[ Y

SANDIA REPORT

SAND95-2049 « UC-700
Unlimited Release
Printed August 1995

19/3) | 75

CHAPARRAL: A Library for Solving Large
Enclosure Radiation Heat Transfer Problems

Micheal W. Glass

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited. T T LSl
. i v “;‘: B
' w
| } o
a R
dho g
;
| [
i
il
o
Lol
“ { ‘H)r;‘,
sl ' [ !‘ |
I
. i P
Rty :
b ;;3‘
oy
\vﬂ";r k ) - y o )',H
I ' ' ‘ TP L e P
SRR I R o il TR
! “‘: j " V“J“ N ' ' ' !
‘ ! :
[ 3w

O T L
D il Mgy

SF2900Q(8-81)

. . i
i I e
Ftike
T : !
RN L N
o L, d
Nl i ta
)
B
.
.
1A
:
S
,!'
vy
AR

© HASTER

DISTRIBUTION OF THIS DCCUMENT IS UNLUATED




Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01




Distribution
UC-700

SAND95-2049
Unlimited Release
Printed August 1995

CHAPARRAL: A Library for Solving Large
Enclosure Radiation Heat Transfer Problems

Micheal W. Glass

Manufacturing and Environmental Fluid Dynamics
Sandia National Laboratories

Albuquerque, NM 87185

Abstract

Large, three-dimensional enclosure radiation heat transfer problems place a heavy demand on computing resources
such as computational cycles, memory requirements, disk I/O, and disk space usage. This is primarily due to the com-
putational and memory requirements associated with the view factor calculation and subsequent access of the view
factor matrix during solution of the radiosity matrix equation. This is a fundamental problem that constrains Sandia’s
current modeling capabilities. Reducing the computational and memory requirements for calculating and manipulat-
ing view factors would enable an analyst to increase the level of detail at which a body could be modeled and would
have a major impact on many programs at Sandia such as weapon and transportation safety programs, component
survivability programs, energy programs, and material processing programs. CHAPARRAL is a library package
written to address these problems and is specifically tailored towards the efficient solution of extremely large three-
dimensional enclosure radiation heat transfer problems.
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1. Introduction

Use of the global net radiation method [1] to solve enclosure radiation problems involves the
calculation of surface-to-surface view factor pairs. In a standard finite element analysis, the com-
mon approach is to use the exposed side of elements as radiating surfaces. To adequately resolve
temperature gradients during a finite element thermal analysis, a large number of elements are re-
quired in the body being modeled which in turn increases the number of radiating surfaces. Be-
cause the number of view factors between the radiating surfaces increases with O(N2 ), the
calculation of the view factors can easily become a significant, if not dominant, portion of the
computatioii for realistic problems. This is particularly true for steady-state problems or transient
problems with a changing geometry or mesh. In many cases, there are problems that we cannot
currently solve without sacrificing accuracy (i.e. a less detailed mesh) for reduced computational
time.

Depending upon the implementation strategy, efficient solution of large radiation enclosure
heat transfer problems typically involves balancing CPU, core memory, and disk I/O require-
ments for a particular problem. Because there is no set formula for determining how these re-
quirements should be allocated, the experience and intuition of the analyst must be relied upon.
CHAPARRAL was written to reduce some of these requirements and allow as much flexibility as
possible.

Traditional view factor algorithms from the heat transfer field have proven to be inefficient for
very large enclosure radiation problems, particularly when obstructing surfaces are present. How-
ever, in the field of computer graphics, new algorithms have been developed for calculating view
factors and solving the radiosity problem for a radiosity based global illumination model. One
such method for calculating view factors, the hemicube method, has been widely used in the com-
puter graphics field with great success. The hemicube method has been implemented within
CHAPARRAL along with more traditional methods for two-dimensional view factor calculations.
The hemicube method has demonstrated a tremendous speedup over the traditional double area
integration method for three-dimensional geometries. For solution of the radiosity matrix equa-
tion, CHAPARRAL includes both a Gauss-Siedel iterative method and a progressive refinement
method. For some problems, the progressive refinement method can significantly reduce the num-
ber of times the view factors must be accessed, thus speeding up the solution of the matrix equa-
tion. Due to the large memory requirements for storage of the view factor matrix, an internal view
factor database with compression/decompression algorithms has also been included to reduce the
memory requirements and/or disk /O for storing and accessing the view factors.







2. Problem Overview

2.1 Enclosure Radiation Heat Transfer and the Radiosity Model

The analysis of thermal radiation heat transfer within an enclosure is complicated because the
energy transfer mechanism introduces nonlinearities into the problem and requires the specifica-
tion of radiation view’ factors. The energy flux leaving a given surface is composed of directly
emitted and reflected energy[1]. The reflected energy flux is dependent upon the incident energy
flux from the surroundings, which can be expressed in terms of the energy flux leaving all other
surfaces. The energy reflected from surface £ is-given by

4 . . .
Dor = &OT; + Py 1)

where g, is the energy flux leaving the surface, & is the emissivity, © is Boltzmann’s constant, T},
is the temperature, py is the reflectivity, and gy, is the energy flux incident upon the surface from
its surroundings. The amount of incident energy upon a surface from another surface is a direct
function of the surface-to-surface view factor, F; ik The view factor, F; ik can be thought of as the
fraction of energy leaving surface k which is 1n01dent -upon surface j. The incident energy flux, g;,
can be expressed in terms of the energy flux leaving all other surfaces as

Ay = Z ’qoj jk 2

where F; ik is known as the view factor between surface k and surface j (also called form factor,
conﬁguratlon factor). The view factor F; 'jx Tepresents the fraction of energy leaving surface j which
is directly incident upon surface k. For N surfaces, using the view factor reciprocity relationship
gives

AJFch = Akaj for j=1,2,3,..... ,N (3
so that
N
Jj= 1
therefore
4 N
Qox = €T +p, ), F x%0; )
i=1

Equation (5) can be rewritten as




N
By = E,+p, ) FiB; . 0)
j=1 :

where By, represents the radiosity of surface k and E, represents the emissivity of surface k. This
represents N equations which can be recast into matrix form as

1- p1F11 —p1F ), * ¢ * —P1F1n -B1- _E1
—PyFy  1-p,F,, * ¢ ° —P.Fon [[B2 E,
° . ° ° ° . o| T | e ]
[ ] ® ® - [ ] [ ) ® [ ] ®
A —PnFni PP ° ° ¢ 1-pyFoun| 1B N| .E N|

or

KB=E (8)

Equation (8) is referred to as the radiosity model or radiosity matrix equation. The view factor be-
tween two finite surfaces 7 and j is given by

cos®; cosG
R o= e j j 8,dAdA, ©)

where §;; is determined by the visibility of dA to dA;. 8;; is equal to one if dA; is visible to dA; and
is equal to zero otherwise. See Figure 1 for the geometnc interpretation of the individual terms

C; surface j

Figure 1 Geometry and nomenclature for calculating view factors between finite areas.
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As mentioned earlier, enclosure radiation heat transfer problems usually require computer re-
sources of the following nature: (1) CPU processing to calculate the view factors and solve the ra-
diosity matrix equation; (2) core memory for storage of the view factors; and (3) disk storage and
1/O for out-of-core storage of the view factors and accessing the view factors when solving the ra-
diosity matrix equation. Efficiently solving problems of this nature requires balancing these three
needs to achieve optimum performance. CHAPARRAL addresses these three areas and provide
some improvement in performance. CHAPARRAL consists of three main sections: (1) calcula-
tion of the geometric view factors; (2) an internal database for storing and accessing the vievf/ fac-
tor matrix; and (3) solution of the radiosity matrix equation. In this chapter, the implementation of
each of these areas will be discussed in greater detail.

2.2 Calculation of View Factors

Emery et. al. [2] provide an excellent review of the various methods commonly used to calcu-
late view factors. Each has their advantages and disadvantages as detailed in the paper. Therefore,
for greater flexibility, multiple algorithms are available within CHAPARRAL for view factor
computations. Traditional methods were made available by modifying the FACET [3] package to
be a subroutine library and incorporating it into CHAPARRAL. FACET uses traditional methods
such as line integration and double area integration and handles 2D planar, 2D axisymmetric, and
3D geometries. An implementation of the hemicube algorithm is available for 3D geometries. By
default, FACET is used to calculate the view factors for 2D geometries and the hemicube method
is used for 3D geometries. Because the hemicube algorithm is less well known in the heat transfer
field as a method to calculate view factors, more detail on this method is provided next.

2.2.1 The Hemi-Cube Method

When Goral et. al. [4] first introduced the radiosity method to the computer graphics field, the
view factors were calculated using contour line integration; however, even when applied to sim-
ple scenes, this was considered a computationally expensive method. For complex geometries
with obstructed views, the double area integration scheme had to be used and the time to calculate
the view factors became exorbitantly high. With the strive towards real-time image generation,
the first significant contribution from the computer graphics field was in the area of view factor
calculation. Specifically, the hemicube method for view factor calculation was developed to de-
crease the computational effort required for such calculations.

The hemicube method is based upon Nusselt’s hemisphere analogy and was first proposed by
Cohen et. al. in 1985 [5]. Instead of projecting the surfaces onto a hemisphere, a hemicube is
used. Nusselt’s analogy shows that any surface which covers the same area on the hemisphere has
the same view factor. From this it is evident that any intermediate surface geometry can be used
without changing the value of the view factors (see Figure 2). Hence the hemisphere can be re-
placed with a hemicube.

The use of a hemicube allows for the development of very efficient algorithms for calculating

5




Figure 2 Nusselt’s hemishere method.

view factors in a complex environment. The basic algorithm begins by discretizing the surface of
the hemicube into a set of N uniform subpatches which will be called pixels. Each pixel defines a
particular direction and angle from the receiving patch’s centroid. Thus, each pixel contributes a
specific delta-view factor value to the overall view factor between two surfaces if the pixel is cov-
ered by the projection of the transmitting surface onto the discretized hemicube. See Figure 3 for
the geometric interpretation of this method.

The delta-view factors for each pixel, n=1,2,...,.N on the hemicube are found from

coseicos Oj

Aviewfactor = AFn = (10)

J
nr

See Figure 4 for the geometric interpretation of the terms used in Equation (10). The overall
view factor is then calculated by

N
F; = 2 AF, (1)
n=1

For efficiency, the delta-view factor for each pixel is calculated only once and stored in a look-
up table for later use. This lookup table actually only contains values for 1/4 of the top face and

6



(2)

P =x2+y2+1
cos@ = cosf; = cosh; = 1
7

AF = -i-zAAn
nr

N

Figure 4 Derivation of delta-view factors for (a) pixel on
top of hemicube and (b) pixel on the side of the hemicube.




1/2 of each side face due to symmetry.

The top face of the hemicube represents a 90° viewing frustum and each side-face represents
one half of a 90° viewing frustum which is well known in the field of computer graphics. Hence,
all the developments for projecting environments within the frustum can be taken advantage of
for computational efficiency.

One can see that instead of calculating view factors on a pair by pair basis, the hemicube algo-
rithm allows for an entire row of view factors Fyj:j=1,2,3,..., N to be calculated at the same
time after projecting the environment onto the hemicube for surface i. Pseudo-code for the hemic-
ube algorithm is given below

Loop on the number of enclosures, n
Initialize the hemicube delta view factors
Loop on the number of surfaces, i
Calculate surface areas, centroids, and normals
End loop
Loop on the number of surfaces, i
Initialize view factor row F, ij=0forall j
Initialize hemicube ID buffer to NULL surface ID
Initialize hemicube zbuffer to maximum real number
Place hemicube at surface centroid
Loop on number of hemicube sides (including top)
Align view direction with top or side
Loop on number of surfaces, j
Project surface j onto the hemicube
Scan convert and zbyffer surface j projection onto hemicube sides

End loop
Sum contribution to F, i Fij = Fi + 2AF of grid cells with zbuffered ID = j
End loop
End loop

End loop



2.2.2 Errors Associated with the Hémi-Cube Method

The hemicube algorithm is based upon various assumptions about the environmental geome-
try which if violated, will produce inaccurate values for the view factors [6]. The three major as-

sumptions of the hemicube algorithm are: (1) proximity - the distance between surfaces is great

compared to the effective diameter of the surfaces; (2) visibility - the visibility between any two
surfaces does not change; and, (3) aliasing - the true projection of each visible surface onto the
hemicube can be accurately accounted for by using a finite resolution hemicube.

The proximity assumption is violated whenever surfaces are close compared to their effective
diameters or are adjacent to one another. In such cases the distance between the centroid of one
surface to all points on the other surface can vary greatly. Because the view factor dependence on
distance is nonlinear, the result is a poor estimate of the view factor. The most common violation
of this assumption occurs when surfaces are adjoint. Baum, et. al. [6] used a hybrid scheme which
combined the hemicube method with an analytical method when the proximity assumption was
violated.

The visibility assumption requires that the term 8;j in Equation (9) remain constant across sur-
face i. Because §j; is a discontinuous function, the single point evaluation at the centroid of sur-
face i can introduce significant errors to the value of the view factor. This is depicted in Figure 5
where surface 1 has a complete view of surface 2 from its centroid but in fact surface 3 occludes
much of surface 2 from surface 1, In such a case the hemicube algorithm will overestimate F ij by
using F 4; calculated from the centroid of surface 1. To reduce this error, surface 1 could be subdi-
vided into smaller subelements with the hemicube method applied to each subelement and the re-
sults combined to produce a more accurate value for the view factor.

Surface 2

Surface 3

\ {

Surface 1

Figure 5 Geometry where the visibility assumption is violated




The aliasing assumption, that surfaces project exactly onto a whole number of hemicube pix-
els, is similar to aliasing problems associated with graphical image displays. Because of the finite
resolution of the hemicube, the projected areas and resultant view factors may be over or under
estimated as shown in Figure 6. Aliasing effects can be reduced by increasing the resolution of the
hemicube, by using multiple hemicube subsamples and filtering the results, or by using jittered
hemicubes.

Surface Projection

Pixels Covered I |
Over Estimate Under Estimate

Figure 6 Example of how aliasing can over or under estimate the projected surface area.

In this initial release of CHAPARRAL, only hemicube jittering has been implemented. With
jittered hemicubes, each hemicube is randomly rotated about its parent surface’s normal vector.
This reduces any preferential alignment of surfaces edges along the hemicube’s discretized
boundaries.

2.3 Internal Data Base Storage of View Factors

When solving radiation heat transfer problems, memory usage can be a major area of concern.
The view factor matrix can be either stored in core memory or in a disk file. Depending upon the
problem, the view factor matrix may either be sparse or full. If the matrix is stored in full form,
one can quickly run into limitations - either core memory limitations or available disk space. For
a problem with 5000 participating surfaces, 25 megawords of memory is required to store the en-
tire view factor matrix! From experience, disk I/O (particularly on the Cray or over NFS) is al-
ways a bottleneck and should be avoided whenever possible. In CHAPARRAL, disk J/O has been
eliminated from the resource balancing equation by allowing the view factors to always be stored
in core memory. Though storing the view factors in core memory eliminates the disk I/O bottle-
neck, one can quickly run into core memory limitations. On Sandia’s Cray/YMP, processes are
limited to 32 megawords of core memory usage so this limit can be easily exceeded on problems
of more than 5000 participating surfaces. On other systems without this memory limit, the memo-
ry requirements can still quickly exceed the amount of physical memory which can lead to exces-
sive swapping as virtual memory is accessed. For this reason, when the view factor matrix is
stored in memory, CHAPARRAL uses data compression to reduce the required amount of memo-
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ry. The view factor matrix is stored row-by-row and each row is compressed separately. This re-
quires CPU overhead to perform the data decompression each time the view factors are accessed,
which adds a new dimension to balancing CPU and memory requirements for a job, but the mem-
ory savings can be substantial.

To implement the data compression, an internal database is used to store the view factor ma-
trix and associated parameters. Access to the database is accomplished through a defined Applica-
tion Programmer’s Interface (API). This allows the internal workings of the database to be
transparent to the user and supplies a well defined interface for the data compression/decompres-
sion routines. The API is described in further detail in Chapter 3.

Several data compression/decompression schemes are available. These include: (1) no com-
pression; (2) byte runlength encoding (BRLE); (3) word runlength encoding (WRLE); and (4)
Lempil-Zev-Walsh encoding (LZW). WRLE compression/decompression is available because
some computer architectures access words much than faster bytes. Runlength encoding is proba-
bly the lowest level compression scheme available. The user’s choice of a data compression
schemes will depend upon speed/memory requirements of the particular problem.

" 2.4 Solution of the Radiosity Matrix Equation

Solving the radiosity matrix equation requires solving a system of linear equations which, de-
pending upon the geometry of the model, may be dense or sparse. Though there are many meth-
ods available for this type of problem, some are better suited than others. Direct methods are not
very well suited because of the potentially large size of the problem, thus iterative methods have
been used almost exclusively. Of the iterative methods available, Gauss-Seidel has probably been
the most widely used; and progressive refinement, one of the newer methods, can be advanta-
geous in certain situations. Both of these methods are available in CHAPARRAL and are briefly
described below.

2.4.1 Gauss-Seidel Aphroach

Gauss-Seidel is a variation of the Jacobi method and provides a true relaxation method which
usually improves the speed at which the method converges to a solution. This iterative approach
converges to a solution by solving the system of equations one row at a time. Physically, this
means that the evaluation of the ith row of equations provides an estimate of the radiosity of sur-
face i based on the current radiosities of all the other surfaces. Hence, the energy leaving surface i
is determined by gathering in the energy from the rest of the environment. As such, the solution to
the radiosity problem is calculated one surface at a time. Pseudo-code for the algorithm is given
below.

11




Loop on the number of enclosures
Loop on the number of surfaces
Set B; = starting guess
End loop
While not converged
Loop on number of surface&, i
Endloop =177
End while
End loop

2.4.2 Progressive Refinement Approach

As an illumination model, the overwhelming cost of the radiosity method is the computation
of the view factors. As with thermal radiation codes, this cost is reduced by calculating the view
factors once at the beginning of a calculation and storing them for repeated use in the iteration cy-
cle. In such an environment, the storage cost for the view factors are O(N? ). In 1988, Cohen et. al.
[7] proposed a progressive refinement method for the radiosity illumination model which comput-
ed the view factors on the fly, thus reducing the storage costs to O(N, ).

For the progressive refinement approach, the problem is formulated so that the contribution
. made by surface i to all the other surfaces is calculated. This represents an iterative column solu-
tion to the set of radiosity equations. Physically, this means that the energy leaving surface i is
shot out into the environment and its effect on all the other surfaces is calculated. Because the
hemicube method and basic ray-tracing methods compute the view factors on a row-by-row basis,
the reciprocity relationship (Equation 3) must be used to transform a row of view factors into a
column of view factors. To converge gracefully and as quickly as possible, the surfaces are pre-
sorted according to the energy that each surface has to shoot. Theoretically, the solution is not
converged until all the emitted and reflected energy is dispersed throughout the environment. But,
the final solution may be approached to within a certain error tolerance very quickly and with only
a fraction of the view factors calculated as compared to the full matrix formulation. As an exam-
ple, Cohen et. al. [7] computed the global illumination of a steel mill scene composed of 30000
surfaces subdivided into 50000 patches. The full matrix formulation would have required the
computation of 1.5x10° view factors requiring 6 Gbytes of storage space. The progressive refine-
ment method needed only one column of view factors requiring 0.12 Mbytes of storage space.
Additionally, the solution converged to an acceptable value after the energy from 2000 surfaces
had been shot or less than 5% of the total number of view factors had been calculated!

12



While the progressive refinement approach to solving the radiosity problem has demonstrated
tremendous speedups for image synthesis, its usefulness to heat transfer calculations may not
have as big an impact. While the method converges rapidly to an acceptable result for image syn-
thesis, are the error tolerances as tight as they would probably be in an engineering calculation or
is the converged solution merely a visually acceptable result? Another reason this approach works
so well as an illumination model is the fact that in image synthesis there are usually light sources
included which have a much larger amount of energy to shoot than the other surfaces. By shooting
the energy from the light sources first, and thenfrom the major surfaces that are impacted with
that energy, a very reasonable image can be obtained in a short period of time. But the presence of
only a few highly emissive surfaces may not always be the case for heat transfer problems. One
has only to look at a metal casting problem as an example where the vast majority of surfaces
have emissive powers of the same order. And for transient problems, a breakpoint will exist where
it is cheaper to calculate all the view factors first rather than repeatedly calculating a smaller num-
ber of view factors for each time step. On the other hand, this approach may prove to be very use-
ful when solving transient problems where the geometry changes with time and hence the view
factors will also change and cannot be precomputed for the duration of the calculation. Pseudo-
code for this method is given below.

Loop on the number of enclosures
Loop on the number of surfaces, i

setB;=E;
set AB; = E;
End loop

While not converged
Choose surface i, such that AB*A; is largest
Loop on the number of surfaces, j
Set Arad = AB*p;F;
Set ABj = ABj+Arad
Set Bj = Bj+Arad
End loop
AB;=0
End while
End loop

13




2.5 Performance

To demonstrate the various aspects of CHAPARRAL, a finite element model of a SRAM fire-
set casting was used as an example model. This model [8] consists of 3297 elements with 4538 ra-
diating surfaces in 2 enclosures (3495 and 1043 surfaces in the top and bottom enclosures
respectively). This model is shown in Figure 7. The three main parts of CHAPARRAL will now
be discussed in further detail. All timing values are for a Sun Sparcstation 10/30 workstation.

For flexibility, multiple algorithms are available for view factor computations. The available
algorithms include those available in FACET along with an implementation of the hemicube algo-
rithm. By default, FACET is used to calculate the view factors for 2D geometries and the hemic-
ube method is used for 3D geometries. The advantage of using the hemicube method for 3D
geometries is illustrated by Table 1. Comparison of the various data compression schemes is
shown in Table 2. From Table 2 it can be seen that for this particular test problem, there is no per-
formance penalty for using WRLE compression. Comparison of the two methods for solving the
radiosity matrix equation is shown in Table 3.

Table 1: Comparison of FACET with the Hemicube Method

Motiod Usato | Tme(min) o Clelate
Case Number Calculate View ’
Factors Enclosure 1 Enclosure 2
1 Hemicube 194 1.8
2 FACET 15.1 2.8
3 FACET 204.1 514
4 FACET 292.6 12.3

Case 1: 50x50 hemicube resolution.

Case 2: no blocking surfaces specified, 2 subdivisions per edge.

Case 3: no blocking surfaces specified, auto subdividing on edges.

Case 4: all surfaces specified as potentially blocking, no edge subdivisions.

14
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Figure 7 SRAM fireset casting.
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Table 2: Comparison of Data Compression Schemes

Time (sec) to compress all the Time (sec) to
Aleorithm Total Mb view factor rows for: decompress all the view
g of Storage = ‘ factor rows for both
Enclosure 1 Enclosure 2 enclosures
None 513 5 0.5 3
WRLE 13.4 5 0.7 3
BRLE 12.2 15 1.8 7
LZW 7.8 41 5.6 25

Table 3: Comparison of Solution Methods for Solving the Radiosity Matrix Equation

) Time (sec) to Solve the Radiosity
Solution Method Compression Matrix Equation for:
Scheme
Enclosure 1 Enclosure 2
NONE 107 53
WRLE 100 5.7
Gauss-Seidel
BRLE 150 6.0
LZW 354 32.1
NONE 69 4.8
Progressive WRLE 70 4.9
Refinement BRLE 80 10.2
LZW 126 11.9

16




3. User’s Guide

The CHAPARRAL library is written in both C and FORTRAN with both a C and FORTRAN
interface. The routines reside in a non-sharable library called libvf.a. Its location will be depen-
dent upon your installation. On the Department 1500 / Building 880 LAN at Sandia National
Labs, it resides in the directory /usr/local/1ib on all the hardware platforms available on
the IRN. For internal Sandia use, a standalone program called chaparral is available which ac-
cepts COYOTE [9] input files and just calculates the view factors. For users running on multi- _
processor, shared memory machines, limited support for multiprocessing is available. Currently,
the hemicube method is the only portion of the code that has been written to take advantage of a
multi-processing architecture. For the Sun Microsystem’s Solaris 2.x operating system, a special
version of the library, libvfmt.a exists which utilizes multithreading. The multithreading currently
uses Solaris threads. However, when POSIX threads become readily available on other multi-pro-
cessor architectures, the port should be very easy. When running on a Sun Sparccenter 2000 with
N processors, the standalone chaparral application demonstrates an almost N times speedup.

Informational output from the CHAPARRAL Ilibrary, as defined by the debug‘output level, is
written to standard output.

3.1 Pseudo Code for Usage of CHAPARRAL

Below is pseudo code outlining the usage of CHAPARRAL. The portions of the pseudo code
that are handled by CHAPARRAL are indicated by boldface type.

General code initialization
Initialize internal view factor database
If view factor matrix has been previously computed

Read view factors into database from pre-existing disk file
Else

Loop on the number of enclosures

Calculate view factors for this enclosure

End loop

Write out view factor database to disk file
End if -

Loop on number of enclosures
Calculate surface fluxes via Gauss-Siedel or
Calculate surface fluxes via Progressive Refinement

17




End loop

End of code

3.2 C Language Interface

1. Initialize internal view factor database

init_vf_dbase (num_enclosures, max_surfaces, storage_format)

int num_enclosures
int max_surfaces
int

format

2. Calculate view factors

total number of enclosures

maximum # of surfaces from all the en-
closures.

compression format: 0=no storage,
l=no compression, 2=word run length
encoding, 3=byte run length encoding,
and 4=LZW encoding

viewfactor (enclosure, nsurfaces, x, v, z,
connectivity, i_param, r_param) -

int ienclosure

int nsurfaces
float *x

float *y

float *z

int *iconnectivity
int *i_param

current enclosure number

number of surfaces in this enclosure

array of x-ccordinates for nodes

array of y-coordinates for nodes
array of z-coordinates for nodes
surface element connectivity array
integer parameter array:

[0] dimensionality of problem: 1=2D
axisymmetric (FACET), 2=2D pla-
nar (FACET), 3=3D (hemicube),
3=3D (FACET)

partial enclosure flag: 0=full

(1]
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enclosure, l=partial enclosure

[2] hemicube resolution, must be an
even integer .

[3] number of nodes i.e. length of x,.
y, and z arrays

[4] 1least squares smoothing flag:_
0=0ff, 1l=on

[S] number of rotations

[6] number of x-grid divisions

[7] number of y-grid divisions

[8] number of z-grid divisions

[9] check for blocking: 0=0ff, l=on

[10] maximum number of surface subdi-
visions

[11] debug output level

[12] Number of child processes (or
threads) to use with the hemicube
algorithm

float *r_param real parameter array:

[0] area of enclosure if this is a
partial enclosure problem

. Read the view factors from a pre-existing disk file into the internal database

read_vfdbase (filename)

char *filename file name

int format storage format: 0=ASCII, l=native ma-
chine binary, 2=XDR, 3=NETCDF (for- .
mats 2 and 3 are not yet supported).

. Write the view factor matrix to a disk file

write_vfdbase (filename, format)

char *filename file name

int format storage format: 0=ASCII, l=native ma-
chine binary, 2=XDR, 3=NETCDF (for-
mats 2 and 3 are not yet supported).
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5. Solve the radiosity matrix equation

radsolve_gauss (enclosure, radqg, tsurf, eps, sigma,
tol, niter, iter)

int enclosure
float *radg
float *tsurf
float *eps

. float sigma
float tol
int niter
int iter

radsolve_prog(enclosure,
tol, niter,

int enclosure
float *radg
float *tsurf
float *eps
float sigma
float tol

int niter

int iter

current enclosure number

larray of surface fluxes

array of surface temperatures
array of surface emissivities
Stefan-Boltzmann constant
convergence tolerance
maximum number of iterations

if 0, no convergence reached, else the
actual number of iterations

radg, tsurf, eps, sigma,
iter)

current enclosure number
array of surface fluxes

array of surface temperatures
array of surface emissivities
Stefan-Boltzmann constant
convergence tolerance
maximum number of iterations

if 0, no convergence reached, else the
actual number of iterations

3.3 FORTRAN Language Interface

1.

Initialize internal view factor database

call INIT_VFDB(num_enclosures, max_surfaces, iformat)

integer num_enclosures total number of enclosures
integer max_surfaces maximum number of surfaces

integer iformat

from all the enclosures.

compression format: 0=no
storage, 1l=no compression,
2=word run length encoding,
3=byte run length encoding,
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2. Calculate view factors

and 4=LZW encoding

call VUFACTOR (ienclosure, nsurfaces, x, vy, 2,
iconnectivity, i_param, r_param)

integer
integer

real
real
real
integer

integer

ienclosure current'enclosure number

nsurfaces number of surfaces in this
enclosure

x(*) array of x-ccordinates for
nodes

v(*) array of y-coordinates for
nodes

z(*) array of z-coordinates for
nodes

iconnectivity (5, *)surface element connectivi-
ty array

i_param(*) integer parameter array:

(1) dimensionality of prob-
lem: 1=2D axisymmetric
(FACET) , 2=2D planar
(FACET), 3=3D (hemicube),
-3=3D (FACET)

(2) partial enclosure flag:
0=full enclosure, l=par-
tial enclosure

(3) hemicube resolution, must
be an even integer

(4) number of nodes 1i.e.
length of x, vy, and z ar-
rays

(5) least squares smoothing
flag: 0=o0ff, 1l=on

(6) number of rotations

(7) number of x-grid divi-
sions

(8) number of vy-grid divi-
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(9)

sions

number of z-grid divi-
sions




real r_param(*)

(10)check for blocking:
O0=0ff, 1l=on

(11)maximum number of surface
subdivisions

(12)debug level for FACET

(13 Number of child processes
(or threads) to use with
the hemicube algorithm

Yeal parameter array:

(1) area of enclosure if this

. Read the view factors from a pre-existing disk file into the internal database

call RD_VFDB(filename)
character* (*) filename

Write the view factor matrix to a disk file

call WR_VFDB(filename,

character* (*) filename
integer iformat

Solve the radiosity matrix equation

call RADSOI_GAUSS (ienclosure,
sigma, tol, niter,

integer ienclosure
" real radg(*)

real tsurf (*)

real eps (*)

real sigma

real tol

int niter

int iter

iformat)

radqg,

22

is a partial enclosure
problem
file name
file name
storage format: 0=ASCII,
l=native machine binary,
2=XDR, 3=NETCDF (formats 2

and 3 are not vet supported).

tsurf,
iter)

eps,

current enclosure number
array of surface fluxes
arfay of surface temperatures
array of surface emissivities
Stefan-Boltzmann constant
convergence tolerance
maximum number of iterations
if 0, no convergence reached,
else the actual number of it-



erations

call RADSOL_PROG(ienclosure, radq, tsurf, eps,
sigma, tol, niter, iter)

integer
real
real
real
real
real
int

int

ienclosure

radg(*)

tsurf (*)

eps (*)
sigma
tol
niter
iter
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current enclosure number
array of surface fluxes ..-
array of surface temperatures
array of surface emissivities
Stefan-Boltzmann constant
convergence tolerance
maximum number of iterations -

if 0, no convergence reached,
else the actual number of it--
erations
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