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Outline

‰ Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas
‰ Explicit, semi-implicit, and implicit time integrations
‰ Implicit PIC formulation

Î JFNK with nonlinear elimination allows different treatments of disparate
scales

Î Discrete conservation properties (energy, charge, canonical momentum,
etc.)

‰ Some numerical examples
‰ Summary
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Introduction
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Vlasov-Maxwell equations for collisionless plasmas

Vlasov Equation
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where
j =

Z
qv f dv ; r =

Z
q f dv

‰ Various approximations are possible: Darwin model, electrostatic model, etc.

gchen@lanl.gov



Particle-in-cell (PIC) methods for kinetic plasma simulation

‰ Lagrangian solution by the method of characteristics:

f (x, v, t) = f

0

✓
x �

Z
t

0

dtv, v � q

m

Z
t

0

dt(E + v ⇥ B)

◆
; x(t = 0) = x

0

; v(t = 0) = v

0

‰ PIC approach follows characteristics employing macroparticles (volumes in phase space)
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Kinetic Plasma Simulation

‰ A fully ionized collisionless plasma: ions, electrons, and electromagnetic fields
‰ Challenge: to integrate electron-ion-field equations on a system length scale and an ion

time-scale, while retaining electron kinetic effects accurately.

(We are developing a new implicit algorithm for long-term, system-scale simulations. )

‰ Problem features a hierarchical description:
Î How to design a multi-scale algorithm? (e.g. IMEX, exponential integrators...)
Î How to respect conservation laws, and constraints?
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Algorithmic Considerations
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State-of-the-art classical PIC algorithm is explicit

‰ Particle positions and velocities “leap-frogs”, field-solve at position update in lock-step:

‰ Implementation is straightforward, but...
‰ Efficiency limitations:

Î CFL-type instability: min(w
pe

Dt < 1, cDt < Dx). Minimum temporal resolution

Î Finite-grid instability:Dx < l
Debye

. Minimum spatial resolution

Î Memory bound: challenging for efficient use of modern computer architectures.
‰ Accuracy limitations:

Î Lack of discrete energy conservation, problematic for long-time-scale simulations
‰ It is well-known that implicit methods can remove the stability constraints of explicit methods.
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Fully implicit PIC formulation (at first glance)

‰ A fully implicit formulation couples particles and fields non-trivially (integro-differential PDE):

f

n+1 � f

n

Dt

+ v ·r f

n+1 + f

n

2

� q

m

rFn+1 + Fn

2

·r
v

f

n+1 + f

n

2

= 0

r2Fn+1 =
Z

dv f

n+1(x, v, t)

(electrostatic system, as an example)
‰ In PIC, too many degrees of freedom:

Î There are N

p

particles, each particle requiring 6 equations (6 dimensions),
Î Field requires N

g

equations, one per grid point.
‰ If implemented fully implicitly, an impractically large algebraic system of equations results:

G({x, v}n+1

p

, {Fn+1}
g

) = 0 ! dim(G) = 2dN

p

+ N

g

Î How to evaluate the Jacobian?
Î Unaffordable memory requirements.
Î Algorithmic issues are showstoppers (e.g., how to precondition it?)
Î Likely to advance particle-fields in lock-step.
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Semi-implicit PIC formulation (at second glance)

‰ Basic idea1 2: To advance fields, r and j can be obtained from moment equations.

∂
t

na = �r · Ga

∂
t

Ga =
qana

ma
(E⇤)�r · Pa

where

na =
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Z
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vv fadv , E

⇤ = qE

n + (1 � q)En+1

‰ The moment equations are linearized to provide an estimate for r and j, integrated with a
semi-implicit scheme.
Î Decoupling of solving field and particle equations X
Î Field and particle equations are usually advanced in lock-step " (but can be relaxed)
Î Noise issues with light wave dispersion for large timesteps "
Î No discrete energy conservation "

1
Mason, R. J. (1981)

2
Brackbill, J. U., and Forslund, D. W. (1982)
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Particle enslavement (nonlinear elimination)

‰ Full residual G({x, v}
p

, {F}
g

) = 0 is impractical to implement
‰ Semi-implicit schemes have undesirable features
‰ Alternative: nonlinearly eliminate particle quantities from dependent variables:

Î Formally, particle equations of motion (EOM) are functionals of the electrostatic potential:
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Nonlinear residual can be unambiguously formulated in terms of electrostatic potential only!

‰ Storage requirements are dramatically decreased, making it tractable:
Î Nonlinear solver storage requirements µ N

g

, comparable to a fluid simulation

Î Particle quantities ) auxiliary variables: only a single copy of particle population

needs to be maintained in memory throughout the nonlinear iteration
Î Considerable freedom is gained for pushing particles (EOMs can be solved “explicitly” with

“known” fields)
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Jacobian-Free Newton-Krylov (JFNK) Method

‰ After spatial and temporal discretization ) a large set of nonlinear equations: ~
G(~xn+1) =~

0

‰ Converging nonlinear couplings requires iteration: Newton-Raphson method:
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‰ Jacobian linear systems result, which require a linear solver ) Krylov subspace methods (GMRES)
Î Only require matrix-vector products to proceed.
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JFNK preconditioning via implicit moment equations

‰ We use 1D electrostatic equations as an example :
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Î Eq.(4) (5) can be combined, and inverted by a tri-diagonal solver;
Î dE can be obtained from Eq.(6).
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Algorithmic implementation details

‰ The nonlinear residual formulation G(En+1) based on Vlasov-Maxwell formulation is as follows:

1. Input E (given by JFNK iterative method)

2. Push particles (i.e., find x

p

[E], v

p

[E] by solving equations of motion)

3. Compute moments (current density)

4. Form the residual of Maxwell equations

5. repeat 1! 4 until convergence
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Algorithmic implementation details

‰ The nonlinear residual formulation G(En+1) based on Vlasov-Maxwell formulation is as follows:

1. Input E (given by JFNK iterative method)

2. Push particles (i.e., find x

p

[E], v

p

[E] by solving equations of motion): Multi-rate integration
(a) Explicit timesteps (particle orbits are fully resolved)
(b) Adaptive sub-stepping (sub-cycling)
(c) Orbit-averaging

3. Compute moments (current density)

4. Form the residual of Maxwell equations

5. repeat 1! 4 until convergence
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Some Numerical Examples
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Ion acoustic shock wave
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‰ Propagating IAW with perturbation level e = 0.4, with 4000 particles/cell.
‰ Realistic mass ratio (m

i

/m

e

= 2000).
‰ Shock wave length scale⇠Debye length.
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Impact of Multi-rate Integrator on Temporal Rate of Convergence

‰ Weibel instability
‰ Numerical demonstration of 2nd order accuracy in time (Dt for field equations)
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2D Electron Weibel instability: preconditioner performance
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Summary and conclusions

‰ We have developed a multi-rate PIC formulation that employs
Î large timesteps for slow field evolution, and
Î small (adaptive) timesteps for particle orbit integrations

‰ Implementation is based on a JFNK solver with
Î Nonlinear elimination
Î Moment preconditioning

‰ The approach is free of numerical instabilities: w
pe

Dt � 1, and Dx � l
D

Î Requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems
Î Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations.
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