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ABSTRACT

Here we discuss an improved Corcos (Corcos (1963), (1963)) style cross spectral density utilizing zero
pressure gradient, supersonic (Beresh et. al. (2013)) data sets.  Using the connection between narrow

band measurements with broadband cross-spectral density, ie.

1“(5,77,(0):¢(a))A(%§)B(%)exp(—i %5) we focus on estimating coherence expressions of the

form: A(%)and B(%) where g, denotes the narrow band frequency, i.e. the band center

frequency value and & and m are sensors spacing in streamwise/longitudinal and cross-stream/lateral

directions, respectively. A methodology to estimate the parameters which retains the Corcos

exponential functional form, A(i—w) =exp(—k i—w) and B(TZJ—(O) =exp (K, YJ—CO) but identifies new

long

parameters (constants) consistent with the Beresh et. al. data sets is discussed. The Corcos result

SO g 19

requires that the data be properly explained by self-similar variable: The longitudinal

g

(streamwise) variable TR tends to provide a better data collapse, while, consistent with the literature the

lateral % is only successful for higher band center frequencies.



Assuming the similarity variables provide a useful description of the data, the longitudinal coherence
decay constant result using the Beresh et. al. data sets yields a value for the longitudinal constant
Kiong~0.36-0.28 that is approximately 3x larger than the “traditional” (low speed, large Reynolds number
and zero pressure gradient) of Kiong=0.11. We suggest that the most likely reason that the Beresh et. al.
data sets incur increased longitudinal decay which results in reduced coherence lengths is due to wall
shear induced compression causing an adverse pressure gradient. Focusing on the higher band center
frequency measurements where the frequency dependent similarity variables are applicable, the lateral or
transverse coherence decay constant ki=0.7 is consistent with the “traditional” (low speed, large
Reynolds number and zero pressure gradient). It should be noted, that the longitudinal/streamwise
coherence decay deviates from the value observed by other researchers while the lateral/ cross-stream
value is consistent has been observed by other researchers. We believe that while the measurements used
to obtain new decay constant estimates are from internal wind tunnel tests, they likely provide a useful
estimate expected reentry flow behavior and are therefore recommended for use. These data could also
be useful in determining the uncertainty of correlation length for a uncertainty quantification (UQ)

analysis.
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Boundary layer thickness
Cross-stream spacing coordinate
Spectral density

Phase function

Angular frequency

Frequency spectral density
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Temporal spacing coordinate
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Subscripts/Superscripts

c

int
lat
long
max
min
nb
pp

Convection, center band
Integral

Lateral (cross-stream)
Longitudinal (streamwise)
Maximum

Minimum

Narrow band

Pressure fluctuation
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INTRODUCTION

The cross-spectral density associated with wall pressure fluctuations due to turbulent boundary layer flow
is an essential component of an integrated fluid-structural modeling approach (Elishakoff (1983), Durant
and Robert (1999), Tang et. al. (1995)) A very well known (used for at least 40 years) and often utilized
model is that suggested by Corcos (Corcos (1963), (1963), Singer (1996)) which models the spectral

density as the separable product of less complex functions as:

& wn .08
I'é,n,o)=A — Bl — [exp(—1— 1
(Gono) = 25 o 2 Jop (i) <)
Here, A(%gj and B(%) are real valued functions while exp(—i %5) provides the phase behavior for

the signal.  Theory based arguments and measurements suggest that useful approximations to the

D5 ool k(25
A(U j~e)<p( I(Iong(u )j

/NN k(%1
21 on{ 1,2

Since these expressions represent the magnitude associated with the decomposed/separable spectral

components of equation (1) are:

()

density, they can be referred to as coherence models (Singer (1996), Viazzo et. al. (2001)).

The functional form associated with equation (1) and the closure hypotheses in equation (2) remains open

to interpretation and/or improvement, e.g. Singer (1996). Of even greater concern is that regardless of the

o5

functional behavior chosen the use of the self-similar independent variable IR and Undoes not always,

in particular for low frequency, provide a correct explanation of the data (Elishakoff (1983), Lowson
(1967), Bull (1967)). This issue is discussed subsequently. While these expressions do have limitations,
they nonetheless, provide a plausible and useful estimate for the cross-spectral density. We therefore will
focus on the use of these expressions as a part of our fluid structural model and focus on identifying

appropriate decay constants that better represent the flow of interest.

A large family of classical measurements (supported by more recent LES and DNS simulations) ( Bull
(1967), Elishakoff (1983), Viazzo et. al. (2001), Durant and Robert (1999), Lowson (1967), Wilmarth and

11



Yang (1970)) demonstrate that for low speed zero pressure gradient flows indicate that appropriate decay

constants for the longitudinal and lateral coherences are:

) ~exp| — k(25 ~
A(U j~exp( kIong(U )] kIong 0.1

w w
B(Unj ~ exp(_ kIat (Uﬂ)j I(Iat ~ 07

@)

While these decay constant estimates of the coherence tend to be useful for the fundamental
incompressible flat plate problem, they are nonetheless implicitly functions of a range of parameters such
as Mach number, Reynolds number and flow pressure gradient. Hence, while direct application of low
speed flat plate may be a useful starting point there is value in assessing decay constant behavior for flows

more closely associated with the problem of interest.

Let’s examine the effect of deviations from the assumptions associated with the use of equation (1).
Requisite upon the use of equation (1) is that the spectral density/coherence can be represented in terms of
[l S—y
U

the self-similar variable: Based upon the connection between band limited correlation

and the coherence functions one notes that low frequency implies large correlation lengths must be

possible. As we shall see, for measurements where large correlation lengths are observed the data will be

adequately modeled even for a)_f <<1.

If one can accept the use of the similarity variables as appropriate (along with the variable separation and
the decay function) then one is effectively focused upon the behavior of the decay constants. Broadly, the

behavior of the streamwise decay constant Kiong is:

. Increase Reynolds number decrease Kiong

. Increase Mach number decrease Kiong

. Adverse pressure gradient increase Kiong

. Wall Roughness = increase Kiong

12



Decay constant size is merely a model for overall correlation length of an event, in this case a wall

pressure fluctuation realization. Obviously and increase in kiong implies a reduced correlation length. The

general behavior of the decay constant is specified in Tablel.

Table 1. Variation in coherence length and coherence decay constant due to flow physics.

Flow Effect Coherence Length | Decay constant; K,ng | Comment/Physics

Reynolds Increase Decrease Convective transport of event dominates

Number over diffusive behavior promoting
longer correlation length; (Viazzo et. al.
(2001))

Mach Number Increase Decrease Turbulent fluctuation, wall shear etc.
smaller for higher Mach number. Kiong
(Lowson (1967), Kistler and Chen
(1962), Kraichnan. )

Adverse Pressure | Decrease Increase Adverse pressure gradient disrupts

Gradient overall flow structure resulting in
reduced coherence length. (Zawadzki et.
al. (1996), Books and Hodgson (1981))

Surface Decrease Increase Roughness increases diffusive like

Roughness behavior; (Aupperle and Lambert

(1970), Blake (1986))

To estimate the magnitude of the cross-spectral density when we have assumed the Corcos separable form

and the similarity variable, we have two broad choices:

1. We can utilize the broadband Fourier transform pair that connect (measured) correlation functions
to the associated spectral density (see Bull (1967), Corcos (1963) and Blake (1983))

13




2. There is a direct connection between narrow band (band limited) correlation measurements and
the self-similar spectral densities (Smith and Lambert (1960), Wilmarth and Yang (1970), Bull
(1967), Bakewell (1962), Bakewell (1963), Bakewell (1968), Clinch (1969))

We consider the broadband method first. Since we have accepted the variable separation as appropriate
we concentrate on the longitudinal (streamwise) and lateral (transverse) correlations. The space time

correlation can be written as:

R, 7)o [T(€m,7)ep(ior)do (4)

With an analogous Fourier transform pair (Blake (1983), Singer (1996)). The use of the proportionality

12

implies that the transform pair definition includes the (27)* or (21) ™ term.

Let’s consider the longitudinal/streamwise and lateral components of the correlation separately. The

longitudinal/streamwise space time correlation is given as: R(£,0,7) oc jF(i,O,r) exp(ia)z')da) but

—00

using the Corcos expression: T'(&, @) = ¢(w) A(%g) exp (—i %98) becomes:

g

R(£,0,7) o j ) A(U) cos(wr — %5)(1(0 (5)

Notice that for zero time delay we can write: R(&) = R(£,0,0) o< Iqﬁ(w) A(%e&) cos(%ég)da).
0

This is the similarity approximation to the longitudinal correlation.  Obviously, with access to the

broadband streamwise correlation we can solve the integral equation posed by equation (4) to obtain

A(%g). The Lateral correlation follows in a similar manner where, using the Corcos closure, we find
that:
K ®
R(7) = R(0.7.0) = [ §()B(Ndoo (6)
0

which provides an estimate for coherence B(%) :

14



The longitudinal correlation/coherence has an additional useful approximate connection between the
autocorrelation and the streamwise correlation since Taylor’s hypothesis Bull (1967), Blake (1986)
suggests that streamwise space and time can be interchangeable as: &=Ut. This will mean that the auto-
correlation and longitudinal correlations will be effectively equivalent. Thus, from the auto-correlation

pair we can write:

#(o) o j R(E) cos( @ ]dé
@
R(&) o Z|)'¢5(a)) COS(%g]da)

At this point we immediately see that there is a contradiction since we have two expressions that we can

use to compute the streamwise correlation, i.e. the similarity model:

R(E) = R(£0.0) = j¢(w)A< %) cos( L) do ®

and the Taylor hypothesis pair expressions:

$(@) ocj R(E) cos( 5) E
©
R(&) o _([qﬁ(a)) cos(%gjdw

By inspection the similarity hypothesis can only be consistent with the Taylor’s hypothesis result for

A( 5) 1. Apparently, however, the two models are in good agreement even for deviations from

A( 9Z) 1 as shown by Corcos (1963), see figure 12.

The results in the discussion indicate that the broadband expressions provide a method to estimate the
. & wn .
coherence functions the 0 and B T ) The Beresh et. al. (2013) correlation measurements are

band limited (narrow band) and do not readily support the broadband expressions. Fortunately there is an

analogous theoretical framework that is applicable to the narrow band models. This approach to estimate

the A(%g) and B(%) self-similar coherence functions follows from a direct connection between the

self similar functions and the band limited correlation: Smith and Lambert (1960), Corcos (1962), Bull
(1963). By representing the kernel of the previous integral expression using a local (band limited)

procedure the associated expression simplify considerably. Since the data is available in this form, these

15



are the expression that we utilize to estimate parameter variation in the coherence models for the Beresh
et. al. (2013) data sets.

16



STREAMWISE/LONGITUDINAL BAND LIMITED CORRELATION AND
BROADBAND COHERENCE ANALYSIS A(Sw/U)

Following the derivation given in (Smith and Lambert (1960)) and (less obtainable references; reports by

(Corcos (1962) and Bull and Willis (1963)) provide a derivation of the longitudinal space-time bandwidth

limited correlation can be written as:

C(&,0, 1)
¢(f)

- A(%) cos(2z(fr + %)) (10)

R, 7, f)= cos(27r(fr+€))

= AQ2x %) cos(2z(fr + g))

o . CrEo ) S
Where we have immediately recognized that: W = A(27Z'U) which is the Corcos coherence
expression.  Depending on the frequency definition we often see the form:
', f
R,,(£,0, )= |(¢§(—f))|cos(27r( fr+ %)) . Here both “f” and o, are the center band frequencies

associated with narrow band measurement under consideration and 24 = w.

0'63f§)while

We note that Bull (1967) recommends: A(w&—t’g)zexp(—o.la)&—bé:)=exp(—0.l ¥

Bakewell (1964) uses A(%) ~exp(-0.7 g) for pipe flow, however, when we express this result in
07 f¢
27 U

associated with band limited models, however they are immediately applicable to broadband spectral

terms of angular frequency we have: A(a)&_bf) ~exp(— ) =exp (—O.lle”J—bé) Both results are

density computations as well.

If the narrow band formulation suggested is indeed an appropriate model for the Beresh data sets, then

. - ) f f :
when plotted in terms of self similar variable: Ug = (Ué)(g) the data sets should collapse to a single
: fmin + fmax
curve. Here, “f” is the centerband frequency: f =~ >

17
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Figure 1. Plot of longitudinal (streamwise) band limited correlation data by Beresh et. al. in terms of
variables. Black =0.41; Red =0.163; Green =0.655. Notice that first zero crossing (f&/U) =0.25 is
correctly recovered in these variables.

fe

As can be seen from Figure 1. the self-similar variables partially explain the data for (U) <1 but are

. f - )
less satisfactory for larger values of (Uf). Self similar models are most useful for small correlation

fe

length event. Clearly larger values of (—= imply greater correlation lengths between pressure

fixed
fluctuation events.  Though highly correlated events over long length scales are observed in some
streamwise turbulent flows as clearly demonstrated by Beresh et. al. (2013) a preponderance of events

occur over shorter scales which is reflected in Figure 1.

A useful way in which to estimate the Corcos style parameters, i.e. the coefficients in
A{Ug) ~ exp (— k,ong(U(’g)) is to provide a curvefit associated in the measured gvarlables which can

then be related to the self similar variables in a term-by-term manner. An expression of the form:

18



R = exp(—a{(g)o} (gj) cos([gj{(g)o} (gj) a

X\ . . . .
Where (g)0 is the first zero crossing and 0.5<a<0.7 (for the Beresh data sets) does a reasonable job in

explaining the data sets. The choice of the empirical model utilized (Rubinstein and He (2002)) (this is
no coincidence, of course) is consistent with our expression for the band limited correlation function.

Indeed if we write the band width limited correlation function as:

RE 1) =Ru(.0.0) = A 25 oo 25(E)) 12)
which is certainly equlvalent to:
R(— f) =R (x.0, f)= A(Z (E)(X)j008(2 (—)( )j (13)

Comparing equation (1) and (13) it is |mmed|ately apparent that:
fo,, x [, x. T x
cos| 2z (—)(=) [=cos(—| (—= —))or:
(20 | o070 | )
fo,, x X, | X fs. 1[,x, T
27r(— = — —)—>(—)=—|(= 14
( )() {(5)0} (5) (U) 4{(5)0} (14)
We estimate the same result for the other frequency bands in table 1.

Table 1: Comparison between measured streamwise dimensionless frequency band and theoretical (self-
similar assumption) (f&/U) suggesting self-similar model provides a useful model for
correlation/coherence behavior.

Dimensionless  center . X Theoretical Relative error (%)
Zero crossing (—),
band o dimensionless  center | |meas-theor|/meas.
fo band
(U) measurement
-1
X
4(=
Ry

0.041 6.0 [(4)(6)]'=0.042 3%
0.163 1.4 [(4)(1.3)]=0.178 9%
0.655 0.5 [(4)(0.5)]"=0.5 23%
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These results are certainly encouraging in that they suggest that the self similar variables support the data
sets as indicated by Figure 1. They also suggest that that the band limited expressions are providing a far

better description of the measurements as compared to the broadband method.

We can gain further confidence by examining other available data sets, for example, Bakewell (1964) and

Clinch (1969) both low speed data sets. Both researchers present the correlation model as:

R, f) = A{Z;r(%)) Cos(Zn(g)) (15)

3
o
readily compare values for the first zero crossing. Both Bakewell and Clinch show that the measured

value for the first zero crossing is (%)

They do not provide sufficient information to plot using the 2%(?)( ) variable. Nonetheless we can

= 0.25which is precisely consistent with our model since (Note

0
the location of the zero crossing in Figure 1):

21(0)

[ ,x. T x fo
U i :E{(E)O} (g)o —>(U)

_1
, 4 (16)

fe

Obviously their measurements also support the efficacy of the similarity variable U and the use of the

narrow band procedure.

This success suggests that we should be able to estimate the magnitude expression as well. Indeed, using

our previous result we have A(S)—XJ = A(Zﬂ(%)(ui)(g)J where we assume it takes the exponential

c

form estimated implying that: exp [— k,ong(laj—x)j = exp(— k,ong(%5)(ui)(§)} Notice that we have

C

. . . ) U
included the effect of the free stream to convective velocity ratio where (U—) ~1.0-1.7 We cannow

c

-1
equate this result to our empirical model exp(—o{(g)o} (gj) whereby:

20



0{(;)0 }
Kiong = 45—~ 17

2z (U)(LT)

2

As was done previously we can estimate the “kiny” constant in the Corcos result using Beresh’s

supersonic data. Here we include the effect of the convective velocity which varies as: (Ui) ~1-1.33.

c

Table 2. Estimate for self-similar amplitude function for longitudinal correlation/coherence using self
similar variables (f&/U) and exponential approximation: A=exp(-klongm&/U). klong estimate
(average=0.33-0.27) tends to be 3x traditional zero pressure value

Dimensionless  center | Zero x |t
band crossing W& - 0{(5)0}
t5 . Corcos style A=exp (— Kiong UJ  Kiong = — 5 U ,0=0.6
(U) measurement (E)O 27 (U)(Uc )
0.041 6.0 k=0.39-0.3 (U/U.=1-1.33)
0.163 14 k=0.42-0.31
0.655 0.5 k=0.29-0.22

Examination of these results suggest that they are three times as large other reported results where Kiong is
typically Kjong=0.11 results. To get a better sense of how these parameters represent the actual data we

plot the results against the data sets in Figure 2.

21




-0.5 1

-1

Figure 2. Plot for longitudinal (streamwise) data sets with band limited correlation in terms of variables.
Black (fd/U)=0.041, Red (f5/U)=0.163, Green (f5/U)=0.655. Function exp(-0.3(27)(f&/U) red line.

Obviously this discrepancy in kiong is concerning since we cannot determine if the Beresh data themselves
are the source or is there an issue with the reduction procedure. If we utilize our curve fit procedure we
see that the best fit from our empirical model for o was 0~0.6. Fortunately, the Bakewell (1964)

expression permit us to make a direct estimate for o. Bakewell represents the A function as
A(%) ~exp(-0.7 %) . So by equating exponential arguments we have:
fx x, T x
-0.7(—) =—a| (= - 19
) {(5)0} (5) (19)
Using (fo) =0.25 for (g) = (g)owe find that ¢, =0.7(0.25) =0.175. Using this value we can
0

estimate the “kjong” value in table 3

Table 3. Damping coefficient k values assessed using best fit for empirical parameter o from “typical”
low speed Bakewell data set. Notice that the average “k” value is near the literature 0.11 magnitude.

22



=)
Corcos style A=exp (— k a)_éj K=—-=——=0=0.175

fo, U
2z (U)(LTC)
k=0.11-0.087 (U/U.=1-1.33)
k=0.12-0.09
k=0.084-0.06

Clearly using o=0p.=0.175 yields k values that are much more consistent with typical (low speed, high

Reynolds number, zero pressure gradient) measurements.

To see that the chosen value for a is consistent with the Beresh data we present plots of the actual data

R = exp(—a{(g)o} (gj) cos([g]{(g)o} (gj) 20)

For both 0=0.6 (red) and 0=0.175 (green) for the three center band frequencies. Clearly, 0=0.6 and
k~0.37 fits the Beresh far better than 0=0.175 and k=0.1.

using

in Figures 3.-5.
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Figure 3. Longitudinal correlation model; (f5/U) measurement=0.041 (0.5-2 kHz), using equation (20)
0=0.6 (red) and 0=0.175 (green), (x/6)o=6
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Figure 4. Longitudinal correlation model; (f3/U) measurement=0.163 (2-8 kHz), using equation (20)
0=0.6 (red) and 0=0.175 (green), (x/6)0=1.4
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Figure 5. Longitudinal correlation model; (f5/U) measurement=0.655 (8-32 kHz), using equation (20)
0=0.6 (red) and 0=0.175 (green), (x/8)0=0.5

Following this discussion we conclude that the longitudinal data sets measured by Beresh et. al. (2013)
are moderately well explained by the narrow band models which provide direct access to the coherence
expression that compose the Corcos broadband spectral density functions. The decay coefficients
estimated for the longitudinal coherence are significantly larger, 2-3 times, than the “classical” large
Reynolds number, low Mach number, zero pressure gradient values in the literature. We suggest that a
possible reason for this behavior is a small adverse pressure gradient associated with compression shocks.
Unfortunately, theory-based models to estimate correlation based behavior are not readily available which

make a direct connection pressure correlation to flow field physical behavior difficult.
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LATERAL BAND LIMITED CORRELATION AND BROADBAND
COHERENCE ANALYSIS; B(nw/U

Here we provide estimates for the decay constant associated with the lateral narrow band correlation and
the associated broad band lateral coherence function B(%). Unlike the (narrow band) streamwise

correlation where a sinusoidal term is included, the lateral correlation is a strictly exponential decay type
expression. As such, matching data is relatively straightforward since the lateral (transverse) correlation
is traditionally modeled by an exponential decay term only. Assuming (and here this will NOT be a

good assumption for all frequency bands) that the transverse/lateral correlation can be represented in

terms of the similarity variable: m = ﬂ = (Ejlwe can write:
u U U)o
y f6y
R(=) =exp(—K,.| — |= 21
(5) X ( .a{ujé) (21)

Where (%)is represented by the frequency bands: 0.041, 0.0163 and 0.655 which follow from the

streamwise correlation/coherence discussion. Since there is no sinusoidal term and no zero crossing to
“anchor” a model, it makes most sense to simply plot the lateral correlation in terms of the similarity

variable and then asses a best fit for k.
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Figure 6. Plot for lateral (transverse) data sets W|th band limited correlation in terms of (fi/U)=(fy/U)
variables. Black (f6/U)=0.041, Red (f6/U)=0.163, Green (f5/U)=0.655. Function exp(-0.3(27)(f/U) red
line.

Examination of the figure suggest the use of the similarity variable ( )|s not justified for the lateral

correlation since the use of this independent variable fails to coalesce the Beresh measurements into a

fe

single curve as was accomplished for (—) in the streamwise problem. For an explanation of the
potential reason for this failure we note that low frequency band limited correlations are not well modeled

fe

via the use of the similarity variables (— Lowson (1967) indicates that (?) < 2.7 that the use of

the self-similar variable ( 5) IS not appropriate since a very large correlation length would be requisite.

*

Elishakoff suggest a similar bound in terms of displacement thickness as: (fui) <0.2 However
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fe

inspection of our data suggests the use of the (U) is useful for (%) =0.041for the streamwise

disturbances. This statement is consistent with the Beresh et. al. discussion where large coherent
streamwise structures are noted in their investigation. Since they do not identify equivalent structures in
the lateral direction, it is perhaps of little surprise that attempts to correlate lateral disturbances with

(%) are unsuccessful.

ESTIMATE FOR BROADBAND BEHAVIOR

While narrow band correlation data sets measured by Beresh et. al. were utilized to estimate the
: é:a)nb é:a)nb H :
coherence functions A(T)and B(T) we are actually more interested in these coherence

expressions in a broadband framework. The connection between coherence models is effectively trivial,

i.e.

ACT) 5 ACY)
77(0nb 7760 (22)
B(T) - B(U)
As discussed previously, we can directly compare the correlation closure expressions and their associated
decay constants to those utilized by other researchers, but in addition we can use the narrow band derived
coherence models within the broadband correlation definitions and compare directly to known broadband

correlation measurements. This type of comparison was performed by Bull (1967).

Focusing on the longitudinal broadband correlation we recall that via the transform pair and the Corcos

style spectral density we derived equation (8): R(&) = R(&,0,0) oc _[ ¢(a))A(%§) cos(%eg)da)and from
0
the Taylor hypothesis: R(&) oc J. (o) COS(%g]da). We emphasize that R(€) is the broadband spatial
0

correlation and is distinctly different than its narrow band counterpart.
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To compute a broadband correlation, we need, of course access to the frequency spectrum ¢(w). While
many semi-empirical models are available, see Hwang et. al. (2000) it is perhaps most appropriate to
utilize the dedicated frequency spectral density model suggested by DeChant and Smith (2013) which
takes the form:

_é 2 7r5§’a) _|a
®pp(@) = P! {(1+ ) + 52)° +hen 5, K"w)}
S . (23)
P a0 o
=g é) {(1+ ) (@2 + 52)° +pes( 5, K"w)}

where a, B, ko and 6, are constants discussed in the reference and are not notations used in this document.

Using the integral expressions in figure 7, we estimate the broadband longitudinal correlation R(&) using
the result obtained here: A(%) - A(i—a)) =exp (—O.Bi—w) and compare to the data set of Wilmarth
and Wooldridge (1962). In addition we compare with the more classical result:

A(i—a)) = exp(—O.lli—w) and Taylor hypothesis expression (effectively A(i—w) =1):
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Figure 7. Comparison between broadband longitudinal correlation R(/8) models using coherence A(C:
current model: exp(-0.3¢w/U) (red); classical model (black) and Taylor hypothesis model
A(EU/U)=1(blue) compared to the data set of Wilmarth and Wooldridge

Inspection of Figure 7. Suggests that while the classical model with a coherence decay constant 0.1
matches the correlation measurements of Wilmarth and Wooldridge (1962) “best” ; both the local

approximation with decay constant 0.3 and the Taylor hypothesis approximation are in reasonable

g

agreement as well. Therefore, the use of the dedicated model exp (—O.3Uw) for reentry applications is

recommended. We note that in a counter intuitive manner, that the larger decay constant associated with

g

exp(-0.3 Uw) yields a correlation that decays more slowly than the other models.

A useful (and perhaps surprising) result can be obtained by computing the formal integral lengths
associated with the broadband correlation functions computed previously. The integral length scale

follows as:

31



- [R()dé = j j [ H)ACE) cos( 2 derts (29

L.
Consider the longitudinal correlation lengths (';t associated with the coherence models:

Table 4. Longitudinal correlation length values based upon coherence models. Experimentally measure
length scale included for comparison.

Coherence Model L
o
o o 2.76
A(Z—) =exp(-0.3=—
( U ) = exp( U )
0] (0] 1.88
ACE2) = exp(-0.152)
U
1.35
A(f—w) =1
U
Palumbo (2012) 0.8-4.3
Beresh et. al. (2013) 0.5-6.0

CONCLUSIONS

The major task associated with the spatial correlation project is to compute an improved Corcos style

cross spectral density utilizing dedicated Beresh et. al. data sets. This effectively means estimating
: é:a)nb é:a)nb

coherence expressions of the form: A(T) and B(T). Here we have connected narrow band

measurements to the broadband cross-spectral density, ie.

I'é,n w)= ¢(a))A( )B( )exp( i @ ) A methodology to estimate the parameters which

retains the Corcos exponential functional form, A(i—w) :exp(—klong <0 “—) and B(n ) =exp(—k )

lat U
but identifies new parameters (constants) consistent with the Beresh et. al. (2013) data sets has been
discussed. The longitudinal result for the coherence decay constant using the Beresh data sets suggests a
value for the longitudinal constant kio,g~0.36-0.28 that is approximately 3x larger than the “traditional”

(low speed, large Reynolds number and zero pressure gradient) of kjng=0.11.
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Recalling that, broadly the behavior of the streamwise decay constant Ko is affected by:

. Increase Reynolds number decrease Kjong (Viazzo et. al. (2001))

decrease Kiong (Lowson (1967), Kistler and Chen (1962),

. Increase Mach number

Kraichnan. )

. Adverse pressure gradient
Hodgson (1981))
. Wall Roughness = increase Kiong (Aupperle and Lambert (1970), Blake (1986))

increase Kiong (Zawadzki et. al. (1996), Books and

We postulated that a possible reason that the Beresh data sets incur increased longitudinal decay, i.e.
reduced coherence lengths is due to wall shear induced compression causing an adverse pressure gradient.
The lateral or transverse coherence decay constant kj,~0.7 is consistent with the “traditional” (low speed,
large Reynolds number and zero pressure gradient). We believe that while the measurements used to
obtain new decay constant estimates are from internal wind tunnel tests and that they provide a useful

estimate expected reentry flow behavior and are therefore recommended for use.
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APPENDIX: CONNECTION BETWEEN BROADBAND AND NARROW

BAND CORRELATION AND SPECTRA

Let’s examine the band limited autocorrelation and auto spectrum (auto spectral density). Consider first

the definition for broadband autocorrelation as:

R,,(7) = lim,,, % [ PO p(t+)dt = (P p(t+ 7)) A1)

Notice that equation (1) is simply a time based average of signals over a long time period. If we assume

that signals are ergodic, then a correlation based on an ensemble average is equivalent. The spectral

density and the auto correlation are related through the transform pair as:

d(w) o< T R,,(7)cos(wr)dz
0 (A.2)

R,,(7) T¢(a)) cos(wr)dw
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Let’s now consider the effect where the signals are band limited over a Aw. Now, the raw input signal

has been filtered such that the output signal is:

p(t, Aw) o T p(w) cos(wt )H (w)dw (A.3)

Where H(w) is frequency response of the filter and is usually a Heaviside expression over
Aw Aw i . .
, Y <w<o, +T where o, is the centerband frequency of the filter. Using an ensemble

average motivation, we can write the band limited auto correlation as:

R(r,Aw) = < p(t, Aw)p(t+7, Aa))> = I¢(w) Cos(a)t)(H (w))?de (A.4)
0
The mean square amplitude of p(t,Am) can be written:

P2 (t,A0)| o [ fe)(H (@) do (a5)

But over a small frequency band we have:

P’ (t, Aw)| = p(0) Ao (A.6)
Thus, the full integral can be evaluated as:

R(r,Aw) = < p(t, Aw) p(t + 7, Aa))> = ¢(w)Awcos(wr —y(w)) (A7)
Where y(w) is the phase information for this signal.  Thus, by an appropriate definition for the

autocorrelation magnitude, we arrive at the connection auto correlation and frequency spectrum that does

not involve integration over all frequency space.
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