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Abstract

We estimate cross sections and rate coefficients for proton and electron impact

ionization, dissociation, and recombination of neutral and ionized hydrocarbon molecules
and fragments of the form C,H k, x = 1-3,y = 1-6, k = 0,1 in a thermalized hydrogen-

electron plasma.

1. Introduction

The purpose of this work is to provide estimates of rate coefficients for use in
calculations of hydrocarbon transport in a hydrogen isotope plasma. We developed these
estimates for use in fusion applications, namely to study the transport of hydrocarbons
chemically sputtered from a carbon plasma-facing surface. The rate coefficients are
intended to be of reasonable "ballpark" accuracy, in keeping with the numerous
uncertainties present anyway in most plasma-surface interaction calculations (e.g.,
plasma parameters, sputter yields, transport coefficients). With this limitation in mind it
is noted that these rates may be useful for future fusion calculations and other

calculations involving carbon/hydrogen plasmas.

Two of the reactions considered, i.e., proton impact ionization and dissociative

recombination, are most important for fusion applications at so-called detached plasma




conditions, with electron temperatures of roughly 1-3 eV. These reactions and their
application to chemical sputtering/hydrocarbon transport calculations are discussed in

[1-3], and rate coefficient estimates from [1-3] are summarized here.

The second two reactions considered, electron impact ionization and electron impact
dissociation, are not critical at low plasma temperatures but become more important at
roughly > 3 eV. For these reactions we have estimated the cross sections and then

computed the rate coefficients numerically as described below.

As discussed in [1,3] the accuracy of these estimated rates and cross sections, as checked
against known data, was found to be quite good, specifically with most comparisons

showing an error of within + 35%. However, the available data is limited making a

general accuracy estimate difficult.

2. Proton Impact Ionization—Rate Coefficients
The rate coefficients were estimated directly from molecular polarizability considerations

as discussed in Ref [1-3]. These are listed in Table 1.

As discussed in [2], for our purposes in low-temperature fusion calculations, we have
assumed that all reactions produce an even distribution of products, but the exact

distribution is uncertain.

For other hydrogen isotopes, i.e. D or T, the rates in Table 1 can be scaled by multiplying
by a factor equal to the square root of the ratio of the reduced mass of the reaction

constituents for a protium plasma to the reduced mass for the isotopic plasma in question.




For example for the reaction D"+ CD, the first rate in Table 1 should be multiplied by

sqrt [ (1x16)/(1+16)/(2x20)/(2+20) ] = 0.719, yielding a rate of 2.99 x 10 ™ cm’/s.

3. Dissociative Recombination-Rate Coefficients
The rate coefficients were estimated directly by scaling of data/estimates at thermal
energies, scaling from known methane reactions, as well as polarizability considerations,

as discussed in Ref [1-3]. These are listed in Table 2 for electron temperature T.

Again, an even distribution of products has been assumed for fusion related calculations.
This is believed to be a reasonable rough-estimate, but caution is urged regarding use in

high-accuracy calculations.

4. Electron Impact Ionization—Cross Sections

We consider processes of the form:
e +CH, » CH, /" +jH+2¢

with j an integer depending on the specific reaction.

Cross sections for the reactions considered are shown in Table 3 as a function of electron

energy.

5. Electron Impact Dissociation—Cross Sections

We consider processes of the form:
e+ CH;— C Hy +nC+mH + ¢

with n,m integers depending on the specific reaction.

Cross sections for the reactions considered are shown in Table 4 as a function of electron

energy.




6. Electron Impact Ionization and Dissociation—Rate Coefficients

The rate coefficient, for a Maxwellian plasma, is given by:

{ov) = (2/ kT)l'5 1/1 / wm, Im Eexp(—E/ kT) o (E)dE
0

for electron temperature T, cross section o, electron mass m,, and assuming negligible

hydrocarbon speed compared to electron speed.

The rate coefficients for electron impact ionization and electron impact dissociation were
computed numerically for electron temperatures of 1-2000 eV (via Simpson's rule with 1
eV energy intervals, and with energy integration range of 0-10,000 eV) using the above

equation with the cross sections of Table 3 and 4 respectively.
Figures 1-16 show the computed rate coefficients (mks units), grouped by particle type.
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Table 1. Proton impact ionization reaction rate coefficients

Total Rate
Reaction Products Coeff. (°m3 /S)
H*+ CH, — 05CH,”+H 4.15%10°
0.5 CH," +H,
H*+CH, — 0.5CH,”+H 3.6x107
0.5CH," +H,
H*+CH, — 05CH,"+H 3.4x107
0.5 CH' +H,
H*+CH — 10CH'+H 3.2x107
H*+C,H, — 033 CH, +H, 3.9x107°

033 C,H,”+H, +H
033 C,H,” +H, +H,

H*+C,H; — 033CH,"+H 4.9%x107
0.33 C,H," +H,
033 C,H," +H, +H

H"+C,H, — 033C,H,*+H 5.0%x107°
0.33 C,H," +H,
033 C,H," +H,+H

H*+C,H, — 033C,H,;"+H 4.6x107°
033 C,H," +H,
033 C,H*+H,+H

H"+C,H, — 05CH,"+H 6.3x107°
0.5 C,H* +H,

H*+C,H — 100C,H*'+H 4.4x107

H*+C,H, — 033CH"+H 5.8x107°

033 C,H," +H,
033 C,H,” +H, +H
H*+CH, — 033CH,"+H 5.7x107°
033 C;H," +H,
033 C;H," +H, +H




H*+C,H,

H* +C,H,

H*+C;H,

H' +C,H

033 C,H,” +H

0.33 C,H,* +H,
0.33 C,H,” +H, +H
033 C,H," +H

0.33 C,H,” +H,
033 C,H "+H,+H
05C,H,” +H

0.5 C,H' +H,

1.0 C,H* +H

5.9x%x107°

5.5%x107°

5.4x107

52x107




Table 2. Dissociative recombination reaction rate coefficients

Total Rate
Reaction Products Coeff. @m3/s)
e +CH,* 0.25 CH, +H 54x10°T0%  T<leV
0.75 CH, +H, 54x107°T1%  T>leV
e” +CH," 1.00 CH, +H 6.8x1078T07 T <leV
6.8x10°T”  T'>leV
e +CH," 1.00 CH+H 1.0x107T%*% T<leV
1.0X107T™®  T>lev
e” +CH* 1.00 C+H 7.0%x107°T*® T <leV
70x10°T™8  T>leVv
e +C,H," 0.50 C,H, +H 9.9 x 1078
0.50 C,H, +H,
e” +C,H," 050C,H,+H 9.65x 1078
0.50 C,H, +H,
e +C,H,” 0.50 C,H, +H 1.00x 1077704
0.50 C,H, +H,
e” +C,H," 0.50 C,H, +H 1.10x 1077 T
0.50 C,H+H,
e” +C,H," 033 C,H+H 6.81x 1078 T
0.33 CH+CH
033 C+C+H+H
e” +C,H* 050 C+C+H 9.28%x 1078 T
0.50 CH+C
e” +C,H," 0.50 C,H, +H 5.50%x 1078 T
0.50 C,H, +H,
e”+C,H," 0.50 C,H,+H 5.63x 107870
0.50 C,H, +H,
e” +C,H,” 0.50 C,H, +H 1.10x 1077 T
050 C,H, +H,
e” +C,H," 0.50 C,H, +H 1.10x 10777
0.50 C,H+H,
e” +C,H," 0.50 C,H+CH 1.10x 107770
0.50 C,H+H
e” +C,H* 033 CH+C+C 1.10x 107770
033 C,H+C

033 C+C+C+H




Table 3. Electron impact ionization cross sections

Energy
Reaction Cross Section (cm2) t Range (eV)
90—-E ,
"+ C CH,* +2¢ 1.8x107|1 ( J 12.6<E <90
¢+CHy —CHy+2e X [ 90-12.6
18x10"6<:xpl:90 E] E>90
100-E 143<E<10
T+H+2e 1.4x107%1 ( )
— CH;" +H +2e [ 143
1.4x107% exp 100~ E] E>100
799
) e 6 95— E
e +CH; —>CH;*+2¢ 1.8x107| 1~ ( ) 12.6<E <95
95-12.6
1.8x107 exp[95 E] E>95
767
. i 16|, (85-EY :
- CH, +H +2e 1.0x107%} 1| ——— 15<E<85
: 85-15
1.0x10% exp 85— E] E>85
832
& +CH, —»CHy'+2¢ 1.8x1071 (95 EJ 12.6< E <95
2 95-12.6
95— E
1.8x107% E>95
X exp[ = ]
—> CHY+H +2¢" 6.5%107" 1-( 95-E Y| 179<E<95
, 95-17.9
95—E]
6.5x107" E>95
X exp[ 200
] ] i 95-E Y
€+CH ->CH'+2e 1.8x107]1-| —2——— 12.6< E <95
95-12.6
95— E |
1.8x107 E>95
8 exP[ 746 |
- C'+H+2e 3.1x1077| 1 ﬂ) 17<E <95
95-17



3.1x1077 exp[ E] E>95

816
- : + - -16 86 E
e +CHg — CoHg +2¢ 1.32x10 10<E <86
“\86-10
1.32x1(.)‘l6 exp|:86 E] E>86
. i |, (86-EY
— CoHs"+H +2¢ 8.66x1077|1- 12<E <86
86-—12
8.66x10™" exp[%'E E>86
742

2
- CHy +Hy +2¢ 437x 10']6[1 —(8866 -llj:?) ] 12<E <86

437x107 exp[86 —£ E>86
742
) oo 6l. (89-EY
e +CHs — CoHs'+2¢ 1.24x107 1-| o — 10<E <89
89—E
1.24x107¢ >
X exp[ e ] E>89

2
- CHy +H+2¢ 8.11x 10"’[ (:g 1}‘;)] 12<E <89

E>89

89—E]

8.11x107"7 exp[
717

2
S CH +H+2¢  4.10% 10-‘6[ (89 E)] 12<E <89

89-12
410107 exp|:89 —E] E>89
717
. b a6l (90-EY
e +CHy — CHy +2e 1.15x107 1- 10<E<90
90-10
1.15x107¢ exp[90 E] E>90
668
2
> CH +H+2¢  7.57x107 1—(9°'E ) 12<E<90
90-12
7.57x107 exp 90’"E] E>90
668
9




. ) 6 90-E Y
- CH, +Hy+2¢”  3.82x107|1- 12<E <90

9012
90— E
3.82x107" exp| F—— E>90
exP[ 668 ]
. + - -16 86-EY
€ +CHs — CHs +2e 1.07x107%) 1| ——= 10<E <86
86-10
1.07x10™ exp 86-F E>86
646
. i |, (86=EY
- CH  +H+2e 7.02x1077|1- 12<E <86
86-12
7.02x1077 exp[86 e E>86
646

2
— CH +Hy +2¢ 3.55x10"6l:1—(:§_1b;) ] 12<E <86

3.55%x107" exp 86-E E>86 -
646
. . 16|, (87-EY
e+CHy —»CH +2¢ | 296x107¢|1-| —— 12<E<87
87-10
2.96x107 exp 87-F E>87
634

2
— CH +H+2¢ 1.94x10"16[1—(88;—£) :l 12<E <87

E>87

87—E:|

1.94x107'¢ exp[
634

2
e+ CH - CH +2¢ 2.71x10’16l:1—(§:——1—%) ] 10<E<84

E>84

2.71x107'¢ exp[84_E ]

575

2
—->C'+C+H+2¢ 1.94x10"6[1—(::_1E2J ] 12<E <84

1.94x107' exp M] E>84
575

10



2
e +CsHg — C3Hs' +2¢ 1.79x 10"6|:1 —(%} } 10<E <98

. [98-E
1.79%107 " ex [ E>
Pl 7683 *8

. ] 6l (98-EY
—> C3Hs +H + 2e 1.18x107°1-| ——— 12< E <98
98-12
_ 98 ~-FE
1.18x10" e [——— E>
Xp <58 98

2
— C3Hy +2H +2¢ 5.95><10"6[1—(§:'IE2 ] ] 12<E <98

- 98— E
595x10¢ ex [ >
p <38 E>98
. + - -16 97-EY
e +CsHs — C3Hs™ +2e 1.71x107}1-| ==—— 10<E <97
97-10
1.71x107 exp[97"E] E>97 .
65
) 2
> GHf +H+2¢  121x107 1—(9—7—"£ 12<E<97
97-12
- 97-E
1.21x107 ex [ E>
P| 7652 o7

* . asl. (97-EY
—->C3H3 +2H + 2e 5.67x10 1- 57—1-5 12<E<97

- 97-E
5.67x10™e E>
- XP[ 652 ] 77
- : + - -16 95‘-E 2
e+CHy —>CHf+2¢ - 1.63x107°)1-[ —— 10<E<95
95-10
1.63x107%¢ exp[gs —£ ] E>95
617
- 2
- CH +H+2¢  1.07x107° 1-(95“E) 12<E<95
9512
1.07x107" exp -E E>95
617




2
- C3Hy' +2H + 2¢7 5.40x10"5[1—(§§—£) ] 12<E <95

95— E
540x10% ex I: ] E>95
Pl 7617
. oo sl [94-EY
e +CsHs — CiHs' +2e 1.54x107|1— 10< E <94
9410
1.54x107'¢ exp[94 —£ E>94
581

2
S CiH +H+2  1.01x107° 1—(94“E) 12<E <94
94-12

E>9%4

1.01x107" exp[94"E]

581

> CGH +2H+2¢  5.12x 10"6[ (;: 1"‘;)] 12<E <94

5.12x107 exp[94 ] E>94 .
581
) P 16 93-EY
e +CHy — CiHy +2¢ 439x107*%|1- %3 10 10<E <93
E>93

439x107 exp[93 —£ ]

546

- CH +H+2¢ 2.88x 10"6[ (9933 é)] 12< E<93

2.88x107 exp[g3 E] E>93

) . 6 91-E Y
e+CH —CH +2¢ 6.85x107%|1- 5110 10<E <91
6.85x107" exp o1- E] E>91

511

t Please note: All cross sections are zero below the threshold energy.

12



Table 4. Electron impact dissociation cross sections

Energy
Reaction Cross Section (cm?) 1 Range (eV)
: 2
¢+CHy —CH;+H+e  14x107 1-(25"E 10<E <25
25-10
1.4x107 exp[zs e ] E>25
.. - 18-EY
-—)CH2+2H+C 7.3x%x10 1- Ig—l—é' 10<E<18
7.3x107" exp 18-F E>18
11.4
3 ] 6 25-EY’
¢e+CHs; —>CH;+H+e 127x107°|1- ﬂ 10<E<25
1.27x107'¢ exp[25 e ] E>25
77
] . 18-EY :
—>CH+2H+e 6.33x107V|1-| —— 10<E<18
18-10
6.33x1077 exp[ls_E] E>18
11.4
) ] . 25-EY
€ +CH, —»CH+H+e¢ 7.33x1077| 1| Z— 10<E <25
7.33x107 expl:zs_—E] E>25
77
. . 18-EY
—>C+2H+e¢ 3.67x1077|1-| =—— 10<E<18
18-10
18—E
3.67x10™ exp| —— E>18
x exP[ 11.4 ]
2
€+CH —C+H+e 6.0x107" 1-(25“E) 10<E<25
25-10
6.0x107" exp[zs,];E] E>25

2
e+CHs - CHs+H+¢e 3.34x10"6[1—(§§—£) ] 10<E<25

13




25-F

3.34x107' exp[—————] E>25
77
] 6 18-EY
> CH,+2H+e 1.67x1071- 10<E<18
18-10
1.67x107" exp 18-F E>18
11.4
) ] 16 25-EY
€ +CHs —»>CHy+H+e  328x10™)1-| —o— 10<E<25
3.28x107 exp[zs —£ ] E>25
77
. 6l (18-EY
> CHz+2H+e  1.64x107[1- 10<E<18
18-10
18—E
1.64x1076 E>18
8 CXP[ 11.4 J
. ) 6l (25-EY
€+CH —»>CH+H+e  3.13x107) 1| Z— 10<E<25 .
3.13x10™ exp 25 “E] E>25
77
] 6|, (18-EY
— CHp+2H+e  1.56x107|1—| ——— 10<E<18
18-10
18—E
1.56x107" E>18
SR [ 114 ]
. . a6l (25-EY
€+CH; > CH+H+e  284x107¢1-| So—0 10<E<25
2.84x107 exp M] E>25
77
! 4| (18=EY
5> CH+2H+e  1.42x1071-| —— 10<E<18
18-10
18—E
42x107¢ E>18
1.42x% exp[ 14 ]
- - -16 25"E 2
e+CH; - CH+H+e 4.06x107¢| 1-| Zo—= 10<E <25
25-E E>25

4.06x107 exp[

14

]



e+CH —>C+C+H+e 360x10"6[ (2255 ﬁ))] 10<E<25

3.60x107 exp[ ] E>25

2
e+CHsg —»>CHs+H+e  4.76x 10"6|: (25 1)] 10<E <25

E>25

4.76x107 exp[

.. 16|, (18-E 2
- CiHy+2H+e’  238x107°|1-| o— 10<E<18

E>18

2.38x107 exp[lg—E ]

114

2
e+CHs -»>CHy+H+e 4.53x10”6[1—(§::£)] 10<E<25

E>T7

4.53x107 exp[25 _ E]

77

] 6 18-EY |
- CH; +2H+e  227x10 1-E—1—0 10<E<18

E>18

16 18— E]
2.27%10 exp[ T

e+ CH; —Ciz+H+e  431x 10-’6[ @: i)] 10<E<25

E>25

431x107 exp[

) 6 18-E 2
5> CiHp+2H+e  2.16x107|1- 10<E<I18

18-10
18-E
16 exp|- E>18
2.16x10 exp[ 14 ]
) 6 25-EY
e+CH; - CH,+H+e  4.10x107°|1- 10 10<E<25
4.10x107 exp[257f/E ] E>25




2
> CH+2H+e  2.05x10 1-(1-8-'1 10<E<I8
18-10
2.05x107' exp[ls"E E>18
11.4
] ] 16 25~EY
e+CHy, > CH+H+e 5.82x107%| 1-| Z— 10<E <25
5.82x107" exp ?‘-5-12] E>25
|77
. ] 16 25-EY
e+CH —>3C+H+e 5.48x107¢[1-[ =—— 10<E <25
25-10
5.48x107 exp[%;—E—] E>25

T Please note: All cross sections are zero below the threshold energy.
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6

e(-) + C2H2
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Fig. 7
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Fig. 8

e(-) + C2H4
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Fig. 9

e(-) + C2H5
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3

<ocv> (m”/sec)

Fig. 10

e(-) + C2H6
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<cV> (m3/sec)

Fig. 12
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Fig. 13

e(-) + C3H3
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Fig. 14

e(-) + C3H4
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Fig. 15

e(-) + C3H5
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Fig. 16

e(-) + C3H6
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