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Basics of Bayesian Statistics and Emulation

Earl Lawrence

LANL



Motivation

How can we make statistical inferences when our predictions are
given by computationally intensive simulations?



Bayesian Inference

I The goal is to learn about unknowns θ from
observables y .

I We have some idea about the unknowns
captured in our prior distributions π(θ).

I We also have some idea about how the
observables depend on the unknowns given
by our likelihood f (y |θ).

I Bayes Theorem: p(θ|y) ∝ π(θ)f (y |θ).



Simple Gaussian Example

I y |θ ∼ N(θ, σ2)

I θ ∼ N(µ, δ2)

I Observe y1, · · · , yn

p(θ|y) ∝ exp

{
− 1

2δ2
(θ − µ)2

}
exp

{
− 1

2σ2

∑
i

(yi − θ)2
}

...

θ|y ∼ N
(
ν, γ2

)
ν =

n
σ2 Ȳ + 1
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Markov Chain Monte Carlo

Method of drawing sequence of correlated samples from a
distribution by constructing a Markov chain whose stationary
distribution is the one of interest. This is useful when the
distribution is not otherwise tractable and only requires knowing
the distribution up to a constant. The samples can be used for
inference (e.g. means, variances quantiles).



Markov Chain Monte Carlo: Metropolis-Hastings

Assume x follows some distribution with density p and that we
have xk with p(xk) > 0.

1. Draw a candidate x ′ from q(x ′|xk).

2. Compute α = p(x ′)q(xk |x ′)
p(xk )q(x ′|xk )

3. Draw u ∼ Unif (0, 1).

4. If u ≤ α, set xk+1 = x ′, else set xk+1 = xk .

Often, q is a random walk so q(x ′|xk) = q(xk |x ′) and α simplifies
(original Metropolis). Sometimes, q is p (Gibbs sampling). Good
results often require some tuning of q (e.g. the step size of the
random walk).



Simple Gaussian Example with MCMC
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Figure: First 100 draws µ.



Simple Gaussian Example with MCMC
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Figure: Histogram of µ with ”true” value.



Simple Gaussian Example with MCMC
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Figure: Comparison of the MCMC result and they theoretical result.



Gaussian Example with Unknown Mean and Variance

I y |θ ∼ N(θ, σ2)

I θ ∼ N(µ, δ2)

I σ2 ∼ Unif (0,U)

I Observe y1, · · · , yn
Sample from p(µ, σ2|y) by sampling sequentially from the full
conditional posteriors: p(µ|σ, y) and p(σ2|µ, y) which are simply
proportional to their joint density.



Gaussian Example with Unknown Mean and Variance
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Gaussian Example with Unknown Mean and Variance

Histogram of mu
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Histogram of sigma2
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Black Box Functions

I y |θ ∼ N(η(θ), σ2)

I θ ∼ π(θ)

MCMC only requires that you can evaluate η(·).



Black Box 1-D: Mini Cosmic Emu with Unknown w
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Black Box 2-D: Mini Cosmic Emu with Unknown w and σ8
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Slow Black Box Functions

What if the function takes a month of computation? When the
simulation is to slow to call inside the MCMC, we need to
approximate it. The basic idea is to run the simulation over a
training set and build a statistical model that interpolates the
results at untried settings.



Gaussian Process

Assume that univariate y is a function of d-D x . Let ~y be a
collection of these points associated with the matrix X (ith row
goes with yi ).

~y ∼ N
(
~0, σ2R(X )

)
Ri ,j = exp

{
−

p∑
k=1

βk(Xi ,k − Xj ,k)2

}

This has the squared exponential covariance which produces
continuous and very smooth draws. Given a training set (~y ,X ) and
priors, the GP parameters σ2 and ~β can be estimated with MCMC.



Conditional GP

(
y1
y2

)
∼ N

{
~0,

[
Σ11 Σ12

Σ21 Σ22

]}
(1)

y1|y2 ∼ N
{

Σ12Σ−122 y2,Σ11 − Σ12Σ−122 Σ21

}
(2)

Assume that Σ is the aforementioned function of X , that y2 are
points that we’ve observed at X2, and that y1 are points that we
want to predict at X1. Everything on the right is known and gives
us the distribution for the new points.



Conditional GP

y1|y2 ∼ N
{

Σ12Σ−122 y2,Σ11 − Σ12Σ−122 Σ21

}
I The mean for new points is a dot product.

I The variance goes to zero as a new point approaches an
observed point.

I This is just Bayes rule again. The GP is a prior for the
unobserved points and we know the conditional relationship
between the observed points and unknown points.



Gaussian Process Cartoon
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Design for GP

The variance at a unobserved point depends on the distance to the
training points. Thus, we want the training points to be
space-filling. There are numerous variations.



Design for GP: Latin Hypercubes

For n points in p dimensions, divide each dimension into n bins, get
p permutations of {1, · · · , n}, scale appropriately, jitter if desired.
Check to make sure that you didn’t get the diagonal or something!
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Dimension Reduction

Often the output is multivariate (e.g. power spectrum).
Center, scale, and project onto a useful basis:

[y1, · · · , yn] → [z1, · · · , zn]

Z = USV ′

K = US

w = (K ′K )−1K ′Z

Often only need the weights for a handful of basis functions. Build
GPs for the weights.



Cosmic Emu



Cosmic Emu



Cosmic Emu



Cosmic Emu

Basic elements of model and analysis

0

0.5

1

0

0.5

1

!2

0

2

t

 (a) model runs
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 (b) data & prior uncertainty

0

0.5

1

0

0.5

1

!1

0

1

2

3

t

 (c) posterior mean for !(x,t)
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 (d) calibrated simulator prediction
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 (e) posterior model discrepancy

0 0.5 1
!3

!2

!1

0

1

2

3

x

y
(x

),
 $

(x
)

 (f) calibrated prediction



Cosmic Emu

Save the design, training weights, and the mean of the GP
parameters. Use these to compute the conditional mean for the
weights at new desired point. Multiply the saved basis vectors by
the predicted weights.



Discussion

In practice, the emulation and the parameter inference are done
simultaneously. The posterior is messy, but it’s just the product of
a bunch of parts and MCMC stills gets the job done.


