RE o Vs ANL/ESDITM-145

T 15 iagg

Integrated Dynamic Landscape Analysis and
Modeling System (IDLAMS):

Installation Manual

Argonne National Laboratory
Operated by The University of Chicago, f
g

under Contract W-31-109-Eng-38, for the
United States Department of Energy *, '

U.S. Army Corps of Engineers

R . . US Army Corps
Construction Engineering Research of Engineers
Laboratories (USACERL) Patench Laboraiois

USACERL-98/128

Argonne National Laboratory

Argonne National Laboratory, with facilities in the states of Illinois and
[daho, is owned by the United States Government, and operated by
the University of Chicago under the provisions of a contract with the
Department of Energy.

This technical memo is a product of Argonne’s Energy Systems (ES)
Division. For information on the Division’s scientific and engineering
activities, contact:

Director, Energy Systems Division
Argonne National Laboratory
Argonne, lllinois 60439-4815
Telephone (630) 252-3724

Disclaimer

This report was prepared by Argonne National Laboratory, operated by
the University of Chicago on behalf of the U.S. Department of Energy
(DOE), as an account of work sponsored by the Strategic
Environmental Research and Development Program (SERDP). Neither
members of the University of Chicago, DOE, the U.S. Government, nor
any person acting on their behalf:

a. Makes any warranty or representation, express or implied,
with respect to the use of any information, apparatus,
method, or process disclosed in this report or that such use
may not infringe privately owned rights; or

b. Assumes any liabilities with respect to the use of, or
damages resulting from the use of, any information,
apparatus, method, or process disclosed in this report.

Reproduced directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information, P.O.
Box 62, Oak Ridge, TN 37831; prices available from
(423) 576-8401.

Available to the public from the National Technical
Information Service, U.S. Department of Commerce,
5285 Port Royal Road, Springfield, VA 22161.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

PEIRG S S

ANL/ESD/TM-145

Integrated Dynamic Landscape Analysis and
Modeling System (IDLAMS):

Installation Manual
]

by
Z. Li, * P.J. Sydelko, * K.A. Majerus, * R.C. Sundell, and M.C. Vogt

Energy Systems Division, Center for Environmental Restoration Systems
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, lllinois 60439

June 1998

i~
Work sponsored by Strategic Environmental Research and Wifl'_, S E%D @

Development Program (SERDP) S and Dovelopment brogram
Al’lington, Vlrglnla Environmental Research

Improving Mission Readiness Through

*Li and Sydelko are affiliated with Argonne’s Decision and Information Sciences Division; Majerus is
affiliated with the U.S. Army Corps of Engineers, Construction Engineering Research Laboratories
(USACERL), Champaign, lllinois.

YA R AN

About IDLAMS

A s funding for conservation continues to
decrease, many land managers are facing a
challenge: to balance their goals of providing
multiple land uses, while complying with natural
resource regulations and minimizing negative
environmental impacts. Actions to alleviate one
problem often exacerbate others. A more
integrated approach to land use planning and
natural resource management is needed. To meet
this need, Argonne National Laboratory and the
U.S. Army Construction Engineering Research
Laboratories have
developed the
computer-based
Integrated Dynamic
Landscape Analysis
and Modeling System
(IDLAMS).

An integrated,
dynamic modeling
and decision-
support system has
been developed to
provide a long-term
strategic approach
for land resource
management.

IDLAMS supports the multiple objectives of
sustaining natural resources, facilitating
appropriate land use, and complying with
regulations. This integrated, dynamic modeling
approach is a promising tool that can help
federal, state, and private organizations fulfill
their land stewardship requirements while
balancing multiple management objectives and
supporting their primary missions.

All too often, decision-makers face critical land
management decisions without sufficient
information, such as thorough environmental

data; information about other, competing
objectives; and knowledge of land use
requirements. IDLAMS, as developed for

military use, consists of ecological, erosion, and
training subroutines, along with advanced
decision-support techniques, all linked with a

it

core vegetation dynamics model that uses
geographic information systems, remote sensing,
and field inventory data. A user-friendly
computer interface allows the land manager to
operate this predictive, decision-support tool
without the need for substantial computer or
environmental modeling expertise. The key
benefit of IDLAMS is that it can help land
managers in three important ways: (1) strive
toward multiple land use objectives using trade-
off analysis, (2) evaluate the cost and economics
of viable alternatives
for managing land use,
and (3) incorporate
"what if" scenarios into
decision-making.
IDLAMS can also
speed up responses to
land-use management
issues, improve
environmental
compliance, and help
balance diverse land
use needs.

Organizations
interested in learning
more about IDLAMS
should contact one of
the principal investigators listed on the following

page.

A user-friendly computer interface allows
the land manager to operate this
predictive, decision-support tool without
the need for substantial computer or
environmental modeling expertise.

POINTS OF CONTACT

Through June 1998, Dr. Ronald C. Sundell served as project manager for this project.
Dr. Sundell has left Argonne National Laboratory and currently holds a position at Northern
Michigan University. Ms. Pamela J. Sydelko and Kimberly A. Majerus serve as points of contact
for this project. For further information, please contact:

Ms. Pamela J. Sydelko

Argonne National Laboratory

Advanced Computer Applications Group

Decision and Information Sciences Division, Building 900
9700 South Cass Avenue

Argonne, lllinois 60439-4832

Phone: (630) 252-6727
E-mail: sydelkop @smtplink.dis.anl.gov

Ms. Kimberly A. Majerus

U.S. Army Corps of Engineers

Construction Engineering Research Laboratories

Natural Resource Assessment and Management Division
Land Management Laboratory

USACERL CECER LL-N

P.O. Box 9005

Champaign, Illinois 61826-9005

Phone: (217) 352-6511
E-mail: k-majerus @cecer.army.mil

v

PREFACE

The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a
prototype, integrated land management technology developed through a joint effort between
Argonne National Laboratory (ANL) and the U.S. Army Corps of Engineers Construction
Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko,
and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li
was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr.
Michael C. Vogt developed the decision analysis component of this project. It was developed with
funding support from the Strategic Environmental Research and Development Program (SERDP),
a land/environmental stewardship research program with participation from the U.S. Department of
Defense (DoD), the U.S. Department of Energy (DOE), and the U.S. Environmental Protection
Agency (EPA).

IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status)
by simulating changes in military land ecosystems for given training intensities and land
management practices. It can be used by military land managers to help predict the future
ecological condition for a given land use based on land management scenarios of various levels of
training intensity. It also can be used as a tool to help land managers compare different land
management practices and further determine a set of land management activities and prescriptions
that best suit the needs of a specific military installation.

The IDLAMS project documentation consists of four reports:

IDLLAMS Installation Manual*,
IDLAMS Programmer’s Manual,
IDLAMS User’s Manual, and
IDLAMS Final Report.

AL

*This installation manual describes the system requirements, structure, and instructions for
installing IDLAMS. More detailed information about IDLAMS development, methodology, or use
can be found in the other three reports.

Vi

CONTENTS

ADOUL IDLAMS ..ottt ettt ettt ettt e e e e aaeateaan e eenanenesaananans il
POINTS OF CONTACT ... ettt ettt et e e s e e s raeneaananeaananannn iv
PREFACE ..ottt ettt ettt ettt ea ettt eaeteeanananeaanasanns v
ACKNOWLEDGMENTSetiiiittiiiietitiiteeeitreeteieeeieienraeneneenearenesaeerenanennns Vil
NOTATION ...ttt ettt ettt e et ta et s ensatasaaasseneneaeneasaaarseesenssnns ix
ABSTRACT ... ettt ettt ettt e e ettt e e e a et e e aneans 1
I INTRODUCTIONuiuiuiuiininiiiienitti ettt et ettt e eaetraeteaenaeeaenananeaenarnenns 1
2 . SYSTEM COMPONENTS AND REQUIREMENTS.......cctuttiiiiiiinineniiainnenreenenanenen 4
3 STRUCTURE OF DISTRIBUTION PACKAGEcccctiiiiiiiiiiiiiiiiiiierenieeeeeenenen 6
4 INSTALLATION INSTRUCTIONS......cuettiiiiteiieeier et eteeeeeaeeseeneaaneneeaanenns 8
5 SUPPORTING DOCUMENTATION.uutttiitiniieieieieneeieeeenaareeeeenanensaeaanensn 9
6 REFERENCES..... ...ttt ettt e e et e e e e e e anas 10

APPENDIX A GRASSA4.1 Floating Point Version Installation Manual A-1

APPENDIX B Tcl 7.3/Tk 3.6 (expect 5.7) Installation ManuaL.c.ccceeuevinnnnnnen.n.. B-1

APPENDIX C GNUPLOT 3.5 Installation Manual........cccceeviiiriienienenenannenenannnnn. C-1

FIGURES
1 IDLAMS System DIagramlcocuiuiiieniniiirieniieiieieieeeereeereeneteaereesnenereeareraanenenns 3
2 IDLAMS Directory Hierarchical DIiagram...........cuevevuneenrenrenerneeneenerneeeeneenennerneen. 4
vii

ACKNOWLEDGMENTS

This report was funded by the Strategic Environmental Research and Development
Program (SERDP). Special thanks go to Dr. Femi Ayorinde, SERDP Conservation Program
Manager, for his assistance to and support of this project. In addition, special appreciation is also
expressed to Craig Phillips, Dave Jones, Malcom Ponte, Herb Abel, and the Natural Resources
staff at Ft. Riley, Kansas, for their help and cooperation in the development and testing of
IDLAMS.

Viii

ASCII
DoD
DOE
EPA

ES

GIS
GRASS
GUI
IDLAMS
MIM

PC

PI
RUSLE
SERDP
Tcl/Tk
USACERL

NOTATION

Argonne National Laboratory

American Standard Code for Information Interchange

U.S. Department of Defense

U.S. Department of Energy

U.S. Environmental Protection Agency

Energy Systems

Geographic information system

Geographical Resources Analysis Support System

Graphical user interface

Integrated Dynamic Landscape Analysis and Modeling System
Maneuver Impact Mile

Personal computer

Principal investigator

Revised Universal Soil Loss Equation

Strategic Environmental Research and Development Program
Tool command language/tool kits

U.S. Army Corps of Engineers, Construction Engineering Research Laboratories

ix

y NS R DRSOt Ay 71420 p o
ey B O R A P R T 7/ SO DO
L - TS TR AN REA S ER A L RTIEe

T A
T B B ST E A
TR Y ER 2 BP0

4

INTEGRATED DYNAMIC LANDSCAPE ANALYSIS
AND MODELING SYSTEM (IDLAMS):

INSTALLATION MANUAL
by

Z.Li, P.J. Sydelko, K.A. Majerus, R.C. Sundell, and M.C. Vogt

ABSTRACT

This manual provides instructions for the user on how to install the Integrated
Dynamic Landscape Analysis and Modeling System (IDLAMS). The system
requirements, structure of the distribution package, and step-by-step installation
instructions are provided. In addition, procedures for installing the GRASS
geographic information system (GIS), Tcl/Tk graphical user interface (GUI), and
GNUPLOT are provided in the appendixes to this report. The intended users of
this manual are those responsible for installing, maintaining, and/or enhancing the
IDLAMS system. It is assumed that the person installing the IDLAMS software
package possesses a good working knowledge of C programming language(s),
the UNIX operating system, and UNIX shell script languages. In addition, the
installer should have an overall understanding of how to install GRASS GIS,
Tcl/Tk, and GNUPLOT. The appendixes are meant to provide this overall
understanding. Copies of the GRASS Programmer’s Manual and GRASS
User’s Manual are essential and should be very helpful if modifications of the
models are desired.

1 INTRODUCTION

The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) operates
under the UNIX operating system and is built upon the Geographical Resources Analysis Support
System (GRASS) geographic information system (GIS) (USACERL 1993). The vegetation
dynamics model is the core of IDLAMS; its parts are either written in the C language or built with
existing GRASS functions. External models or applications can be written in other languages or
can exist in other GISs, provided that they accept ASCH array landcover maps as input and can
export ASCII arrays back into IDLAMS. The entire system is integrated with a graphical user
interface (GUI) by means of the Tcl/Tk programming language. To use this system, a UNIX
workstation running with a SunOS 4.1.3 operating system or an IBM-compatible personal
computer (PC) running with a UNIX operating system is required. Acceptable performance was
achieved on a Sun SPARC Classic with 32 MB RAM, 2 GB disk space, and a 19-in., 8-bit video
display.

IDLAMS currently consists of four major components:

The vegetation dynamics model,
Wildlife habitat submodels,

The soil erosion submodel, and
A scenario evaluation model.

PN -

The vegetation dynamics model is the core of the entire IDLAMS system. The wildlife
habitat submodels and the soil erosion submodel all use the resultant vegetation cover map from the
vegetation dynamics model as their landcover condition input to determine predicted wildlife habitat
condition and soil erosion status. The scenario evaluation model evaluates the effectiveness of the
selected land management practices on the basis of results from the vegetation dynamics model,

wildlife submodels, and erosion submodel. The evaluations are made by using weighted multiple-
attribute utility functions.

The entire system is integrated by means of an X-Windows GUI (written in Tcl/Tk
programming language) to provide a user-friendly environment. Figure 1 presents a system
diagram of the IDLAMS system.

Wildlife Submodel

Hab itat Sultabi lity

*Game Speciles
*Nongame Species

Vegetation Model

*D isturbance R esponse

Natural Change
*Forest Spread

*Secondary Succession
*Fire Regime

Land Management

*Planting (native)
“Planting (erosion controf)
*Prescribed Buming

Figure 1

Erosion Submodel

Soil Erosion
*RUSLE

A4

Scenarlo Evaluation Model

Value-based Modeling
*Utility Functions

IDLAMS System Diagram

"3

- ;'f;?}'yl;v— RGP E{'}.’;:i,,,' Vi

)
&:\

=
s ’v-(\

PR /“ LA R e
wc.(S AR R AT R A

‘ ;‘}di

2 SYSTEM COMPONENTS AND REQUIREMENTS

The IDLAMS technology consists of links between various components, including
software, data sets, files, and shell scripts. An overall representation of the major components of
IDLAMS is provided in Figure 2.

The IDLAMS system consists of two major components, the GRASS GIS system and the
IDLAMS models. Additional supporting packages include the Tcl/Tk (“expect”, including “wish”)
language and GNUPLOT graphic utility. All of these packages are distributed together with
IDLAMS for the user’s convenience. However, users might not have to install these supporting
packages if they are already up and running on the host machine. Details of the system
components can be found in the IDLAMS Programmer’s Manual.

IDLAMS
GUI GRASS II?LAMS _ Data . GNUPLOT
Tcl/Tk GIS Environment||Directories
GUI Tel/Tk Tool Command Language/Tool Kits
GRASS/GIS GRASS 4.1.3 with Vegetation Succession Model

IDLAMS Environment—— IDLAMS Integration Package, including:
Wildlife Submodels
Erosion Submodel
IDLAMS Scenario Evaluation Model

Data Directories————— |IDLAMS Input/Output Maps

GNUPLOT Graphic Software Package

Figure 2 IDLAMS Directory Hierarchical Diagram

IDLAMS was developed under the SunOS 4.1.3c UNIX operating system with an
Openwindows X-window system environment. If the same operating system is used on the host
machine, the compiled executable codes on the distribution media should run without need for
recompiling. Further modifications may be necessary if IDLAMS is to be installed on machines
with operating systems different from that stated above; in that case, all of the IDLAMS
components, including the GRASS GIS system and Tcl/Tk, as well as GNUPLOT packages, must
each be recompiled.

To load IDLAMS, a hard disk space of at least 100 megabytes is required. Additional disk
space may be needed if larger data sets are to be stored and analyzed. It is recommended that one
identify and determine the size of the required data sets and ensure that sufficient disk space is
available.

3 STRUCTURE OF DISTRIBUTION PACKAGE

The IDLAMS software package consists of five major components. These five
components are:

1.

2.

3.

4.

5.

IDLAMS executable application, scripts, and support functions;
IDLAMS mapset of GIS GRASS data;

Floating point GRASS 4.1 Floating Point Version Installation Manual with the
IDLAMS Vegetation Model r.veg.change;

Tcl 7.3/Tk 3.6 (expect 5.7) Installation Manual; and

GNUPLOT -3.5 Installation Manual.

The distribution media contain the following files (file names are shown in italics) and

contents.

README: general instructions;

INSTALL: shell script for loading IDLAMS;

SETUP: shell script for building run-time parameters;
IDLAMS.tar.gz: IDLAMS main Tcl/Tk source codes;

grassgis.tar.gz. GRASS GIS system source code (with the IDLAMS Vegetation Model
r.veg.change);

teltk.tar.gz: Tcl/Tk source code;
gnuplot.tar.gz: GNUPLOT source code; and

IDLAMS mapset.tar.gz: a demonstration mapset of GIS data.

The README file provides a brief general description of how to install the IDLAMS
package. The INSTALL script is designed to automatically uncompress and un-tar the necessary
components to the right directories, while the SETUP script has been developed to set up run-time

parameters to minimize the directory structure dependency, allowing users to install the software
anywhere in their local file system.

IDLAMS.tar.gz is the source code for the main program. The grassgis.tar.gz is the source
code for the GRASS4.1 floating point GRASS GIS system with the Vegetation Succession Model,
r.veg.change. :

In addition, the IDLAMS system requires the Tcl/Tk programming language and the
GNUPLOT graphic packages. For the user’s convenience, these packages also are distributed
with the IDLAMS system on the distribution media. They are tcltk.rar.gz and gnuplot.tar.gz,
respectively. If the proper versions of these public domain software packages already exist on the
machine, they do not need to be installed. However, it is recommended that IDLAMS be
downloaded in its entirety. The last subdirectory, IDLAMS mapset.tar.gz, contains a
demonstration mapset of GIS data. The user will need to test-run IDLAMS to verify that the
system has been correctly installed.

4 INSTALLATION INSTRUCTIONS

The following eight steps are necessary to install the IDLAMS software package:

1.

2.

Create an IDLAMS user login and corresponding IDLAMS home directory.

Download the file from the media by using the UNIX far command.

. Run the INSTALL script. During installation, the user is prompted to provide

installation locations for each of the components to be installed. After all of the
questions are answered, the INSTALL script will uncompress and un-tar the necessary
files to the designated directories.

Compile GRASS4.1. For details on how to compile GRASS4.1, please see the
attached GRASS4.1 installation manual in Appendix A.

. Compile the TclU/Tk package (if this package has not already been loaded on the

machine). Both the expect and wish components of Tcl/Tk are needed for IDLAMS.
For details, please see the attached Tcl/Tk installation manual in Appendix B.

. Compile GNUPLOT package (if this package has not already been loaded on the

machine). For details, please see the attached GNUPLOT installation manual in
Appendix C.

. Edit the .cshrc or .profile file in IDLAMS $HOME directory to add Tcl/Tk,

GRASS4.1, and GNUPLOT in the search path.

. Run the SETUP script to establish the run-time parameters. If the SETUP script runs

successfully, IDLAMS is now set up and ready to run. It is important to enter the full
path names of the directories during setup. For example, if the wish command of
Tcl/Tk resides in /usr/local/bin/tcltk/, the user must enter it as /usr/local/bin/tcltk.

Finally, the person responsible for installing the IDLAMS system is cautioned that in this
first version of IDLAMS and no extensive validation check for the correctness of the user's input
parameters has been made. The user should double-check the directory names he/she entered
during installation and setup. If, when one is starting IDLAMS, an error message states that a

parameter(s) is missing, the user should double-check the parameters entered during setup and
rerun the SETUP script.

5 SUPPORTING DOCUMENTATION

For convenience, the following documents have been attached as appendixes to this
installation manual:

A. GRASS4.1 Installation Manual (1993);

B. Tcl7.3/Tk 3.6 (1995) and expect 5.7 (1994) Installation Manual; and

C. GNUPLOT 3.5 Installation Manual (1993).

However, for a greater level of detail, it is suggested that the person installing the system
obtain all related supporting documentation.

z O A A

S, ST e

10

6 REFERENCES

Ousterhout, J., 1995, Tcl/Tk Installation and Documentation Directory, University of California at
Berkeley, ouster@cs.berkeley.edu.

USACERL: See U.S. Army Corps of Engineers, Construction Engineering Research
Laboratories.

U.S. Army Corps of Engineers, Construction Engineering Research Laboratories (USACERL),
1993, Geographic Resources Analysis Support System (GRASS), version 4.1, User’s Reference
Manual, Champaign, I1.

Williams, T. and C. Kelley, 1993, GNUPLOT, An Interactive Plotting Program, version 3.5,
info-gnuplot-request @dartmouth.edu.

APPENDIX A

GRASS 4.1 FLOATING POINT VERSION INSTALLATION MANUAL

GRASS 4.1 INSTALLATION GUIDE

ABSTRACT

This document explains how to install GRASS 4.1. Please
read the instructions completely before beginning. There are
changes in the installation process between GRASS 4.0 and
GRASS 4.1.

April 30, 1993

G) B2 AN R v
T R G o T

Table of Contents

L SUPPORT .ottt ee ettt ttcaettee s sssssaaessesssnansnssssnnssesssnsannnnnnnns 1
2: TO COMPILE OR NOT TO COMPILE? ...coiiiirieiriieiirrrccrcccccececeeeenee 1
3 DAT A IM P A CT S e rtretrrereeeiesseereeenneeessarsnessssnnnsssansnnnnns 2
4: PREPARATION oo retreeeeetreneeeetenenvasesssaeesaneesesnnsessesnsnnseanns 2
5: DISTRIBUTION TAPE CONTENTS eeeeereeeresennrennnereasaananas 4
6: EXTRACTING SOURCE CODE AND SAMPLE DATABASE 4
7: GRASS COMPILATION ...eiiiiicciiiineeiiretnnnnseeeseensseesetesssnnensesssssssrsenes 7
7.1: COMPILATION STEPS OVERVIEW ...iriiiiiiiciiccrenvcceseenenanes 9
7.2: COMPILATION SUPPORT FILESccoiiirirccieictiveecccneennenans 9
7.3: COMPILATION SETUP ettt ceremeereccsasesessasaenees 10
T4 EDIT LIST S ittt rte ettt et se e e s s s see s e aessssansans Il
7.5 XDRIVER ettt cttrccs ettt et e saas s s assss s s sananses Il
7.6: COMPILE G RASS et crttt e s cete e e essn s s e sananaens 12
7.7: LINK GRASS PROGRAMS oottt scncenes 13
7.8: COMPILE OTHER PROGRAMSocicerreneteencecesenceneenene 13
8: GRAPHICS DRIVER CONFIGURATION (etc/ monitorcap)ccccceeeeeees 14
9: DIGITIZER DRIVER CONFIGURATION (etc/digeap) .cccccceeeeererecneeannee 15
10: PAINT DRIVER CONFIGURATION .iiiiiiiiieiiiciccicicctccctenceeeeeee 16
[1: SUPPLY YOUR GRASS 4.0 DATA oo ceeeceeecreceeecneeeceeeees 19
12: DID YOU MISS SOMETHING? et e e e eceannee 20
13: GRASS INSTALLATION IS COMPLETE ...coiiiiiiiiiiriiccecececrecceneeneeens 21
14;: CONTRIB-TEST AND OTHER PROGRAMS ..iiriiiiiiiiciieneees 21
[5: CLEANING UP ettt rrteteereeerenaseseeuesecsenssesssssasssssanssssnns 21
16: MOVING THE BINARY INSTALLATION ..iiiiirerccciiveiieens 22
LT A PPENDIIX et eeerteee s erenesresee e v se e s s e sa e eeessraneesans 23
17.1: MISSING UNIX COMMANDS Lottt eeececeenenes 23
17.2: XDRIVER REQUIREMENTS ..o e cccetsetinnentnvacee e 23
17.3: XGRASS/OPENWINDOWS REQUIREMENTS ..., 23
L7.4: SCO UNIX ottt sttt te s ettt s e st e e e s s s s s s e s snsssanen 24
17.5: CRAY LOADER PROBLEMS ..ottt eenenceernaneees 24
17.6: INTERGRAPH HARDWARE PLATFORMS erecnerenenenns 24
17.7: MIPS/CONTROL DATA HARDWARE PLATFORMS (RISCos,

|29 27 0, G RO URRREURS 24
GRASS 4.1 Spring, 1993 Installation Guide

17.8: SAMPLE HEADER FILES

-ii -

17.9: GRASS 4.0 DIGITIZER DRIVER CONFIGURATION--

etc/ digitcap .cceeeeviiieninnieeneeanes

GRASS 4.1

Spring, 1993 Installation Guide

GRASS 4.1 INSTALLATION GUIDE

1. SUPPORT

The Geographical Resource Analysis Support System (GRASS) is a public-
domain product of the GRASS Inter-Agency Coordinating Committee. The 4.1
release is being coordinated by the Office of GRASS Integration (OGI) at the
Construction Engineering Research Laboratories (CERL), Champaign, Illinois.
GRASS is an integrated set of many programs designed to provide digitizing,
image processing, map production, and geographical information system
capabilities to the user. Authorship of the individual programs is noted in the
GRASS 4.1 User’s Reference Manual.

CERL maintains the GRASS Information Center at phone number 1-800-
USA-CERL (or 217-352-6511), extension 220. Through this Center you may
find out what firms and agencies currently distribute and support GRASS as
well as which offer class instruction, data development, or related services.

2. TO COMPILE OR NOT TO COMPILE?

Your release tape may provide you with binary code compiled for a particular
machine configuration. If this configuration (which is clearly marked on the
medium’s label) matches your machine set up, you will be able to run GRASS
almost immediately after loading the files onto disk. The simple instructions
that come with the distribution media should be followed and this entire
document can safely be ignored for now.

These instructions are for sites that have received source code. Compilation of
this software can be moderately to extremely difficult. You may attempt
installation yourself or seek assistance through any of several commercial firms
competent in GRASS installation and support. Refer to section 1 for finding
assistance.

This installation document involves the compilation of computer source
(human-readable) code into machine language. To be successful. you must be
familiar with:

Your computer

UNIX

UNIX shell(s) (sh. csh)

An editor

A C language compiler

Makefiles

Tape handling and reading (using the mt & cpio commands)
Super-user operations

configurations:!

I See section 17, "Appendix.” for notes regarding other computer configurations.

GRASS 4.1 Spring, 1993 Installation Guide

P 23 T ELh9
FRNT e

T OB L e A oC=acut Jasasr L5 "
PR O VR R AL B 2 AN 20O Co- RS

COMPUTER
SUN (4,3861)
Operating System SunOS 4.1

C compiler version |any K&R compatible
Graphics software Sunview, X-windows
Graphics Hardware | 8-plane color

GRASS 4.1 has been compiled and runs on the following computer
If you are using different configurations than those defined here, expect more
than the usual share of difficulties. Even a ‘‘new and improved’’ compiler can
cause problems. Installation of GRASS on systems using new (to GRASS)
graphics monitors will experience the most difficult problems. The GRASS 4.1
Programmer’'s Manual is available to help the person responsible for porting
GRASS to different hardware configurations.?

3. DATA IMPACTS

Existing GRASS data files (those created under previous versions of GRASS)
can be used under GRASS 4.1 without conversion.

Please note that while there have been no significant changes to the vector,
raster, site and imagery data files from 4.0 to 4.1, there is no guarantee that
data created under 4.1 will be backwards compatible with 4.0.

Vector files and their support files as well as raster color files made under
GRASS 4.1 (or 4.0) are not backwards compatible with GRASS 3.1 or earlier
versions of GRASS.

4. PREPARATION

You must first decide which user will own the GRASS 4.1 files. In this
document, we will assume that the user grass will own the GRASS 4.1 files.

GRASS 4.1 should be installed in new directories. DO NOT extract the 4.1
source code on top of any existing 4.0 source. If you already have a version of
GRASS on your system and you want to install GRASS 4.1 in the same place,
move the older version elsewhere.> Compiled binaries should go into a new
place as well. OGI recommends that you keep the SRC and GISBASE
directories separate for more flexibility; however, if you have a shortage of
available disk space. you may elect to use the same directory for both.

> The GRASS 4.1 Programmer's Manual can be used as a reference for writing graph-
ics drivers.

3 A certain amount of savvy is required here. If the older version exists in the home
directory for a user. and vou rename the home directory. not only must you recreate
the directory. bu: vou must also restore the user’s files as well (e.g.. .cshrc, .login,
.mailrc).

GRASS 4.1 Spring, 1993 Installation Guide

-3 -

GRASS 4.1 source and programs can be installed anywhere in your computer
system. This document will henceforth refer to the directory that houses the
GRASS software as

SGIS

You should also be careful about file permissions when installing some of the
GRASS programs; in particular, GRASS installs the programs gmake4.1 and
grass4.1 in a commonly accessible directory (defined when running the setup
program). In most cases, the GRASS installation will not be performed directly
by the super-user (in fact, the installation is often performed by the user grass);
in such cases, take care to ensure that the directory where gmaked.1 and
grass4.l are installed has permissions allowing the user installing GRASS to
copy these programs into this directory. (You can do this by allowing only
members of a particular user group to write to the directory and then making
the installing user a member of that group; you can also accomplish this by
making the directory world-writable temporarily, i.e., until the GRASS
installation is completed. Note that you must set up the permissions before
starting the installation process because the setup program will not let the
installer select a destination directory that is not writable.)

Similarly, GRASS 4.1 data can be installed anywhere in your computer system.

At this time you must determine where you would like to load the sample data.
This document will henceforth refer to this data directory as

SGISDBASE

You can use the UNIX shell variables to store the paths of the GRASS source
directory and the GRASS data directory in the GIS and GISDBASE variables,
respectively. For example, if you choose to place the software in /usr/grass4.1,
vou might use one of the following commands:

For CSH setenv GIS /usr/grass4.l
For SH GIS= /usr/grass4.1; export GIS

Similarly, if you choose to place the data in /usr/grass.data you might use one of
the following commands:

For CSH setenv GISDBASE /usr/grass.data
For SH GISDBASE= /usr/ grass.data: export GISDBASE

Create the software and data directories by issuing the following commands
(you may have to su to roor to create them — if you do, be sure to change the
ownership to grass):

mkdir SGIS
mkdir SGISDBASE
chown grass SGIS SGISDBASE

Note that the GIS and GISDBASE shell variables must be set as defined above.

GRASS 4.1 Spring, 1993 Ianstallation Guide

e

B D
IR TTET

-4 -

Then log in as grass. set the GIS and GISDBASE variables as above, and
change to the directory SGIS:

cd SGIS

5. DISTRIBUTION TAPE CONTENTS

The distribution media contain one or more files. (Check your label for
verification.) The following table shows the contents of these files:

File Contents Size
Number Uncompiled Compiled
1. GRASS Source code 49.7-Mb |[< 97.5 Mb

2. Spearfish database 17.2 Mb N/A

3. Imagery database 30.4 Mb N/A

4. World database 2.3 Mb N/A

S. Related Source code 12.9 Mb < 18 Mb

6. EXTRACTING SOURCE CODE AND SAMPLE DATABASE

Mount the distribution tape and then change to the directory $GIS. Follow the
instructions in the table that represents your machine.* It is recommended that
you extract the files as the user grass, not as root. If you do it as root, the files
may be owned by a random or unknown user on your system.

The five files can be extracted from the distribution tape individually at any
time. For example. it may be appropriate to extract the source code one day
for compilation. extract the Spearfish sample database another day, and then
unload the sample imagery data another day.

The device names used in the tables (e.g., ‘/dev/rmt0’’) are only examples;
you must use the correct device names for your hardware configuration.
Furthermore, the rewindable and non-rewindable names for the tape device
must be used in the appropriate steps of loading the tape (e.g., you must
substitute your rewindable tape device name wherever **/dev/rmt0” is given in
the instrusctions. and the non-rewindable device name wherever **/dev/nrmt0”
1s listed).

* The files are stored on the tape with relative path names so they will be extracted
into and below the current directory. Make sure you are in $GIS or SGISDBASE pri-
or to issuing the commands necessary to extract the source code or sample database
respectively.

5 For every physical tape drive. UNIX provides two device names, corresponding to
a rewinding device and a non-rewinding device. When the rewinding device is used in
an operation. UNIX will rewind the tape once the operation is completed: when the
non-rewinding device is used. the tape will be left at the position reached at the end of
the operation. As a result. two names can be used (with different meanings) to refer to

GRASS 4.1 Spring, 1993 Installation Guide

-

-3 -

For both of the SUN tape formats as well as for the Intergraph formats, note
that if you intend to unload all five files in the order that they are present on
the tape. then you should be able to unload them without having to rewind and

position the tape for each step
considerably.

- this will shorten the unloading process

rewind tape
extract source

SUN %" tape
load tape
Unload Programs
go to GRASS directory cd $GIS

mt -f /dev/rmt0 rew
dd if= /dev/rmt0 ibs= 20480 |cpio -icdu

Unload Spearfish database

go to DATA directory
rewind tape

position tape’

extract spearfish data

cd $SGISDBASE

mt -f /dev/rmt0 rew

mt -f /dev/nrmtO fsf 1

dd if= /dev/rmt0 ibs= 20480 Icpio -icdu

Unload Imagery database

go to DATA directory
rewind tape

position tape’

extract imagery data

cd SGISDBASE

mt -f /dev/rmt0 rew

mt -f /dev/nrmt0 fsf 2

dd if= /dev/rmt0 ibs= 20480 | cpio -icdu

Unload World database

go to DATA directory
rewind tape

position tape’

extract world data

cd SGISDBASE

mt -f /dev/rmt0 rew

mt -f /dev/nrmt0 fsf 3

dd if= /dev/rmt0 ibs= 20480 {cpio -icdu

Unload Related Source code

2o to GRASS directory
rewind tape

position tape’

extract related src

cd SGIS

mt -f /dev/rmt0 rew

mt -f /dev/nrmt0 fsf 4

dd if= /dev/rmt0 ibs= 20480 Icpio -icdu

"You must specify the n in the device name on these commands.

the same physical tape drive.

GRASS 4.1

Spring. 1993 Installation Guide

EAAE R /-1 R
Ll ERRL e L R e o

TN

GRASS 4.1

SUN %" cartridge

load tape

Unload Programs

go to GRASS directory
rewind tape
extract source

cd $GIS
mt -f /dev/rst0 rew
dd if= /dev/rst0 ibs= 65536 icpio -icdu

Unload Spearfish database

2o to DATA directory
rewind tape

position tape’

extract spearfish data

cd SGISDBASE

mt -f /dev/rst0 rew

mt -f /dev/nrst0 fsf 1

dd if= /dev/rst0 ibs= 65536 Icpio -icdu

Unload Imagery database

go to DATA directory
rewind tape

position tape’

extract imagery data

cd 3GISDBASE

mt -f /dev/rst0 rew

mt -f /dev/nrst0 fsf 2

dd if= /dev/rst0 ibs= 65536 icpio -icdu

Unload World database

go to DATA directory
rewind tape

position tape’

extract world data

cd $SGISDBASE

mt -f /dev/rstO rew

mt -f /dev/nrst0 fsf 3

dd if= /dev/rst0 ibs= 65536 lcpio -icdu

Unload Related Source code

go to GRASS directory
rewind tape

position tape

extract related src

cd $GIS

mt -f /dev/rst0 rew

mt -f /dev/nrst0 fsf 4

dd if= /dev/rst0 ibs= 65536 Icpio -icdu

“You must specify the n in the device name on these commands.

Spring, 1993

Installation Guide

Intergraph 4" cartridge and 8mm cartridge
load tape
Unload Programs
go to GRASS directory cd SGIS
rewind tape mt -f /dev/rmt/Om rew
extract source dd if= /dev/rmt/Om ibs= 20480 Icpio -icdu
Unload Spearfish database
go to DATA directory cd SGISDBASE
rewind tape mt -f /dev/rmt/0m rew
position tape’ mt -f /dev/rmt/Omn fsf 1
extract spearfish data dd if= /dev/rmt/Om ibs= 20480 icpio -icdu
Unload Imagery database .
go to DATA directory cd SGISDBASE
rewind tape mt -f /dev/rmt/Om rew
position tape’ mt -f /dev/rmt/Omn fsf 2
extract imagery data dd if= /dev/rmt/Om ibs= 20480 |cpio -icdu
Unload World database
go to DATA directory cd SGISDBASE
rewind tape mt -f /dev/rmt/Om rew
position tape” mt -f /dev/rmt/Omn fsf 3
extract world data dd if= /dev/rmt/Om ibs= 20480 Icpio -icdu
Unload Related Source code
go to GRASS directory cd $SGIS
rewind tape mt -f /dev/rmt/Om rew
position tape” mt -f /dev/rmt/Omn fsf 4
extract related src dd if= /dev/rmt/Om ibs= 20480 Icpio -icdu
"You must specify the n in the device name on these commands.

7. GRASS COMPILATION .

If your site has several different machine architectures for which GRASS needs
to be compiled, you have the option to mount a single, shared copy of the
source code on the different machines (via NFS). You may then follow these
instructions once for each machine to produce a separate set of object and
executable files for each architecture; the compilation process will ensure that
object and binary files for the different architectures are kept separate.

These instructions presume that vou are familiar with UNIX, C, make. and shell
scripting.
NOTE: These instructions and scripts have been used to compile GRASS on
the following machine architecture:®

SUN 4 with SunOS 4.1.1

Please e-mail comments regarding the compiling of GRASS on other platforms
or operating systems to:

% But see section 17 “"APPENDIX"" for information about other platforms.

GRASS 4.1 Spring, 1993 Installation Guide

-8 -

grassbug@zorro.cecer.army.mil

At this point the GRASS source code has been loaded and is ready to be
compiled. Most of the compilation steps take place within the directory
SGIS/sre/CMD. While logged in as grass, the owner of the GRASS code, do
the following:

cd SGIS/src/CMD
Is

This directory contains scripts and files used to compile GRASS. By running
scripts and changing lists of programs, you generate GRASS binaries for your
system. The following is a partial list of the contents of this directory:

VERSION
Current version number and date of the GRASS release

generic/
System-independent files needed by the compilation process

GISGEN.sh shell script that controls the
entire compilation process

MAKELINKS.sh shell script used to establish links
to the user executable commands

gmake.sh shell script that does compilations

make. head make variables

make.tail some additional make rules
head/

This directory is empty on the distribution tape, but will contain header
file(s) for this site. Header files are created by running the utils/setup

command.
lists/
Lists of programs to be compiled:
GRASS standard GRASS programs
local site-specific GRASS programs (you will create this file)
SARCH architecture-dependent GRASS programs (you will create this file)
local.example sample list of optional programs and drivers that can be compiled
locally
next step/

This directory is empty on the distribution tape. It will contain files that
track how far along the compilation process is.

utils/
Contains the serup script and its related scripts and files.

GRASS 4.1 Spring, 1993 Installation Guide

7.1.
(1)

(2)
(3)
(4)
(3)
(6)

(7
(8)

7.2.

-9-

COMPILATION STEPS OVERVIEW

Generate files that contain site- and machine-specific information for the
make program.

Please check the Appendix for any alterations that may be required for
your platforms.

Edit files containing lists of local and machine-architecture-specific
programs to be compiled (generally printer, digitizer, and graphics drivers).

Run the GRASS compilation script.

Run the GRASS program linking script.

Edit device driver configuration files.

Compile GRASS contributed programs.
Compile GRASS related and hybrid programs.

COMPILATION SUPPORT FILES

Each machine and site needs to have GRASS compiled in ways that specify
different:

— compilation and load flags

— system libraries

- installation directories

—~ default databases and locations

The shell script wtils/setup assists you in defining many of the compilation
options and definitions that will become part of every compile-time generated
makefile. The serup script creates four files:

< header>
A file containing system-dependent information used during
compilation. The setup script will ask you for a name for this
< header> file. It will be created in the head/ directory. We suggest
using the name of the architecture, similar to SARCH.

gmaked. 1
This shell script does compilation (using the UNIX make command).
[t will use the < header> information during compilation. The script
is placed into a directory (called UNIX BIN) that you specify during
the setup. This directory must be part of, or added to, your shell’s
PATH variable.

GISGEN.< header>
This script compiles all of GRASS. It is created in the $GIS/CMD
directory.

MAKELINKS.< header>
This script links all user executables to a common program called
front.end.

GRASS 4.1 Spring, 1993 Installation Guide

- 10 -

this document will refer to gmaked4.I
GISGEN, and

NOTE: For brevity.
GISGEN .< header> as
MAKELINKS.

as gmake,
MAKELINKS < header> as

NOTE: GISGEN assumes /etc/ mknod is the command for making fifos. This
is not true for all machines. Installers should modify generic/GISGEN.sh to
replace the /etc/ mknod/ command with the one correct for their /bin/ mknod).

7.3. COMPILATION SETUP
Run the setup script’ and answer the questions it asks:
sh utils/setup

When setup is complete, it will ask you for the name of a file to store the
information it gleaned about your system. This document refers to this file as
< header> . You are encouraged to use the same name as $SARCH (the
architecture name).

Examine the newly created < header> file in head/ to make sure things are

OK. A brief description for each defined variable follows.®

CC The name of the C compiler.

ARCH Name identifying the architecture of the machine on
which you are compiling GRASS.

GISBASE Directory where compiled GRASS will be installed.

UNIX_BIN Local directory where the GRASS grass4.] entry

DEFAULT_DATABASE

DEFAULT_LOCATION
COMPILE_FLAGS

program and gmake4.! compilation script will be
installed. This directory should be writable by the
user building GRASS.

Directory where local GRASS databases are
contained.

GRASS database that first-time users get as a default.

Compilation flags.

LDFLAGS Load flags.

TERMLIB System library supporting low-level cursor movement.
CURSES System library that supports screen cursor control.
MATHLIB System math library.

LIBRULE Method for archiving and randomizing libraries.
USE_TERMIO Flag to use the termio library if available.
USE_MTIO Flag to use the mtio library if available.
DIGITFLAGS Flags to set owner and priority of the v.digit program.
XCFLAGS Flags for X11 compilation.

XLDFLAGS Loader flags for X11 programs.

7 If you are using Control Data EP/IX (or RiscOS). please see the notes regarding
Control Data Hardware in section 17. "Appendix.”

3 See section 17 “"APPENDIX" for sample < header> files that have been created at
CERL for sun+4 and other machines.

GRASS 4.1

Spring, 1993

Installation Guide

- 11 -

XINCPATH Directory for X 11 include files.

XMINCPATH Directory for Motif include files.
XLIBPATH Directory for X 11 library.
XTLIBPATH Directory for Xt library.
XMLIBPATH Directory for Motif libraries.
XEXTRALIBS Platform specific X11 libraries.

7.4. EDIT LISTS

Next, you must edit files containing lists of site- and machine-specific programs.
The directory lists/ contains files that list the directories to be compiled.
Directory names are relative to the $GIS directory. The file lists/GRASS lists
all basic GRASS programs that get compiled for each machine architecture at
every site. The files lists/local and lists/SARCH, which the user can create,
control site-specific and architecture-specific compilation, respectively.

SARCH is the architecture name you approved while running the utils/setup
script. You can determine this by running:

gmake -sh Igrep ARCH

A lists/SARCH file may not exist in the distribution, but you are free to create
it to add names of programs you want compiled specifically for this architecture.
This architecture-specific list allows NFS-linked source code to compile a set of
programs for machines which have the same architecture.

Similarly. there may not be a lists/local file. but you are free to create this as
well. The programs in this list will compile for all machines at your local site
regardless of their architecture.

The local.example file contains a list of display, paint, and graphics drivers
provided in the source: you should uncomment the drivers you plan to use.
The file GRASS.X contains the list of Xgrass programs. ‘

If you want any of these items compiled, you must add them either to the
listsflocal or the lists/SARCH file. You are encouraged to put the graphics
drivers in the appropriate listss/SARCH file.

All lists may contain comment lines, indicated by a **#’’ as the first character
in the line.

7.5. XDRIVER

[f you are compiling the XDRIVER under Openwindows on a SUN machine,?
or if you have X11 release 3. you may have to edit the file

2 Or on other platforms.

GRASS 4.1 Spring, 1993 Installation Guide

- 12 -

SGIS/ src/ display/ devices/ XDRIVER/ XDRIVER/ Gmakefile

and follow the instructions therein.

7.6. COMPILE GRASS

The script GISGEN 10 drives the compilation process. If all goes well, you will
be able simply to enter the command GISGEN and wait. The compilation
process takes from about four hours on the faster workstations to about twelve
hours on the slower workstations.

[t is recommended that you save GISGEN output in a file that you can later
review for compilation warning messages. The- following command runs
GISGEN, sending the output both to the screen and to a file:

sh GISGEN & tee /tmp/GISGEN.out # csh (not sh)

For use in a Bourne shell, the output can be captured with
sh GISGEN 2> &I ltee /tmp/GISGEN.out

GISGEN collects all of the directory names to be compiled from lists/GRASS,
listssSSARCH, and lists/local and begins running gmake in each directory in
succession. The screen output is a collection of messages from GISGEN and
from the UNIX make program. A failure at any step will halt compilation.
Upon encountering a failure, you might do one of the following things:

I. Fix the compilation problem by modifying code in the directory that failed.
After modification. return to this directory and re-run GISGEN.
Compilation will resume at the failed directory and continue down the list
of directories if successful.

o

Restart GISGEN. If the failure requires modifications to code already
compiled. or the compilation options you set in step 1, you must remove
nex: step/SARCH (or next_step/mext step if an architecture name was not
specified when running the setup script). You may then re-run GISGEN.

3. Skip the failed directory and resume compilation with the next directory in
the list. Simply run
sh GISGEN -skip

(You might want to capture GISGEN output into a file as you did earlier.)

When complete. GISGEN will put the word DONE into the next step file
and will print the phrase *“DONE generating GIS binary code'” on the
screen. (You may wish to review GISGEN.out to view any error
messages.)

19 The urils/serup program creates a file called GISGEN.< header> . We will refer to
this file simply as GISGEN. but vou will need to remember it as GISGEN.< header> .

GRASS 4.t Spring, 1993 Installation Guide

- 13 -

7.7. LINK GRASS PROGRAMS

GISGEN directs a compilation process that places the GRASS programs in
directories not directly accessible to the user community. Most user commands
are actually links to a single program called front.end. Links to this program
must be made for every actual GRASS program. This is done after GISGEN is
finished. To make (or re-make) links for all user programs, run the script
MAKELINKS (i.e., MAKELINKS.< header>).

7.8. COMPILE OTHER PROGRAMS
GRASS programs come in five flavors:

MAIN
The main programs are those under $GIS/src. These programs are
compiled automatically by GISGEN. They have been in GRASS for at least
one release, have been tested, and are reliable programs.

ALPHA
The alpha programs are those under $GIS/src.alpha. These programs are
also compiled automatically by GISGEN. These programs have been
compiled and given some testing but have not been part of GRASS for a
full release.

CONTRIB :
The contributed programs are in the directory SGIS/src.contrib. These
programs are NOT compiled automatically by GISGEN. The state of these
programs vary. Some may compile with gmake; others are more suitable
as starting points for programmers who will be writing new software.

RELATED
The GRASS user community has discovered that there are several public
domain programs that are very useful in conjunction with GRASS. These
are found in the directory SGIS/src.related (assuming you have unloaded
the related source code from the release media). Compile these programs
based on the instructions (if available) in their respective directories.

GARDEN
The GARDEN programs are in the directory $GIS/src.garden. GARDEN
programs are those that mix the capabilities of GRASS with the capabilities
of one or more of the ‘‘related’” programs (or other systems). Some
require successful compilation of the ‘‘related” programs and generally
compile using gmake. Of particular interest are the tools in grass.informix,
which link GRASS with the Informix relational database system.

GRASS 4.1 Spring, 1993 Installation Guide

- 14 -

8. GRAPHICS DRIVER CONFIGURATION (etc/ monitorcap)

Now you must create the file SGIS/etc/monitorcap, which tells the GRASS
graphics application programs and graphics drivers how to communicate with
one another. This file contains lines that describe each graphics driver on the
system. After GRASS compilation, the 3$GIS/etc/moncap.sample file contains
many different entries, all commented out (using the # symbol in the first
column).!! You must first copy the moncap.sample file to create a new
monitorcap file. Then, edit the monitorcap file for your system’s graphics
devices. At a minimum, you will be uncommenting those lines that describe
the graphics devices for which GRASS code has been compiled. (You
identified these devices in the lists/local file before compiling GRASS.)

Each line in the monitorcap file contains six fields separated by colons:

name : program : description : fifos : tty : msg

name The name the user uses to refer to the driver.

program The actual program name as a UNIX command. It is
specified as a relative path from $GIS (see examples).

description A short 4- or 3-word description of the driver.

fifos The names of the 2 fifo files that are assigned to this
driver. These files must exist as named pipes,!2 have
read and write permission by everybody, and not be
used by any other driver (see NOTES).

ty In some cases. it is desirable to force the driver to be
started from a specific tty device. If this is the case, put
the full path name of the tty in this field. Otherwise
leave the field empty (see examples and NOTES follow-

ing).

msg If the uy field is specitied and an attempt to start the
driver is made from another tty, then this message is
printed.

Examples:

! The original file is named moncap.sample to prevent subsequent compilation efforts
from overwriting any existing monitorcap files.

I2 Named pipes are crzated with the command mknod filename p. This is done au-
tomatically for about 20 sets of rifo files by the GISGEN script. (The word “‘fifo’" is
short for “"first-in-first-out™".)

GRASS 4.1 Spring, 1993 Installation Guide

- 15 -

. This first example is for a single device system, in which the monitor can
be started from any terminal (tty). The two fifos are
fusr/grass4.1/dev/ffifo.la and /usr/grass4.l/devififo.1b. Here, the name of the
driver is x0. Note that the driver program itself is specified as
driver/XDRIVER. This is a relative path reference which will be translated
into $GIS/driver/XDRIVER. Note that the path names of the fifos must be
fully specified.

IxO:driver/ XDRIVER:Sun driver:/usr/ grass+.1/dev/fifo.la /usr/grass4.1/dev/ fifo.1b::any terminal l

| (O]

The following example is for a two-monitor system, with the same graphics
device available on each monitor. Note that the same program is used for
both devices, but that the name field and the fifos field are different. Also
note that both drivers must be started from a specific tty.

massl:driver/ MASS:Driver 1:/usr/ grass4.1/dev/fifo.1a /ust/ grass4.1/dev/ fifo.1b:/ dev/ ttyd:tty4
mass2:driver/ MASS:Driver 2:/usr/ grass4.1/dev/fifo.2a /usr/ grass4.1/dev/ fifo.2b:/ dev/ ttyS:ttyS

NOTES

I. When you are installing a driver, a pair of fifos (also known as named
pipes) must exist for the driver to use. The names you choose are
arbitrary. Fifo pairs with the names fifo.la and fifo.1b, fifo.2a and fifo.25b,
fifo.3a and fifo.3b, fifo.4a and fifo.4b, and fifo.5a and fifo.5b are created in
the directory SGIS/dev by GISGEN.!3 1t is suggested that you use these in
your monitorcap file.

The tty field is not sufficiently robust to handle all situations. You should
probably leave this field blank if installing GRASS on a SUN system. (In
particular, SUN users running under Suntools must start the driver from
the bitmap terminal, but the actual tty device number will vary from
window to window.)

[§%)

9. DIGITIZER DRIVER CONFIGURATION (etc/digcap)

NOTE: The following instructions are for the new (4.1) v.digit. If you prefer to
use the 4.0 version, see the *APPENDIX’’ at the end of this document.

Now you must build the file SGIS/erc/digeap, which identifies the available
digitizers and which I/ O port each digitizer uses.!*

13 See section 7, "GRASS Compilation,” for details about GISGEN.
!4 There are some sample digcap files in SGIS/ezc that can be used as templates. To
find these, use the command: Is $GIS/ ete/ digeap=

GRASS 4.1 : Spring, 1993 Installation Guide

- 16 -

Every digcap file should specify the ‘‘none” digitizer, which allows for on-
screen digitizing using the mouse as the digitizer. In addition, there must be an
entry for each digitizer locally available.

Each line in the file contains four fields separated by colons:
name : tty : driver : description

name The name the user uses to refer to the digitizer.

ty The tty port to be used by the digitizer.

driver The name of the driver file (in the $GIS/etc/Mdigitizers
directory).

description A short 4 or 5 word description of the digitizer.

Example:

This example is for a single digitizer system. The digitizer is an Altek
digitizer on /dev/tiyl. The *‘none”” digitizer is also specified.

altek:/dev/ttyb:al30f8_16: Altek digitizer, AC30, format 8
none:nodig:nofile: Run digit without the digitizer

NOTE: If the digitizer is later moved to a different tty port, the tty field
must also be modified to reflect the change.

These next steps must be done while running as the user root, so su to root.

For each tty port /dev/irvX specified in the digcap file, type the command:
chmod 0666 /dev/mX

Also be sure that no programs (e.g., getty or init) are listening on those tty
ports for logins. This may require modification to the files /etc/ttys or Jetc/inittab
to disable getty or init from running on that port. See your system manager’s
guide for details.

Now exit from the su to become the user grass again.

10. PAINT DRIVER CONFIGURATION 3

The GRASS program p.map!6 requires driver programs for each hardcopy color
printer on your system that you intend to use with GRASS. With the
exception of the “*preview’” and ‘“‘preview2’’ drivers, which send their output to

15 There is no SGIS/ erc/paintcap file.

16 and its potential replacement p.map.new

GRASS 4.1 Spring, 1993 Installation Guide

-17 -

the graphics screen, the paint drivers send their output to tty ports named
/devi < device> ., where < device> is the driver name. For example, the
“‘tek4695"" printer uses /dev/tek4695 for its output.!?

You will have to link these names to real device ports. For example, suppose
that the ‘‘tek4695" printer is on /dev/ttyl0. Link the driver to the port by typing
these commands (note you may need to be logged in as roor to create files in
/dev):

In /dev/ttyl0 /dev/tek4695
chmod 0666 /dev/tek4695

Also be sure that no programs (e.g., getty or init) are listening on those tty
ports for logins. This may require modification to the files /etc/ttys or /etc/inittab
to disable getty or init from running on that port. See your system manager’s
guide for details.

The paint driver configuration design supports multiple printers of different
types. For example. it is permissible to have both a ‘‘tek4695’" and a
*‘shinko635’’ printer on the system.

Multiple printers of the same type may be connected to a single system.
Similarly, remote printers can also be supported. You must familiarize yourself
with the paint support files and directories to enable such capabilities. The
support files and directories. kept in the directory $GIS/etc/paint, are:

driver.sh
A directory containing shell scripts that set driver variables and then
generally call identically named programs in the driver directory.

driver
A directory containing the actual binary programs that process the data and
generate output to the devices.

driver.rsh
A shell script that can be used in situations where the paint device is
supported by GRASS on a remote machine.

When a user selects a driver, the selection is made from names in the
driver.sh directory. To provide for a second or third printer of a common
type, simply make a new entry in this directory. For example, say there is
a tek4695 file already here, but you want to support two ‘‘tek4695"’
printers. Copy the rek4695 shell script to a new file, say, 7¢k4695b. You
now must edit this new file and identify the tty device of the second
printer. Let us assume that you decided to run this device from

'” The *‘tek4695'" and -'shinko635" printers perform parallel /o only. If your
machine does not have a paralle! port. you will have to use a serial to parallel converter.

GRASS 4.1 Spring, 1993 Installation Guide

- 18 -

/dev/tek4695b. Edit the new script, changing only the last line from:
exec S{PAINT DRIVER?}

to
exec ${GISBASE? ¥ etc/ paint/ driver/ tek4695

The rest of the script should remain untouched. For further details on the
operation of the paint driver, refer to the GRASS 4.1 Programmer’s
Manual.

If a machine running GRASS needs access to a printer on a remote
machine that is available via a local network, you can make other
modifications to the driver.sh files. For example, imagine the following
situation:

machine A Runs GRASS 4.1

has tek4695 printer connected to /dev/tek4695
machine B Runs GRASS 4.1

needs access to machine A’s tek4695 printer

On machines A and B, edit the driver.sh/tek4695 files (note that the files
may be shared across an NFS mount if the machines are the same
architecture, e.g., two SUN-4 machines). Change the following lines:

for networked machines, set the host which has the printer
printer_host= . print_host_alias= .
case ‘hostname’ in
Sprinter_host | Sprinter_host_alias);:
*) exec rsh Sprinter_host SGISBASE/etc/paint/driver.rsh SPAINTER n
exit O::

K T TR TR T T 1

€sac
Uncomment these lines and add machine names where appropriate:

for networked machines, set the host which has the printer
printer_host= A print_host_alias= A.*
case "hostname- in
Sprinter_host8printer_host_alias);;
*) exec rsh Sprinter_host SGISBASE/etc/paint/driver.rsh SPAINTER n
exit O::
esac

If SGISBASE is not identical on the two machines, change the reference to
SGISBASE in the above lines to the actual full path name of SGISBASE on
machine A.

This script, when executed on machine A, skips the edited session and behaves

GRASS 4.1 Spring, 1993 Installation Guide

- 19 -

normally. When run on machine B (or any machine other than A), a UNIX
rsh connection is made to machine A, where the printer will be operated. Note
that the rsh command requires that the individual users have logins on both
machines and have the ability (through the .rhosts file in their home
directories) to use rlogin and rsh between the two machines without passwords.

NOTE: The command hostname is used in this example. If you machine does
not have a hostname command, you will have to substitute some script or
program that returns the name of the machine (e.g., uname -n).

11. SUPPLY YOUR GRASS 4.0 DATA

Do you have GRASS 4.0 data you wish to provide to GRASS 4.1? If so, we
suggest that you copy your 4.0 data into the 4.1 data directory (which you have
already defined as SGISDBASE). Use the following instructions as a guide;
you will need to modify them to fit the actual location of files on your system.

Note that your data is probably the most expensive component of your GRASS
system — more expensive than the hardware, the training, the system support,
and the extra air conditioning. It is our policy at CERL always to have at least
two copies of data. This can be two copies on disk, two on tape, or on a
combination of tape and disk. Keeping three or more copies, some stored in
different buildings, provides necessary backups.
Using Y2" tape
1. Login as roor. (This must be done as root, otherwise the ownership of
the database files will change.)

2. Change directory to vour GRASS 4.0 data directory. For example,

cd /usr/ grass/data

3. Use tar to copy the contents to tape. Note that this directory will
contain the names of all the locations your data covers. You will not want
to back up the spearfish database. Assuming your data locations are
“spearfish.”” ‘‘county.”” ‘‘park,’”” and ‘‘base,” and your tape drive is
/dev/rmt0, you will use the following command:

tar cf /dev/rmtO county park base

4. If you do not have enough disk space for two copies of your data, you
will want to remove the 4.0 data at this point:

rm -rf county park base

However. if you do remove the data. you should first rerun step 3 with a
second tape. just in case the first tape is written badly or becomes
damaged.

GRASS 4.1 Spring, 1993 Installation Guide

.A
N

- 20 -

5. Change directory to the GRASS 4.1 data directory:
cd SGISDBASE

(You set SGISDBASE early in the installation process. You may have to
do this again if you have logged out and logged in again since the
installation.)

6. Copy the data from tape back to the new directory. If you loaded the
GRASS 4.1 spearfish database earlier in the installation process, you
should find the directory spearfish in this directory. If all is well, read the
data from tape:

mt -t /dev/rmt0 rew (this command is probably not necessary)
tar xvpf /dev/rmt0

(In this example, replace *‘/dev/rmt0’’ with the device name of your tape
drive.)

Copying direct disk to disk:
You may want to skip the tape step. If you have enough disk space to
hold two copies of the data simultaneously, you can do the following:

1. Login as roor. (This must be done as root, otherwise the ownership of
the database files will change.)

2. Copy the data from the old directory to the new one. For example,
assume the old data directory is /usr/grass/data and the new is SGISDBASE,
and assume the same databases as in the above example. Issue the
following command:

cd /usr/ grass/ data
tar cf - county park base |(cd SGISDBASE; tar xvpf -)

12. DID YOU MISS SOMETHING?

In the process of installation you may have missed something. Some of the
more common steps skipped or missed can be completed without going through
the entire installation. The more common steps are mentioned here.

Bad compilation
The results of the compilation may not work for a variety of reasons. Past
experience has shown that bad hardware, new compilers, different floating
point processors, different hardware, and wrong information in the GRASS
files in the SGIS/sr¢/CM D directory can cause problems. If the problem is
suspected to be wrong information, re-examine the ‘‘System
Configuration’ section.

Incomplete compilation
The SGIS/sr¢/CM D/lists directory contains the file GRASS and, if you
created them, the files local and SARCH. These contain names of the
directories that GISGEN compiles. It is possible that you:

GRASS 4.1 Spring, 1993 Installation Guide

221 -

1. told GISGEN to skip one of the directories; or
2. did not add a graphics driver to srce/CM D/lists/local

You can compile the code in any directory with the following steps:

l. cd to that directory
2. run gmake

Sample data missing
The data on the release tape can be loaded at any time. Use the
instructions in the *‘Extracting the Source Code and Sample Database,”’
section 7, as a guide.

13. GRASS INSTALLATION IS COMPLETE

At this point, GRASS is now installed on the system and can be run using the
command grass4.1. This command will be found in the directory you specified
during setup. You will find this directory name defined in the < header> file as
UNIX_BIN.

14. CONTRIB-TEST AND OTHER PROGRAMS

In addition to the supported code under $GIS/src and SGIS/ src.alpha, there are
unsupported programs under SGIS.

Directory | Contents

src.contrib | GRASS programs useful to programmers

src.related | Programs that can work with GRASS

src.garden | Programs that mix GRASS and other systems’ capabilities

These programs are not automatically compiled because they are not supported
by OGIL. (OGTI’s intention is to make these unsupported programs available.
Compile and use them at your own risk.) If there are instructions within these
directories, they should assist you in making decisions about what and how to
compile.

15. CLEANING P

If you are short of disk space you may want to remove some of the non-
essential parts of GRASS.

Object files
Unless you will be actively changing all of the code. you will save at least
six megabytes by removing all object (.0) files. This can be done with the
command:

find SGIS/src* -name ’+.0" -print | xargs rm -f

GRASS 4.1 Spring, 1993 Installation Guide

N RS L . AL - Cae i
Shia E3YA : e Fe

-22 -

or (if your system does not have xargs),

find SGIS/srcx -name ’+.[0]” -exec rm -f {}\;

Source files
You can save about thirty megabytes of additional space by simply
removing the source and manual directories:

rm -rf SGIS/srcx SGIS/man

This will in no way affect the operation of GRASS. Note, however, that
vou should not remove SGIS/narn if you have set up SGISBASE and $SRC
to be in the same directory tree (since, in this case, deleting $GIS/nan will
delete the help files used by GRASS).

16. MOVING THE BINARY INSTALLATION

If you need to move GISBASE to another directory, it is no longer necessary to
recompile the system. Common reasons for moving the programs include disk
reorganization and installation on other systems.

For example, assume you wish to move $SGISBASE from /usr/grass4.l to
/home/grass4.1. To accomplish this, do the following steps.

l. Move the base directory. On most systems, root can accomplish this with
the command:

mv /usr/grass4.l /home/grass4.1
On others a copy will be necessary:
(cd /usr: tar cpf - grass4.1) [(cd /home; tar xpf -)

This command. if done as root, will preserve the original file ownerships
and permissions.

[R8)

Edit grass4.1 (this for the user). Replace all references to the old directory
with references to the new directory. For example, this script might be
changed from:

GISBASE= /usr/grass4.1
export GISBASE
exec SGISBASE/etc/GIS:sh

to:

GISBASE= /home/ grass4.1
export GISBASE
exec SGISBASE/etc/GIS.sh

3. Edit the monitorcap file. In this example, the new GISBASE is
/home/grass4.1, so vou would edit SGISBASE/ etc/monitorcap and change any
references to /usr to refer to /home.

GRASS 4.1 Spring, 1993 Installation Guide

.23 .

17. APPENDIX

This appendix contains miscellaneous information about various other
platforms as well as instructions for installing and using the 4.0 version of
v.digit.

17.1. MISSING UNIX COMMANDS

GRASS is written assuming the existence of certain UNIX commands which
may not be present on your system. These commands are listed in the table
below. If you system does not have these commands, you will find shell scripts
under SGIS/CMD/utils which emulate the functionality required. You can copy
these scripts to UNIX_BIN (or any other directory that will be in everybody’s
PATH variable) giving them the correct name:

command function replacement!?
clear clears the terminal screen clear.tput

tset terminal setup tset.tput

reset terminal reset reset.tput

more pages displayed text more.pg

whoami prints user’s name whoami.sh

lpr print command < none supplied>

17.2. XDRIVER REQUIREMENTS

The XDRIVER as developed by CERL requires that the default visual be a
Pseudo-color visual with at least 256 colors. If your X server does not set the
default visual to this type, then you must teach it to do so. It is beyond the
scope of this document to provide such instructions about your X server.
However, we do know that for the Data General AViiON you can do this by
editing the file Aar/X11/xdm/Xservers and placing the following line into this file:

:0 local /usr/bin/X11/X :0 bc -cc 3

17.3. XGRASS/OPENWINDOWS REQUIREMENTS

To make XGRASS runction properly in a SUN Openwindows environment,
you must make sure that the Motif keysyms are installed. To do this, check to
see if the file Jusr/openwin/lib/XKeysymDB exists. If it does, append the file
src/xgrass/XKeysymDB to it; if it does not, copy the file src/xgrass/XKeysymDB to

{9 The scripts clear.tput. tset.tput and reset.tput require the UNIX tput(1l) command:
the script more.pg requires the UNIX pg(1l) command: and the whoami.sh command
requires the Bourne Shell and the /tmp directory. There is no replacement for lpr be-
cause the command to print ascii text to a printer varies. You will have to write this
one.

GRASS 4.1 Spring, 1993 Installation Guide

- 24 -

the directory /usr/openwin/lib. This may require root permission. It is not clear
how to fix the problem if you cannot do this. The error comes from Xt
translation table parsing and cannot be fixed in Motif; this problem arises
because the Motif keysyms have not been installed in the Openwindows server.

17.4. SCO UNIX

There may be problems compiling sroflibes/gis under SCO UNIX. The make
program on this system does not seem to be able to handle the length of the
command which builds the library. The workaround is to execute the command
by hand (after GISGEN fails), and then rerun GISGEN. To execute the
command directly:

cd $SGIS/src/ libes/ gis . :
ar rc ../LIB.SARCH/libgis.a OBJ.SARCH/*.0

where SARCH is the architecture name you defined during setup.

17.5. CRAY LOADER PROBLEMS

The Cray UNICOS loader does not know that an archive library is a true library
unless the library name is preceded by ‘-I’’. Since GRASS programs are
compiled with the full name of the library (rather than using the *‘-I’’ flag) this
will cause the loader to either not load the library or to load all the object files
in the library. To get around this you will need to write your own c¢c command
which prepends the **-I'" flag to arguments that end in *“.a’” and then runs the
real C compiler with the modified arguments.

17.6. INTERGRAPH HARDWARE PLATFORMS

There are two new programs that will not compile on the Intergraph hardware
platform due to portability issues. Those users compiling on an Intergraph
shouid be aware that the compilation process will be stopped at these two
programs, or they should delete the program names from the list being used by
the GISGEN process before beginning compilation. These programs are:

src.alpha/imagery/i.ortho.photo
src.alpha/ mapdev/ v.in.tig.Indmk

17.7. MIPS/CONTROL DATA HARDWARE PLATFORMS (RiscOS,
EP/IX)

When running setup. be sure to specify /Jusr/bsd43/bin/cc as the compiler to be
used and specify the full path name.

After running serup. edit the head/SARCH file to change the lines

GRASS 4.1 Spring, 1993 [nstallation Guide

-25 -

XLIBPATH = -L/usr/lib
XTLIBPATH = -L/usr/lib
XMLIBPATH = -L/ust/lib

to read

XLIBPATH =
XTLIBPATH
XMLIBPATH

(i.e., remove the ‘*-L/usr/lib*’ from each of these lines).

The Mips/CDC BSD compilation environment does not provide certain C
header files that are required by some GRASS programs; these must be made
available by taking the following steps after running setup. (Note that you
should substitute "mips” in these examples with the values of $SARCH, i.e., the"
name you gave to this architecture in setup).

mkdir SSRC/include/ mips
cp /usr/include/ posix/stdlib.h $SRC/include/ mips
cp /usr/include/ posix/unistd.h $SRC/include/ mips

Add “*-IS(SRC)/include/S(ARCH)’’ to the COMPILE_FLAGS variable defined
in headSARCH (or specify it during setup). Finally, edit
SSRC/ include/mips/stdlib.h to add the line

extern double strtod():

nwu

as the second line before the end of the file (i.e., this should not be the last
line of the file!).

The Mips/CDC C compiler does not understand the *‘const’’ keyword, which is
used in some GRASS programs, and using it causes a fatal compilation error.
To work around this problem, add ‘‘-Dconst="" to the COMPILE FLAGS
variable defined in head/SARCH (or specify it during setup).

The Mips/CDC BSD compilation environment does not provide certain -
standard UNIX library routines that are required to build some GRASS
programs. These muse be made available by adding them to the "gis" library.
Follow the regular compilation steps by running GISGEN. After the "gis"
library has been built. interrupt the compilation process and take the following
steps:

cd SSRC/libes/ gis/ LIB.SARCH

ar x /usr/lib/ libc.a strtod.o ctype.o
ar ruv libgis.a strtod.o ctype.o

cd SSRC/src/ CMD

Note also that some XGRASS programs may need to have the order of the
libraries specified in their Gmakefiles changed in order te find these functions
(L.e. you may need to re-order the library list to place ‘‘S(GISLIB)’" at the end
of the list.

GRASS 4.1 Spring, 1993 Installation Guide

- 0) - o~ - R 3 T IR R -
it O (e 2ned A RN e b RS e F ST T et NS s RN
Lrede BT AT e iR BTN R R RO - o

'

- 26 -

17.8. SAMPLE HEADER FILES
Following are sample < header> files created durin

g the preparation of this

release.

SUN4
CcC = cc
ARCH = sun4d
GISBASE = /grass4.1b/sund
UNIX_BIN = /usr/local/bin
DEFAULT_DATABASE = /grass.data
DEFAULT_LOCATION = spearfish
COMPILE_FLAGS = -0
LDFLAGS = -5
XCFLAGS = -D_NO_PROTO
XLDFLAGS
XINCPATH
XMINCPATH =
XLIBPATH -L/ust/lib
XTLIBPATH = -L/usr/lib
XMLIBPATH = -L/ust/lib
XEXTRALIBS
TERMLIB = -ltermlib
CURSES = -lcurses S(TERMLIB)
MATHLIB = -lm
LIBRULE = ar ruv $@ S7; ranlib $@
USE_TERMIO =
USE_MTIO = -DUSE_MTIO
USE_FTIME = -DUSE_FTIME
DIGITFLAGS = -DUSE_SETREUID -DUSE_SETEUID -DUSE_SETPRIORITY
VECTLIBFLAGS = -DPORTABLE 3
GETHOSTNAME = -DGETHOSTNAME_OK
GRASS 4.1 Spring, 1993 Installation Guide

-27 -

[ntergraph Interpro

ccC = acc

ARCH = ig

GISBASE = /grassd.lb/ig
UNIX_BIN = [usr/local/bin
DEFAULT_DATABASE = /grass.data
DEFAULT_LOCATION = spearfish
COMPILE_FLAGS = -0 -w-knr
LDFLAGS = -5

XCFLAGS = -DIGRAPH -DSYSV -D_NO_PROTO
XLDFLAGS

XINCPATH

XMINCPATH =

XLIBPATH =

XTLIBPATH = -L/usr/lib
XMLIBPATH = -L/ust/lib
XEXTRALIBS = -lbsd -lc -s
TERMLIB = -ltermlib

CURSES = -lcurses $(TERMLIB)
MATHLIB = -lm

LIBRUGLE = arruv $@ $?
USE_TERMIO = -DUSE_TERMIO
USE_MTIO = -DUSE_MTIO
USE_FTIME =

DIGITFLAGS = -DINTERPRO
VECTLIBFLAGS

GETHOSTNAME = -DGETHOSTNAME_UNAME
GRASS 4.1 Spring, 1993

Installation Guide

-28 -

Data General AViiON

cC = cc

ARCH = aviion

GISBASE = /[grass4.1b/aviion

UNIX_BIN = /[usr/local/ bin

DEFAULT_DATABASE = /grassdata

DEFAULT_LOCATION = spearfish

COMPILE_FLAGS = -0

LDFLAGS = -5

XCFLAGS = -D_NO_PROTO

XLDFLAGS =

XINCPATH =

XMINCPATH =

XLIBPATH = -L/usr/lib

XTLIBPATH = -L/usr/lib

XMLIBPATH = -L/usr/lib

XEXTRALIBS = -IPW

TERMLIB =

CURSES = -lcurses S(TERMLIB)

MATHLIB = -lm

LIBRULE = arruv $@ $?

USE_TERMIO = -DUSE_TERMIO

USE_MTIO = -DUSE_MTIO

USE_FTIME = -DUSE_FTIME

DIGITFLAGS = -DUSE_SETREUID -DUSE_SETEUID -DUSE_SETPRIORITY

VECTLIBFLAGS

GETHOSTNAME = -DGETHOSTNAME _OK
GRASS 4.1 Spring, 1993 Installation Guide

-29.

Silicon Graphics IRIS

CcC = cc

ARCH = sgi

GISBASE = /GRASS.bin/4.1

UNIX_BIN = /usr/local/ bin

DEFAULT _DATABASE = /uet/ GRASS.src/4.1/data

DEFAULT_LOCATION = spearfish

COMPILE_FLAGS = -cckr -O

LDFLAGS = -5

XCFLAGS = -D_NO_PROTO

XLDFLAGS =

XINCPATH

XMINCPATH =

XLIBPATH = -L/usr/lib

XTLIBPATH = -L/usr/lib

XMLIBPATH = -L/usr/lib

XEXTRALIBS = -IPW

TERMLIB = -ltermlib

CURSES = -lcurses S(TERMLIB)

MATHLIB = -lm

LIBRULE = arruv $@ $?

USE_TERMIO = -DUSE_TERMIO

USE_MTIO = -DUSE_MTIO

USE_FTIME =

DIGITFLAGS = -DUSE_SETREUID -DUSE_SETEUID -DUSE_SETPRIORITY

VECTLIBFLAGS =

GETHOSTNAME = -DGETHOSTNAME_OK
GRASS 4.1 Spring, 1993 Installation Guide

T e T DT Tas e PRECS
g nd @

- 130 -

Mips RISCos or CDC EP/IX

CcC = /usr/bsd43/bin/cc

ARCH = mips

GISBASE = /GRASS.bin/4.1final/ mips

UNIX_BIN = [usr/local/bin

DEFAULT_DATABASE = /GRASS.src/4.1final/data

DEFAULT_LOCATION = spearfish

COMPILE_FLAGS = -O -traditional -Dconst= -IS(SRC)/include/$(ARCH)
LDFLAGS = -5

XCFLAGS = -Olimit 2000 -W{,-XNd8400,-XNp12000 -D_NO_PROTO
XLDFLAGS)

XINCPATH =

XMINCPATH

XLIBPATH =

XTLIBPATH =

XMLIBPATH

XLIB = -IX11

XTLIB = -1Xt

XMLIB = -1Xm

XEXTRALIBS

TERMLIB = -ltermlib

CURSES = -lcurses S(TERMLIB)

MATHLIB = -lm

LIBRULE = arruv 3@ §?

USE_TERMIO

USE_MTIO = -DUSE_MTIO

USE_FTIME = -DUSE_FTIME

DIGITFLAGS = -DUSE_SETREUID -DUSE_SETEUID -DUSE_SETPRIORITY
VECTLIBFLAGS =

GETHOSTNAME = -DGETHOSTNAME OK

17.9. GRASS 4.0 DIGITIZER DRIVER CONFIGURATION --etc/ digitcap

If vou prefer to use the 4.0 digitizer driver configuration, use the following instructions
instead of those provided in Section 9.

You will need to make sure that the following directories are compiled by
GISGEN

src/ mapdev/bin_dig
src/ mapdev/ v.digit2
src/ mapdev/digitizers/ none

as well as any 4.0 digitizer driver(s) for the digitizer(s) you have.

GRASS 4.1 Spring, 1993 Installation Guide

-31 -

Now you must build the file $SGIS/etc/digitcap, which identifies the available
digitizers and the /o port each digitizer uses.

Every digitcap file should specify the ‘‘none’’ digitizer, which allows for on-
screen digitizing using the mouse as the digitizer. In addition, there must be an
entry for each digitizer locally available.

Each line in the file contains four fields separated by colons:
name : tty : program : description

name The name the user uses to refer to the digitizer
ty The tty port to be used by the digitizer -
program The actual program name as a UNIX command. It is

specified as digit.
description A short 4- or 5-word description of the digitizer.

Example:

This example is for a single digitizer system. The digitizer is a “‘Kurta”
digitizer on /dev/tryl. The ‘‘none’” digitizer is also specified.

kurta:/dev/ttyl:KURTA digitizer 9600 baud
none:nodig:digit: Run digit without the digitizer

NOTE: If the digitizer is later moved to a different tty port, the tty field
must also be modified to reflect the change.

These next steps must be done while running as the user root, so su to root.

For each tty device /dev/ityX specified in the digitcap file, type:
chmod 0666 /dev/ttyX

Also be sure that no programs (e.g., getty or init) are listening on those tty
ports for logins. This may require modification to the files /etc/ttys or /etc/inittab)
to disable getty or init from running on that port. See your system manager’s
guide for details.

Now exit from su to become the user grass again.

2 There are some sample digitcap files in SGIS/ erc that can be used as templates. To
find these: Is SGIS/ete/ digitcap=

GRASS 4.1 Spring, 1993 Installation Guide

APPENDIX B

TCL 7.3/TK 3.6 (expect 5.7) INSTALLATION MANUAL

B-1

Tcl

by Jonn Ousterhout
University of California at Berkeley
ouster@cs.berkeley.ecu

1. Introduction

This directory contains the sources and documentation for Tcl, an
embeddable tool command language. The information here corresponds
to release 7.0.

2. Documentation

The best way to get started with Tcl is to read the draft of my
upcoming book on Tcl and Tk, which can be retrieved using anonymous
FTP from the directory "tcl" on sprite.berkeley.edu. Part I of the
book provides an introduction to writing Tcl scripts and Part IIX
describes how to write C code that uses the Tcl C library procedures.

The "doc" subdirectory in this release contains a complete set of manual
entries for Tcl. Files with extension ".l1" are for programs (for

example, tclsh.l); files with extension ".3" are for C library procedures;
and files with extension ".n" describe Tcl commands. The file "doc/Tcl.n"
gives a quick summary of the Tcl language syntax. To print any of the man
pages, cd to the "doc" directory and invoke your favorite variant of

troff using the normal -man macros, for example

ditroff -man Tcl.n

to print Tcl.n. If Tcl has been installed correctly and your "man"
program supports it, you should be able to access the Tcl manual entries
using the normal "man" mechanisms, such as

man Tcl

3. Compiling and installing Tcl

This release should compile and run "out of the box" on any UNIX-like
system that approximates POSIX, BSD, or System V. I know that it runs
on workstations from Sun, DEC, H-P, IBM, and Silicon Graphics, and on-
PC’s running SCO UNIX and Xenix. To compile Tcl, do the following:

(a) Type "./configure" in this directory. This runs a configuration
script created by GNU autoconf, which configures Tcl for your
system and creates a Makefile. The configure script allows you
to customize the Tcl configuration for your site; £for details on
how you can do this, see the file "configure.info".

(p) Type "make". This will create a library archive called "libtcl.a”
and an interpreter application called "tclsh" that allows you to type
Tcl commands interactively or execute script files.

(c) If the make fails then you’ll have to personalize the Makefile
for your site or possibly modify the distribution in other ways.
First check the file "porting.notes" to see if there are hints
for compiling on your system. If you need to modify Makefile,
there are comments at the beginning of it that describe the things
you might want to change and how to change them.

(d) Type "make install" to install Tcl binaries and script files in
standard places. You’ll need write permission on /usr/local to
do this. See the Makefile for details on where things get

AT
AR o -

installed.

{e) At this point you can play with Tcl by invoking the "tclsh"
program and typing Tcl commands. However, if you haven’t installed
Tcl then you’ll first need to set your TCL_LIBRARY variable to
hold the full path name of the "library" subdirectory.

If you have trouble compiling Tcl, I'd suggest looking at the file
"porting.notes". It contains information that people have sent me about
changes they had to make to compile Tcl in various environments. T make
no guarantees that this information is accurate, complete, or up-to-date,
but you may find it useful. If you get Tcl running on a new configuration,
I’'d be happy to receive new information to add to "porting.notes”". I'm
also interested in hearing how to change the configuration setup so that
Tcl compiles on additional platforms "out of the box".

4. Test suite

There is a relatively complete test suite for all of the Tcl core in
the subdirectory "tests". To use it just type "make test" in this
directory. You should then see a printout of the test files processed.
If any errors occur, you’ll see a much more substantial printout for
each error. See the README file in the "tests" directory for more
information on the test suite.

5. Summary of changes in this release

Tcl 7.0 is a major new release that includes several new features
and a few incompatible changes. For a complete list of all changes
to Tcl in chronological order, see the file "changes". Those changes
likely to cause compatibility problems with existing C code or Tcl
scripts are specially marked. The most important changes are
summarized below.

Tcl configuration and installation has improved in several ways:
1. GNU autoconf is now used for configuring Tcl prior to compilation.

2. The "tclTest" program no longer exists. It has been replaced by
"telsh", which is a true shell-like program based around Tcl (tclTest
didn‘t really work very well as a shell). There’s a new program
"tcltest" which is the same as "tclsh" except that it includes a

few extra Tcl commands for testing purposes.

3. A new procedure Tcl_AppInit has been added to separate all of the
application-specific initialization from the Tcl main program. This
should make it easier to build new Tcl applications that include
extra packages.

4. There are now separate manual entries for each of the built-in
commands. The manual entry "Tcl.n", which used to describe all of
the built-ins pius many other things, now contains a terse but
complete description of the Tcl language syntax.

Here is a list of a>l incompatibilities that affect Tcl scripts:

1. There have been several changes to backslash processing:

- Unknown backsiash sequences such as "*" are now replaced with
the following character (such as "*"); Tcl used to treat the
backsiash as an ordinary character in these cases, so both the
backslash and the following character would be passed through.

- Backslash-newline now eats up any white space after the newline,
replacing the whole sequence with a single space character. Tcl
used to just remove the backslash and newline.

- The obsolete sequences \Cx, \Mx, \CMx, and \e no longer get
special treatment.
- The "format" command no longer does backslash processing on
its input string.
You can invoke the shell command below to locate backslash uses that
may potenzially behave differently under Tcl 7.0. This command
will print all of the lines from the script files "*.tcl" that may
not work correctly under Tcl 7.0:
egrep ‘' (\\$) | (\\([*] [(bfnrtv\0-9(}$;"*1)* *.tcl
In some cases the command may print lines that are actually OK.

2. The "glob" command now returns only the names of files that
actually exist, and it only returns names ending in "/" for
directories.

3. When Tcl prints floating-point numbers (e.g. in the "expr" command)
it ensures that the numbers contain a "." or "e" so that they don’t
look like integers.

4. The "regsub" command now overwrites its result variable in all cases.
If there is no match, then the source string is copied to the result.

5. The "exec", *glob", “regexp", and "regsub" commands now include a
"—-" gwitch; if the first non-switch argument starts with a *-" then
there must be a "--" switch or the non-switch argument will be treated

as a switch.

6. The keyword "UNIX" in the variable "errorCode" has been changed to
"POSIX".

7. The “format" and "scan" commands no longer support capitalized
conversion specifiers such as "$D" that aren’t supported by ANSI
sprintf and sscanf.

Here is a list of all of the incompatibilities that affect C code that
uses the Tcl library procedures. If you use an ANSI C compiler then

any potential problems will be detected when you compile your code: if
your code compiles cleanly then you don’t need to worry about anything.

1. Tcl_TildeString now takes a dynamic strlpg as an argument, which is
used to hold the result.

2. tclHash.h has been eliminated; its. contents are now in tcl.h.

3. The Tcl_History command has been eliminated: the "history" command
is now automatically part of the interpreter.

4. The Tcl_Fork and Tcl_WaitPids procedures have been deleted (just
use fork and waitpid instead).

5. The "flags" and “"termPtr" arguments to Tcl_Eval have been eliminated,
as has the "noSep” argument to Tcl_AppendElement and the TCL_NO_SPACE
flag for Tcl_SetVar and Tcl_SetVar2.

6. The Tcl_CmdBuf structure has been eliminated, along with the procedures
Tcl_CreateCmdBuf, Tcl_DeleteCmdBuf, and Tcl_AssembleCmd. Use dynamic
strings instead.

7. Tcl_SetVar and Tcl_UnsetVar2 now return TCL_OK or TCL_ERROR instead
of 0 or -1.

8. Tcl_UnixError has been renamed to Tcl_PosixError.
9. Tcl ro longer redefines the library procedures "setenv", "putenv",

and “"unsetenv” by default. You have to set up special conflguration
in the Makefile if you want this.

Below is a sampler of the wmost important new features in Tcl 7.0. Refer
to the "changes" file for a complete list.

1. The “"expr" command supports transcendental and other math functions,
plus it allows you to tvpe expressions in multiple arguments. Its
numerics have also beer improved in several ways (e.g. support for
NaN) .

2. The “"format" command now supports XPG3 %n$ conversion specifiers.

3. The "exec' command supports many new kinds of redirection such as
>> and >&, plus it allows you to leave out the space between operators
like < and the file name. For processes put into the background,
"exec" returns a list of process ids.

4. The “"lsearch" command now supports regular expressions and exact
matching.

S. The "lsort" command has several new switches to control the
sorting process (e.g. numerical sort, user-provided sort function,
reverse sort, etc.).

6. There‘s a new command "pid"” that can be used to return the current
process ids or the process ids from an open file that refers to a
pipeline.

7. There’s a new command “"switch" that should now be used instead
of "case". It supports regular expressions and exact matches, and
also uses single patterns instead of pattern lists. "Case" is
now deprecated, although it’s been retained for compatibility.

8. A new dynamic string library has been added to make it easier to
build up strings and lists of arbitrary length. See the manual entry
"DString.3".

9. Variable handling has been improved in several ways: you can
now use whole-array traces to create variables on demand, you can
delete variables during traces, you can upvar to array elements,
and you can retarge: an upvar variable to stop through a sequence
of variables. Also, there’s a new library procedure Tcl_LinkVar
that can be used to associate a C variable with a Tecl variable and
keep them in sync.

10. New library procedures Tcl_SetCommandInfo and Tcl_GetCommandInfo
allow you to set and get the clientData and callback procedure for
a command.

11. Added "-errorinfo" and "-errorcode" options to “return” command;
they allow much better error handling.

12. Made prompts in tclsh user-settable via "tcl_promptl' and
"tcl_prompt2* variables.

13. Added low-level support that is needed to handle signals: see
Tcli_AsyncCreate, etc.

6. Tcl newsgroup

There is a network news group “comp.lang.tcl” intended for the exchange
of information abouz Tcl, Tk, and related applications. Feel free to use
the newsgroup both for general information questions and for bug reports.

I read the newsgroup and will attempt to fix bugs and problems reported
to ic.

7. Tcl contributed archive

Many people have created exciting packages and applications based on Tcl
ané made them freely available to the Tcl community. An archive of these
contributions is kept on the machine harbor.ecn.purdue.edu. You can
access the archive using anonymous FTP; the Tcl contributed archive is

in the directory "pub/tcl". The archive also contains an FAQ ('frequently
asked questions") document that provides solutions to problems that

are commonly encountered by TCL newcomers.

8. Support and bug fixes

I'm very interested in receiving bug reports and suggestions for
improvements. Bugs usually get fixed quickly (particularly if they

are serious), but enhancements may take a while.and may not happen at

all unless there is widespread support for them (I‘m trying to slow

the rate at which Tcl turns into a kitchen sink). 1It’s almost impossible
to make incompatible changes to Tcl at this point.

The Tcl community is too large for me to provide much individual
support for users. If you need help I suggest that you post questions
to comp.lang.tcl. I read the newsgroup and will attempt to answer
esoteric questions for which no-one else is likely to know the answer.
In addition, Tcl support and training are available commercially from
NeoSoft. For more information, send e-mail to "infofneosoft.com".

9. Tcl release organization

Each Tcl release is identified by two numbers separated by a dot, e.g.
6.7 or 7.0. If a new release contains changes that are likely to break
existing C code or Tcl scripts then the major release number increments
and the minor number resets to zero: 6.0, 7.0, etc. If a new release
contains only bug fixes and compatible changes, then the minor number
increments without changing the major number, e.g. 7.1, 7.2, etc. If
you have C code or Tcl scripts that work with release X.Y, then they
should also work with any release X.Z as long as Z2 > Y.

Beta releases have an additional suffix of the form bx. For example,
Tcl 7.0bl is the first beta release of Tcl version 7.0, Tcl 7.0b2 is
the second beta release, and so on. A beta release is an initial
version of a new release, used to fix bugs and bad features before .
declaring the release stable. Each new release will be preceded by
one or more beta releases. I hope that lots of people will try out
the beta releases and report problems back to me. I’‘ll make new beta
releases to fix the problems, until eventually there is a beta release
that appears to be stable. Once this occurs I’'ll remove the beta
suffix so that the last beta release becomes the official release.

If a new release contains incompatibilities (e.g. 7.0) then I can’‘t
promise to maintain compatibility among its beta releases. For example,
release 7.0b2 may not be backward compatible with 7.0bl. 1I’1ll try

to minimize incompatibilities between beta releases, but if a major
problem turns up then I‘1ll fix it even if it introduces an
incompatibilizy. Once the official release is made then there won't

be any more incompatibilities until the next release with a new major
version number.

10. Compiling on non-UNIX systems

The Tcl features chat depend on system calls-peculiar to UNIX (stat,
fork, exec, times, etc.) are now separate from the main body of Tcl,
which only requires a few generic library procedures such as malloc

and strcpy. Thus it should be relatively easy to compile Tcl for
non-UNIX machines such as MACs and DOS PC’s, although a number of
UNIX-specific commands will be absent (e.g. exec, time, and glob).
See the comments at the top of Makefile for information on how to
compile without the UNIX features.

The Tk Toolkiz

by John Ousterhiout
University of California at Berkeley
ouster@cs.berkeley.edu

1. Introduction

This directory contains the sources and documentation for Tk, an
X1l toolkit that provides the Motif look and feel and is implemented
using the Tecl scripting language. The information here corresponds
to Tk 3.6. Iz is designed to work with Tecl 7.3 and may not work
with other releases of Tcl.

2. Documentation

The best way to get started with Tk is to read the draft of my upcoming
book on Tcl and Tk, which can be retrieved using anonymous FTP from the
directory “"ucb/tcl® on ftp.cs.berkeley.edu. Part II of the book provides
an introduction to writing Tcl scripts for Tk and Part IV describes how
to build new widgets and geometry managers in C using Tk's library
procedures.

The "doc" subdirectory in this release contains a complete set of manual
entries for Tk. Files with extension ".1" are for programs such as
wish; files with extension ".3" are for C library procedures; and files
with extension ".n" describe Tcl commands. To print any of the manual
entries, cd to the "doc" directory and invoke your favorite variant of
troff using the normal -man macros, for example

ditroff -man wish.l

to print wish.l. If Tk has been installed correctly and your “"man”
program supports it, you should be able to access the Tcl manual entries
using the normal "man" mechanisms, such as

man wish

3. Compiling and installing Tk

This release should compile and run with little or no effort on any
UNIX-like system that approximates POSIX, BSD, or System V and runs
the X Window System. I know that it runs on workstations from Sun,
DEC, H-P, IBM, and Silicon Graphics, and on PC’s running SCO UNIX
and Xenix. To compile Tk, do the following:

(a) Make sure that this directory and the corresponding release of
Tcl are both subdirectories of the same directory. This
directory should be named tk3.6 and the Tcl release directory
should be named tcl7.3.

(b) Type "./configure” in this directory. This runs a configuration
script created by GNU autoconf, which configures Tcl for your
system and creates a Makefile. The configure script allows you
to customize the Tk configuration for your site; for details on
how you can do this, see the file "configure.info".

{c) Type "make". This will create a library archive called "libtk.a"
and an incerpreter application called "wish" that allows you to type
Tcl commands interactively or execute script files.

(d} If the make fails then you’ll have to personalize the Makefile
for your site or possibly modify the distribution in other ways.

First check the file "porting.notes" to see if there are hints

for compiling on your system. If you need to modify Makefile,
there are comments at the beginning of it that describe the things
you might want o change and how to change them.

{(e) Type "make install" to install Tk‘s binaries and script files in
standard places. In the default configuration information will
be installed in /usxr/local so you’ll need write permission on
this directoxy.

(£) At this point you can play with Tcl by invoking the "wish*®
program and typing Tcl commands. However, if you haven’t installed
Tk then you’ll first need to set your TK_LIBRARY environment
variable to nholé the full path name of the "library" subdirectory.
If you haven’t installed Tcl either then you’ll need to set your
TCL_LIBRARY environment variable as well (see the Tcl README file
for information on this). -

If you have trouble compiling Tk, I’'d suggest looking at the file
“porting.notes". It contains information that people have sent me about
changes they had to make to compile Tcl in various environments. I make
no guarantees that this information is accurate, complete, or up-to-date,
but you may find it useful. If you get Tk running on a new configuration
and had to make non-trivial changes to do it, I‘d be happy to receive new
information to add to "porting.notes". I‘m also interested in hearing
how to change the configuration setup so that Tcl compiles on additional
platforms "out of the bcx".

4. Test suite

Tk now has the beginnings of a self-test suite, consisting of a set of

scripts in the subdirecctory “"tests". To run the test suite just type
*"make test" in this directory. You should then see a printout of the
test files processed. II any errors occur, you’ll see a much more

substantial printout for each error. See the README file in the
"tests" directory for more information on the test suite.

S. Getting started

Once wish is compiled wvou can use it to play around with the Tk
facilities. If you run wish with no arguments, it will open a small
window on the screen and read Tcl commands from standard input.

Or, you can play with some of the pre-camnned scripts in the subdirectory
library/demos. See the README file in the directory for a description
of what‘s available. The file library/demos/widget is a script that
you can use to invoke many individual demonstrations of Tk’s facilities.

IZ you want to starz tysing Tcl/Tk commands to wish, I’d suggest
starting with a widgert-creation command like "button", and also learn
about the "pack" ané "place" commands for geometry management. Note:
when you create a widgez, it won't appear on the screen until you tell
a geometry manager atouz it. The only geometry managers at present

are the packer and the placer. If you don’t already know Tcl, read the
Tcl book excerpt that can be FTP’ed separately from the distribution
directory.

Andrew Payne has wrizten a very nice demo script called "The Widget Tour"
that introduces you to writing Tk scripts. This script is available
Zrom the Tcl contributzd archive described below. If you’re just
gertting started with Tx I strongly recommend trying out the widget tour.

~

©. Summary of changes .n recent releases

Tk 3.6 is a minor new release that is identical to 3.4 except that it
fixes a portability bug that prevents tkMain.c from compiling on some
machines (R_OK isn’t properly defined). Tk 3.6 should be completely
compatible with both 3.4 and 3.3. ’

Tk 3.5 was mistake, and was withdrawn shortly after it was released.

Tk 3.4 is a minor release consisting almost entirely of bug fixes. There
are no significant feature changes and Tk 3.4 should be completely
compatible wich Tk 3.3.

Tk 3.3 consists mostly of bug fixes plus upgrades to make it compatible
with Tcl 7.0. It should not introduce any compatibility problems itself,
but it requires Tcl 7.0, which introduces several incompatibilities

(see the Tcl README file for details). The file "changes" contains a
complete list of all changes to Tk, including both bug fixes and new
features. Here is a short list of a few of the-most significant new
features:

1. Tk is now consistent with the book drafts. This means that the
new packer syntax has been implemented and additional bitmaps and
reliefs are available.

2. Tk now supports stacking order. Windows will stack in the order
created, and "raise" and “"lower" commands are available to change
the stacking order.

3. There have been several improvements in configuration: GNU
autoconf is now used for configuration; wish now supports the
Tcl_AppInit procedure; and there’s a patchlevel.h file that will
be used for future patches. The Tk release no longer includes a
Tcl release; you’ll have to retrieve Tcl separately.

4. The Tk script library contains a new procedure "tk_dialog" for
creating dialog boxes, and the default "tkerror" has been improved
to use tk_dialog.

S. Tk now provides its own "exit" command that cleans up properly,
so it’s now safe to use “"exit" instead of “"destroy ." to end wish
applications.

6. Cascade menu entries now display proper Motif arrows. N
7. The main window is now a legitimate toplevel widget.

8. Wish allows prompts to be user-settable via the "tcl_promptl”
and "tcl_prompt2" variables.

7. Tcl/Tk newsgroup

There is a network news group "comp.lang.tcl" intended for the exchange
of information about Tcl, Tk, and related applications. Feel free to use
this newsgroup both for general information questions and for bug reports.
I read the newsgroup and will attempt to fix bugs and problems reported
to it.

8. Tcl/Tk contributed archive

Many people have created exciting packages and applications based on T¢l
and/or Tk and made them freely available to the Tcl community. An archive
of these contributions is kept on the machine harbor.ecn.purdue.edu. You
can access the archive using anonymous FTP; the Tcl contributed archive is
in the directory "pub/tcl”.

Pl

9. Support and bug fixes

I'm very interested in receiving bug reports and suggestions for
improvements. Bugs usually get fixed quickly (particularly if they
are serious), but enhancements may take a while and may not happen at
all unless there is widespread support for them (I'm trying to slow
the rate at which Tk turns into a kitchen sink). It’s becoming
increasingly difficuit to make incompatible changes to Tk, but it’s
not totally out of the question.

The Tcl/Tk community is too large for me to provide much individual
support for users. If you nreed help I suggest that you post questions
to comp.lang.tcl. I read the newsgroup and will attempt to answer
esoteric questions for which no-one else is likely to know the answer.
In addition, Tcl/Tk support and training are available commercially from
NeoSoft. For more information, send e-mail to "info@neosoft.com".

10. Release organization

Each Tk release is identified by two numbers separated by a dot, e.g.
3.2 or 3.3. If a new release contains changes that are likely to break
existing C code or Tcl scripts then the major release number increments
and the minor number resets to zero: 3.0, 4.0, etc. If a new release
contains only bug fixes and compatible changes, then the minor number
increments without changing the major number, e.g. 3.1, 3.2, etc. If
you have C code or Tcl scripts that work with release X.Y, then they
should also work with any release X.Z as long as Z > Y.

Beta releases have an acdditional suffix of the form bx. For example,
Tk 3.3bl is the first beta release of Tk version 3.3, Tk 3.3b2 is

the second beta release, and so on. A beta release is an initial
version of a new release, used to fix bugs and bad features before
declaring the release stable. Each new release will be preceded by
one or more beta releases. I hope that lots of people will try out
the beta releases and report problems back to me. I‘ll make new beta
raleases to fix the problems, until eventually there is a beta release
that appears to be stable. Once this occurs 1’1l remove the beta
suffix so that the last beta release becomes the official release.

If a new release contains incompatibilities (e.g. 4.0) then I can’t
promise to maintain compatibility among its beta releases. For example,
release 4.0b2 may not be backward compatible with 4.0bl. I‘1l try

to minimize incompatibilities between beta releases, but if a major
problem turns up then I‘1ll fix it even if it introduces an
incompatibility. Once the official release is made then there won't

be any more incompatibilities until the next release with a new major
version number.

APPENDIX C

GNUPLOT 3.5 INSTALLATION MANUAL

C-1

GNUPLOT

An Interactive Plotting Program

Thomas Williams & Colin Kelley

Version 3.5 organized by: Alex Woo
Major contributors (alphabetic order):
John Campbell
Robert Cunningham
Gershon Elber
Roger Fearick
David Kotz
Ed Kubaitis
Russell Lang
Alexander Lehmann
Carsten Steger
Tom Tkacik
Jos Van der Woude
Alex Woo
Copyright (C) 1986 - 1993 Thomas Williams, Colin Kelley

Mailing list for comments: info-gnuplot@dartmouth.edu
Mailing list for bug reports: bug-gnuplot@dartmouth.edu

This manual is for GNUPLOT version 3.3

&

72,

o
R

Contents

1 Gnuplot 1
2 Copyright 1
3 Introduction 2
4 Cd _ 2
5 Clear 2
6 Command line-editing . 2
7 Comment 3
8 Environment 4
9 Exit 4
10 Expressions 4
10.1 FURCLIONS = & & v o e e o e e e e e e e e e e e et e e e e e e e e e e e e 4
10.2 OPELALOLS « « « v v e v v oot e e e e e e e e e e a e e e e e e 5
10.2.1 BIDALY . v v v v e e et e e e e e e e e e e e e e e e 5

10.2.2 UDBIY « v v v v v ot e e e e e e e e e e et e e e 6

11 Help 6
12 Load 7
13 Pause . 7
14 Plot 7
14.1 Data-file .« v v v e s e e e e e e e 8
14.1.1 USIDZ . . o v o ot e e e e e e e e e e e e 10

14.2 BITOIDAIS . . o o v e o e 11
14.3 ParaImetliC . v » v v v o o e 12
144 RANZES . . o o ot it e e e e e e e e e e e e 12
145 IRAEX & o v o o e 13
14.6 Style . . . o it e e e e e e e e e 13
14.7 Title o o e 15
15 Print) 15
16 Pwd 15

17 Quit 16

18 Replot 16
19 Reread 16
20 Save 16
21 Set-show 16
211 Angles. . . . L oL e 17
D12 AITOW & o o e 17
213 Autoscale o e e e e e e e e e e e e e 18
91.3.1 Parametricmode. i e e e e e e e e e e e e s 18

214 BOTder - o v o e 19
915 BoXWIdth . . . o o i it e 19
21.6 Clabel o o e e e e e e e e e e e e e e e e e e e 19
217 CHP . . o o e e e e e e e e e e e e 20
21.8 COLIPATAINL . « o v o v e e et e e i e et e e e e e e e e e 20
D10 COMEOUT - « « « v o e 21
2110 Datastyle. . . . o o o o e e e e e e e e 21
2111 Dgrid3d - e 22
2LI2DUMIMY . . o o v o o e e e e e e e e e e e e e e e e e e 22

0 T 0 2 = =« - O 23
21.14 Function style Lo 23
L1 FURCHONS . & o o i v e 23

D1 AB GIId . . o o e e e e e e e e e e e e e e e e e e e 23
2117 Hidden3d o . e e e e e e e e e e e e e e e e 24
2118 Isosamples oL e e e e 24

D 00 B 0= 2 I 24
21.20 Label e 25
2121 L0gscale. i i e e e 26

D) €1 o3 1 V- I 26
2123 OfSELS -« « o o o e 27
FLI240UEPUL + o o o v v o e 27
21.23 ParametriC . . . v v o v i e 27
D126 POlar . . & . i i e 28
2L2TRIAIER - - -« o o e v v et e e e e e e e e e e e e e e e e e e e 29
2128 8ampleso e e e e e e e e e 29
21208028 . . o o e 29
2130 St¥le . L . e e e e e e e e 30

D131 SUITACE . & o o e 31

21.32 Terminal e e e e e e e e e e e e e e e e e e e 31

21.32.1 Afm . L e e e e e e e e e e e e e e e 31
21.32.2 Atari ST e e e e e e e e e e e e e 32
21.32.3 Dumb e e e e e e e e e 32
21,324 EPSOn i . e e e e e e e e e e e e e e e 32
21.32.50 GDIC. . . o e 32
21.32.6 Hplil o e e e e e e e e e 33
21.32.7 Latex o i e e e e e e e e e e e e e e e 34
21.32.8 Irisdd e e e e e e e e e e e e e e e e e e e 34
21.32.0 M . . e 34
218200 MIf . ..o [P 36
21.32.11 Nec-epbB . . v v i i it e 37
21.32.12 Pbm. . . . e e e e e e e e e e e e e e e e e e 37
21.82.13 Peld e e e e e e e e e e e e e e e e e 37
21.32.14 PoStSCrIPt v i i e 37
21.32.153 Regis . . . & o o o e e e e e e e e e e e e e 38
21.32.16 Table e e e e e e e e e e e e e e 38
21.32.17 WINRdOWS ot e 38
P I T 1 2O 40
21.34TImMeE o e 41
2133 Title o e e e e e e e e e e e e e e e e e e e 41
2136 Trange i e s 42
2137 Urange o o e 42
21.38 Variables e e e e e 42
2130 VoW . . L e 43
2140 VIange o o i e 43
2141 Xlabel L e e e e e e e e e 43
2142 XLange e 43
2143 XbIES . v v e 44
2144 Xdbics . . . L . e 44
P I 0, € ¢ 13U 45
21.46 XZErOAXIS - - - v & ¢t o i e 45
2147 Ylabelo e e e e e e e e e e e e e e e 45
2LABYrange e e e e e e e e e e e e e e 45
D I L 54T 46
2130 Ydtics e 46
2L3LYmbics e e [46
2152 Y7eroaxis e 46
2133710 . . . i e 46
2104 ZEroaxiS . « . . v it e 47

21.55 Zlabel
21.56 Zrange . . .
21.57 Zties
21.58 Zdtics
21.539 Zmtics

22 Shell

23 Splot
23.1 Binary Data

24 Start-up
25 Substitution
26 User-defined

27 Bugs

48

48
43

49

49

49

50

GNUPLOT 3.5 1

1 Gnuplot

GNUPLOT is a command-driven interactive function plotting program.
For help on any topic, type help followed by the name of the tbpic.

The new GNUPLOT user should begin by reading the introduction topic (type help introduction)
and about the plot command (type help plot). Additional help can be obtained from the USENET
newsgroup comp.graphics.gnuplot.

2 Copyright
Copyright (C) 1986 - 1993 Thomas Williams, Colin Kelley

Permission to use, copy, and distribute this software and its
documentation for any purpose with or without fee is hereby granted,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation.

Permission to modify the software is granted, but not the right to
distribute the modified code. Modifications are to be distributed
as patches to released version.

This software is provided "as is'" without express or implied warranty.
AUTHORS

Original Software:
Thomas Williams, Colin Kelley.

Gnuplot 2.0 additioms:
Russell Lang, Dave Kotz, John Campbell.

Gnuplot 3.0 additioms:
Gershon Elber and many others.

There is a mailing list for gnuplot users. Note, however, that the
newsgroup

comp.graphics.gnuplot
is identical to the mailing list (they
both carry the same set of messages). We prefer that you read the
messages through that newsgroup, to subscribing to the mailing list.
(If you can read that newsgroup, and are already on the mailing list,
please send a message info-gnuplot-request@dartmouth.edu, asking to be
removed from the mailing list.)

The address for mailing to list members is
info-gnuplot@dartmouth.edu

and for mailing administrative requests is
info-gnuplot-request@dartmouth.edun

The mailing list for bug reports is
bug-gnuplot@dartmouth. edu

The list of those interested in beta-test versions is
info-gnuplot-betaldartmouth.edu

A N BRI R AL = e e A M~ A S g T
REEE R PR R S S S

GNUPLOT 3.5 2

3 Introduction

GNUPLOT is a command-driven interactive function plotting program. It is case sensitive (commands
and function names written in lowercase are not the same as those written in CAPS). All command
names may be abbreviated. as long as the abbreviation is not ambiguous. Any number of commands
may appear on a line, separated by semicolons (;). Strings are indicated with quotes. They may be
either single or double quotation marks, e.g.,

load "filename"
cd ’dir’

Any command-line arguments are assumed to be names of files containing GNUPLOT commands, with
the exception of standard X11 arguments, which are processed first. Each file is loaded with the load
command, in the order specified. GNUPLOT exits after the last file is processed. When no load files
are named, gnuplot enters into an interactive mode.

Commands may extend over several input lines, by ending each line but the last with a backslash (\).
The backslash must be the LAST character on each line. The effect is as if the backslash and newline
were not there. That is. no white space is implied, nor is a comment terminated. Therefore, commenting
out a continued line comments out the entire command (see comment).

In this documentation. curly braces ({}) denote optional arguments to many commands, and a vertical
bar (]) separates mutually exclusive choices. GNUPLOT keywords or help topics are indicated by
backquotes or boldface (where available). Angle brackets (<>) are used to mark replaceable tokens.

For help on any topic, type help followed by the name of the topic.
The new GNUPLOT user should begin by reading about the plot command (type help plot).

4 Cd

The cd command changes the working directory.

Syntax:
cd "<directory-name>"

The directory name must be enclosed in quotes.

Examples:

cd ’subdir’
Cd ” .. n

5 Clear

The clear command erases the current screen or output device as specified by set output. This usually
generates a formfeed on hardcopy devices. Use set terminal to set the device type.

6 Command line-editing

The Unix, Atari, VMS. MS-DOS and OS/2 versions of GNUPLOT support command line-editing. Also.
a history mechanism allows previous commands to be edited. and re-executed. After the command line

GNUPLOT 3.5 , 3

has been edited, a newline or carriage return will enter the entire line regardless of where the cursor is
positioned.

The editing commands are as follows:

Character Function
Line Editing
"B move back a single character.
°F move forward a single character.
“A move to the beginning of the line:
“E move to the end of the line.
~“H, DEL delete the previous character.
“D delete the current character.
“K delete from current position to the end of line.
"L, "R redraw line in case it gets trashed.
U delete the entire line.
W delete from the current word to the end of line.
History
“P move back through history.
"N move forward through history.

On the IBM PC the use of a TSR program such as DOSEDIT or CED may be desired for line editing.
For such a case GNUPLOT may be compiled with no line editing capability (default makefile setup). Set
READLINE in the makefile and add readline.obj to the link file if GNUPLOT line editing is to be used
for the IBM PC. The following arrow keys may be used on the IBM PC and Atari versions if readline is
used:

Arrow key Function
Left same as “B.
Right same as “F.
Ctl Left same as ~A.
Ctl Right same as "E.
Up same as “P.
Down same as “N.

The Atari version of readline defines some additional key aliases:

Arrow key Function
Undo same as ~L.
Home same as ~A.

Ctrl Home same as "E.
ESC same as ~U.
Help ‘help’ plus return.

Ctrl Help “help ’.

(The readline function in gnuplot is not the same as the readline used in GNU BASH and GNU EMACS.
It is somewhat compatible however.)

7 Comment

Comments are supported as follows: a # may appear in most places in a line and GNUPLOT will
ignore the rest of the line. It will not have this effect inside quotes, inside numbers (including complex
numbers), inside command substitutions, etc. In short, it works anywhere it makes sense to work.

; - X 2 YAty e
AT A S S A 1 4 »
v N o .o g el
N R <

[S

GNUPLOT 3.5 . 4

8 Environment

A number of shell environment variables are understood by GNUPLOT. None of these are required. but
may be useful.

If GNUTERM is defined. it is used as the name of the terminal type to be used. This overrides any
terminal type sensed by GNUPLOT on start up, but is itself overridden by the .gnuplot (or equivalent)
start-up file (see start-up). and of course by later explicit changes.

On Unix, AmigaDQS, AtariTOS, MS-DOS and OS/2, GNUHELP may be defined to be the pathname
of the HELP file {gnuplot.gih).

On VMS. the svmbol GNUPLOTSHELP should be defined as the name of the help library for GNT-
PLOT.

On Unix, HOME is used as the name of a directory to search for a .gnuplot file if none is found in
the current directory. On AmigaDOS, AtariTOS, MS-DOS and 0S/2, GNUPLOT is used. On VMS,
SYSSLOGIN: is used. See help start-up.

On Unix, PAGER is used as an output filter for help messages.

On Unix, AtariTOS and AmigaDOS, SHELL is used for the shell command. On MS-DOS and OS/2,
COMSPEC is used for the shell command.

On AmigaDOS. GNUFONT is used for the screen font. For example: “setenv GNUFONT sapphire/14”.

On MS-DOS. if the BGI interface is used, the variable BGI is used to point to the full path of the BGI
drivers directory. Furthermore SVGA is used to name the Super VGA BGI driver in 800x600 res.. and
its mode of operation as 'Name.Mode’. E.g., if the Super VGA driver is C:\TC\BGI\SVGADRV.BGI
and mode 3 is used for 800x600 res., then: ’set BGI=C:\TC\BGI’ and ’set SVGA=SVGADRV .3".

9 Exit

The commands exit and quit and the END-OF-FILE character will exit GNUPLOT. All these com-
mands will clear the output device (as the clear command does) before exiting.

10 Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The
precedence of these operators is determined by the specifications of the C programming language. White
space (spaces and tabs) is ignored inside expressions.

Complex constants may be expressed as the {<real>,<imag>}, where <real> and <imag> must be
numerical constants. For example, {3,2} represents 3 + 2i: {0.1} represents i itself. The curly braces
are explicitly required here.

10.1 Functions

The functions in GNUPLOT are the same as the corresponding functions in the Unix math library,
except that all functions accept integer, real, and complex arguments. unless otherwise noted. The sgn
function is also supported. as in BASIC.

GNUPLOT 3.5 . 3

Function Arguments Returns
abs(x) any absolute value of x, |z|; same type
abs(x) complex length of x, \/real(z)? + imag(z)?
acos(x) any cos~! z (inverse cosine) in radians
arg(x) complex the phase of z in radians
asin(x) any sin~! z (inverse sin) in radians
atan(x) any tan~! z (inverse tangent) in radians
besj0(x) radians Jo Bessel function of z
besj1(x) radians J1 Bessel function of
besy0(x) radians yo Bessel function of z
besyl({x) radians y1 Bessel function of z
ceil(x) any [z], smallest integer not less than z (real part)
cos(x) radians cosr, cosineof z
cosh(x) radians cosh z, hyperbolic cosine of
erf(x) any Erf(real(z)), error function of real(z)
erfe(x) any Erfc(real(z)), 1.0 - error function of real(z)
exp(x) any e?, exponential function of
floor(x) any |z], largest integer not greater than z (real part)
gamma(x) any Gamma(real(z)), gamma function of real(z)
ibeta(p,q,x) any Ibeta(real(p, ¢, z)), ibeta function of real(p,q,z)
inverf(x) any inverse error function of real(x)
igamma(a,x) any Igamma(real(a, z)), igamma function of real(a,z)
imag(x) complex imaginary part of z as a real number
invnorm(x) any inverse normal distribution function of real(z)
int(x) real integer part of z, truncated toward zero
Igamma(x) any Lgamma(real(z)), lgamma function of real(x)
log(x) any log, =, natural logarithm (base €) of =
log10(x) any log, . logarithm (base 10) of =
norm(x) any normal distribution (Gaussian) function of real(z)
rand(x) any Rand(real(z)), pseudo random number generator
real(x) any real part of ¢
sgn(x) any lifr>0.-1ifz <0, 0if £ =0. imag(z) ignored
sin(x) radians sinz, sine of =
sinh(x) radians sinh r, hyperbolic sine z
sqre(x) any V'Z, square toot of =
tan(x) radians tan z, tangent of =
tanh(x) radians tanh z. hyperbolic tangent of =

10.2 Operators
The operators in GNUPLOT are the same as the corresponding operators in the C programming lan-

guage, except that all operators accept integer. real. and complex arguments, unless otherwise noted.
The ** operator (exponentiation) is supported. as in FORTRAN.

Parentheses may be used to change order of evaluation.

10.2.1 Binary

The following is a list of all the binary operators and their usages:

GNUPLOT 3.5 . 6

Binary Operators
Symbol Example Explanation
x% ax*b exponentiation
* a*b multiplication
/ a/b division
A a’%b * modulo
+ at+b addition
- a-b subtraction
== a== equality
1= at=b inequality
& agb * bitwise AND
- a’b * bitwise exclusive OR,
| alb * bitwise inclusive OR
&g a&gb * logical AND
11 allb * logical OR
?: a?b:c ¥ ternary operation

(*) Starred explanations indicate that the operator requires integer arguments.

Logical AND (&&) and OR (|]) short-circuit the way they do in C. That is, the second && operand is
not evaluated if the first is false; the second || operand is not evaluated if the first is true.

The ternary operator evaluates its first argument (2). If it is true (non-zero) the second argument (b) is
evaluated and returned. otherwise the third argument (c) is evaluated and returned.

10.2.2 Unary

The following is a list of all the unary operators and their usages:

Unary Operators
Symbol Example Explanation

-a unary minus
- “a * one’s complement
! la * logical negation
! al * factorial

(*) Starred explanations indicate that the operator requires an integer argument.

The factorial operator returns a real number to allow a greater range.

11 Help

The help command displays on-line help. To specify information on a particular topic use the syntax:

help {<topic>}

If <topic> is not specified. a short message is printed about GNUPLOT. After help for the requested
topic is given, help for a subtopic may be requested by typing its name, extonding the help request.
After that subtopic has been printed. the request may be extended again, or simply pressing return goes
back one level to the previous topic. Eventually, the GNUPLOT command line will return.

GNUPLOT 3.5

-1

12 Load

The load command executes each line of the specified input file as if it had been typed in interactively.
Files created by the save command can later be loaded. Any text file containing valid commands can
be created and then executed by the load command. Files being loaded may themselves contain load
commands. See comment for information about comments in commands.

The load command must be the last command on the line.

Syntax:
load "<input-file>"

The name of the input file must be enclosed in quotes.

Examples:

load ’work.gnu’
load "func.dat"

The load command is performed implicitly on any file names given as arguments to GNUPLOT. These
are loaded in the order specified, and then GNUPLOT exits.

13 Pause

The pause command displays any text associated with the command and then waits a specified amount
of time or until the carriage return is pressed. pause is especially useful in conjunction with load files.

Syntax:
pause <time> {"<string>"}

<time> may be any integer constant or expression. Choosing -1 will wait until 2 carriage return is his,
zero {0) won’t pause at all, and a positive integer will wait the specified number of seconds.

Note: Since pause is not part of the plot it may interact with different device drivers differently (de-
pending upon how text and graphics are mixed). - -

Examples:

pause -1 # Wait until a carriage return is hit
pause 3 # Wait three seconds

pause -1 "Hit return to continue"

pause 10 "Isn’t this pretty? It’s a cubic-spline."

14 Plot

plot and splot are the primary commands of the program. They plot functions and data in many, many
ways. plot is used to plot 2-d functions and data, while splot plots 3-d surfaces and data.

Syntax:

plot {ranges} {<function> | {"<datafile>" {using ...}}}
{title} {style} {, <function> {title} {style}...}

GNUPLOT 3.5 8

splot {ranges} {<functiom> | {"<datafile>" {index i} {using ...}}}
{title} {style} {, <function> {title} {stylel}...l}

where either a <function> or the name of a data file enclosed in quotes is supplied. A function is a
mathematical expression. or a pair (plot) or triple (splot) of mathematical expressions in the case of
parametric functions. User-defined functions and variables may also be defined here.

plot and splot commands can be as simple as
plot sin(x)

and
splot x * y

or as complex as (})

plot [t=1:10] ([-pi:pi*2] tan(t), "data.1" using 2:3 with lines,
t**2 with points

14.1 Data-file

Discrete data contained in a file can be displayed by specifying the name of the data file (enclosed in
quotes) on the plot or splot command line. Data files should contain one data point per line. Lines
beginning with # (or ! on VMS) will be treated as comments and ignored. For plots, each data point
represents an (X,y) pair. For splots, each point is an (x,y,z) triple. For plots with error bars (see plot
errorbars), each data point is either (x,y,ydelta) or (x,y,ylowyhigh). In all cases, the numbers on each
line of a data file must be separated by blank space. This blank space divides each line into columns.

For plots the x value may be omitted, and for splots the x and y values may be omitted. In either case
the omitted values are assigned the current coordinate number. Coordinate numbers start at 0 and are
incremented for each data point read.

To specify other formats. see plot datafile using.

In the plot command. blank lines in the data file cause a break in the plot. There will be no line drawn
between the preceding and following points if the plot style is lines or linespoints (see plot style)
This does not change the plot style, as would plotting the data as separate curves.

This example compares the data in the file population.dat to a theoretical curve:

pop(x) = 103*exp((1965-x)/10)
plot [1960:1990] ’population.dat’, pop(x)

The file population.dat might contain:

Gnu population in Antarctica since 1965

1965 103
1970 5§
1975 34
1980 24
1988 10

When a data file is plotted, samples and isosamples are ignored. Curves plotted using the plot
command are automatically extended to hold the entire curve. Similarly grid data plotted using the

GNUPLOT 3.5 . 9

splot command is automatically extended, using the assumption that isolines are separated by blank
lines (a line with only a CR/LF in it).

Implicitly, there are two types of 3-d datafiles. If all the isolines are of the same length, the data is
assumed to be a grid data, i.e., the data has a grid topology. Cross isolines in the other parametric
direction (the ith cross isoline passes through the ith point of all the provided isolines) will also be
drawn for grid data. (Note contouring is available for grid data only.) If all the isolines are not of the
same length, no cross isolines will be drawn and contouring that data is impossible.

For splot, data files may contain more than one mesh and by default all meshes are plotted. Meshes are
separated from each other, in the file, by double blank lines. ‘To control and splot a single mesh from a
multi mesh file, use the index modifier. See splot index for more.

For splot if 3-d datafile and using format (see splot datafile using) specify only z (height field), a non
parametric mode must be specified. If, on the other hand, x, y, and z are all specified, a parametric
mode should be selected (see set parametric) since data is defining a parametric surface.

A simple example of plotting a 3-d data file is

set parametric
splot ’glass.dat’

or

set noparametric
splot ’datafile.dat’

where the file datafile.dat might contain:

The valley of the Gnu.
10
10
10

i

10
5
10

10
1
10

10
0
10

Note datafile.dat defines a 4 by 3 grid (4 rows of 3 points each). Rows are separated by blank lines.

On some computer systems with a popen function (UNIX), the datafile can be piped through a shell
command by starting the file name with a <’. For example:

pop(x) = 103*exp(-x/10)
plot ’< awk "{print $1-1965, $2}" population.dat’, pop(x)

would plot the same information as the first population example but with years since 1965 as the x
axis. If you want to execute this example, you have to delete all comments from the data file above or
substitute the following command for the first part of the command above (the part up to the comma):

NS
o
S
¥

X4

R

GNUPLOT 3.5 10

plot ’< awk "$0 !~ /~#/ {print $1-1965, $2}" population.dat’
[t is also possible to apply a single function to the “y” value only, e.g.
plot ’population.dat’ thru p(x)

For more information about 3-d plotting, see splot. .

14.1.1 Using

The format of data within a file can be selected with the using option. An explicit scanf string can be
used, or simpler column choices can be made.

Syntax:

plot "datafile" { using { <ycol> |
<xcol>:<ycol> |
<xcol>:<ycol>:<ydelta> |
<xcol>:<ycol>:<ylow>:<yhigh> |
<xcol>:<ycol>:<ylow>:<yhigh>:<boxwidth> }
{"<scanf string>"} } ...

and

splot "datafile" { using { <xcol>:<ycol>:<zcol> | <zcol> }
{"<scanf string>"} } ...

<xcol>, <ycol>, and <zcol> explicitly select the columns to plot from a space or tab separated multi-
column data file. If only <ycol> is selected for plot, <xcol> defaults to 1. If only <zcol> is selected for
splot, then only that column is read from the file. An <xcol> of 0 forces <vcol> to be plotted versus
its coordinate number. <xcol>, <ycol>, and <zcol> can be entered as constants or expressions.

If errorbars (see also plot errorbars) are used for plots, ydelta (for example, a +/- error) should be
provided as the third column, or ylow and yhigh as third and fourth columns.

If boxes or boxerrorbars are used for plots, a fifth column to specify the width of the box may be given.
This implies that columns three and four must also be provided even if they are not used. If you want
to plot boxes from a data file with three columns, set ylow and yhigh to y using the following command:

plot "“datafile” using 1:2:2:2:3 with boxes
Scanf strings override any <xcol>:<ycol>(:<zcol>) choices, except for ordering of input. e.g..
plot "datafile" using 2:1 "Yf¥*fYf"

causes the first column to be ¥ and the third column to be x.

If the scanf string is omitted. the default is generated based on the <xcol>:<ycol>(:<zcol>) choices. If
the using option is omitted. * %{%f” is used for plot (" %{%{%{%f” for errorbars plots) and " %{%{%f”
is used for splot.

Examples:

plot "MyData" using "U*f)£’*20["\nl’f" with lines

GNUPLOT 3.5 11

Data are read from the file “MyData” using the format ”%*{%{%*20[~\n]%f”. The meaning of this
format is: "%*f" ignore the first number, ”%f” then read in the second and assign to x, ”%*20[~\n]"
then ignore 20 non-newline characters, "%f” then read in the y value.

n=3;
plot "MyData', "MyData" using n

causes GNUPLOT to plot the second and third columns of MyData versus the first column. The
command 'n=4: replot’ would then plot the second and fourth columns of MyData versus the first
column.

splot "glass.dat” using 1

causes GNUPLOT to plot the first coordinate of the points of glass.dat as the z coordinate while ignoring
the other two coordinates.

Note: GNUPLOT first reads a line of the data file into a buffer and then does a
sscanf(input_buffer, scanf_string, &x, &y{, &z});

where ’x’, 'y’, and 'z’ are of type float’. Any scanf string that specifies two (three for splot, three or
four for errorbars) float numbers may be used.

14.2 Errorbars

Error bars are supported for 2-d data file plots by reading one or two additional columns specifying
ydelta or ylow and yhigh respectively. No support exists for x error bars or any error bars for splots.

In the default situation. GNUPLOT expects to see three or four numbers on each line of the data file.
either (x, y, ydelta) or (x, y, ylow, yhigh). The x coordinate must be specified. The order of the numbers
must be exactly as given above. Data files in this format can easily be plotted with error bars:

plot "data.dat" with errorbars

The error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of ylow
and yhigh, ylow=y-ydelta and yhigh=y-+ydelta are derived. If there are only two numbers on the line,
vhigh and ylow are both set to y. To get lines plotted between the data points, plot the data file twice,
once with errorbars and once with lines.

If y autoscaling is on. the y range will be adjusted to fit the error bars.

The using option may be used to specify how columns of the data file are to be assigned to X, y, ydelta,
ylow, and yhigh. The x column must be provided and both the x and y columns must appear before
the errorbar columns. If three column numbers are given, they are X, v, and ydelta. If four columns are

given, they are x. v, ylow, and yhigh.

Examples:

plot "data.dat" using 1:2:3:4 with errorbars
plot "data.dat" using 3:2:6 with errorbars
plot "“data.dat" using 3:4:8:7 with errorbars

The first example reads. x. v. vlow, and yhigh, from columns 1, 2, 3, and 4. This is equivalent to the
default. The second example reads x from the third column, y from second and ydelta from the sixth
column. The third example reads x from the third column, y from the fourth, ylow from the eighth. and
vhigh from seventh columns.

See also plot using and plot style.

GNUPLOT 3.5 12

14.3 Parametric

When in parametric mode (set parametric) mathematical expressions must be given in pairs for plot
and in triplets for splot:

plot sin(t),t**2
or
splot cos(u)*cos(v),cos(u)*sin(v) ,sin(u)

Data files are plotted as before, except any preceding parametric function must be fully specified before
a data file is given as a plot. In other words, the x parametric function (sin(t) above) and the y
parametric function (t**2 above) must not be interrupted with any modifiers or data functions; doing
so will generate a syntax error stating that the parametric function is not fully specified.

Ranges take on a different meaning when in parametric mode. The first range on the plot command
is the trange, the next is the xrange, and the last is the yrange. For splot the order is urange,
vrange, xrange, yrange, and finally zrange. The following plot command shows setting the trange
to [-pi:pi), the xrange to [-1.3:1.3] and the yrange to [-1:1] for the duration of the plot:

plot [-pi:pil £-1.3:1.3] [-1:1] sin(t),t**2

Other modifiers, such as with and title, may be specified only after the parametric function has been
completed:

plot sin(t),t*+2 title ’Parametric example’ with linespoints

14.4 Ranges

The optional range specifies the region of the plot that will be displayed.

Ranges may be provided on the plot and splot command line and affect only that plot, or in the set
xrange, set yrange, etc., commands, to change the default ranges for future plots.

Syntax:
({<dummy-var> =} {<xmin> : <xmax>}] { [{<ymin> : <ymax>}] }

where <dummy-var> is the independent variable (the defaults are x and y, but this may be changed
with set dummy) and the min and max terms can be constant expressions.

Both the min and max terms are optional. The '’ is also optional if neither a min nor a max term is
specified. This allows [to be used as a null range specification.

Specifying a range in the plot command line turns autoscaling for that axis off for that plot. Using one
of the set range commands turns autoscaling off for that axis for future plots, unless changed later. (See
set autoscale).

Examples:

This uses the current ranges:
plot cos(x)
This sets the x range only:

plot [-10:30] sin(pi*x)/(pi*x)

GNUPLOT 3.5 13

This is the same, but uses t as the dummy-variable:
plot [t = -10 :30] sin(pi*t)/(pi*t)
This sets both the x and y ranges:
plot [-pi:pil [-3:3] tan(x), 1/x
This sets only the y range, and turns off autoscaling on both axes:
plot [] [-2:sin(5)*-8] sin(x)#**besjo(x)
This sets xmax and ymin only:
plot [:200] [-pi:] exp(sin(x))
This sets the x, y, and z ranges:

splot [0:3] [1:4] [-1:1] x*y

14.5 Index

Splotting of multi mesh data files can be controlled via the index modifier. A data file can contain more
than one mesh. and in that case all meshes in the file will be splotted by default. Meshes are separated
from each other, in the data file, by double blank lines. To splot a single mesh in a multi mesh file use
the index modifier which specify which mesh to splot. First mesh is mesh 0.

Example:
splot “datal” index 2 with points
will splot the third mesh in file datal with points.

14.6 Style

Plots may be displayed in one of eight styles: lines, points, linespoints, impulses, dots, errorbars,
steps, boxes, or boxerrorbars. The lines style connects adjacent points with lines. The points
style displays a small symbol at each point. The linespoints style does both lines and points. The
impulses style displays a vertical line from the x axis (or from the grid base for splot) to each point.
The dots style plots a tiny dot at each point; this is useful for scatter plots with many points.

The errorbars style is only relevant to 2-d data file plotting. It is treated like points for splots and
function plots. For data plots, errorbars is like points, except that a vertical error bar is also drawn:
for each point (x,y), a line is drawn from (x,ylow) to (x,yhigh). A tic mark is placed at the ends of the
error bar. The ylow and yhigh values are read from the data file’s columns, as specified with the using
option to plot. See plot errorbars for more information.

The boxes style is only relevant to 2-d plotting. Another style called boxerrorbars is also available
and is only relevant to 2-d data file plotting. This style is a combination of the boxes and errorbars
styles. The boxes style draws a box centred about the given x coordinate from the yaxis to the given y
coordinate. The width of the box is obtained in one of three ways. First, if a data file has a fifth column,
this will be used to set the width of the box. Columns 3 and 4 (for boxerrorbars) are necessary but
ignored in this instance. Secondly. if a width has been set using the set boxwidth command, this will
be used. Otherwise the width of each box will be calculated automatically so that it touches the adjacent
boxes.

The steps style is only relevant to 2-d plotting. This style connects consecutive points with two line
segments: the first from (x1,y1) to (x2,y1) and the second from (x2,y1) to (x2,y2).

GNUPLOT 3.5 14

Default styles are chosen with the set function style and set data style commands.

By default, each function and data file will use a different line type and point type, up to the maximum
number of available types. All terminal drivers support at least six different point types, and re-use
them, in order. if more than six are required. The LaTeX driver supplies an additional six point types
(all variants of a circle}. and thus will only repeat after twelve curves are plotted with points.

If desired, the style and (optionally) the line type and point type used for a curve can be specified.

Syntax:
with <style> {<linetype> {<pointtype>}}

where <style> is either lines, points, linespoints, impulses, dots, steps, or errorbars. The
<linetype> and <pointtype> are positive integer constants or expressions and specify the line type
and point type to be used for the plot. Line type 1 is the first line type used by default, line type 2 is
the second line type used by default, etc.

Examples:
This plots sin(x) with impulses:

plot sin(x) with impulses

This plots x*y with points, x**2 + y**2 default:
splot x*y w points, x**2 + y**2

This plots tan(x) with the default function style, “data.1” with lines:
plot [1 [-2:5] tan(x), "data.1" with 1

This plots “leastsq.dat™ with impulses:
plot ’leastsg.dat’ w i

This plots the data file "population’ with boxes:
plot '"population" with boxes

This plots “exper.dat” with errorbars and lines connecting the points:
plot ’exper.dat’ w lines, ’exper.dat’ w errorbars

Here ’exper.dat’ should have three or four data columns.

This plots x**2 + y**2 and x**2 - y**2 with the same line type:
splot x#**2 + y**2 with line 1, x*%2 - y**2 with line 1

This plots sin(x) and cos(x) with linespoints, using the same line type but different point types:
plot sin(x) with linesp 1 3, cos(x) with linesp 1 4

This plots file ~data” with points style 3:
plot "data" with points 1 3

Note that the line style must be specified when specifying the point style, even when it is irrelevant.
Here the line style is 1 and the point style is 3, and the line style is irrelevant.

See set style to change the default styles.

GNUPLOT 3.5 15

14.7 Title
A title of each plot appears in the key. By default the title is the function or file name as it appears on

the plot command line. The title can be changed by using the title option. This option should precede
any with option.

Syntax:
title "<title>"

where <title> is the new title of the plot and must be enclosed in quotes. The quotes will not be shown
in the key.

Examples:

This plots y=x with the title 'x’: -
plot x
This plots the “glass.dat” file with the title ’surface of revolution’:
splot "glass.dat" title ’surface of revolution’
This plots x squared with title “x~2” and “data.1” with title measured data’:
plot x**2 title "x"2", "“data.1" t ’measured data’
The title can be omitted from the key with the “notitle” option for plot and splot. This can be useful

when some curves are plotted solely for decoration; for example, if one wanted a circular border for a
polar plot, he could say:

Example:

set polar .
plot my_function(x), 1 notitle

This would generate a key entry for “my_function” but not for “1”. See the poldat.dem example.

15 Print

The print command prints the value of <expression> to the screen.

Syntax:
print <expression>

See expressions.

16 Pwd

The pwd command prints the name of the working directory to the screen.

Syntax:

pwd

GNUPLOT 3.5 16

17 Quit

The exit and quit commands and END-OF-FILE character will exit GNUPLOT. All these commands
will clear the output device (as the clear command does) before exiting.

18 Replot

The replot command without arguments repeats the last plot or splot command. This can be useful
for viewing a plot with different set options, or when generating the same plot for several devices.

Arguments specified after a replot command will be added onto the last plot (splot) command (with
an implied ’,” separator) before it is repeated. replot accepts the same arguments as the plot (splot)
commands except that ranges cannot be specified. See command line-editing for ways to edit the
last plot (splot) command.

19 Reread

The reread command causes the current gnuplot command file, as specified by a load command or
on the command line. to be reset to its starting point before further commands are read from it. This
essentially implements an endless loop of the commands from the beginning of the command file to the
reread command. The reread command has no effect if input from standard input.

20 Save

The save command saves user-defined functions, variables, set options or all three plus the last plot
(splot) command to the specified file.

Syntax:
save {<option>} "<filename>"

where <option> is functions, variables or set. If no option is used, GNUPLOT saves functions,
variables, set options and the last plot (splot) command.

saved files are written in text format and may be read by the load command.
The filename must be enclosed in quotes.

Examples:

save "work.gnu"

save functions ’func.dat’
save var ’var.dat’

save set "options.dat”

21 Set-show

The set command sets LOTS of options.

The show command shows their settings. show all shows all the settings.

GNUPLOT 3.5 17

21.1 Angles

By default, GNUPLOT assumes the independent variable in polar plots is in units of radians. If set
angles degrees is specified before set polar then the default range is [0:360] and the independent
variable has units of degrees. This is particularly useful for plots of data files. The angle setting also
hold for the 3-d mapping as set via the set mapping command.

Syntax:
set angles { degrees | radianms }
show angles

21.2 Arrow

Arbitrary arrows can be placed on a plot using the set arrow command.
Syntax:
set arrow {<tag>} {from <sx>,<sy>{,<sz>}} _
{to <ex>,<ey>{,<ez>}} {{nothead}

set noarrow {<tag>}
show arrow

Unspecified coordinates default to 0. The x, y, and 2z values are in the graph’s coordinate system. The
z coordinate is only used in splot commands. <tag> is an integer that identifies the arrow. If no tag
is given, the lowest unused tag value is assigned automatically. The tag can be used to delete or change
a specific arrow. To change any attribute of an existing arrow, use the set arrow command with the
appropriate tag, and specify the parts of the arrow to be changed. Specifying nohead requests the arrow
be drawn without a head (yielding a line segment). By default, arrows have heads.

Arrows outside the plotted boundaries are permitted but may cause device errors.
Examples:

To set an arrow pointing from the origin to (1,2), use:
set arrow to 1,2

To set an arrow from (-10,4,2) to (-5,5,3), and tag the arrow number 3, use:
set arrow 3 from -10,4,2 to -5,5,3

To change the preceding arrow begin at 1,1,1, without an arrow head, use:
set arrow 3 from 1,1,1 nohead

To delete arrow number 2 use:
set noarrow 2

To delete all arrows use:
set noarrow

To show all arrows (in tag order) use:

show arrow

P
7%

GNUPLOT 3.5 13

21.3 Autoscale

Auto scaling may be set individually on the x, y or z axis or globally on all axes. The default is to
autoscale all axes.

When autoscaling, the plot range is automatically computed and the dependent axis (y for a plot and
z for splot) is scaled to include the range of the function or data being plotted.

If autoscaling of the dependent axis (y or z) is not set, the current y or z range is used.
See set yrange or set zrange.

Autoscaling the independent variables (x for plot and x,y for splot) is a request to set the domain to
match any data file being plotted. If there are no data files then autoscaling an independent variable
has no effect. In other words, in the absence of a data file, functions alone do not affect the x range (or
the y range if plotting z = f{x,¥)).

See set xrange, or set yrange.

The behavior of autoscaling remains consistent in parametric mode, however, there are more dependent
variables and hence more control over X, y, and z plot scales. In parametric mode, the independent
or dummy variable is t for plots and u,v for splots. Autoscale in parametric mode, then, controls all
ranges (t, u, v, X, ¥, and z) and allows x, y, and z to be fully autoscaled.

See set parametric.

Syntax:
set autoscale <axes>
set noautoscale <axes>

show autoscale

where <axes> is either x, y, z or xy. If <axes> is not given then all axes are assumed.
Examples:

This sets autoscaling of the y axis. x axis autoscaling is not affected.
set autoscale y
This sets autoscaling of the x and y axes.
sat autoscale xy
This sets autoscaling of the x, ¥ and z axes.
set autoscale
This disables autoscaling of the x. y and z axes.
set noautoscale
This disables autoscaling of the z axis only.

set noautoscale z

21.3.1 Parametric mode

When in parametric mode (set parametric) the xrange is as fully scalable as the yrange. In other
words, in parametric mode the x axis can be automatically scaled to fit the range of the parametric

GNUPLOT 3.5 19

function that is being plotted. Of course, the y axis can also be automatically scaled just as in the
non-parametric case. If autoscaling on the x axis is not set, the current x range is used.

When there is a mix of data files and functions, the xrange of the functions is selected as that of the data
files if autoscale is true for x. While this keeps the behavior compatible with non-parametric plotting,
it may not be retained in the future. The problem is that, in parametric mode, the x and y ranges are
not as distinguishable as in the non-parametric mode and this behavior may not be the most useful.

For completeness a last command set autoscale t is accepted. However, the effect of this “scaling” is
very minor. When GNUPLOT determines that the t range would be empty it makes a small adjustment
if autoscaling is true. Otherwise, GNUPLOT gives an error. Such behavior may, in fact, not be very
useful and the command set autoscale t is certainly questionable.

splot extends the above idea similarly. If autoscaling is set then x, y, and z ranges are computed and
each axis scaled to fit the resulting data.

21.4 Border

The set border and set noborder commands controls the display of the plot borders for the plot and
splot commands.

Syntax:

set border
set noborder
show border

21.5 Boxwidth

The set boxwidth command is used to set the default width of boxes in the boxes and boxerrorbars
styles.

If a data file is plotted without the width being specified in the fifth column, or a function is plotted, the
width of each box is set by the set boxwidth command. If a width is given after the set boxwidth
command then this is used as the width. Otherwise the width of each box will be calculated automatically
50 that it touches the adjacent boxes.

Syntax:

set boxwidth {<width>}
show boxwidth

To set the box width to automatic use the command

set boxwidth

21.6 Clabel

GNUPLOT will vary the linetype used for each contour level when clabel is set. When this option on
(the default). a legend labels each linestyle with the z level it represents.

Syntax:

set clabel
set noclabel
show clabel

AR IG LS LM (1, ﬂ s T T T GLATNE LIS
R I e O S D O RN S BT S T

GNUPLOT 3.5 20

21.7 Clip

GNUPLOT can clip data points and lines that are near the boundaries of a plot.

Svntax:

set clip <clip-type>
set noclip <clip-type>
show clip

Three clip types are supported by GNUPLOT: points, one, and two. One, two, or all three clip types
may be active for a single plot.

The points clip type forces GNUPLOT to clip (actually, not plot at all) data points that fall within
but too close to the boundaries (this is so the large symbols used for points will not extend outside the
boundary lines). Without clipping points near the boundariés may look bad; try adjusting the x and y
ranges.

Setting the one clip type causes GNUPLOT to plot the line segments which have only one of the two
endpoints within the plotting region. Only the in-range portion of the line is drawn. The alternative is
to not draw any portion of the line segment.

Some lines may have both endpoints out of range, but pass through the plotting area. Setting the two
clip-type allows the visible portion of these lines to be drawn.

In no case is a line drawn outside the plotting area.
The defaults are noclip points. clip one, and noclip two.

To check the state of all forms of clipping, use
show clip
For backward compatibility with older versions, the following forms are also permitted.

set clip
set noclip

set clip is synonymous with set clip points. set noclip turns off all three types of clipping.

21.8 Cntrparam

Sets the different parameters for the contouring plot (see also contour).

Syntax:

set cntrparam { { linear | cubicspline | bspline } |
points <n> |
order <n> |
levels { [auto] <n> |
discrete <z1>,<z2>, ... |
incremental {<start>, <incr>{, <end>} } }

Examples:

set cntrparam bspline
set cutrparam points 7
set cntrparam order 10
set cntrparam levels auto 5 # 5 automatic levels

GNUPLOT 3.5 21

set cntrparam levels discrete .1,1/exp(1),.9 # 3 discrete at .1,.37,.9
set cntrparam levels incremental O0,.1,.4

5 incremental levels at 0, .1, .2, .3 and .4

set cntrparam levels 10

sets n = 10 retaining current setting of auto, discr. and

increment’s start and increment value, while changing end

set cntrparam levels incremental 100,50

set start = 100 and increment = 50, retaining n levels

This command controls the way contours are plotted. <n> should be an integral constant expression
and <z1>, <22> any constant expressions. The parameters are:

linear, cubicspline, bspline - Controls type of approximation or interpolation. If linear, then the
contours are drawn piecewise linear, as extracted from the surface directly. If cubicspline, then piecewise
linear contours are interpolated to form a somewhat smoother contours, but which may undulate. The
third option is the uniform bspline, which only approximates the piecewise linear data but is guaranteed
to be smoother.

points - Eventually all drawings are done with piecewise linear strokes. This number controls the
number of points used to approximate a curve. Relevant for cubicspline and bspline modes only.

order - Order of the bspline approximation to be used. The bigger this order is, the smoother the
resulting contour. (Of course, higher order bspline curves will move further away from the original
piecewise linear data.) This option is relevant for bspline mode only. Allowed values are integers in the
range from 2 (linear) to 10.

levels - Number of contour levels, 'n’. Selection of the levels is controlled by ’auto’ (default), *discrete’,
and 'incremental’. For ‘auto’, if the surface is bounded by zmin and zmax then contours will be generated
from zmin+dz to zmax-dz in steps of size dz, where dz = (2max - zmin) / (levels + 1). For 'discrete’,
contours will be generated at z = z1, 22 ... as specified. The number of discrete levels is limited to
MAX_DISCRETE.LEVELS, defined in plot.h to be 30. If ’incremental’, contours are generated at <n>
values of z beginning at <start> and increasing by <increment>.

21.9 Contour

Enable contour drawing for surfaces. This option is available for splot only.

Syntax:

set contour { base | surface | both }
set nocontour

If no option is provided ‘to set contour, the default is base. The three options specify where to draw
the contours: base draws the contours on the grid base where the x/ytics are placed, surface draws the
contours on the surfaces themselves, and both draws the contours on both the base and the surface.

See also set cntrparam for the parameters that affect the drawing of contours.

21.10 Data style

The set data style command changes the default plotting style for data plots.
Syntax:

set data style
show data style
set data style <style-choice>

GNUPLOT 3.5 22

In the first case. set data style returns the possible style choices: lines, points, linespoints, dots,
steps, impulses, errorbars, boxes or boxerrorbars. show data style shows the current default
plotting style for data. set data style dots would actually change the default plotting style. See also
plot.

21.11 Dgrid3d

Enables and sets the different parameters for non grid to grid data mapping.
Syntax:

set dgrid3d {,{<row_size>}{,{<col_size>}{,<norm>}}}
set nodgrid3d

Examples:

set dgrid3d 10,10,2
set dgrid3d ,,4

The first selects a grid of size 10 by 10 to be constructed and the use of L2 norm in the distance
computation. The second only modifies the norm to be used to L4.

By default this option is disabled. When enabled, 3d data read from a file is always treaded as a scattered
data set. A grid with dimensions derived from a bounding box of the scattered data and size as specified
by the row/colsize above is created for plotting and contouring. The grid is equally spaced in x and y
while the z value is computed as a weighted average of the scattered points distance to the grid points.
The closer the scatter points to a grid point are the more effect they have on that grid point. The third,
norm, parameter controls the “meaning” of the distance, by specifying the distance norm. This distance
computation is optimized for powers of 2 norms, specifically 1, 2, 4, 8, and 16, but any nonnegative
integer can be used.

This dgrid3d option is a simple low pass filter that converts scattered data to a grid data set. More
sophisticated approaches to this problem exists and should be used as a preprocess to and outside gnuplot
if this simple solution is found inadequate.

21.12 Dummy

By default, GNUPLOT assumes that the independent variable for the plot command is x, and the
independent variables for the splot command are x and y. They are called the dummy variables because
it is just a notation to indicate the independent variables. The set dummy command changes these
default dummy variable names. For example, it may be more convenient to call the dummy variable t
when plotting time functions:

set dummy t
plot sin(t), cos(t)

Syntax:

set dummy <dummy-var>{,<dummy-var>}
show dummy

Examples:

set dummy u,v
set dummy ,s

GNUPLOT 3.5 23

to set both dummy variables to u and v or set only the second variable to s.

The set parametric command also changes the dummy variables (to t for plot and u,v for splots).

21.13 Format

The format of the tic-mark labels can be set with the set format command. The default format for both
axes is "%g”. but other formats such as ”%.2f” or ”"%3.0fm” are often desirable. Anything accepted
by printf when given a double precision number, and then accepted by the terminal, will work. In
particular, the formats f. e, and g will work, and the d, o, x, ¢, s, and u formats will not work.

Syntax:

set format {<axes>} {"<format-string>"}
show format

where <axes> is either x, y, 2, xy, or nothing (which is the same as xy). The length of the string
representing a ticmark (after formatting with printf) is restricted to 100 characters. If the format string
is omitted, the format will be returned to the default *%g”. For LaTeX users, the format ”$%g$” is
often desirable. If the empty string ”” is used, no label will be plotted with each tic, though the tic
mark will still be plotted. To eliminate all tic marks, use set noxtics or set noytics.

See also set xtics and set ytics for more control over tic labels.

21.14 Function style

The set function style command changes the default plotting style for functions.
Syntax;
set function style

show function style
set function style <style-choice>

In the first case, set function style returns the possible style choices: lines, points, linespoints,
dots, steps, impulses, errorbars, boxes, or boxerrorbars. show function style shows the current
default plotting style for functions. set function style linespoints would actually change the default
plotting style. See also plot.

21.15 Functions

The show functions command lists all user-defined functions and their definitions.

Syntax:

show functions

21.16 Grid

The optional set grid draws a grid at the tic marks with the axis linetype.
Syntax:
set grid

set nogrid
show grid

GNUPLOT 3.5 24

21.17 Hidden3d

The set hidden3d command enables hidden line removal for explicit surface plotting (see splot).
Hidden line removal may be used for both explicit functions and for explicit data. It now works for
parametric surfaces as well.

When this flag is set both the surface hidden portion and possibly its hidden contours (see set contour)
as well as the hidden grid will be removed. Labels and arrows are always visible and are unaffected by
this command.

Each surface has its hidden parts removed with respect to itself and to other surfaces, if more than one
surface is plotted. This mode is meaningful when surfaces are plotted using line style drawing only.

Syntax:

set hidden3d
set nohidden3d
show hidden3d

21.18 Isosamples

An isoline is a curve parametrized by one of the surface parameters while the other surface parameter
is fixed. Isolines are a simple means to display a surface. By fixing the u parameter of surface s(u,v),
the iso-u lines of the form c(v) = s(u0,v) are produced, and by fixing the v parameter. the iso-v lines of
the form c(u) = s(u,vQ) are produced.

The isoline density of surfaces may be changed by the set isosamples command. By default, sampling
is set to 10 isolines per u or v axis. A higher sampling rate will produce more accurate plots, but will
take longer. This parameter has no effect on data file plotting.

Syntax:

set isosamples <iso_1> {,<iso_2>}
show isosamples

Each surface plot will have <iso_1> iso-u lines and <iso_2> iso-v lines. If you only specify <iso_1>,
<iso.2> will be set to the same value as <iso_1>.

When a surface plot is being done without the removal of hidden lines, set samples also has an effect
on the number of points being evaluated. See set samples.

21.19 Key

The set key enables a key describing curves on a plot. By default the key is placed in the upper right
corner of the plot.

Syntax:

set key

set key <x>,<y>{,<2>}
set nokey

show key

The coordinates <x>. <y> (and <z> for splots) specify the location of the key on the plot. The key
is drawn as a sequence of lines. with one plot described on each line. On the right hand side of each line
is a representation that attempts to mimic the way the curve is plotted. On the left side of each line is
the text description. obtained from the plot command. See plot title to change this description. The
lines are vertically arranged so an imaginary straight line divides the left- and right-hand sides of the

GNUPLOT 3.5 25

key. It is the coordinates of this line that are specified with the set key command. In a plot, only the
x and y coordinates are used to specify the line position. For a splot, X, y and z are all being used as a
3-d location mapped using the same mapping as the plot itself to form the required 2-d screen position
of the imaginary line.

Some or all of the key may be outside of the plot boundary, although this may interfere with other labels
and may cause an error on some devices.

Examples:

This places the key at the default location:
set key

This disables the key:
set nokey

This places a key at coordinates 2,3.5,2

set key 2,3.5,2

21.20 Label

Arbitrary labels can be placed on the plot using the set label command. If the z coordinate is given on
a plot it is ignored; if it is missing on a splot it is assumed to be 0.

Syntax:

set label {<tag>} {"<label_text>"} {at <x>,<y>{,<z>}}
{<justification>}

set nolabel {<tag>}

show label

The text defaults to ””. and the position to 0,0,0. The <x>, <¥>, and <z> values are in the graph’s
coordinate system. The tag is an integer that is used to identify the label. If no <tag> is given, the
lowest unused tag value is assigned automatically. The tag can be used to delete or change a specific
label. To change any attribute of an existing label, use the set label command with the appropriate
tag, and specify the parts of the label to be changed.

By default, the text is placed flush left against the point x,y,z. To adjust the way the label is positioned
with respect to the point x,y,z, add the parameter <justification>, which may be left, right or center,
indicating that the point is to be at the left, right or center of the text. Labels outside the plotted
boundaries are permitted but may interfere with axes labels or other text.

Examples:

To set a label at (1,2) to “y=x" use:
set label "y=x" at 1,2

To set a label “y=x"2" with the right of the text at (2,3,4), and tag the label number 3, use:
set label 3 "y=x"2" at 2,3,4 right

To change the preceding label to center justification, use:

set label 3 center

GNUPLOT 3.5 26

To delete label number 2 use:
set nolabel 2

To delete all labels use:
set nolabel

To show all labels (in tag order) use:
show label

(The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.)

21.21 Logscale

Log scaling may be set on the x, y, and z axes.
Syntax:
set logscale <axes> <base>

set nologscale <axes>
show logscale

where <axes> may be any combinations of x, y, and z, in any order, and where <base> is the base of
the log scaling. If <base> is not given, then 10 is assumed. If <axes> is not given then all three axes are

assumed. The command set logscale turns on log scaling on the specified axes, while set nologscale
turns off log scaling.

Examples:

To enable log scaling in both x and z axes:
set logscale xz

To enable scaling log base 2 of the y axis:
set logscale y 2

To disable z axis log scaling:

set nologscale z

21.22 Mapping

Syntax:
set mapping { cartesian | spherical | cylindrical }

Data for splots are usually in regular Euclidean space and are provided in Cartesian coordinates. Such
3-d data require three coordinates (x, y and z) or one coordinate (only z) in each line in the data file.
In order to be able to use spherical or cylindrical coordinate systems, use the set mapping command.
In both cases two coordinates are expected in each line of the data. For a spherical coordinate system.
these are theta and phi (in units as specified by set angles) and the mapping is:

GNUPLOT 3.5 27

x = cos(theta) * cos(phi)
y = sin(theta) #* cos(phi)
z = sin{ phi)

For a cylindrical coordinate system, the mapping uses two variables, theta (in units as specified by set
angles) and z:

x = cos(theta)
y = sin(theta)
z =z

Again, note that mapping will affect data file splots only.

21.23 Offsets

The amount of the graph that the plot takes up may be controlled to some extent with the set offsets
command. This command takes four offset arguments: <left>, <right>, <top> afid <bottom>. By
default, each offset is 0. Each offset may be a constant or an expression. Left and right offsets are given
in units of the x axis, while top and bottom offsets are given in units of the y axis. The plot of sin(x),
displayed with offsets of 0, 0, 2. 2 will take up 1/3 of the displayed y axis. Offsets are particularly useful
with polar coordinates as a means of compensating for aspect ratio distortion. Offsets are ignored in
splots.

Syntax:

set offsets <left>, <right>, <top>, <bottom>
show offsets

21.24 Output

By default, plots are displayed to the standard output. The set output command redirects the display
to the specified file or device.

Syvntax:

set output {"<filename>"}
show output ’

The filename must be enclosed in quotes. If the filename is omitted, output will be sent to the standard
output.

On machines with popen functions (UNIX), output can be piped through a shell command if the first
letter of the filename is °|’. For instance,

Syntax:

set output "|lpr ~Plaser filename"
set output "|lp -dlaser filename”

(On MSDOS machines, set output “prn” will direct the output to the default printer.)

21.25 Parametric

The set parametric command changes the meaning of plot (splot) from normal functions to parametric
functions. The command set noparametric changes the plotting style back to normal, single-valued
expression plotting.

GNUPLOT 3.5 28

In 2-d plotting. a parametric function is determined by a pair of parametric functions operating on a
parameter. An example of a 2-d parametric function would be plot sin(t),cos(t) (which defines a circle).

For 3-d plotting. the surface is described as x=f(u,v), y=g(u,v), z=h(u,v). Therefore a triplet of functions
are required. An example of 3-d parametric function would be cos(u)*cos(v),cos(u)*sin(v),sin(u) (which
defines a sphere). It takes three parametric function specifications in terms of the parametric dummy
arguments to describe a single graph.

The total set of possible plots is a superset of the simple f(x) style plots, since the two (three) functions can
describe the x and y (and z) values to be computed separately. In fact, plots of the type t,f(t) (u.v,f(u,v))
are equivalent to those produced with f(x) when the x values are computed using the identity function
as the first function.

Note that the order the parametric functions are specified is xfunction, yfunction (and zfunction) and
that each operates over the common parametric domain.

Also, the set parametric function implies a new range of values. Whereas the normal f(x) and f(x,y)
style plotting assume an xrange and yrange (and zrange), the parametric mode additionally specifies a
trange, urange, and vrange. These ranges may be set directly with set trange, set urange and set
vrange, or by specifying the range on the plot or splot commands. Currently the default range for
these parametric variables is [-3:5]. Setting the ranges to something more meaningful is expected.

21.26 Polar

The set polar command changes the meaning of the plot from rectangular coordinates to polar coor-
dinates. In polar coordinates, the dummy variable (x) is an angle. The range of this angle is changed
from whatever it was to [0:2*pi], or, if degree unit has been selected, to [0:360] (see set angles).

The command set nopolar changes the meaning of the plot back to the default rectangular coordinate
system. The range of x is changed from whatever it was to [-10:10].

The set polar command is not supported for splots. See the set mapping command for similar
functionality for splots.

While in polar coordinates the meaning of an expression in x is really r = f(x), where x is an angle
of rotation. The xrange controls the domain (the angle) of the function, and the yrange controls the
range (the radius). The plot is plotted in a rectangular box, and the x and v axes are both in units
of the radius. Thus. the yrange controls both dimensions of the plot output. The tics and units are
written along the axes rather than at the left and bottom. These unit are offset by <rmin> specified
by the rrange (See set rrange). It is not possible to specify different output dimensions in the x
or y directions. The yrange can be used to shift the plot diagonally to display only the first or third
quadrants.

Syntax:
set polar
set nopolar
show polar
Example:

set polar
plot x*sin(x)
plot [-2#pi:2*pil [-3:3] x*sin(x)

The first plot uses the default polar angular domain of 0 to 2*pi. The radius (and the size of the plot)
is scaled automatically. The second plot expands the domain, and restricts the range of the radius (and
the size of the plot) to {-3:3].

GNUPLOT 3.5) 29

21.27 Rrange

The set rrange command sets the radial range used to compute x and y values when in polar mode.
If not in polar mode (see set polar) then this range is not used. Use of this command offsets the polar
singularity to the <rmin> value and shifts the units on the axes tic marks. For instance, set rrange
(-40:40] would set the origin to -40 and would plot values of radial values between -40 to 40. Thus, if
360 degrees of data were plotted, then the plot would extend 80 units in radially from the origin. To
view the entire plot, a set yrange [-80:80] command would create a square viewport with a circular
plot tangent at the axes. Because xrange is used specify the angular extent, only a square viewport
can be specified by yrange. For instance, set yrange [0:80] would display the first quadrant and set
yrange [-80:0] would display the third quadrant. Any square viewport of any size can be specified but
it is constrained to be centered on a 45 degree line.

This range may also be specified on the plot command line when in polar mode.

Syntax:
set rrange [{<min> : <rmax>}]

where <rmin> and <rmax> terms are constants or expressions.

Both the <rmin> and <rmax> terms are optional. Anything omitted will not be changed, so
set rrange [:10]

changes rmax to 10 without affecting rmin.

21.28 Samples

The sampling rate of functions may be changed by the set samples command. By default, sampling is
set to 100 points. A higher sampling rate will produce more accurate plots, but will take longer. This
parameter no longer has any effect on data-file plotting.

Syntax:

set samples <samples_1> {,<samples_2>}
show samples

When a 2-d plot is being done, only the value of <samples_1> is relevant.

When a surface plot is being done without the removal of hidden lines, the value of samples specifies the
number of samples that are evaluated per iso line. Each iso-v line will have <sample_.1> samples and
each iso-u line will have <sample 2> samples. If you only specify <samples_1>, <samples_2> will be
set to the same value as <samples_1>. See also set isosamples.

21.29 Size

The set size command scales the displayed size of the plot. On some terminals, changing the size of
the plot will result in text being misplaced. Increasing the size of the plot may produce strange results.
Decreasing is safer.

Syntax:

set size {<xscale>,<yscale>}
show size

GNUPLOT 3.5 30

The <xscale> and <yscale> values are thé scaling factors for the size. The defaults (1,1) are selected
if the scaling factors are omitted.

Examples:

To set the size to normal size use:
set size
To make the plot half size use:
set size 0.5,0.5
To make a landscape plot have a 1:1 aspect ratio in polar mode use:
set size 0.721,1.0
To show the size use:
show size

For the LaTeX and Fig terminals the default size (scale factor 1,1) is 5 inches wide by 3 inches high.
The big Fig terminal (bfig) is 7 inches wide by 5 inches high. The postscript default is landscape mode
10 inches wide and 7 inches high. Note that the size of the plot includes the space used by the labels;
the plotting area itself is smaller.

21.30 Style

Plots may be displayed in one of eight styles: lines, points, linespoints, impulses, dots, steps,
errorbars, boxes. or boxerrorbars. The lines style connects adjacent points with lines. The points
style displays a small symbol at each point. The linespoints style does both lines and points. The
impulses style displays a vertical line from the x axis (or from the grid base for splot) to each point.
The dots style plots a tiny dot at each point; this is useful for scatter plots with many points.

The errorbars style is only relevant to 2-d data file plotting. It is treated like points for splots and
function plots. For data plots, errorbars is like points, except that a vertical error bar is also drawn:
for each point (x,y), a line is drawn from (x,ylow) to (x,yhigh). A tic mark is placed at the ends of the
error bar. The ylow and yhigh values are read from the data file’s columns, as specified with the using
option to plot. See plot errorbars for more information.

The boxes style is only relevant to 2-d plotting. It draws a box centred about the given x coordinate
from the vaxis to the given y coordinate. The width of the box is obtained in one of three ways. If a
data file has a ﬁfth column, this will be used to set the width of the box. Othermse if a width has

R o binRbbe et Ochernise ths width, fezdl buap iy

cw Cevir e e i: rm T
< BRPRISCEEA Lx‘wr‘.a 9 \‘.\’"z SENTLT

oLt sl L. ; el

1 =

uso avatiable and = 2nly zelevand o _-‘ late £ plotting 1ids SIvie 1S 2 COMMNIJALIOR uf [d2 UGXes ~2v
errorbairs styies.) ‘

The steps style is cnly relevant 1o 2-d plotting.. '{'his style copnects-consecusive peints with two line
segments: she first from (xl yij to (x2.x}). and the second from (12 ¥i) to- (x2,52).

Default styles are chosen with the set fugetion style and. set da;a.st;:{e qumands S. ploe style
for information about how to override the defauls: p[otﬁng style for individual‘functions.

<yatax.

33% function style <3ftviss
+% data styie <sfyle>:
- Imactiol GTFES., |

PP BN 982

2 g t"?‘M‘J’)A‘i”&\! e -

GNUPLOT 3.5 31
wheté <styié>'—1; Iine '"pouts liﬁé-si)'(.)ints;.i.rnpulsés, 'dét—s;—;i;‘é;s,‘ .éri'ax:ﬁa;s_,.klaéies, or boxer-
rorbars.

21.31 Surface

set surface controls the display of surfaces. It is useful if contours are to be displayed by themselves.
Whenever set nosurface is issued, no surface isolines/mesh will be drawn. See also set contour.

Syntax:

set surface
set nosurface
show surface

21.32 Terminal

GNUPLOT supports many different graphics devices. Use the set terminal command to select the
type of device for which GNUPLOT will produce output.

Syntax:

set terminal {<terminal-type>}
show terminal

If <terminal-type> is omitted, GNUPLOT will list the available terminal types. <terminal-type> may
be abbreviated.

-

Use set output to redirect this output to a file or device.

Several terminals have additional options. For example, see dumb, iris¢d, hpljii or postscript.

21.32.1 Aifm

Several options may be set in the Adobe Illustrator 3.0 driver. -

Syntax:

set terminal aifm {<color>}
{"<fontname>"} {<fontsize>}

Selecting default sets all options to their default values. <color> is either color or monochrome.
" <fontname>” is the name of a valid PostScript font. <fontsize> is the size of the font in PostScript
points, before scaling by the set size command. Defaults are monochrome. “Helvetica”, and 14pt.

Also. since Al does not really support multiple pages, multiple graphs will be output directly on one
another. However, each graph will be grouped individually, making it easy to separate them inside Al
(just pick them up and move them).

Examples:

set term aifm

set term aifm 22

set size 0.7,1.4

set term aifm color "Times~Roman" 14

AN rRam
NPT IR T I N W O/l CE A oo r e
AR e VRELE CERGRNTY T

AAJCORL WNAN

GNUPLOT 3.5 32

21.32.2 Atari ST

The atari terminal has an option to set the character size and the screen colors. The driver expects
a space separated list the char size and maximal 16 3 digit hex numbers where each digit represents
RED, GREEN and BLUE (in that order). The range of 0-15 is scaled to whatever color range the screen
actually has. On a normal ST screen, odd and even intensities are the same.

Examples:

set terminal atari 4 # (use small (6x6) font)

set terminal atari 6 0 # (set monochrome screen to white on black)

set terminal atari 13 0 fff £00 £0 £ ff £0f ££0

(set first eight colors to black, white, green, blue, cyan, \
purple, and yellow and use large fomt (8x16).)

Additionally, if an environment variable GNUCOLORS exists, its contents are interpreted as an options
string, but an explicit terminal option takes precedence.

21.32.3 Dumb

The dumb terminal driver has an optional size specification.

Syntax:
set terminal dumb {<xsize> <ysize>}

where <xsize> and <ysize> set the size of the dumb terminals. Default is 79 by 24.

Examples:

set term dumb
set term dumb 79 49 # VGA screen—-why would anyone want to do that?

21.32.4 Epson

This set of drivers support Epson printers and derivatives. See also the NEC driver. epson is a generic
9 wire printer with a resolution of 512x384. starc is a Star Color printer with the same resolution.
epson180 and epson60 are 180 dpi and 60 dpi drivers for newer 24 wire printers. This also includes
bubble jet printers. Their resolutions are 1260x1080 and 480x360, respectively. The tandy60 is identical
to the epson60 driver with one additional escape sequence to start IBM mode. With all of these drivers,
a binary copy is required on a PC to print. Do not use print.

copy file /b 1lpti:

21.32.5 Gpic

This driver is only known to work the Free Software Foundation gpic/groff package. Modification for the
Document Workbench pic/troff package would be appreciated. FSF gpic can also produce TeX output.

A simple graph can be formatted using
groff -p -mpic -Tps file.pic > file.ps.

The output from pic can be pipe-lined into eqn, so it is possible to put complex functions in a graph
with the set label and set {x/y}label commands. For instance,

GNUPLOT 3.5 33

set ylab ’@space 0 int from O to x alpha (t) roman d t@’
Will label the y-axis with a nice integral if formatted with the command:

gpic filename.pic | geqn -d@Q@ -Tps | groff -m[macro-package] —Tps
> filename.ps

Figures made this way can be scaled to fit into 2 document. The pic language is easy to understand,
so the graphs can be edited by hand if need be. All coordinates in the pic-file produced by gnuplot are
given as x+gnuplotx and y+gnuploty. By default x and y are given the value 0 If this line is removed
with an editor in a number of files one can put several graphs i one figure like this (default size is 5.0x3.0
inches)

.PS 8.0

x=0;y=3

copy "tfiga.pic"
x=5;y=3

copy "figb.pic"
x=0;y=0

copy "figc.pic"
x=5;y=0

copy "figd.pic"
.PE

This will produce an 8 inches wide figure with four graphs in two rows on top of each other

One can also achieve the same thing by the command
set term pic x y

For example, using

.P5 6.0
copy "trig.pic®
.PE

21.32.6 Hpljii

The HP LaserJet II and HP DeskJet drivers have a single option.
Syntax:

set terminal hpljii {<resolution>}
set terminal hpdj {<resolution>}

where <resolution> is the resolution of the output in dots per inch. It must be 75, 100, 150 or 300.
Note: there must be enough memory available to rasterize at the higher resolutions.

Example:

set terminal hpljii 150

7 T 7

H T Neit) 3 N ey =
! P N ey * (R N e

E el "y Ae T pe :\73:{(‘%’{ - &

GNUPLOT 3.5 34

21.32.7 Latex
The LaTeX and EMTeX driver allows one to specify a font type and a font size for the labels around a
gnuplot graph.

Options are: Fonts:

default (Roman 10 point)
courier
roman

at any size you specify. (BEWARE METAFONT will not like odd sizes.) eg.
gnuplot> set term latex courier §

Unless your driver is capable of building fonts at any size (e.g. dvips), stick to the standard 10, 11 and
12 point size.

21.32.8 Iris4d

The iris4d driver can operate in two modes.

Syntax:
set terminal irisé4d {24}

If the hardware supports only 8 bits, use the default set terminal iris4d. If, however, the hardware
supports 24 bits (8 per red/green/blue), use set terminal irisdd 24.

When using 24-bit mode, the colors can be directly specified via the file .gnuplot_iris4d that is searched
in the current directory and then in the home directory specified by the HOME environment variable.
This file holds RGB values for the background, border, labels and nine plotting colors, in that order.
For example, here is a file containing the default colors:

85 85 85 /* Back Ground */
] 0] /* Boundary */

170 0 170 /* Labeling */

85 255 255 /* Plot Colox 1 */
170 0 0 /* Plot Color 2 */
0 170 0 /* Plot Color 3 */
255 85 255 /* Plot Color 4 */
255 255 8§ /* Plot Color 5 */
255 85 85 /* Plot Color 6 */
85 255 85 /* Plot Coloxr 7 */
0 170 170 /* Plot Color 8 */
170 170 0 /* Plot Color 9 */

This file has exactly 12 lines of RGB triples. No empty lines are allowed and anything after the third
number in line is ignored.

21.32.9 Mf

The mf terminal driver creates a input file to the MetaFont program. Thus a figure may be used in the
TeX document in the same way as a character is.

GNUPLOT 3.5 35

To use the plot in a document the MetaFont program must be run with the output file from GnuPlot as
input. Thus, the user needs a basic knowledge of the font creating process and inclusion of a new font
in a document. However. if the Metafont program is set up properly at the local site an unexperienced
user could perform the operation without much trouble.

The text support is based on a MetaFont character set. Currently the Computer Modern Roman font
set is input but the user are in principal free to chose whatever fonts he/she needs. The MetaFont source
files for the chosen font must be available. Each character is stored in a separate picture variable in
MetaFont. These variables may be manipulated (rotated, scaled etc.) when characters are needed. The
drawback is the interpretation time in the MetaFont program. On some machines (i.e. PC) the limited
amount of memory available may also cause problem if too many pictures are stored.

Metafont Instructions - Set your terminal to metafont:
set terminal mf

- Select an output-file, e.g.:
set output "myfigures.mf"

- Do your plots. Each plot will generate a separate character. Its default size will be 5*3 inches. You
can change the size by saying set size 0.5,0.5 or whatever fraction of the default size you want to have.

- Quit gnuplot.

- Generate a tfm- and gf-file by running metafont on the output of gnuplot. Since the plot is quite large
(3*3 in), you will have to use a version of metafont that has a value of at least 150000 for memmax. On
Unix-systems these are conventionally installed under the name bigmf. For the following assume that
the command virmf stands for a big version of metafont. For example:

- Invoke metafont:
virmf ’&plain’
- Select the output device: At the metafont prompt (**’) type:
\mode:=CanonCX; % or whatever printer you use
- Optionally select a magnification:
mag:=1; % or whatever you wish
- Input the gnuplot-file:
input myfigures.mf
On a typical Unix machine there will usually be a script called mf that executes virmf ’&plain’, so you
probably can substitute mf for virmf &plain. This will generate two files: mfput.tfm and mfput.SSSgf
(where $SS indicates the resolution of your device). The above can be conveniently achieved by typing

everything on the command line. e.g.: virmf *&plain’ "\mode:=CanonCX; mag:=1; input myfigures.mf’
In this case the output files will be named myfigures.tfm and myfigures.300gf.

- Generate a pk-file from the gf-file using gftopk:

gftopk myfigures.300gf myfigures.300pk

GNUPLOT 3.5 36

The name of the output-file for gftopk depends on the dvi-driver you use. Ask your local TeX-
administrator about the naming conventions. Next, either install the tfm- and pk-files in the appro-
priate directories. or set your environment-variables properly. Usually this involves setting TEXFONTS
to include the current directory and do the same thing for the environment-variable that your dvi-driver
uses (no standard name here...). This step is necessary so that TeX will find the font-metric file and
your dvi-driver will find the pk-file.

- To include your plots in your document you have to tell TeX the font:
\font\gnufigs=myfigures

Each plot you made is stored in a single character. The first plot is character 0, the second is character
1, and so on... After doing the above step you can use the plots just like any other characters. Therefore,
to place plots 1 and 2 centered in your document, all you have to do is:

\centerline{\gnufigs\char0}
\centerline{\gnufigs\chari}

in plain TeX. For LaTeX you can, of course, use the picture environment and place the plot according
to your wishes using the \makebox and \put macros.

It saves you a lot of time, once you have generated the font, since TeX handles the plots as characters
and uses minimal time to place them. Also the documents you make change more often, than the plots
do. Also it saves a lot of TeX-memory. One last advantage of using the metafont-driver is that the
dvi-file really remains device independent, because no \special-commands are used as in the eepic- and
tpic-drivers.

21.32.10 Mif

Several options may be set in the MIF 3.00 driver.

Syntax:
set terminal mif {<pentype>} {<curvetype>} {<help>}
<pentype> selects “colour™ of the graphics.

‘celoux plot lines with line types >= 0 in colour (MIF sep. 2-7).
‘monochrome‘ plot all line types in black (MIF sep. 0).

<curvetype> selects how “curves” are plotted.

‘polyline® plot curves as continuous curves.
‘vectors* plot curves as collections of vectors

<help> print online help on standard error output.

‘help® print a short description of the usage, and the options
‘¢ print a short description of the usage

This terminal driver produces Frame Maker MIF format version 3.00. It plots in MIF Frames with the
size 15*10 [cm]. and plot primitives with the same pen will be grouped in the same MIF group. Plot
primitives in a gnuplot plot will be plotted in a MIF Frame, and several MIF Frames are collected in one
large MIF Frame. Plot primitives with line types >= 0 will as default be drawn in colour. As default
curves are plotted as continuous lines. The MIF font used for text is “Times”.

Examples:

GNUPLOT 3.5 37

set term mif
set term mif vectors
set term mif help

21.32.11 Nec-cp6b

One option may be set in the nec-cp6 driver. The resolution of this driver is 400x320.

Syntax:

set terminal nec-cp6 monochrome
set terminal nec-cp6 color
set terminal nec-cp6 draft

21.32.12 Pbm

Several options may be set in the PBMplus driver.

Syntax:
set terminal pbm {<fontsize>} {<colormode>}

where <fontsize> is small, medium, or large and <colormode> is monochrome, gray or color.
Default size is 640 pixels wide and 480 pixels high. The output for monochrome is a portable bitmap
(one bit per pixel). The output for gray is a portable graymap (three bits per pixel). The output for
color is a portable pixmap (color, four bits per pixel). The output of these drivers can be used with
Jef Poskanzer’s excellent PBMPLUS package which provides programs to convert the above PBMPLUS
formats to GIF, TIFF, MacPaint, Macintosh PICT, PCX, X11 bitmap and many others.

Examples:

set term pbm small
set size 2,2
set term pbm color medium

21.32.13 Pcls

Three options may be set in the pcld driver. The driver actually uses HPGL-2 but there is a name
conflict among the terminal devices.

Syntax:
set terminal pclS {<mode>} {} {<fontsize>}

where <mode> is landscape. or portrait, is stick, univers, or cg-times, and fontsize is the
size in points.

set terminal pcl5 landscape

21.32.14 Postscript

Several options may be set in the PostScript driver.

Syntax:

set terminal postscript {<mode>} {<color>} {<dashed>}
{"<fontname>"} {<fontsize>}

JURE Y e — e
PN AN,

N -2),

R A

GNUPLOT 3.5 38

where <mode> is landscape, portrait, eps or default. Selecting default sets all options to their de-
faults. <color> is either color or monochrome. <dashed> is either solid or dashed. ” <fontname>"
is the name of a valid PostScript font. <fontsize> is the size of the font in PostScript points. Defaults are
landscape, monochrome, dashed, “Helvetica”, and 14pt. Default size of PostScript plot is landscape
mode 10 inches wide and 7 inches high.

To get EPS output, use the eps mode and make only one plot per file. In eps mode the whole plot is
halved in size; the fonts are half the given size, and the plot is 5 inches wide and 3.5 inches high.

Examples:

set term postscript default # old postscript
set term postscript landscape 22 # old psbig

set term postscript eps 14 # old epsfi

set term postscript eps 22 # old epsf2 -

set size 0.7,1.4

set term post portrait color "Times-Roman" 14

21.32.15 Regis
The regis terminal device has the option of using 4 or 16 colors. The default is 4. For example:

set term regis 16

21.32.16 Table

Instead of producing a picture, term type table prints out the evaluation results in a multicolumn ASCII
table of X Y Z values. For those times when you really want to see the numbers, now you can see them
on the screen or save to a file.

21.32.17 Windows

Three options may be set in the windows driver.

Syntax:
set terminal windows {<color>} {"<fontname>"} {<fontsize>}

<color> is either color or monochrome. ”<fontname>” is the name of a valid Windows font.
<fontsize> is the size of the font in points.

Graph-menu The gnuplot graph window has the following options on a pop up menu accessed by
pressing the right mouse button or selecting Options from the system menu:

Bring to Top when checked brings the graph window to the top after every plot.

Color when checked enables color linestyles. When unchecked it forces monochrome linestyles.
Copy to Clipboard copies a bitmap and a Metafile picture.

Background... sets the window background color.

Choose Font... selects the font used in the graphics window.

Line Styles... allows customization of the line colors and styles.

Print... prints the graphics windows using a Windows printer driver and allows selection of the printer
and scaling of the output. The output produced by Print is not as good as that from gnuplot’s own
printer drivers.

GNUPLOT 3.5 39

Update wgnuplot.ini saves the current window locations, window sizes, text window font, text window
font size, graph window font, graph window font size, background color and linestyles to the initialisation
file WGNUPLOT.INL

Printing In order of preference, graphs may be be printed in the following ways.

1. Use the gnuplot command set terminal to select a printer and set output to redirect output to a
file. .

2. Select the Print... command from the gnuplot graph window. An extra command screendump
does this from the text window.

3. If set output “PRN™ is used, output will go to a temporary file. When you exit from gnuplot
or when you change the output with another set output command, a dialog box will appear for you
to select a printer port. If you choose OK, the output will be printed on the selected port, passing
unmodified through the print manager. It is possible to accidently (or deliberately) send printer output
meant for one printer to an incompatible printer.

Text-menu The gnuplot text window has the following options on a pop up menu accessed by
pressing the right mouse button or selecting Options from the system menu:

Copy to Clipboard copies marked text to the clipboard.
Paste copies text from the clipboard as if typed by the user.
Choose Font... selects the font used in the text window.

System Colors when selected makes the text window honor the System Colors set using the Control
Panel. When unselected. text is black or blue on a white background.

Update wgnuplot.ini saves the current text window location, text window size, text window font and
text window font size to the initialisation file WGNUPLOT.INL

MENU BAR

If the menu fle WGNUPLOT.MNU is found in the same directory as WGNUPLOT.EXE, then the
menu specified in WGNUPLOT.MNU will be loaded.

Menu commands are:

{Menu] Start a new menu with the name on the following line
[EndMenu] End current menu.

- Insert a horizontal menu separator

[Insert a vertical menu separator

[Button] Put next macro on a push button instead of a menu.

Macros take two lines with the macro name (menu entry) on the first line and the macro on the second
line. Leading spaces are ignored.

Macros commands are:

[zInpPUT] Input string with prompt terminated by [E0S] or {ENTER}
(EOS] End 0f String terminmator. Generates no output.
(oPEN] Get name of file to open from list box, with title of

1ist box terminated by [EO0S], followed by default
filename terminated by [E0S] or {ENTER}
This uses COMMDLG.DLL from Windows 3.1.

[SAVE] Get name of file to save. Similar to [OPEN]

Macros character substitutions are:

P S CRC o

P

R A M oo, R e IR T
RIS T T A T &y, e

- PN Z S5 A A S P T =
. i QRN R T TR 7
EREPECR N 7875 X GO e A - *.f‘i';/‘ﬁeﬂi‘\ ~ e - KL

GNUPLOT 3.5 40

{ENTER} Carriage Return ’\r’
{TAB} Tab ’\011°

{EscC} Escape ’\033’

{-a} ’\001’

{r ’\031’

Macros are limited to 236 characters after expansion.

Wgnuplot.ini Windows gnuplot will read some of its options from the [WGNUPLOT] section of
WGNUPLOT.INI in the Windows directory. An example WGNUPLOT.INI file is shown below.

[WGNUPLOT]
TextOrigin=0 O
TextSize=640 150
TextFont=Terminal,9
GraphOrigin=0 150
GraphSize=640 330
GraphFont=Arial, 10
GraphColor=1

GraphToTop=1
GraphBackground=265 255 255
Border=0 0 0 0 0

Axis=192 192 192 2 2
Linei=0 0 255
Line2=0 255 0
Line3=255 0 0
Line4=255 0 25
Line5=0 0 128

00
01
02
5§03
04

The GraphFont entry specifies the font name and size in points. The 5 numbers given in the Border,
Axis and Line entries are the Red intensity (0-233), Green intensity, Blue intensity, Color Linestyle
and Mono Linestyle. Linestyles are 0=SOLID, 1=DASH, 2=DOT, 3=DASHDOT, 4=DASHDOT-
DOT. In the example WGNUPLOT.INI file above, Line 2 is a green solid line in color mode, or a
dashed line in monochrome mode. The default line width is 1 pixel. If Linestyle is negative it specifies
the width of a SOLID line in pixels. Linel and any linestyle used with the points style must be SOLID
with unit width.

Windows3.0 Windows 3.1 is preferred, but WGNUPLOT will run under Windows 3.0 with the fol-
lowing restrictions:

1. COMMDLG.DLL and SHELL.DLL (available with Windows 3.1 or Borland C++ 3.1) must be in
the windows directory.

2. WGNUPLOT.HLP produced by Borland C++ 3.1 is in Windows 3.1 format. You need to use the
WINHELP.EXE supplied with Borland C++ 3.1.

3. It won't run in real mode due to lack of memory.
4. Truetype fonts are not available in the graph window.

5. Drag-drop does not work.

21.833 Tics

By default. tics are drawn inwards from the border on all four sides. The set tics command can be used
to change the tics to be drawn outwards on the left and bottom borders only. This is useful when doing

GNUPLOT 3.5 41

impulse plots.
Syntax:

set tics {<direction>}
show tics

where <direction> may be in or out. set tics defaults to in.

See also the set xtics, set ytics, and set ztics command for more control of tic marks. Using splot,
in 3-d plots, one can adjust the relative height of the vertical (Z) axis using set ticslevel. The numeric
argument provided specifies the location of the bottom of the scale. a zero will put it on the bottom
grid and any positive number somewhere along the z axis.

Syntax:

set ticslevel {<level>}
show tics

where <level> is a non negative numeric argument. For example,
sat ticslevel 0.5

sets the tics level to the default value.

See also the set view.

21.34 Time

The optional set time places the time and date of the plot either at the top or bottom of the left margin.
The exact location is device dependent.
Syntax:

set time {<xoff>}{,<yoff>}

set notime
show time

Specifying constants <xoff> or <yoff> as optional offsets for the time will move the time <xoff> or
<yoff> character screen coordinates. For example,

set time ,-3

will change only the y offset of the time, moving the title down by roughly the height of three characters.

21.35 Title

The set title command produces a plot title that is centered at the top of the plot. Using the optional
.y screen offsets, the title can be placed anywhere on the plot. set title with no parameters clears the
title.

Syntax:

set title {"<title-text>"} {<xoff>}{,<yoff>}
show title

g%
P
R

SO—

GNUPLOT 3.5 42

Specifying constants <xoff> or <yoff> as optional offsets for the title will move the title <xoff> or
<yoff> character screen coordinates. Note these are screen coordinates and not plot coordinates. For
example,

set title ,-1

will change only the y offset of the title, moving the title down by roughly the height of one character.
(The EEPIC, Imagen, LaTeX. and TPIC drivers allow \\ in a string to specify a newline.)

21.36 Trange

The set trange command sets the parametric range used to compute x and y values when in parametric

mode. If not in parametric mode (see set parametric) then this range is not used. This command
does not affect x/y autoscaling or x/y ranges.

This range may also be specified on the plot command line when in parametric mode.

Syntax:
set trange [{<tmin> : <tmax>}]

where <tmin> and <tmax> terms are constants or expressions.

Both the <tmin> and <tmax> terms are optional. Anything omitted will not be changed, so
set trange [:10]

changes tmax to 10 without affecting tmin. See also set urange and set parametric.

21.37 Urange
The set urange and set vrange commands sets the parametric ranges used to compute X, ¥, and z

values when in splot parametric mode. If not in parametric mode (see set parametric) then these
ranges are not used. This command does not affect x/y autoscaling or x/y ranges.

This range may also be specified on the splot command line when in parametric mode. See plot for
more information

Syntax:
set urange [{<umin> : <umax>}]

where <umin> and <umax>> terms are constants or expressions.

Both the <umin> and <umax> terms are optional. Anything omitted will not be changed, so
set urange [:10]

changes umax to 10 without affecting umin. See also set trange.

21.38 Variables

The show variables command lists all user-defined variables and their values.

Syntax:

show variables

GNUPLOT 3.5 43

21.39 View

The set view command sets the view point for splots. This command controls the way the 3-d
coordinates of the plot are mapped into the 2-d screen space. This command provides controls to both
rotation and scaling of the plotted data but supports orthographic projections only.

Syntax:

set view <rot_x> {,{<rot_z>}{,{<scale>}{,<scale_z>}}}
show view

where <rot_x> and <rot.z> control the rotation angles (in degrees) along a virtual 3-d coordinate
system aligned with the screen such that the screen horizontal axis is x, screen vertical axis is y, and
the axis perpendicular to the screen is z. <rot.x> is bounded to the [0:180] range with a default of 60
degrees, while <rot.z> is bounded to the [0:360] range with-a default of 30 degrees. <scale> controls
the scaling of the entire splot, while <scale_z> scales the z axis only. Both scales default to 1.0.

Examples:

set view 60, 30, 1, 1
set view ,,0.5

The first sets all the four default values. The second changes only scale, to 0.5.

See also set ticslevel.

21.40 'Vrange

The set vrange command is similar to the set urange command. Please see set urange.

21.41 Xlabel

The set xlabel command sets the x-axis label that is centered along the x axis. Using the optional x,¥
screen offsets, the label can be placed anywhere on the plot. set xlabel with no parameters clears the
label.

Syntax:

set xlabel {"<label>"} {<xoff>}{,<yofi>}
show xlabel

Specifying constants <xoff> or <yoff> as optional offsets for the label will move the label <xoff> or
<yoff> character screen coordinates. For example,

set xlabel -1
will change only the x offset of the xlabel, moving the label roughly one character width to the left.
(The EEPIC. Imagen. LaTeX. and TPIC drivers allow \\ in a string to specify a newline.)
21.42 Xrange

The set xrange command sets the horizontal range that will be displayed. This command turns x axis
autoscaling off.

This range may also be specified on the plot command line.

Syntax:

e -

GNUPLOT 3.5 44

set xrange [{<xmin> : <xmax>}]

where <xmin> and <xmax> terms are constants or expressions.

Both the <xmin> and <xmax> terms are optional. Anything omitted will not be changed, so
set xrange [:10]

changes xmax to 10 without affecting xmin.

21.43 Xtics

Fine control of the x axis tic marks is possible with the set xtics command. The x-axis tic marks may
be turned off with the set noxtics command. They may be turned on (the default state) with set
xtics. ’

Syntax:

set xtics { {<start>, <incr>{, <end>}} |

{({"<label>"} <pos> {, {"<label>"} <pos>}...)} }
set noxtics
show xtics

The <start>, <iner>. <end> form specifies that a series of tics will be plotted on the x axis between
the x values <start> and <end> with an increment of <incr>. If <end> is not given it is assumed to
be infinity. The increment may be negative. For example,

set xtics 0,.5,10

makes tics at 0, 0.3, 1, 1.3, ..., 9.3, 10.

The (" <label>" <pos>, ...} form allows arbitrary tic positions or non-numeric tic labels. A set of tics
are a set of positions. each with its own optional label. Note that the label is a string enclosed by quotes,
and may be a constant string, such as “hello”, or contain formatting information for the tic number
(which is the same as the position), such as ”%3f clients”. See set format for more information about
this case. The label may even be empty. Examples:

set xtics ("low" O, "medium" 50, "high" 100)
set xtics (1,2,4,8,16,32,64,128,256,512,1024)
set xtics (“bottom" 0, ™" 10, "top" 20)

Tics will only be plotted when in range.

The set ytics and set noytics commands work identically. See also the set format command.

21.44 Xdtics

The set xdtics commands converts the x axis tic marks to days of the week where 0=Sun and 6=Sat.
Overflows are converted modulo 7 to dates.

Examples:
set xdtics

Sets x axis tics in days.

The set ydtics set zdtics and set noydtics set nozdtics commands work identically. See also the
set format command.

GNUPLOT 3.5 45

21.45 Xmtics

The set xmtics commands converts the x axis tic marks to months of the years where 1=Jan and
12=Dec. Overflows are converted modulo 12 to months.

Examples:
set xmtics

Sets x axis tics into months.

The set ymtics set zmtics and set noymtics set nozmtics commands work identically. See also the
set format command.

21.46 Xzeroaxis

set xzeroaxis draws the x-axis. By default, this option is on. set noxzeroaxis causes GNUPLOT to
omit the x-axis.

Syntax:

set xzeroaxis
set noxzeroaxis
show xzeroaxis

21.47 Ylabel

The set ylabel command sets the y-axis label. The position of this label depends on the terminal, and
can be one of the following three positions (the position can be adjusted with optional parameters).

1. Horizontal text flushed left at the top left of the plot. Terminals that cannot rotate text will probably
use this method.

2. Vertical text centered vertically at the left of the plot. Terminals that can rotate text will probably
use this method.

3. Horizontal text centered vertically at the left of the plot. The EEPIC, LaTeX and TPIC drivers use
this method. The user must insert line breaks using \\ to prevent the ylabel from overwriting the plot.
To produce a vertical row of characters, add \\ between every printing character (but this is ugly).

Syntax:

set ylabel {"<label>"} {<xoff>}{,<yoff>}
show ylabel

With no parameters. the label is cleared. Specifying constants <xoff> or <yoff> as optional offsets for
the label will move the label <xoff> or <yoff> character screen coordinates. For example,

set ylabel ~1

will change only the x offset of the ylabel, moving the label roughly one character width left of its default
position. This is especially useful with the LaTeX driver.

(The EEPIC. Imagen. LaTeX, and TPIC drivers allow \\ in a string to specify a newline.)

21.48 Yrange

The set yrange command sets the vertical range that will be displayed. This command turns y axis
autoscaling off.

GNUPLOT 3.5 46

This range may also be specified on the plot command line.

Syntax:
set yrange [{<ymin> : <ymax>1}]

where <ymin> and <ymax> terms are constants or expressions.

Both the <ymin> and <ymax> terms are optional. Anything omitted will not be changed, so
set yrange [:10]

changes ymax to 10 without affecting ymin.

21.49 Ytics

The set ytics and set noytics commands are similar to the set xtics and set noxtics commands.
Please see set xtics.

21.50 Ydtics

The set ydtics and set noydtics commands are similar to the set xdtics and set noxdtics commands.
Please see set xdtics.

21.51 Ymtics

The set ymtics and set noymtics commands are similar to the set xmtics and set noxmtics com-
mands. Please see set xmitics.

21.52 Yzeroaxis

set yzeroaxis draws the y-axis. By default, this option is on. set noyzeroaxis causes GNUPLOT to
omit the y-axis.

Syntax:
set yzeroaxis
set noyzeroaxis
show yzeroaxis
21.53 Zero

The zero value is the default threshold for values approaching 0.0. GNUPLOT will not plot a point if
its imaginary part is greater in magnitude than the zero threshold. Axis ranges cannot be less than
zero. The default zero value is 1e-8. This can be changed with the set zero command.

Svntax:

set zero <expression>
show zero

GNUPLOT 3.5 47

21.54 Zeroaxis

set zeroaxis draws the x-axis and y-axis. By default, this option is on. set nozeroaxis causes
GNUPLOT to omit the axes, and is equivalent to set noxzeroaxis; set noyzeroaxis.

Svntax:

set zeroaxis
set nozeroaxis
show zeroaxis

See set xzeroaxis and set yzeroaxis.

21.55 Zlabel

The set zlabel command sets the z-axis label that is centered along the z axis. Using the optional x,y
screen offsets, the label can be placed anywhere on the plot. set zlabel with no parameters clears the
label.

Syntax:

set zlabel {"<label>"} {<xoff>}{,<yoff>}
show zlabel

Specifying constants <xoff> or <yoff> as optional offsets for the label will move the label <xoff> or
<yoff> character screen coordinates. For example,

set zlabel ,1 <

will change only the y offset of the zlabel, moving the label roughly one character height up.
The zlabel will be drawn whenever surfaces or contours are plotted, in the space above the grid level.
(The EEPIC. Imagen, LaTeX, and TPIC drivers allow \\ in a string to specify a newline.)

21.56 Zrange

The set zrange command sets the vertical range that will be displayed. This command turns z axis
autoscaling off. The zrange is used only by splot and is ignored by plot.

This range may also be specified on the splot command line.

Syntax:
set zrange [{<zmin> : <zmax>}]

where <zmin> and <zmax> terms are constants or expressions.

Both the <zmin> and <zmax> terms are optional. Anything omitted will not be changed, so
set zrange [2:]

changes zmin to 2 without affecting zmax.

21.57 Ztics

The set ztics and set noztics commands are similar to the set xtics and set noxtics commands.
Please see set xtics.

GNUPLOT 3.5 48

21.58 Zdtics

The set zdtics and set nozdtics commands are similar to the set xdtics and set noxdtics commands.
Please see set xdtics.

21.59 Zmtics

The set zmtics and set nozmtics commands are similar to the set xmtics and set noxmtics com-
mands. Please see set xmtics.

22 Shell

The shell command spawns an interactive shell. To return to GNUPLOT, type logout if using VMS,
exit or the END-OF-FILE character if using Unix, endcli if using AmigaDOS, or exit if using MS-DOS
or 0S/2.

A single shell command may be spawned by preceding it with the ! character (8 if using VMS) at the
beginning of a command line. Control will return immediately to GNUPLOT after this command is
executed. For example, in VMS, AmigaDOS, MS-DOS or 0S/2,

! dir

prints a directory listing and then returns to GNUPLOT.

On an Atari, the ! command first checks whether a shell is already loaded and uses it, if available. This
is practical if GNUPLOT is run from gulam, for example.

23 Splot

Three-dimensional surface and contour plotting is available in GNUPLOT with the splot command.
See the plot command for features common to the plot command.

See also set contour, set cntrparam, and set surface.

23.1 Binary Data

Gnuplot will dynamically determine if a datafile is ASCII or binary. ASCII data files are discussed in
the plot section. For three dimensions, single precision floats are stored as follows:

<ncols> <x0> <xi> <x2> ...
<y0> <z0,0> <z0,1> <z0,2> ..
<y1> <z1,0> <z21,1> <z1,2> ...

which is converted into triplet:

<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>

<x1> <y0> <z1,0>
<x1> <y1> <z1,1>
<x1> <y2> <z1,2>

GNUPLOT 3.5 49

These triplets are then converted into gnuplot iso.curves and then uses gnuplot to do the rest of the
plotting.

A collection of matrix and vector manipulation routines (in C) are provided in gnubin.c. The routine
to write binary data is

int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)

An example of using these routines is provided in the file bf_test.c. The corresponding demo file is
demo/binary.dem.

24 Start-up

When GNUPLOT is run, it looks for an initialization file to load. This file is called .gnuplot on Unix
and AmigaDOS systems, and GNUPLOT.INI on other systems. If this file is not found in the current
directory, the program will look for it in the home directory (under AmigaDOS, AtariTOS, MS-DOS
and 0S/2, the environment variable GNUPLOT should contain the name of this directory). Note: if
NOCWDRC is defined during the installation, GNUPLOT will not read from the current directory.

If this file is found, GNUPLOT executes the commands in this file. This is most useful for setting the
terminal type and defining any functions or variables that are used often.

25 Substitution

Command-line substitution is specified by a system command enclosed in backquotes. This command. -
is spawned and the output it produces replaces the name of the command (and backquotes) on the
command line.

Newlines in the output produced by the spawned command are replaced with blanks.
Command-line substitution can be used anywhere on the GNUPLOT command line.
Example:

This will run the program leastsq and replace leastsq (including backquotes) on the command line
with its output:

£(x) = ‘leastsq‘
or, in VMS
£(x) = ‘run leastsqf

26 User-defined

New user-defined variables and functions of one through five variables may be declared and used any-
where.

User-defined function syntax:
<function-name> (<dummyi> {,<dummy2> {, ...} }) = <expression>

where <expression> is defined in terms of <dummy1> through <dummy5>.

User-defined variable syntax:

,,,,,,

GNUPLOT 3.5 30

<variable-name> = <constant-expression>
Examples:

w 2

q = floor(tan(pi/2 - 0.1))

£(x) = sin(a*x)

sinc(x) = sin(pi*x)}/(pi*x)
delta(t) = (t == 0)

ramp(t) = (£t >0) 7t : 0
min(a,b) = (a<b) 2 a:b
comb{n,k) = n!/(k!*(n~-k)!)
len3d(x,y,z) = sqrt(x*x+y*y+z*z)

Note that the variable pi is already defined.

See show functions and show variables.

27 Bugs

The bessel functions do not work for complex arguments.
The gamma function does not work for complex arguments.

There is a bug in the stdio library for old Sun operating systems (SunOS Sys4-3.2). The "%g” format
for 'printf” sometimes incorrectly prints numbers (e.g., 200000.0 as “2”). Thus, tic mark labels may be
incorrect on a Sund version of GNUPLOT. A work-around is to rescale the data or use the set format
command to change the tic mark format to ”%7.0f” or some other appropriate format. This appears to
have been fixed in SunOS 4.0.

Another bug: On a Sun3 under SunOS 4.0, and on Sun4’s under Sys4-3.2 and SunOS 4.0, the ’sscanf’
routine incorrectly parses “00 12” with the format ” %f %f” and reads 0 and 0 instead of 0 and 12. This
affects data input. If the data file contains x coordinates that are zero but are specified like '00’, *000°,
etc, then you will read the wrong y values. Check any data files or upgrade the SunOS. It appears to
have been fixed in SunOS 4.1.1.

Microsoft C 5.1 has a nasty bug associated with the %g format for printf. When any of the formats
"%.2g7, " %.1g”, " %.0g". " %.g" are used, printf will incorrectly print numbers in the range le-4 to le-1.
Numbers that should be printed in the %e format are incorrectly printed in the %f format, with the
wrong number of zeros after the decimal point.

To work around this problem, use the %e or %f formats explicitly.

GNUPLOT. when compiled with Microsoft C, did not work correctly on two VGA displays that were
tested. The CGA. EGA and VGA drivers should probably be rewritten to use the Microsoft C graphics
library. GNUPLOT compiled with Borland C++ uses the Turbo C graphics drivers and does work
correctly with VGA displays.

VAX/VMS 4.7 C compiler release 2.4 also has a poorly implemented %g format for printf. The numbers
are printed numerically correct. but may not be in the requested format. The K&R second edition says
that for the %g format. %e is used if the exponent is less than -4 or greater than or equal to the precision.
The VAX uses %e format if the exponent is less than -1. The VAX appears to take no notice of the
precision when deciding whether to use %e or %f for numbers less than 1. To work around this problem.
use the %e or %f formats explicitly. From the VAX C 2.4 release notes: ¢,E,f.F,g,G Result will aiways
contain a decimal point. For g and G, trailing zeros will not be removed from the result.

VAX/VMS 5.2 C compiler release 3.0 has a slightly better implemented %g format than release 2.4. but
not much. Trailing decimal points are now removed, but trailing zeros are still not removed from %g
numbers in exponential format.

GNUPLOT 3.5 51

ULTRIX X11R3 has a bug that causes the X11 driver to display “every other” plot. The bug seems
to be fixed in DEC’s release of X11R4 so newer releases of ULTRIX don’t seem to have the problem.
Solutions for older sites include upgrading the X11 libraries (from DEC or direct from MIT) or defining
ULTRIX.KLUDGE when compiling the x11.trm file. Note that the kludge is not an ideal fix, however.

The constant HUGE was incorrectly defined in the NeXT OS 2.0 operating system. HUGE should be
set to 1e38 in plot.h. This error has been corrected in the 2.1 version of NeXT OS.

Some older models of HP plotters do not have a page eject command 'PG’. The current HPGL driver
uses this command in HPGL_reset. This may need to be removed for these plotters. The current PCL5
driver uses HPGL/2 for text as well as graphics. This should be modified to use scalable PCL fonts.

On the Atari version, it is not possible to send output directly to the printer (using /dev/Ip as output
file), since CRs are added to LFs in binary output. As a workaround write the output to a file and copy
it to the printer afterwards using a shell command.

Please report any bugs to bug-gnuplot@dartmouth.edu.

oy
s
K f"’v

