.
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in which ¢, 8, and f;. are material constants that can be determined from the slope and the
intercept of the failure envelope plotted in the P —,[3J, space. Triaxial compression tests
can be employed to established the failure envelope for a given material. On the deviatoric
plane, the yield surface f =0 is a circle, the radius of which changes with P . According
to Egs. (5.5-1) to (5.5-2), it follows that

¥ 564+ B (5.6-1)
Jdo 3
13 90 + 2BHi
N=Ll2 _ + 2pHi 7 (5.62)
5V3[6, + (2BH)’
N:E=E:M= 6Go" +2BpH 7 (5.6-3)
V3[6.7,+ (28H)’
Nog g = 305G+ B(2pH)’
' 3[6]2 + (2[311)2] (5.6-4)

Stress-strain curves for triaxial compression are given in Figure 5-2 for various
values of initial mean pressure, with & = 0.5 and B = 1.5, which are representative of
concrete. As can be observed, the enhancement of strength with mean pressure is displayed
so that this model is a considerable improvement over the von Mises model. The use of the
associated flow rule results in too much dilatation once the yielding occurs since

Pidg = dAPS: M = dA——2P 5.7

533(6, + (2BH)’[2

This feature is considered to be undesirable for concrete, and therefore, a nonassociated
Prager-Drucker model is often used with the flow rule being of the following form:

96° + 2p'Hi
1
3367, + (2pH)’ [

M = (5.8)

in which 8 in Eq. (5.6-2) is merely replaced with 8’. One possibility is B*= 0 for which
only the deviatoric part of the total strain tensor contains inelastic components. A more
suitable flow rule (8’ # 0 ) should be devised if the correct amount of dilatation is to be

predicted. Shear enhanced compaction can be predicted by choosing B’ <0, but then

38




&0 T T T ‘ T T T [ L4 T T l T T T l LS T T l T T T

I\
(%]
I 1l
— [9)]
o (@]
o o
S
\

|

I

[

l

I

1

™
)

=
(2]

stress difference/ f,
PN

3-0 T 1 T ‘l T ' T l T l i l 1 1 1
[ ——P,_ =500
25+ e e e e e e - -
— —P_= 1000 \

o
o
1
|
|
]
1
N
(o]
o
o
1

stress difference/ {,
o
i

1.0 - ~4
f_= 4000. E = 3.0e6

S a= 0.5 v = 0.20 .

ol =45 o 0

~008  —007  —008 —005 —004 =003 —002  —001  .000

radial strain

1-0 T l 1 l T I \3 T ] T l T ] T
| ——P_= 500
8f ——P,=1000. T T T T T 7 B :
/
— —Po = 2000
.6} e =
<
o,
4+ A
fc= 4000. E = 3.0c6
2 F a = 0.5 = 0.20 ~
g =195
0 s 1 ‘ | 1 i : 1 : 1 :
-010 -.008 —-006 —004 -.002 .000 .002 .06«
-
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would have to change to predict dilatation. Such an approach becomes overly complicated.
Other limitations of the model are the facts that no yielding for hydrostatic compression can
be modeled and that the strength for negative mean pressure (tensile regime) is generally
too high.

5.3 Modified Prager-Drucker Model

With the assumptions that J» attains a limiting value Sy, as P increases positively
and that the hydrostatic tensile strength is Py, a more accurate representation of material

strength as a function of mean pressure can be constructed. A modification to Eq. (5.5-1)
that provides a smooth transition to S, and P; is given as follows:

H=(1-¢"*)[of, +BP(1- )]

(5.9-1)
where
P m ,
k= [1 —-g) i (5.9-2)
S
=——"t— 5.9-3
Y= BP-B) 653

The material constants ¢, 8, m, S,,, and P; cah be determined by curve fitting, such as with
a least square method, in the P— 1/3] , space of experimental data obtained from triaxial

compression tests. The yield surface described by f =0 is shown in Figure 5-3 for the
given parameters. The intersection with the P- axis at P = Py is exhibited together with the
decrease in slope for large values of P .

With the use of either an associated or a nonassociated flow rule, stress-strain
curves for typical triaxial compression paths obtained with this model are similar to those
obtained from the Prager-Drucker model with the exception that improved values of
strength are shown for the low and high range of mean pressure. However, this modified
Prager-Drucker model is still inadequate if the details of inelastic deformation need to be
simulated. And also, it is not efficient to form the tangent stiffness tensor in numerical
integration schemes, because of the added complexity of the yield surface.
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5.4 Noncircular Pressure-Dependent Model

All of the models discussed previously in this chapter define yield surfaces that are
circular in the deviatoric plane. According to Chen [1982], experimental data in the
deviatoric plane show that for a given value of mean pressure there is a considerable
variation with polar angle in the limit value of effective stress. For low values of mean
pressure, it is believed that the maximum principal stress criterion is most appropriate. For
large values of mean pressure, the circular shape is considered adequate. Thus, an accurate
limit state surface in the deviatoric plane should vary from a triangular shape at low values
of mean pressure to a circular shape at high values of mean pressure. To do so, consider a
yield function

f(o)=R| I, _B +(—2—H3 —111") (5.10)
3 27

in which H is given by Egs. (5.9), the third invariant III4 is defined as the negative

determinant of the deviatoric stress, namely,

= —de:(a") (5.11)

and R is a parameter that controls the shape of the yield surface f = 0 in the deviatoric
plane. Examples are given in Figure 5-4 for various values of R and H =1. The minimum

value of R that gives a convex yield surface is R =§ , while the surface for R =10 is

very close to circular. Hence, a simple relation where R increases with P is desirable.
After an attempt to fit experimental data, the following relation appears to be suitable:

R=i[,+g£] (5.12)
E| Qi

where ¢ is a material parameter chosen to match experimental data. In the absence of data
for a particular material, ¢ = 0.3 provides a yield surface that is reasonable for concrete.

The use of three stress invariants in constructing a noncircular yield surface was discussed
in detail by Schreyer and Babcock [1985].

For triaxial compression, stress-strain curves based on this model are not different
from those obtained with the modified Prager-Drucker model. However, for other classes
of paths, the stress-strain curves are similar with the exception that the limit stresses are
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Figure 5-4. Dependence on R of the shape of the yield surface in the deviatoric plane

1 1
[41=75"(01—02)a"d112=-—ﬁ(0'1+0'2—203)] .

lower. For analyses where limit values must be accurate, the modifications to R and the
yield surface with the third invariant of stress may be nontrivial in a constitutive model. In
addition, it is not recommended to formulate the tangent stiffness tensor in numerical
calculations because of the complexity of the yield surface.
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6. ELASTIC-PLASTIC STRAIN HARDENING MODELS

Many frictional materials display a certain amount of ductility and an increase of
yield strength beyond the elastic strength with increased deformation, a feature often called
strain hardening. Since the elastic strain is only a part of the total strain during the
hardening process, accurate analyses near the limit state require a good representation of the
inelastic strain. The purpose of this chapter is to demonstrate how isotropic hardening
models, which reflect the essential features of strain hardening, can be developed from the
starting point of elastic-perfectly plastic models. The fundamental assumption of an
isotropic hardening model is that stress appears in the expression for the yield function as
invariants of stress only, but the internal variables can change with inelastic deformation.
Suppose here that only one internal variable is used. Implicit in this assumption is that no
matter which path is followed in stress space, the internal variable governing isotropic
hardening obtains the same value at the limit state. Thus, the yield surface, flow rule, and
hardening rules are assumed to be functions of the invariants of both stress and inelastic
strain. At the limit surface, the model becomes one of perfect plasticity.

For engineering computations, whenever an element reaches the limit state, the
consequent calculations in the post-peak regime should be suspect because large
deformations may localize into an element. Without a proper treatment of softening with
localization as indicated in Chapter 7, the predicted energy dissipation may be too high
since zones of localization are frequently much smaller than the width of an element ina
mesh generated for typical engineering calculations. Also, it must be pointed out that
accurate predictions for strain under multiaxial states of stress are much harder to achieve
than predictions for limit states in terms of stress. Future research should be able to resolve
the limitations inherent in classical plasticity.

6.1 von Mises Model

The strain-hardening von Mises model with an associated flow rule is defined by

flo, 1)) =3J,— H¥(I}) (6.1-1)

= _1laf 1-2
M(o,1;)=N(0,1;)= 5~ - (6.1-2)
dl, = de' =d) (6.1-3)

where the second invariant of inelastic strain, &', is given by:
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g’ =](de':de’)2 = 4] dA 1 da

o
X
%
X

=[dA=2 (6.2)

Therefore, H is a hardening function of the internal variable 2. An elementary smooth
relation can be assumed for H as follows:

AN
NEAK o
H= Ho +(HL - H())SIII[E(E}ZJ :| OSE’ <E£ (63-1)

H=H, gzl (6.3-2)

in which H, and Hj correspond to the elastic and peak strengths, respectively. The limit
i

state is achieved when the inelastic strain invariant reaches the limit value &;, . The material
parameters Hy , Hy , e'ei ,and n can be identified from an experimental stress-strain curve

in a uniaxial stress test where /37, =|o;,| and &' =|£§ 1| for the case where the loading

axis is identified as x;.

On the deviatoric plane, the yield surface described by f = 0 is a circle, the radius
of which expands with '. Equations (5.3-1) to (5.3-4) are still valid because the partial
derivative of the yield surface with respect to stress does not include the internal variable
z', but now the partial derivative of the yield surface with respect to the internal variable is
not equal to zero because of the hardening feature and can be written as

. -1 -\
o m(H,-Hy)(# Y z(e
AR O B Pl 64

. Hy . . . .
For many materials, Hy = —ZL is a reasonable choice. Typical stress-strain curves

with this choice and for various values of n are shown in Figure 6-1. It can be observed
that with n=0.5 a shape is achieved that is representative of many experimental data. The
strain at which the maximum stress is reached can be adjusted through the parameter Ei.
Since the yield surface and flow rule are formulated in the deviatoric stress space,
the criticisms given in Section 5.1 are still applicable here except that the strain hardening
phenomenon is now predicted. Therefore, this model is not of much use for geotechnical
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Figure 6-1. Stress-strain curves for uniaxial compression for a strain hardening von Mises
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materials, although it is very suitable for describing the strain-hardening behavior of metals
under monotonic loading.

6.2 Prager-Drucker Model

A strain-hardening version of the Prager-Drucker model is set up by choosing a

yield surface of the type
f=3JI,-H(I,, P) (6.5-1)
M(O’, Il)zN(O', I]) (6.5“2)
dl, =de' = dA (6.5-3)

where the hardening function takes the form of

s\
.| =& —
H=H,+ (HL - Ho) sm[;(—g,fj :| 0<e'<e (6.6-1)
L
H=H, g2z (6.6-2)
Hy =of, + P (6.6-3)

The parameters @ and § are defined in Section 5.2. Since Hy, is now a linear function of

mean pressure P, this model simulates both strain hardening and variations of material
strength with mean pressure, which gives an improvement over the von Mises hardening

model. On the deviatoric plane, therefore, the radius of the circle described by f =0
changes not only with I; but also with P . Equations (5.6-1) to (5.6-4) can be valid here if
—i

n
the parameter B8 in those equations is replaced by sin[%(—e-i-J :I, which reflects the

L
hardening feature of the model. From Egs. (6.5) to (6.6), it follows that the partial

derivative _&’{_ can also be found from Eq. (6.4) with the new definition of Hf .
1
Typical stress-strain curves for triaxial compression are shown in Figure 6-2 for
various values of mean pressure. As in Section 5.2, the pressure-volumetric strain curve
still exhibits too much dilatation. If we redefine the internal variable I; in terms of the

deviatoric part of the inelastic strain tensor, that is, let
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Figure 6-2. Stress-strain curves for triaxial compression for an associated hardening

: 1 "
Prager-Drucker model, with P = -3 Gii and ey = &jj.
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1
I,=2" = [(de":de")? (6.7-1)

id _ i _ % gli (6.7-2)

the almost identical results can be seen from Figure 6-3. This comparison illustrates the
point that the choice of internal variable is usually not a critical factor in establishing an
isotropic strain-hardening model, and instead, the flow rule plays an leading role as
indicated by Eq. (5.7). If the flow rule of von Mises’ type is used, the result is that no
volumetric inelastic strain is predicted so that g4 =¢'. Typical stress-strain curves are
given by Figure 6-4, which are different from those in the previous two figures.

Although strain hardening is now simulated, experimental data indicate much more
inelastic behaviors for large values of mean pressure than those shown in Figures 6-2
through 6-4. The lack of correlation can be corrected by scaling the increment dl; witha
coefficient proportional to the inverse of mean pressure. Such a modification is not
warranted at this stage because of other limitations of the model, such as no shear enhanced
compaction and no yielding for hydrostatic compression.

6.3 Modified Prager-Drucker Model

If H; in Egs. (6.6) is redefined by Egs. (5.9), namely,

Az(&Y o
H=H,+(H, - Ho)svl[g(g) } 0<e <ey (6.8-1)
H=H, g2z (6.8-2)
H = (] - e_k)[ogfc + ﬁP(] - e"y)] (6.8-3)

then a strain-hardening version of the modified Prager-Drucker model is obtained. The
advantage of this model is that a realistic limit for negative mean pressure (tensile regime) is
achieved and strain hardening is displayed for all paths except hydrostatic compression.

However, this model still contains some serious deficiencies. No shear enhanced
compaction is shown for uniaxial strain and triaxial compression, and the amount of
ductility displayed for triaxial compression is too low for a large mean pressure. In
addition, the formulation of the tangent stiffness tensor is complicated.
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Figure 6-3. Stress-strain curves for triaxial compression for an associated hardening
Prager-Drucker model with an alternative internal variable.
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6.4 Noncircular Pressure-Dependent Model

A strain-hardening yield surface with a noncircular cross-section in the deviatoric
plane can be developed if the function H in Eq. (5.10) is redefined by Eqs. (6.8). There is
no question that for relatively small values of P , the hardening yield surface is triangular in
the deviatoric plane. However, this degree of refinement for a general constitutive model

d
involves considerably more computations, primarily because of the calculations of 5% and

of

A At present, it is difficult to justify such a degree of sophistication in computational
1

codes so that the main focus of this chapter is to develop in the next section the modified
Prager-Drucker model with a cap, which provides a balance among simplicity,
computational efficiency, and reasonable predictions for the inelastic behavior of concrete.

6.5 Modified Prager-Drucker Model with a Cap

All the inelastic models investigated up to this stage can not simulate features
representative of concrete, i.e.,

1. Strain hardening for all stress paths including hydrostatic compression,

2. More ductility predicted for paths associated with large values of mean

pressure than for paths associated with low values of mean pressure, and

3. Shear enhanced compaction and dilatation.

In order to remedy the shortcomings of the previous models, the modified Prager-Drucker
yield surface described in Section 6.3, which does not intersect with the positive P -axis in
the P—+f3J, space, can be connected to the positive P -axis by the addition of a cap
surface. Several versions of cap models are available [Sandler et al., 1976; Sandler and
Rubin, 1979; Resende and Martin, 1985; Faruque and Chang, 1986; Simo et al., 1988],
but some of them involve a discontinuity in slope at the junction of the original yield
surface and the cap surface. Since the flow rule usually contains the normal to the yield
surface, the flow rule for a stress state at the junction point is complicated by the
consistency conditions associated with two yield surfaces that must be satisfied
simultaneously. The result is an integration scheme that is more complicated than if a single
smooth surface is used.

By trial and error, a single yield surface providing a smooth transition from the
modified Prager-Drucker surface to the cap surface can be developed. The yield surface is
continuous and has a continuous derivative everywhere so that a corner algorithm is not
required. In addition, the flow rule is associated, the yield surface is convex and intersects
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the P -axis at right angles for both positive and negative values of P, so that the uniqueness
of solutions is assured and no deviatoric strain occurs for hydrostatic stress states.

6.5.1 Description of the Model

A smooth yield surface is defined by

flo,I,)=37,- (6.9-1)
M(o,1;)=N(o ]; ) (6.9-2)
—5i = 0 id

L=e=l5F 7, de (6.9-3)

i i i\1
L=g=] (_dsii —code ) (6.9-4)
with
H=HH, (6.10)

where the hardening function H takes the form of

n
m( & o
H= HL{HO-E-(I Ho)szn[z(eL) }} 0<zi<zl (6.11-1)

H=H, zi>z (6.11-2)
Hy =(1-¢ o, +BP(1- )] (6.11-3)

with k and y defined by Egs. (5.9-2) and (5.9-3). The key point for obtaining a smooth
transition between two surfaces is the choice of the cap function H, . Here, the choice is

made to let
q
(P—sP, 2l .
H,=|I e sign(F, - P) P>sP. (6.12-1)
H =1 P<sP, (6.12-2)
where
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—i ¢4
- —c,) £L
s=c;+(0.98 C’)(Ei ) (6.12-3)

P.=F, exp(g f—%—) (6.12-4)
€L

In Eqgs. (6.9) to (6.12), which describe the yield surface, the material parameters can be

grouped according to their function as follows.

The limit state H; is defined by o, B, P;, m, and S,, inthe P—+/3J, space as
shown in Figure 5-3. For a linear approximation given by Eq. (5.5-1), of,, is the intercept
on the ﬁj_z -axis and 3 is the slope. The intercept of the surface with the negative P -axis
(hydrostatic tension) is P, . The shape of the transition from the tensile intercept to the
hydrostatic compression regime is controlled by 7. The maximum value of JEE for large
positive P is adjusted through S,,,.

The strain hardening of the yield surface, as reflected through Eq. (6.11-1), is
governed by the parameters Hy, g;, and n. The fraction of the peak limit stress, where
inelasticity first appears, is given by H, . The strain invariant of Eq. (6.2) or (6.7-1)
proves to be inadequate if reasonable predictions of strain are required, since the use of Eq.
(6.2) or (6.7-1) implies that the same amount of shear deformation is obtained to reach the
limit state regardless of the value of mean pressure. Experimental data suggest that for a
tensile state of stress or strain, less shear deformation is needed than for a compressive

state. Hence, the invariant defined by Eq. (6.9-3) is proposed for use in Egs. (6.11). As a
material parameter, P, controls ductility. If Py is large relative to P for all points on a

stress path, the invariant g} reduces to the usual deviatoric invariant z'¢. However, if Py is
small relative to P, then dz; will accumulate at a slower rate than dg i The result is that for
large values of P, the model will predict a greater amount of ductility, which is a feature
exhibited by many frictional materials. The parameter P, can be determined together with
E£ by matching uniaxial and triaxial data. The shape of the strain-hardening curve is
controlled by n.

The shape and change of the cap surface is described by Egs. (6.12-1) to (6.12-4)
and adjusted through the parameters g, P, ], €2, ¢3, and cy . The absolute value is
required so that the operation involving the exponent ¢ (0 <gq <I ) can be performed. The
exponent g controls the shape of the cap surface. P, is the value of P at which the cap
surface intersects the positive P- axis. The function H, and hence H is zero when P =
P,. The value of P, evolves with compressive volumetric strain. If shear is present, the

increase in pressure with volumetric strain should be less rapid, which is called shear
enhanced compaction as shown in Figure 3-4(a). To predict the shear enhanced
compaction, P, in Eq. (6.12-4) is assumed to be a function of the strain invariant defined
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by Eq. (6.9-4) where dz, equals the quantity inside the triangular bracket if the quantity is
positive and otherwise, zero. For a hydrostatic compression test, Eé = —e,’-',- and P, is the
value of P where inelastic deformation is first exhibited. The material parameter c; is
chosen to provide a fit to the experimental data, and the shape of the predicted pressure
versus volumetric strain curve under hydrostatic pressure is described through c3. The
degree of shear enhanced compaction under uniaxial strain is governed by the parameter c;.
H, is defined to be unity for P < sF, such that the point P = sF, connects the modified
Prager-Drucker surface to the cap surface where P > sP, . The derivative of H, with
respect to P is zero at P =sP, and infinite at P = P, . The first condition provides the

continuous derivative between two surfaces, while the last condition yields a strictly
volumetric compaction under hydrostatic compression. The sign function is appended to
produce a negative value to H, whenever P > P, a situation that can occur during
numerical calculations. In order to control the value of P at which the cap function
becomes effective, s, in Eq. (6.12-3), is taken to be a function of inelastic deformations as
observed from experimental results. ¢; is a material parameter that provides the location
where the cap surface first displays a horizontal tangent. The point sP_ varies from an
initial value of ¢;P, to 0.98P, at the limit point that means the cap becomes almost flat and
perpendicular to the positive P- axis as the limit state is approached. The parameter ¢4 is
used to monitor the rate at which s increases with inelastic strain, and a value of ¢y =1
appears adequate for most cases. The value of ¢; can be determined by identifying the

lowest confining pressure where triaxial loading curves first display shear enhanced

compaction.
In summary, the material parameters can be divided into the following three groups:
Limit state: o, B P, m, S,
Strain hardening: ~ Hy, &, n, Py
Cap surface: @ Peos €15 €2, €3, C4

The shear part of the whole yield surface evolves to the limit state while the cap part moves
monotonically out along the positive P- axis. The incremental-iterative integration schemes
discussed in Subsection 4.2.3 should be used to solve the nonlinear constitutive equations
consisting of Egs. (6.9) to (6.12), and it is not numerically efficient to find the tangent
stiffness tensor. In the following subsection, typical values of material parameters for
concrete are given, and the effect of each parameter is explored by the use of Algorithm 4
discussed in Subsection 4.2.3.
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6.5.2 Sensitivity of Material Parameters for Concrete

For design purposes, the most important material parameters are usually those
associated with the limit state. A straight line fit to data in the P — /37, plane immediately
results in values for of, and B .Iff, is taken to be the peak strength in uniaxial

compression, it follows from Eq. (5.5-1) that

B_
o+ (6.13)

Typical values for concrete are & = 0.6 and B = 1.2 . The strength in hydrostatic tension
is often not available from experimental data so that P, must be selected along with m to fit
data in the tensile zone. Values of P, =-0.05 f, andm =0.75 are reasonable for
concrete. Data are rarely available for large values of P , and hence, Sy, = 25f, is
recommended here based on extrapolation. The effects of m and S, on the limit surface are
shown in Figure 6-5 for P, =-0.05f, o =0.6 and § =1.2.

The initial shape of the cap is governed by the parameters cy, g, and P, . The
parameter P,, denotes the value where inelasticity first appears in the experimental curve
describing hydrostatic pressure as a function of volumetric strain. If this value is not
available, P,, =f, is reasonable for concrete. The transition point where the cap attains a
horizontal tangent is given by P = ¢; P, with ¢; = 0.4 recommended for concrete unless

triaxial compression test data for several different values of confining pressure are

available. The value of P at which shear compaction is first noted for the lowest confining
pressure identifies c;. These experimental data can also be adopted to determine g although

1
q =3 appears to be satisfactory for most cases. Figure 6-6 shows the effect of g on the

shape of the cap.
Triaxial or uniaxial data are useful for identifying the strain hardening parameters.
The fraction of the limit strength at which inelasticity first appears is given by Hy with Hy

=0.5 areasonable choice for most materials. The value of the invariant of the inelastic
strain at the limit state, g; , can be taken to be 0.0025 for concrete. The shape of the stress-
strain curve in the hardening regime is controlled through the parameter n althoughn =0.5
seems most appropriate for almost all materials. The effects of these parameters are shown
in Figure 6-7.

Under hydrostatic compression, most frictional materials display an initial elastic
regime, then a regime of monotonically decreasing stiffness followed by that of
monotonically increasing stiffness up to the value of initial volumetric elastic stiffness. An
exponential function defined in Eq. (6.12-4) has been chosen to reflect this observed
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Figure 6-6. The effect of g on the shape of the cap, with P = --;- Cij.

feature. Under hydrostatic compression, déé = Ideii,-l so that the only remaining parameter in
Eq. (6.12-4) to fit data is c3 . The effect of c3 is shown in Figure 6-8. If the experimental

data cannot be fitted satisfactorily, then a different mathematical formulation must be
prescribed.
Triaxial paths generally display both shear enhanced compaction and enhanced

ductility with an increase in confining pressure. Thus, the last two parameters to be
determined, P, and ¢, , can be found simultaneously from triaxial data. The most difficult

task is to seek reasonable values to initiate a sensitivity study. For concrete, however, Py
= 5f, and ¢, =1 have appeared to be a good choice so that these values can be used as
starting values for obtaining a fit to a specific material. The effects of variations in these
two parameters are shown in Figures 6-9 and 6-10 for the case where the other parameters

were assigned the “standard” values described previously in this subsection and confining
pressure is taken to be f, .
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Figure 6-7. (continued) The effects of strain hardening parameters on the predicted stress-
strain curve for uniaxial stress in compression.

The following list gives the standard values of material parameters for concrete:

o =06 B =12 P; =-0.05f, m =075
Sm =251, P.o=1c g =05 c; =04
¢, =1 c3 =1 cy =1 Py =51,
gl = 0.0025 n =05 Hy =0.5

6.5.3 Comparison of the Model Predictions with Experimental Data

To illustrate the degree of agreement of experimental data with the modified Prager-
Drucker model with a cap, model predictions for a high-strength concrete are compared
with experimental data in stress-strain plots.

With the use of the experimental data of Green and Swanson [1973], the values of
material parameters were obtained by curve fitting following the method mentioned in the
previous subsection. This procedure can be systematized to rigorously minimize the error
norm for an optimal fit to experimental data [Kovarna, 1981; Simo et al., 1988]. The

60



8.0

G.0

20

40.0

30.0

“—
~. 20.0

10.0

(b) Normalized pressure versus inelastic volumetric strain

Figure 6-8. The effect of the parameter C3 on the predicted response for hydrostatic
compression.
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Figure 6-10. (continued) The effect of the parameter C, on shear enhanced compaction.

values of material parameters for a high-strength concrete obtained by matching data are
given as follows:

a =050 B =15 P, =-200 m =075
Sm =251, PCO=—;-fC g =030 c; =0.60
€y = 0.50 C3 =5.0 Cy =10 Po =';fc
gl = 00027 n =025 Hy =0.50 fe  =7000psi

The fit for triaxial paths is shown in Figure 6-11 for three values of confining pressure. As
can be seen, reasonable values of both stress and strain are predicted at the limit state except
for Figure 6-11(b) where the confining pressure is 1000 psi and the predicted limit stress
is approximately 70 % higher than tested.

For frequently used strain driven algorithms such as Algorithms 1 to 4, the lack of
an accurate constitutive model will be reflected as errors in both stress and strain, especially
near the limit state. For problems where estimates of load capability are of primary concern,
such errors can result in misleading conclusions even though the computational algorithm is
adequate. Hence, it is imperative that constitutive models provide reasonable fits to both
stress and strain if the models are to be useful. From a micromechanical point of view, the
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mechanism of inelastic flow alone can not provide a satisfactory specification for nonlinear
features of quasi-brittle materials, and instead, the damaging or degradation of material
properties often dominates in the cases of quasi-brittle materials under mechanical, thermal,
and chemical effects, such as creep, stress corrosion, and leakage of seals. Thus, both the
inelastic and damage processes should be fully understood to correctly model quasi-brittle
materials nonlinear stress-strain response. The rapidly evolving continuum damage
mechanics will be discussed in the next two chapters with emphasis on concrete.
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7. DAMAGE MECHANICS

The concept of elastic or yield strength design is commonly used in conventional
engineering design procedures. The post-limit behavior of materials is not normally taken
into account. The concept of elastic or yield strength design might not be suitable for many
engineering applications. For dynamic cases of very short load duration, such as explosive
or seismic disturbances, no collapse occurs if a limit point is reached for a particular
structural member. The response can be observed well beyond the limit point for a
situation involving stress corrosion. Statically indeterminate structural members may help
to preclude collapse. Since a significant amount of energy absorption can be associated
with the post-limit regime, a realistic assessment of the nonlinear behavior of engineering
structures must include the softening of material strength and stiffness in the post-limit
regime. The post-limit response has become an active research field in recent years with
increased need in environmental protection, space technology, and advanced engineering
materials. Novel experimental techniques such as Laser Holographic Interferometry, X-
Ray Radiography, and Image Analysis provide more details about microstructural features
of materials, while the rapid development of digital computers makes advanced constitutive
modeling more feasible than ever before.

Among continuous and discontinuous approaches in failure simulation, continuum
damage mechanics (CDM) has been introduced and employed extensively to describe the
progressive damaging experienced by material properties prior to the initiation of
macrocracks. The historical development of the CDM dates back only about thirty years
and has already been compiled in the literature [Kachanov, 1986; Krajcinovic, 1989;
Lemaitre, 1984; Simo and Ju, 1987]. The CDM was originally applied to model creep
rupture by using the concept of effective stress, and then developed to simulate the three
main kinds of damage: fatigue damage, creep damage, and ductile damage. Recently, the
CDM has found its place in describing micromechanics of failure of quasi-brittle materials
such as concrete and rock, and the preliminary results appear quite promising. In the
following sections, an up-to-date survey of failure simulation will be given based on
experimental, theoretical, and computational points of view, and then the general
formulation of damage models and corresponding numerical solution schemes will be
discussed with emphasis on concrete.
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7.1 Present Status of Failure Simulation

By means of carefully controlled experimental devices, phenomenological
experimental data beyond the peak strength have been documented for some quasi-brittle
materials such as concrete and rock [Van Mier, 1984; Shah and Gopalaratnam, 1985;
Norman, 1990]. The apparent features characterized by the post-peak response include
reductions of strength and stiffness accompanied by a small zone of large deformations,
called softening with localization. At present, experimental investigations are providing
micromechanical data from Laser Holographic Interferometry, X-Ray Radiography and
Image Analysis [Maji et al., 1990; Wang et al., 1990]. The major difficulty associated with
measuring the post-peak response is the sudden change from an original homogeneous
deformation field to an inhomogeneous field where large deformations are localized into a
thin band. Thus, it is difficult to derive the stress-strain relation in the post-peak regime
directly from the normal force-displacement tests. It has been and is still a challenge to
reduce the experimental data from highly inhomogeneous deformation fields in three-
dimension to data suitable for evaluating constitutive equations

Two approaches exist to simulate structural failures: a discontinuous approach,
such as linear elastic fracture mechanics and elastoplastic fracture mechanics, and a
continuous approach, such as plasticity and damage mechanics. The discontinuous
approach causes the problem requiring the remeshing in finite element calculations, while
the continuous approach might not be valid when a macrocrack occurs. Also, the governing
equations with rate-independent local softening models change from hyperbolic to elliptic
equations for dynamic problems, and lose ellipticity for static problems. That is to say, the
governing equations become ill-posed during the transition from the pre-peak to post-peak
regime. Many research efforts have been conducted to clarify theoretical arguments
associated with softening with localization, to make clear the relation between the evolution
of localization zone and the post-peak response, and to simulate the degradation of material
properties and localized failure modes [Bazant and Pijaudier-Cabot, 1988; Chen and Tzou,
1990; Chen and Schreyer, 1987; Chen, 1989; Chen and Schreyer, 1990; Costin and Stone,
1987; Ortiz, 1987; Schreyer and Chen, 1986; Schreyer and Wang, 1990; Taylor and Chen,
1986; Wawersik et al., 1990; Yazdani and Schreyer, 1990]. Among the models proposed
are nonlocal plasticity, local or nonlocal continuum damage and other micromechanical
models based on fracture mechanics. Preliminary results obtained for one- and two-
dimensional sample problems look quite promising because, if a nonlocal model is used,
the failure behavior of quasi-brittle materials can be simulated and the results are mesh
independent. The correct predictions of crack propagation, anisotropy, and dynamic failure
response, however, are still at an infant stage due to the extreme complexity of the
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microstructural features of materials. Applications to the three-dimensional cases will not be
feasible until a robust and efficient solution scheme is designed, even with the use of
supercomputers.

As can be seen from the literature, an overwhelming number of models simulating
engineering materials has been suggested. The development of sophisticated constitutive
models itself might not be the limiting factor in structural analyses. Rather, a lack of
suitable experimental data to identify material parameters and an inability to obtain a
converged solution in nonlinear numerical analysis pose the major limitations. A robust
solution scheme is a necessity for a model to be used in industry, but little attention has
been paid to the numerical aspect of failure simulation. In nonlinear analyses, an
incremental-iterative procedure is commonly employed to correct for the incremental
linearization error. From the differential form of the stress-strain relation, it is a natural
consequence to use the tangent instead of the secant tensor. The convergence behavior of
the incremental-iterative scheme then depends heavily on the condition number of the
tangent structural stiffness matrix. If the tangent stiffness matrix becomes ill-conditioned,
the numerical solution will converge very slowly or even fail at some point on the solution
path [Akinson, 1978; Bathe, 1982], especially, if bifurcation or limit points, which are
typical of failure simulation, exist. In addition to an ill-conditioned tangent stiffness matrix,
the load increment can not be directly prescribed if the right path in the post-peak regime is
to be traced. From bifurcation analysis, it can be shown that more than one solution exists
at a bifurcation point. Hence, a suitable constraint condition should be imposed to guide the
solution path in the right direction. In other words, the post-peak solution heavily relies on
the constraint condition. After reviewing existing solution procedures, failure-controlled
solution strategies have been proposed for damage softening with localization and extended
to include both incremental plasticity and damage with nonlocal features [Chen and
Schreyer, 1989 and 1990; Chen et al., 1992; Neilsen et al., 1991]. The basic idea is that a
secant instead of tangent stiffness matrix, that is derived based on plasticity and damage
secant stiffness tensors, is used in the structural solution scheme controlled by a suitable
measure of failure. The resulting procedure is very robust for simulating the post-peak
response including snap-back and snap-through. Since practical finite element analyses
usually require the use of elements that are much larger than the localization zone, an
element constitutive relation is designed to describe the behavior of a finite element with a
localized deformation region that is smaller than the element itself. The applicability of the
proposed solution strategies in the general case needs to be further investigated.

In summary, more results have been achieved in failure simulation within the recent
ten years than ever before. A thorough understanding of failure mechanism and the routine
use of failure simulation in industry need a combined effort from experimental, theoretical,
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and computational aspects. From a modeling point of view, it is useful to combine both
plasticity and damage mechanics to simulate two distinct modes of microstructural changes
of material: inelastic flow and the degradation of material properties.

7.2 General Formulation

Phenomenological and micromechanical approaches are two ways of formulating
the damage models. There is no question that a meaningful constitutive model must be
consistent with the micromechanics of the material considered. However, the detailed
discussion of micromechanical features is well beyond the scope of the report, and instead,
the restrictions of thermodynamics, which reflect fundamental laws of physics [Coleman
and Noll, 1963; Coleman and Gurtin, 1967; Malvern, 1969; Marsden and Hughes, 1983;
Truesdell, 1984], are imposed here on the development of constitutive models. The géneral
formulations of both damage and inelasticity models follow the same procedure based on
the internal variable theory of thermodynamics. However, more details will be given in
this chapter to continuum damage models, which are proposed for simulating the
progressive weakening of solids as reflected through the reduction of material stiffness.
The part on inelasticity is provided for the purpose of showing an alternative method in
formulating the inelastic hardening models discussed previously. It is assumed, as before,
that the deformation and deformation gradients are small, so that the proposed damage
models can be applicable up to the immediate post-peak regime.

For a purely mechanical case, there exists an internal energy per unit volume,
U(e, I;), or a Gibbs free energy per unit volume, G(o,I;), where I; (i =1,2,...,n ) are the
internal variables representing the internal constitution of a material and hence governing
the processes of inelastic flow and degradation of material properties. Additional
independent variables can be introduced if the effects of thermal and chemical diffusion
processes are considered. The Clausius-Duhem inequality that follows from the principles
of thermodynamics can be expressed in terms of either the internal energy:

~U(e, I;)+0:620 (7.1
or the Gibbs free energy:
G(o,1)-£:620 (7.2)
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for any admissible process. Equation (7.1) will lead to a strain-based formulation, while
Eq. (7.2), a stress-based formulation. If the displacement-based finite element method
[Bathe, 1982; Belytschko, 1983] is adopted for the semidiscretization in space, the strain-
based Clausius-Duhem inequality in Eq. (7.1) has a computational advantage over the
stress-based one in Eq. (7.2), although both formulations are related to each other, as will
be explained later. Hence, Eq. (7.1) will be used in the formulation of a strain-based
damage model, which is fairly simple and provides a computational advantage of reduced
drifting errors from a damage surface.

From the definition of the internal energy, an alternative form of Eq. (7.1) is given
by

dUY.. 2JU:
S g - —I.>
(0' 38).8 i§1311 ;20 (7.3)

Standard arguments [Coleman and Noll, 1963; Coleman and Gurtin, 1967] and the
assumption that inelastic and damage unloading processes are elastic result in

U
== 7.4
o - (7.4)

and the dissipative inequalities

U .
—-é-l—-I' 20 [ =]; 2; e 1 (7'5)
i

Generally speaking, both inelastic flow and damaging processes are interacting, but at
present a coupled theory would not be useful because of no physical or experimental
support [Yazdani and Schreyer, 1990]. Therefore, a decoupled theory is developed here by
assuming

Ule, )= U(e) + U* (&, 1;) + U' (&, I) (7.6)
j=12.,1 k=12..m1+m=n
where Ue, Ud, and Ui are related to the elastic, damage, and inelastic processes with

corresponding internal variables, respectively. According to the features of these different
processes, we can postulate the following forms:
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U¢ =é£:Ee:e (7.7-1)
U =%8:Ed(1~) :E (7.7-2)

U'=e:0'(I}) (7.7-3)

where E¢ and E94 are secant stiffness tensors for the elastic and damage processes,
respectively. They can be isotropic or anisotropic but possess inherent symmetry due to the
definition of the internal energy. o¢ is the inelastic (relaxation) stress tensor.

Combining Egs. (7.4), (7.6), and (7.7) yields the following expression for the
total stress tensor:

a=%g—=Ee:s+E":s+oJ=o‘+a"+oi

=E“:g+0 (7.8)

where Ee€d is the secant elastodamage stiffness tensor that is related to the internal energy
through

*U

7.9
oede (7.9)

E“=E°+E’=

o¢, o9, and o are the elastic, damage, and inelastic parts of the total stress tensor,
respectively, which is similar to the decomposition of the total strain tensor. The inelastic
strain and inelastic stress have the relation that

g =—(g“)": o (7.10)

since the inelastic parts are assumed to be fixed during elastic unloading.
From the dissipative inequalities in Eq. (7.5) and Egs. (7.7), it follows that

1 .
—Es:Ed:ezo (7.11-1)
-£:6°20 (7.11-2)

Suppose the damage stiffness and inelastic stress tensors are described through the
evolution equations:
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. L.
E!=-YIR; (7.12-1)
j=1

¢ =—3in (7.12-2)
k=1

Then for the damage part of a constitutive model, there exists a damage surface that can be
formulated via

F(e1)=3 Se:R;:e-S(1) (7.13)
j=1

where S is called the damage hardening-softening function. Because the damage process is
irreversible, namely, / 20, the tensor R; must be positive definite so that the inequality
(7.11-1) is satisfied. It should be pointed out that the theory of thermodynamics does not

produce a constitutive model, and instead, only imposes certain constraint conditions on the
functional forms of constitutive equations we define. The internal variables, Ij, are

determined by a suitable set of damage hardening-softening rules:

dl; =dA’s (. 1)) (7.14)

in which A9 is a monotonically increasing variable used to parameterize the evolution of
damage. In order to obtain the differential d2d , the loading/unloading criteria for the
damage process must be defined as

r4<o, dA? >0, dAfe =0 (7.15)

In other words, damage occurs only when the strain is such that the damage surface A=
0, which guarantees the satisfaction of the thermodynamic restrictions. Thus, dA4 can be

found from the damage consistency condition: df =0, i.e.,

, %ﬁ:ds Y& R;:de
—__0OE S

TR TR
j o i 9L

(7.16)

In the absence of inelastic flow, therefore, the strain-based constitutive equations for
elastodamage process can be written in the differential form as follows:
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do = dc® +do® (7.17-1)

do® = E°:de (7.17-2)
do” = d(E’:¢) (7.17-3)
dl; = dA%; (7.17-4)
df*(e 1;)=0 (7.17-5)

For given increments in the total strain tensor, the internal variables, the elastic part of the
total stress tensor, and the damage part of the total stress tensor can be obtained with the
use of the loading/unloading criteria defined by Eq. (7.15). The difference between
different damage models depends on the specific damage surface in Eq. (7.13), damage
flow rule in Eq. (7.17-3), and hardening-softening rules in Eq. (7.14). The damage flow
rule and the evolution equation (7.12-1) are related to each other (i.e., either the flow rule
or the evolution equation can be specified independently).

For damage problems, it is a natural consequence to use the secant tensor, Eed, in
computation to construct a structural stiffness matrix because of the explicit formulation of
Eq. (7.8) with i =0,

c=E%:¢ (7.18)

—

It is not difficult to derive a corresponding tangent tensor, Te4, because it follows from
Egs. (7.9) and (7.18) that

do=E®:de+dE°: ¢ (7.19)

The use of Egs. (7.12-1), (7.14), and (7.16) yields

(Z",szj)'e@ 8:(2Rj)
Z_af_s.
so that
do=T%:de (7.21)
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Thus, a solution scheme can make use of either the tangent or secant tensor, although the
constitutive equations remain in the differential forms shown in Egs. (7.17) to simulate
those paths that are load dependent with the least possible computer resources. The use of
the secant tensor, however, avoids the singularity associated with the limit or bifurcation
points [Chen and Schreyer, 1990].

For the inelastic part of a constitutive model, equations similar to those in Egs.
(7.17) can be constructed by using the above procedure. However, a secant tensor for the
inelastic part can not be directly obtained as for the damage part, and instead, an alternative
formulation must be invoked [Chen et al., 1992].

As mentioned before, the stress-based formulation for damage and inelasticity
models can be derived from Eq. (7.2). Now let us find the counterpart of Egs. (7.17) so
that both the strain- and stress-based formulations can be compared with regard to their
effectiveness in numerical calculations. According to the definition of the Gibbs free energy
and with the use of Eq. (7.2) and standard arguments, we arrive at

G (7.22)

g=—

00

and the dissipative inequalities

. (7.23)
G0 i=1,2,..,n
oI

A stress-based decoupled theory can be developed by assuming

G(o,I;) = Ge(e) + G4(&,1;) + Gi(e, Iy (7.24)

j=12.,1 k=12..,m [l +m=n

where G¢, G4, and Gi correspond to the elastic, damage, and inelastic processes with
corresponding internal variables, respectively. Based on the features typical of the elastic,
damage, and inelastic processes, respectively, it can be postulated that

1 (7.25-1)

Geé = Ec: Ce¢:o
7.25-2
Gd = éo: Ccd:.o ( )
Gi=0c:¢l (7.25-3)
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where C¢ and C9 are secant compliance tensors for elastic and damage processes,
respectively.

Combining Egs. (7.22), (7.24), and (7.25) results in the following expression for
the total strain tensor:

€ _9G _ Cé:0+C%o+¢
Jo
=ef+el+e =C%0o+¢ (7.26)

where Ced is the secant elastodamage compliance tensor that is related to the Gibbs free
energy through

°G
dodo

c?=ct+C%= (727)

e, ed, and €' are the elastic, damage, and inelastic parts of the total strain tensor,

respectively.

According to the dissipative inequalities in Eq. (7.23) and Egs. (7.25), it follows
that

-1—0': C%:020

2 (7.28-1)

0:£ 20 (7.28-2)

The evolution equations or flow rules need to be defined for the damage compliance and
inelastic strain tensors, namely,

. | —

¢!= 3K, (7.29-1)
j:

. m .,

&= 3SIx (7.29-2)
k=1

Then for the damage part of a constitutive model, we can construct a damage surface by
letting

1) (730)
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where S is the counterpart of the damage hardening-softening function in the strain-based
formulation, and the tensor, R;, must be positive definite so that the inequality (7.28-1) is

satisfied. The internal variables, Jj, are determined by a suitable set of damage hardening-
softening rules:

dl; = dA"s;(o, 1)) (731)

In order to find the positive parameter d2?, the damage loading/unloading criteria in Eq.
(7.15) must be invoked, and then the resulting damage consistency condition yields

ad=-dl (7.32)

The stress-based constitutive equations for elastodamage process can be summarized in the
differential form in the absence of inelastic flow as follows:

de = de® + dg’ (7.33-1)
do = E°: de* (7.33-2)
de? = d(C*: o) (7.33-3)
dl; = dA"s; (7.33-4)
df*(c,1;)=0 (7.33-5)

and the corresponding tangent compliance tensor is given by

[Z.SJ'EJ ) o® "-’(Z’—‘jj
Ted - Ced _\J afd J (1.34)
2o
j %

For the inelastic part of a constitutive model, results similar to Egs. (7.33) can be
obtained.

In summary, any damage and inelasticity models can be developed from either the
strain- or stress-based general formulation constrained by thermodynamic restrictions. Both
the strain- and stress-based formulations are related to and can be easily transformed to
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each other, but the model derived from the strain-based formulation is computationally
more efficient as shown in the next section.

7.3 Constitutive Equation Solver

As in the case of inelasticity models, damage models are usually nonlinear, and
hence an incremental-iterative integration scheme is required to solve the differential
constitutive equations. Because Egs. (7.33) are the same as Egs. (4.11), the integration
schemes discussed in Chapter 4 can also be applied to the case of stress-based damage
models, with only minor adaptations for damage variables. However, the integration
schemes for the strain-based formulation can be made much simpler and introduce less
numerical errors than for the stress-based one. The increment AA4 can be found for given
total strain increments by using either the Newton-Raphson or secant method. No elastic-
predictor and damage-corrector are needed as in the stress-based formulation. The
following is the outline of an integration scheme suitable for the strain-based damage
model, based on Egs. (7.17) and (7.18).

Algorithm 5.
For each increment At , the states of total strain, elastic stress, damage stress, and

internal variables at the end of the previous increment are known and denoted with the
subscript n -1, and the current total strain, &, is prescribed. The iteration loop for solving

A2 is identified with the index k. The final values of state variables at the end of current
increment are denoted with the subscript 7.
Step 1
Evaluate the damage surface 2=f d [ E,, ( I j)n— 1] and check the damage loading/
unloading criterion:
If fod > 0, then go to step 3. Otherwise, the solution is elastic.
Step 2
Update the elastic stress and damage stress at the end of current increment:

—(ped) .
—(E )n.s,,
— Fe.
=E":g,
=Gn_G§

:% :q\ :q

where Eed and E¢ are the elastodamage and elastic stiffness tensors, respectively.
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Exit or go to Step 1 for the next increment.
Step 3
Damage occurs and solve f 4 [ £, ( I j)k] =0 for A‘,ﬁ by using either the Newton-

Raphson or secant method. Go to Step 2 after a converged solution is achieved.

For a simple case given in Chapter 8, A‘,f can be solved correctly without invoking

Step 3 in the above algorithm. Thus, a very robust constitutive equation solver can be
incorporated into commonly used structural solution codes.
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8. DAMAGE MODELS

Experimental results [Wang et al., 1990] indicate that internal strain localization
starts as early as 40% of the peak load for some concrete specimens, which implies that the
degradation of material properties might occur well before the peak strength is reached.
Thus, a damage model should be able to include both hardening and softening regimes,
although inelastic flow might dominate the hardening phenomenon. Here, the emphasis
will be put on the development of damage softening models, but the extension to the
hardening part is straightforward as shown with an example.

If the elastodamage process is assumed to be isotropic, the elastodamage stiffness
tensor can be expressed in terms of bulk and shear moduli, Bed(I j) and G*¢ (I j),

respectively, and takes the form of

E“(1;) = 3B°(L;)P* +2G6°(1;)P* (8.1-1)

with its initial value equal to the elastic stiffness tensor, namely,

E®(0)= E® = 3B°P* + 2G°P* (8.1-2)
and its damage part defined by
E“(1;) = 3B%(L;)P° + 2G*(1;)P* (8.1-3)

The corresponding elastodamage compliance tensor is given by

Ced(lj) =(Eed)_] = 3Be£(1j)Ps + ZGEZII(Ij)Pd (8.2-1)

with

dioye ce = (ge = L_ps 4+ L pd -
c*(0)=C* = (E*) —3BePs+2GeP (8.2-2)
c!(n)=ce(;)-c= BB l) e -G ) e g2

3B°(1;)B° i 26°(1;)G°
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For the purpose of illustration, isotropic damage models of the von Mises type are
developed in the next two sections via both the strain- and stress-based formulations. Since
the models are in the deviatoric space, failures of shear type are simulated and no damage
occurs in the volumetric space.

8.1 A Strain-Based Model

A strain-based damage model in the deviatoric space can be defined as

f4=52-5? (8.3-1)
E¢=2G°P% = 2coG"[exp(—c 10)— I]Pd 0 w<o (8.3-2)
dow =dA? (8.3-3)

where the effective strain (strain invariant) and damage hardening-softening function are
given, respectively, by

g2 = %ed ¢ (8.4-1)

S=8,(1+) (8.4-2)

Since the stiffness tensor is determined for given evolution equations and hardening-
softening rules, Eq. (8.3-2) implicitly gives the definitions for the evolution equations and
hardening-softening rules, which illustrates an alternative approach to set up a damage
model. Eq. (8.3-1) is consistent with Eq. (7.13) if R; = 3Pd  Due to the simple form of

Eq. (8.3-1), it follows from a Taylor expansion that

d -
Aw:ﬂf’:ﬁ—ﬂ.ﬂ‘i (8.5)
SL

Since the total strain increments are provided directly from the displacement-based finite
element method, Algorithm 5 discussed in Section 7.3 can be used without invoking the
Newton-Raphason or secant method, and no drifting error will be induced for the given
damage surface. This might not be the case, however, if a stress-based model is used
because the total stress increments are usually unknown before a converged solution is
achieved.
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The effects of the model parameters ¢y and ¢; on the strain-based damage model
are illustrated in Figure 8-1 with Sy = 10 -3, B¢ =24 GPa, and G¢ = 18GPa which are
representative of concrete. The effect of ¢y is demonstrated for c; =1. As expected, the
smaller the value of c; , the larger the residual stiffness. The rate of change of G4 with
damage is simulated through the value of ¢; and is shown for ¢y = 0.99. From the figure,
it can be found that both damaging hardening and softening are exhibited with different
values of model parameters.

8.2 A Stress-Based Model

In this section, a stress-based damage model is developed by showing its
correspondence to a strain-based formulation so that both a strain- and a stress-based
formulations can be available for a specific damage model, which provides experimental
and computational convenience.

A stress-based damage surface of the von Mises type can be defined as

f=52-52 (8.6-1)
52=0%0" (8.6-2)

where & and § are the effective stress (stress invariant) and damage hardening-softening
function, respectively. Because

o?:0¢=0:PU:P!:c=6:E®:P*:E¥:¢
2 2
= 4(G“’") ePle= 4(G“’) g% e? 8.7

the stress-based formulation (8.6-1) can be changed fo a strain-based one as follows:

f¢=g:Re-5§° (8.8)
in which
r=1pd 8.9-1
=3 (8.9-1)
2 S
§? = 4(Ged)z (8.9-2)
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Figure 8-1. The effects of model parameters Cp and C; on the stress-strain relation.
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The strain-based damage surface in Eq. (8.8) is obtained by dividing Eq. (8.6-1) by
2
4(Ged) _The choice of R given in Eq. (8.9-1) is necessary for the equality of Eq. 8.8)to

hold. If the numerator in Eq. (8.9-2) decreases faster than its denominator, the effective

strain reduces with damage softening, a feature that might not be physically realistic.
With the use of one internal variable, I; , a simple damage hardening-softening rule

is given by

dI; = dA® (8.10)

Then the use of Egs. (7.12-1), (8.1-3), and (8.9-1) yields B4 =0 and

2G4(1))P? = —%’P“ (8.11)

With the initial condition G%(0) = 0, it follows that

G’ =—-Ij 0<I,<4G° (8.12)
Thus, it can be found that

Eed(11)=3BePs +2Ge(1——41G1—e)Pd (8.13-1)

(1)) = 3; P+ 4Ge2__ TP (8.13-2)
and Eq. (8.9-2) becomes

§?= S (8.14)

[ZGE(I B 4Ic1;°’ )]2

In order to make the effective strain increase with the damage process, choose

1

§=6L(1—4I(’;e)2 ‘ (8.15)
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where G; denotes the limit effective stress. Substituting Eq. (8.15) into Eq. (8.14) and

o}
defining &, = —L, we can get
nng £;, 2G° g
d £
ff=€RE€e- LII (8.16)
]._
4G°

As can be seen from Egs. (8.15) and (8.16), the effective stress reduces with the increase
of the effective strain, which is a feature typical of damage softening.

The above gives all the equations necessary to construct Egs. (7.17) for a strain-
based damage model or Egs. (7.33) for a stress-based damage model. It is now obvious
that both Egs. (7.17) and (7.33) are related to each other. With the material parameters
Be = 24GPa, G¢ = 18GPa, and O = 50MPa, Figure 8-2 illustrates the loading and
unloading of the simple damage model. As can be seen, no permanent deformation occurs
after unloading, as expected for a damage model.
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Figure 8-2. Loading and unloading of the damage model.
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9. CONCLUSIONS

An effort has been made in this report to investigate, from experimental, theoretical,
and computational points of view, nonlinear response features exhibited by quasi-brittle
materials with emphasis on concrete. Based on the internal variable theory of
thermodynamics, the general formulations of plasticity and damage models are given as
useful tools to simulate two distinct modes of microstructural changes: inelastic flow and
degradation of material properties, which identify the phenomenological nonlinear behavior
of quasi-brittle materials as displayed in conventional experiments. Since the overall
accuracy of nonlinear structural analyses depends not only on the unique characteristics of
the stress-strain and load-displacement spaces but also on the relation between these two
spaces, the computational aspects of plasticity and damage models are explored with
respect to their effects on structural analyses. Thus, numerical schemes listed in Chapters 4
and 7 will make the various models discussed here available to users of advanced
computational codes.

Because of the complexity of quasi-brittle materials, inelasticity, and damage
models discussed in this report are still not satisfactory in the sense that some important
nonlinear phenomena such as anisotropy, softening with localization, and coupled inelastic
flow and damage can not be described. With the increased understanding of failure
mechanisms, however, more suitable models for concrete can be developed in a systematic
manner from the general formulations given in this report. An extensive list of references
also gives valuable information for future research and application.

Since each specific constitutive model represents an attempt to correct a deficiency
in existing models, this report provides the means for selecting a constitutive model
according to the degree of accuracy that is needed. Starting with the simplest model, it is
shown how additional features can be included to simulate the behavior of concrete.
Limitations of models are discussed to indicate reasonable expectations of what current
formulations can provide. A point which should be emphasized is that even though no
single model is completely satisfactory, there do exist formulations which are a significant
improvement over the most elementary plasticity models. With only a slight increase in
computer cost and theoretical sophistication, such formulations can easily be incorporated
into existing computational codes.
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2650 Park Tower Drive
Vienna, VA 22180-7306

Sanford Cohen and Associates
Attn: J. Channell

7101 Carriage Rd NE
Albuquerque, NM 87109

Westinghouse Electric Corporation (5)

Attn: Library

C. Cox

L. Fitch

B.A. Howard

R.F. Kehrman
PO Box 2078
Carlsbad, NM 88221

Westinghouse Hanford Company
Attn: D.E. Wood, MSIM H6-30
PO Box 1970

Richland, WA 99352

Western Water Consultants
Attn: P.A. Rechard

PO Box 4128

Laramie, WY 82071

Western Water Consultants

Attn: D. Fritz

1949 Sugarland Drive, #134
Sheridan, WY 82801-5720

WTECH

Attn: Carl Hess

101 E. Mermod
Carlsbad, NM 88220

P. Drez
8816 Cherry Hills Road NE
Albuquerque, NM 87111

David Lechel
9600 Allende Rd. NE
Albuquerque, NM 87109

C.A. Marchese
PO Box 21790
Albuquerque, NM 87154



Arend Meijer
3821 Anderson SE
Albuquerque, NM 87108

D.W. Powers
HC 12 Box 87
Anthony, TX 79821

Shirley Thieda
PO Box 2109, RR1
Bernalillo, NM 87004

Jack Urich

c¢/o CARD

144 Harvard SE
Albuquerque, NM 87106

Universities

University of California

Mechanical, Aerospace, and Nuclear
Engineering Department

Attn: D. Browne

5532 Boelter Hall

Los Angeles, CA 90024

University of California

Nuclear Engineering Department
Attn: W. Kastenberg

4153 Etcheverry Hall

Berkeley, CA 94720-1730

University of California
Engineering and Applied Science
Attn: D. Okrent

48-121A Engineering IV

Los Angeles, CA 90024-1597

University of California

Mine Engineering Department
Rock Mechanics Engineering
Attn: N. Cook

Berkeley, CA 94720

University of Hawaii at Hilo
Business Administration
Attn: S. Hora

Hilo, HI 96720-4091

University of Illinois
Department of Geology
Attn: C. Bethke

1301 W. Green St.
Urbana, IL 61801

University of New Mexico
Geology Department

Attn: Library
Albuquerque, NM 87131

University of New Mexico (5)
Mechanical Engineering

Attn: H. Schreyer

102 Scholes Hall
Albuquerque, NM 87131

University of Wyoming
Department of Civil Engineering
Attn: V.R. Hasfurther

Laramie, WY 82071

Libraries

Thomas Brannigan Library
Attn: D. Dresp

106 W. Hadley St.

Las Cruces, NM 88001

New Mexico State Library
Southwest Room

Attn: N. McCallan

325 Don Gaspar

Santa Fe, NM 87501-2777

New Mexico Tech Library
Government Documents
Campus Station

Socorro, NM 87801

Dist-9 .




New Mexico Junior College
Pannell Library

Library Acquisitions

Attn: Karen Elliott

5317 Lovington Highway
Hobbs, NM 88240

Carlsbad Museum

WIPP Public Reading Room
Attn: Pat Jablonsky

418 W. Fox Street
Carlsbad, NM 88220

University of New Mexico
Zimmerman Library

Government Publications Department
Albuquerque, NM 87131

NEA/Performance Assessment
Advisory Group (PAAG)

P. Duerden

ANSTO

Lucas Heights Research Laboratories
Private Mail Bag No. 1

Menai, NSW 2234

AUSTRALIA

Gordon S. Linsley

Division of Nuclear Fuel Cycle and Waste
Management

International Atomic Energy Agency

PO Box 100

A-1400 Vienna

AUSTRIA

Nicolo Cadelli

Commission of European Communities
200, Rue de 1a Loi

B-1049 Brussels

BELGIUM

J. Marivoet

Centre d'Etudes de 1'Energie Nucléaire
(CEN/SCK)

Boeretang 200

B-2400 Mol

BELGIUM

P. Conlon

Waste Management Division

Atomic Energy Control Board (AECB)
PO Box 1046

Ottawa, Ontario KIP 559

CANADA

A.G. Wikjord

Manager, Environmental and Safety
Assessment Branch, AECL
Whiteshell Laboratories

Pinawa, Manitoba ROE 1LO
CANADA

Teollisuuden Voima Oy (TVO) (2)
Attn: Timo Aikis

Jukka-Pekka Salo
Annankatu 42 C
SF-00100 Helsinki Suomi
FINLAND

Timo Vieno
VTT Energy
PO Box 1604
FIN-02044 VTT
FINLAND

Division de la Sécurité et de la Protection
de I'Environment (DSPE)

Commissariat 4 1'Energie Atomique
Agence Nationale pour la Gestion des
Déchets Radioactifs (ANDRA)

Attn: Gérald Ouzounian

Route du Panorama Robert Schuman

B. P. No. 38

F-92266 Fontenay-aux-Roses Cedex
FRANCE

Dist-10



ANDRA/DRI

Attn: M. Claude Ringeard

1/7 Rue Jean Monnet

92.298 Chatenay-Malabry-Cedex
FRANCE

Claudio Pescatore

Division of Radiation Protection and
Waste Management

OECD Nuclear Energy Agency

38, Boulevard Suchet

F-75016 Paris

FRANCE

M. Dominique Greneche
Commissariat 4 1'Energie Atomique
IPSN/DAS/SASICC/SAED

B.P. No. 6

F-92265 Fontenay-aux-Roses Cedex
FRANCE

Robert Fabriol

Bureau de Recherches Géologiques et
Miniéres (BRGM)

B.P. 6009

45060 Orléans Cedex 2

FRANCE

P. Bogorinski

Gesellschaft fiir Reaktorsicherheit und
Reakforsicherheit (GRS) mhH

Schwertnergasse 1

50667 Koln

GERMANY

R. Storck

GSF - Institut fiir Tieflagerung
Theodor-Heuss-Strabe 4
D-3300 Braunschweig
GERMANY

Ferrucio Gera
ISMES S.p.A

Via Pastrengo 9
24068 Seriate, BG
ITALY

Dist-11

Hiroyuki Umeki

Isolation System Research Program

Radioactive Waste Management Project

Power Reactor and Nuclear Fuel
Development Corporation (PNC)

1-9-13, Akasaka, Minato-ku

Tokyo 107

JAPAN

Tonis Papp

SKB

Box 5864

S 102 40 Stockholm
SWEDEN

Conny Hiégg

Swedish Radiation Protection Institute (SSI)
Box 60204

S-104 01 Stockholm

SWEDEN

J. Hadermann

Paul Scherrer Institute

Waste Management Programme
CH-5232 Villigen PSI
SWITZERLAND

J. Vigfusson

HSK-Swiss Nuclear Safety Inspectorate
Federal Office of Energy

CH-5232 Villigen-HSK
SWITZERLAND

D.E. Billington

Departmental Manager—Assessment Studies
Radwaste Disposal R&D Division

AEA Decommissioning & Radwaste
Harwell Laboratory, B60

Didcot Oxfordshire OX11 ORA

UNITED KINGDOM




P. Grimwood

Waste Management Unit, BNFL
Sellafield

Seascale, Cumbria CA20 1PG
UNITED KINGDOM

Alan J. Hooper

UK Nirex Ltd

Curie Avenue

Harwell, Didcot
Oxfordshire, OX11 ORH
UNITED KINGDOM

Jerry M. Boak

Yucca Mountain Project Office
US Department of Energy

PO Box 98608

Las Vegas, NV 89193

Seth M. Coplan, Chairman

US Nuclear Regulatory Commission
Division of HLW Management
Mail Stop 4-H-3

Washington, DC 20555

A.E. Van Luik

Yucca Mountain Site Characterization
Office

PO Box 98608

Las Vegas, NV 89109

NEA/Probabilistic System
Assessment Group (PSAG)

Shaheed Hossain

Division of Nuclear Fuel Cycle and
Waste Management

International Atomic Energy Agency

Wagramerstrasse 5

PO Box 100

A-1400 Vienna

AUSTRIA

Eduard Hofer

Gesellschaft fiir Reaktorsicherheit (GRS)
MBH

Forschungsgelande

D-8046 Garching

GERMANY

Andrea Saltelli

Commission of European Communities
Joint Resarch Centre of Ispra

1-21020 Ispra (Varese)

ITALY

Alejandro Alonso

Cidtedra de Tecnologia Nuclear
E.T.S. de Ingenieros Industriales
José Gutiérrez Abascal, 2
E-28006 Madrid

SPAIN

ENRESA (2)

Attn: M. A. Cuiiado
F. J. Elorza
Calle Emilio Vargas, 7
E-28043 Madrid

SPAIN

Pedro Prado

CIEMAT

Instituto de Tecnologia Nuclear
Avenida Complutense, 22
E-28040 Madrid

SPAIN

Bjorn Cronhjort

Royal Institute of Technology
Fladergrand 12

SWE-183 73 Taby
SWEDEN

Richard A. Klos
Paul-Scherrer Institute (PSI)
CH-5232 Villingen PSI
SWITZERLAND

Dist-12




Nationale Genossenschaft fiir die
Lagerung Radioaktiver Abfille (2)
Attn: C. McCombie
F. Van Dorp
Hardstrasse 73
CH-5430 Wettingen
SWITZERLAND

N. A. Chapman

Intera Information Technologies
Park View House, 47 Burton Street
Melton Mowbray

Leicestershire LE13 1AE

UNITED KINGDOM

Daniel A. Galson
Galson Sciences Ltd.
5 Grosvenor House
Melton Road
QOakham

Rutland LE15 6AX
UNITED KINGDOM

David P. Hodgkinson

Intera Information Technologies
45 Station Road, Chiltern House
Henley-on-Thames

Oxfordshire RG9 1AT
UNITED KINGDOM

Brian G.J. Thompson

Department of the Environment: Her

Majesty's Inspectorate of Pollution
Room A5.33, Romney House

43 Marsham Street

London SW1P 2PY

UNITED KINGDOM

Intera Information Technologies
Attn: M.J. Apted

3609 South Wadsworth Blvd.
Denver, CO 80235

US Nuclear Regulatory Commission (2)
Attn: -R. Codell
N. Eisenberg
Mail Stop 4-H-3
Washington, DC 20555

Battelle Pacific Northwest Laboratories
Attn: P.W. Eslinger

MS K2-32

PO Box 999

Richland, WA 99352

Center for Nuclear Waste Regulatory
Analysis (CNWRA)

Southwest Research Institute

Attn: B. Sagar

PO Drawer 28510

6220 Culebra Road

San Antonio, TX 78284

Geostatistics Expert Working Group
(GXG)

Rafael L. Bras

R.L. Bras Consulting Engineers
44 Percy Road

Lexington, MA 02173

Jesus Carrera

Universidad Politécnica de Cataluiiya
E.T.S.1. Caminos; Campus Nord; D-2
E-08034 Barcelona

SPAIN

Ghislain de Marsily (GXG Chairman)
Universite Pierre et Marie Curie
Laboratoire de Geologie Applique

4, Place Jussieu

T.26 - 5° etage, Cabe 123

75252 Paris Cedex 05

FRANCE




Alain Galli

Centre de Geostatistique
Ecole des Mines de Paris
35 Rue St. Honore
77035 Fontainebleau
FRANCE

Christian Ravenne

Geology and Geochemistry Division
Institut Francais du Pétrole

1 & 4, Av. de Bois-Préau B.P. 311
92506 Rueil Malmaison Cedex
FRANCE

Peter Grindrod

INTERA Information Technologies Ltd.

Chiltern House

45 Station Road
Henley-on-Thames
Oxfordshire, RG9 1AT
UNITED KINGDOM

Alan Gutjahr
Department of Mathematics

NM Institute of Mining and Technology

Socorro, NM 87801

C. Peter Jackson

AEA Technology

424.4 Harewell

Didcot

Oxfordshire OX11 ORA
UNITED KINDGOM

Rae Mackay

Department of Civil Engineering
University of Newcastle Upon Tyne
Newcastle Upon Tyne NE1 7RU
UNITED KINGDOM

Steve Gorelick

Department of Applied Earth Sciences
Stanford University

Stanford, CA 94305-2225

Dist-14

Peter Kitanidis
60 Peter Coutts Circle
Stanford, CA 94305

Dennis McLaughlin

Parsons Laboratory

Room 48-209

Department of Civil Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Shlomo P. Neuman

College of Engineering and Mines
Hydrology and Water Resources Dept.
University of Arizona

Tucson, AZ 85721

Yoram Rubin

Department of Civil Engineering
University of California
Berkeley, CA 94720

Foreign Addresses

ONDRAF

Attn: P. Manfroy
Place Madou 1 B.24-25
B. 1030 Brussels
BELGIUM

Studiecentrum Voor Kernenergie
Centre D'Energie Nucleaire
Attn: A. Bonne

SCK/CEN

Boeretang 200

B-2400 Mol

BELGIUM

Atomic Energy of Canada, Ltd. (2)
Chalk River Laboratories Waste
Management Operations
Attn: M.E. Stevens
B.W. Goodwin
Chalk River, Ontario, KOJ 1JO
CANADA




Juhani Vira

Teollisuuden Voima Oy (TVO)
Annankatu 42 C

SF-00100 Helsinki Suomi
FINLAND

Jean-Pierre Olivier

OECD Nuclear Energy Agency (2)
38, Boulevard Suchet

F-75016 Paris, FRANCE

Claude Sombret

Centre D'Etudes Nucleaires
De La Vallee Rhone

CEN/VALRHO

S.D.H.A. B.P. 171

30205 Bagnols-Sur-Ceze

FRANCE

Commissariat a L'Energie Atomique
Attn: D. Alexandre

Centre d'Etudes de Cadarache

13108 Saint Paul Lez Durance Cedex
FRANCE

Bundesministerium fiir Forschung und
Technologie

Postfach 200 706

5300 Bonn 2

GERMANY

Bundesanstalt fiir Geowissenschaften
und Rohstoffe

Attn: M. Langer

Postfach 510 153

D-30631 Hannover

GERMANY

Gesellschaft fiir Anlagen und
Reaktorsicherheit (GRS) mbH

Attn: B. Baltes

Theodor-Hess-Str. 4

38122 Braunschweig

GERMANY

Dist-15

Wolfgang Muller

1 STEC

Abteilung Abfallbeseitigung
Schwertnergasse 1

D-50667 Koln

GERMANY

Institut fur Bergbaukunde und
Bergwirtschaftslehre der Technishen
Universitat Clausthal

Attn: K. Kuhn

Erzstrasse 20

D-38678 Clausthal Zellerfeld

GERMANY

Bundesaunt fuer Strahlenschutz
Attn: P. Brenneke

PO Box 10 01 49

38201 Salzgitter

GERMANY

Shingo Tashiro

Radioactive Waste Management Center
Mori Building #15 8-10

Toranomon 2-Chrome

Minato-Ku, Tokyo, 105

JAPAN

Netherlands Energy Research Foundation
Attn: T. Prij

3 Westerduingwed

PO Box 1

1755 Zg Petten

THE NETHERLANDS

Johan Andersson

INTERA Information Technologies
Vallvagen 22

S-125 33 Alvsjo

SWEDEN




Fred Karlsson

Svensk Kirnbransleforsorjning AB
SKB Library

Box 5864

102 40 Stockholm

SWEDEN

Nationale Genossenschaft fiir die
Lagerung Radioaktiver Abfille (2)
Attn: S. Vomvoris
P. Zuidema
Hardstrasse 73
CH-5430 Wettingen
SWITZERLAND

AEA Technology

Attn: J.E. Tinson

B4244 Harwell Laboratory
Didcot, Oxfordshire OX11 ORA
UNITED KINGDOM

AEA Technology
Attn: J.H. Rees
B.424.4

Harwell

Oxon OX11 ORA
UNITED KINGDOM

AEA Technology

Attn: W.R. Rodwell

044/A31 Winfrith Technical Centre
Dorchester

Dorset DT2 SDH

UNITED KINGDOM

D.R. Knowles

British Nuclear Fuels, plc
Risley, Warrington

Cheshire WA3 6AS, 1002607
UNITED KINGDOM
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D.K. Gartling
D.P. Garber
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P.B. Davies

R.L. Beauheim

H.R. Westrich
E.J. Nowak
J.R. Tillerson

Staff (7)

L.E. Shephard

S.Y. Pickering
W.D. Weart
M.Y. Chu

A.R. Lappin

A.L. Stevens

F.W. Bingham

L.S. Costin

D.P. Gallegos

D.R. Anderson
H.N. Jow

Staff (20)

V.H. Slaboszewicz
Staff (3)

D.R. Schafer

J.T. Holmes

Staff (18)

R.E. Thompson
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