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Abstract

This report summarizes the work performed under the project “Statitically significant relational
data mining.” The goal of the project was to add more statistical rigor to the fairly ad hoc area
of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate
algorithm quality. We concetrated on algorithms for community detection, approximate pattern
matching, and graph similarity measures. Approximate pattern matching involves finding an in-
stance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with
uncertainty.

This report gathers the abstracts and references for the eight refereed publications that have
appeared as part of this work. We then archive three pieces of research that have not yet been
published. The first is theoretical and experimental evidence that a popular statistical measure for
comparison of community assignments favors over-resolved communities over approximations to
a ground truth. The second are statistically motivated methods for measuring the quality of an ap-
proximate match of a small pattern in a large graph. The third is a new probabilistic random graph
model. Statisticians favor these models for graph analysis. The new local structure graph model
overcomes some of the issues with popular models such as exponential random graph models and
latent variable models.
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Chapter 1

Introduction

Graphs are an abstract mathematical tool for representing relationships between pairs of objects.
They can be drawns with circles representing the objects and lines representing relationship, thus
allowing visual and intutive representations, at least on sufficiently small graphs. Frequently “big
data” applications involve relationship information that can be represented as a graph. These net-
works are so large that at the highest level, they look like a “hairball.” There are many applications
that can be framed as finding structures in a large, complex graph. A few examples from the liter-
ature include the structural connectivity of brain networks [123], [118]; the behaviors of dolphins
as a social network [82]; the international relations between countries based on attributes such as
alliances, commerce, conflict, and international institution membership [54], [8]; the spread of a
disease within a population [43]; the effect of disasters on fiber-optic networks [85]; the commu-
nications between a cell of a terrorist networks [115]; the reliability of sampled data on a protein-
protein interaction network [98]; and the inter-organizational network of collaborations between
rescue and relief organizations in response to the September 11, 2001 attack [116]. In bioinformat-
ics, comparative network analysis can provide new insights into biological systems [135, 126]. Ob-
serving how these graphs change over time can assist in identifying poor quality web searches [92],
detecting an intruder in a cyber warehouse [24], or monitoring network performance [25]. A more
recent application in the medical area is the suggestion that graphs developed from magnetic reso-
nance imaging might assist in learning assessment, the modeling disease progression, or to predict
the vulnerability of soldiers to post traumatic stress disorder [42, 69]. Two fields which have con-
tributed a considerable amount to the analysis of networks and creation of example datasets are
computer science and sociology with interest in understanding the connections within the internet
and the dynamics of social networks. The combination of recent advances in computational ability
which makes analysis of large networks possible and the emergence of large, freely-available, and
interesting networks, such as the Internet, Facebook, or the Wikipedia, which has brought networks
into more mainstream analysis for statisticians as well.

In many data mining applications, especially the search for “unexpected” or “significant” struc-
ture in graph-based social information, it is difficult to specify exactly what one is looking for. For
example, given a graph where nodes represent people and edges represent relationships between
people, there is general agreement that a community is a set of nodes more connected internally
than to the rest of the graph. But no formal graph theoretic definition of connectedness seems to
capture what a human perceives to be the correct communities in all cases. Most community de-
tection algorithms combine approximate optimization of a metric with ad hoc statistical methods.
To date there are no rigorous ways to determine whether an algorithm has succeeded in finding the
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“correct” answer in a real data set, or even in specially constructed benchmarks. Similar questions
arise in other graph-data-mining problems that search for specific patterns, or attempt to explain
(dynamic) relationships.

This report summarizes research from a Sandia National Laboratories Laboratory-Directed
Research and Development project entitled “Statistically significant relational data mining.” This
report contains details only for research that has not yet been published in a peer-reviewed venue.
Section 2 summarizes the published work from this project. Our goal was to develop statistically
rigorous methods for finding, understanding and testing the significance of graph properties and
structures. We focused primarily on two broad classes of problems in graphs: finding structure
within a single graph, such as finding communities, and comparing across graphs, such as finding
subgraphs and comparing pairs or sets of graphs.

Although we were open to any relevant technique, our goal was to apply Bayesian statistical
methods to graph analysis. At the highest level, Bayesian methods start with a prior distribution
that captures a prior domain knowledge and experience. For example, researchers such as Tanya
Berger-Wolf at the University of Illinois, Chicago conduct extensive field research on animal pop-
ulations such as zebras. Her research team has extensive knowledge about zebra behavior which
could and should be incorporated into a prior distribution for any Bayesian method to detect com-
munities in graphs of zebras. Researchers then must create plausible random graph models, which
describe ways a pattern of interest, such as a community might evolve from underlying distribu-
tions. Then researchers must find methods to compute conditional probabilities that characterize
the most likely solutions given the structure of the input instance. These allow computation of a
posterior distribution, which describes the likely patterns in a particular data set. This distribution
may not be in closed form, but generally there is a Monte-Carlo-based method to provably sample,
say, communities from the posterior distribution. Although the general methods are well known to
statisticians, they require customization to the structure of each problem.

Example: The Challenges of Community Detection Bayesian methods are particularly ap-
pealing in community detection. To motivate our work, we briefly describe Baysian methods, and
the difficulties of addressing graph data mining questions in the context of community detection
algorithms. Community detection algorithms accept a graph, which is a set of nodes (representing
objects such as people) and links (representing relationships between the objects). The simplest
community detection algorithm returns a partition of the nodes, where, as described above, each
node is in some sense more closely tied to its group than to the rest of the graph. Real communities
are hierarchical and overlapping. There are many recent papers that return communities with these
more complex properties. However, we took a step back, going back to a basic partition problem
to better address statistical foundations. Thus in our work for this project, our partitions associate
each node with its primary community.

The literature for community detection is vast, appearing in computer science, physics, statisti-
cal, and social research areas. There are hundreds (or more) papers that treat community detection
as an optimization problem, returning a graph that approximates an object objective such as con-
ductance or modularity.
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A problem with this optimization-based approach is, as mentioned above, there is no formal
graph theoretic definition of connectedness seems to capture what a human perceives to be the
correct communities in all cases. These objectives just represent plausible pressure. In a social
network, even if there exists a ground truth to relationships, we must observe them somehow. In
whatever interaction we use as a surrogate for the relationship, well likely miss some, from the
inherent randomness in some interactions and from errors and incompleteness in the observation
process.

Optimization-based algorithms that take topology and give communities implicitly assume
topology is fundamentally influenced by communities. Bayesian methods make that assumption
explicit. They start with a probability distribution that captures application-specific knowledge.
The prior is a distribution on the communities. These distributions encode how community proper-
ties influence connections and what we might observe to infer relationships. In the zebra example,
interactions depend upon gender and role in the herd. The Bayesian method is about transforming
a generic communities of a zebra herd to a probability distribution of specific communities for a
specific zebra herd. Given this distribution, we can make inferences, such as probability two nodes
are in the same community. Giving a distribution of likely communities is far more informative
and powerful than giving a point solution, which is what most community detection algorithms
give.

This report does not give details for results that appear in refereed literature. We have published
a paper [45] that gives a general Bayesian community detection methods. See Section 2 for an
abstract of this paper.

Theres still no rigorous, universally accepted notion of community quality/correctness. In
some cases, more notably in CS, people dont seem to care. Researchers attempting to parallelize
the CNM community detection algorithm were concerned only with speed up, even though paral-
lelization completely changed the communities. In our own attempts to parallelize our algorithm
from [45], we attempted to compare communities from the parallel version to the communities
from the serial version. The serial version had a provably correct method for generating commu-
nities from the posterier distribution. The parallel version only approximated that method. We
determined that the standard way to compare communities, which relies on comparing vertex sets
in the partition, has some important shortcomings. We briefly describe these issues in Section 3.

The other major graph data mining problem we consider is finding a pattern in a graph under
uncertainty, or approximately comparing graphs. Graph similarity has numerous applications in
multiple areas ranging from cyber security, understanding social networks, and predicting func-
tions of protein networks. The computer science literature usually considers such pattern matching
in the context of subgraph isomorphism. Given two (unlabeled) graphs, a small pattern graph P
and a larger graph G, map the nodes of P = (VP,EP) each to a unique node in G = (V,E) using a
function σ such that there is an (u,v) ∈ EP if and only if there is an edge (σ(u),σ(v) ∈ E). That
is, the edges of the induced graph in G exactly match the edges in the pattern P. Given uncer-
tainty in the observations represented in graph G, it may be useful to relax the strict requirements
of subgraph isomorphism. See Section 2 for paper that finds approximate matches according to a
rigorous computer science definition (number of errors/mismatches).
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The majority of our work in this area is developing candidate statistically-based methods for
finding approximate matches and giving some measure of the matching quality. Section 4 describes
two fundamentally different methods. The first is finds a beta distribution to measure the probabil-
ity of a match between a candidate and a pattern. It is statistically justified, but requires difficult
eliciation of information from experts. The second is more heuristic comparison of two graphs
or a single graph into a library of potentially similar graphs. This method, based on the method
of Macindoe and Richards [83] involves representing induced subgraphs as vectors of features,
clustering the set of vectors from a given graph, and computing a statistically-justified distance be-
tween these this cluster-based representation. This method has worked well in practice on a Sandia
application.

A final unpublished major contribution of this project is a new formal probabilistic random
graph model which has some nice statistical properties not present in other popular probabilistic
models such as expoential random graphs. We describe this in Section 5.

Definitions This section contains some basic definitions used later in the report.

A graph G = (V,E) is composed of vertices and edges. V is the set of vertices (also called
nodes) and E ∈V ×V is the set of edges of graph G. The order (or size) of a graph G is defined as
the number of vertices of G and it is represented as |V | and the number of edges as |E|.

If two vertices in G, say u,v ∈V , are connected by an edge e ∈ E, this is denoted by e = (u,v)
and the two vertices are said to be adjacent or neighbors. Edges are said to be undirected when they
have no direction, and a graph G containing only such types of graphs is considered undirected.
When all edges have directions and therefore (u,v) and (v,u) can be distinguished, the graph is
said to be directed. The term arc is commonly used when the graph is directed, and the term edge
is used when it is undirected. In addition, a directed graph G = (V,E) is considered complete when
there is always an edge between any two vertices u,u′ in the graph.

A subgraph H of a graph G is said to be induced if, for any pair of vertices u and v of H,(u,v)
is an edge of H if and only if (u,v)is an edge of G. In other words, H is an induced subgraph of G
if it has exactly the edges that appear in G over the same vertex set.

A clique in an undirected graph G = (V,E) is a subset of the vertex set C ⊆ V , such that for
every two vertices in C, there exists an edge connecting the two. If every two vertices in an induced
subgraph are connected, the subgraph induced by C is complete.

If u and v are vertices, the distance from u to v, written d(u,v), is the minimum length of any
path from u to v. The eccentricity, e(u), of the vertex u is the maximum value of d(u,v), where
v is allowed to range over all of the vertices of the graph. The radius of the graph G, rad(G),
is the minimum value of e(u), for any vertex u, and the diameter, diam(G), is the corresponding
maximum value.

A neighborhood of a vertex v ∈V is an induced subgraph of G consisting of all vertices reach-
able from v by paths of length ≤ n and all edges connecting those vertices.
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Chapter 2

Summary of Published Papers

This report is largely an archive of results supported by this LDRD that have not (yet) appeared.
Thus this report does not contain details of material published in archival refereed conferences and
journals. In this section, we include the abstract and references for each of these publications. In
computer science, refereed conferences can have impact equal to or higher than some journals.
Some of this work began under previous LDRD funding, but was finished and published under this
project.

Community Detection Papers

Journal Papers

Jonathan Berry, Bruce Hendrickson, Randall LaViolette, and Cynthia Phillips published the paper
“Tolerating the community detection resolution limit with edge weighting” in the journal Physical
Review E in May 2011 [11].

Abstract: Communities of vertices within a giant network such as the World-
Wide Web are likely to be vastly smaller than the network itself. However, Fortunato
and Barthélemy have proved that modularity maximization algorithms for community
detection may fail to resolve communities with fewer than

√
L/2 edges, where L is

the number of edges in the entire network. This resolution limit leads modularity
maximization algorithms to have notoriously poor accuracy on many real networks.

Fortunato and Barthélemy’s argument can be extended to networks with weighted
edges as well, and we derive this corollary argument. We conclude that weighted
modularity algorithms may fail to resolve communities with fewer than

√
Wε/2 total

edge weight, where W is the total edge weight in the network and ε is the maximum
weight of an inter-community edge. If ε is small, then small communities can be
resolved.

Given a weighted or unweighted network, we describe how to derive new edge
weights in order to achieve a low ε , we modify the “CNM” community detection
algorithm to maximize weighted modularity, and show that the resulting algorithm
has greatly improved accuracy. In experiments with an emerging community standard
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benchmark, we find that our simple CNM variant is competitive with the most accurate
community detection methods yet proposed.

Jiqiang Guo, Daniel Nordman, and Alyson Wilson published “Bayesian Nonparametric meth-
ods for community detection,” in the Journal Technometrics in November 2013 [45].

Abstract: We propose a series of Bayesian nonparametric statistical models for
community detection in graphs. We model the probability of the presence or absence
of edges within the graph. Using these models, we naturally incorporate uncertainty
and variability and take advantage of nonparametric techniques such as the Chinese
restaurant process and the Dirichlet process. Some of the contributions include: (1)
the community structure is directly modeled without specifying the number of com-
munities a priori; (2) the probabilities of edges within or between communities may
be modeled as varying by community or pairs of communities; (3) some nodes can be
classified as not belonging to any community; and (4) Bayesian model diagnostics are
used to compare models and help with appropriate model selection. We start by fitting
an initial model to a well-known network dataset, and we develop a series of increas-
ingly complex models. We propose Markov chain Monte Carlo (MCMC) algorithms
to carry out the estimation as well as an approach for community detection using the
posterior distributions under a decision theoretic framework. Bayesian nonparamet-
ric techniques allow us to estimate the number and structure of communities from the
data. To evaluate the proposed models for the example data set, we discuss model
comparison using the deviance information criterion (DIC) and model checking using
posterior predictive distributions. Supplementary materials are available online.

Matthew Rocklin and Ali Pinar published the paper “On Clustering on Graphs with Multiple
Edge Types” in the Journal Internet Mathematics [107]. In this paper “clustering” means the same
thing as community assignment, not a clustering of independent multi-dimensional vectors, typi-
cally addressed by methods such as k-means (see, for example, the scalable k-means++ algorithm
in [6]).

Abstract: We study clustering on graphs with multiple edge types. Our main mo-
tivation is that similarities between objects can be measured in many different metrics.
For instance similarity between two papers can be based on common authors, where
they are published, keyword similarity, citations, etc. As such, graphs with multi-
ple edges is a more accurate model to describe similarities between objects. Each
edge/metric provides only partial information about the data; recovering full infor-
mation requires aggregation of all the similarity metrics. Clustering becomes much
more challenging in this context, since in addition to the difficulties of the traditional
clustering problem, we have to deal with a space of clusterings. Reducing the multi-
dimensional space into a single dimension poses significant challenges. At the same
time, the multi-dimensional space can comprise latent structures, and searching this
multi-dimensional space can reveal important information about the graph. We gen-
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eralize the concept of clustering in single-edge graphs to multi-edged graphs and in-
vestigate problems such as: Can we find a clustering that remains good, even if we
change the relative weights of metrics? How can we describe the space of clusterings
efficiently? Can we find unexpected clusterings (a good clustering that is distant from
all given clusterings)? If given the ground-truth clustering, can we recover how the
weights for edge types were aggregated?

Refereed Conference Papers

Matthew Rocklin and Ali Pinar published a paper “Computing an Aggregate Edge-weight func-
tion for Clustering Graphs with Multiple Edge Types,” in the Proceedings of 7th Workshop on
Algorithms and Models for the Web Graph (WAW10) [108].

Abstract: We investigate the community detection problem on graphs in the exis-
tence of multiple edge types. Our main motivation is that similarity between objects
can be defined by many different metrics and aggregation of these metrics into a single
one poses several important challenges, such as recovering this aggregation function
from ground-truth, investigating the space of different clusterings, etc. In this paper,
we address how to find an aggregation function to generate a composite metric that
best resonates with the ground-truth. We describe two approaches: solving an inverse
problem where we try to find parameters that generate a graph whose clustering gives
the ground-truth clustering, and choosing parameters to maximize the quality of the
ground-truth clustering. We present experimental results on real and synthetic bench-
marks.

They extended this work in a paper “Latent Clustering on Graphs with Multiple Edge Types,”
in the same conference the next year: Proceedings 8th Workshop on Algorithms and Models for
the Web Graph (WAW11) [109].

Abstract: We study clustering on graphs with multiple edge types. Our main
motivation is that similarities between objects can be measured in many different met-
rics, and so allowing graphs with multivariate edges significantly increases model-
ing power. In this context the clustering problem becomes more challenging. Each
edge/metric provides only partial information about the data; recovering full informa-
tion requires aggregation of all the similarity metrics. We generalize the concept of
clustering in single-edge graphs to multi-edged graphs and discuss how this gener-
ates a space of clusterings. We describe a meta-clustering structure on this space and
propose methods to compactly represent the meta-clustering structure. Experimental
results on real and synthetic data are presented.

Jonathan Berry, Luke Fostvedt, Daniel Nordman, Cynthia Phillips, C. Seshadhri, and Alyson
Wilson published the paper “Why Do Simple Algorithms for Triangle Enumeration Work in the
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Real World?” at the Innovations in Theoretical Computer Science conference in 2014 (submitted
in 2013) [12]. This is a paper on a general graph algorithm (triangle enumeration). Triangles are a
key element of social networks and communities. The enumeration problem was motivated by the
Physical Review E paper described above.

Abstract: Triangle enumeration is a fundamental graph operation. Despite the
lack of provably efficient (linear, or slightly super-linear) worst-case algorithms for
this problem, practitioners run simple, efficient heuristics to find all triangles in graphs
with millions of vertices. How are these heuristics exploiting the structure of these
special graphs to provide major speedups in running time?

We study one of the most prevalent algorithms used by practitioners. A trivial
algorithm enumerates all paths of length 2, and checks if each such path is incident
to a triangle. A good heuristic is to enumerate only those paths of length 2 where
the middle vertex has the lowest degree. It is easily implemented and is empirically
known to give remarkable speedups over the trivial algorithm.

We study the behavior of this algorithm over graphs with heavy-tailed degree dis-
tributions, a defining feature of real-world graphs. The erased configuration model
(ECM) efficiently generates a graph with asymptotically (almost) any desired degree
sequence. We show that the expected running time of this algorithm over the dis-
tribution of graphs created by the ECM is controlled by the `4/3-norm of the degree
sequence. As a corollary of our main theorem, we prove expected linear-time per-
formance for degree sequences following a power law with exponent α ≥ 7/3, and
non-trivial speedup whenever α ∈ (2,3).

Approximate Pattern Matching in Graphs Papers

Claire C. Ralph, Vitus J. Leung, and William McLendon III, published a paper “Brief announce-
ment: subgraph isomorphism on a multithreaded shared memory architecture,” in the 24th ACM
Symposium on Parallelism in Algorithms and Architectures in 2012 [99]. These authors did con-
siderable work on approximate subgraph isomorphism, where matches are allowed to deviate in
an edge existence/non-existance in a small number of cases. This paper, however, considers par-
allel implemenation issues the classic exact subgraph isomorphism problem as a first step towards
finding better approximate subgraph isomorphism implementations.

Abstract: Graph algorithms tend to suffer poor performance due to the irregu-
larity of access patterns within general graph data structures, arising from poor data
locality, which translates to high memory latency. The result is that advances in high-
performance solutions for graph algorithms are most likely to come through advances
in both architectures and algorithms. Specialized MMT shared memory machines of-
fer a potentially transformative environment in which to approach the problem. Here,
we explore the challenges of implementing Subgraph Isomorphism (SI) algorithms
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based on the Ullmann and VF2 algorithms in the Cray XMT environment, where is-
sues of memory contention, scheduling, and compiler parallelizability must be opti-
mized.

Random Graph Model Papers

Jaideep Ray, Ali Pinar, and C. Seshadhri published the paper “Are we there yet? When to stop a
Markov chain while generating random graphs,” in the 9th Workshop on Algorithms and Models
for the Web Graph in 2012 [100].

Abstract: Markov chains are convenient means of generating realizations of net-
works with a given (joint or otherwise) degree distribution, since they simply require
a procedure for rewiring edges. The major challenge is to find the right number of
steps to run such a chain, so that we generate truly independent samples. Theoretical
bounds for mixing times of these Markov chains are too large to be practically useful.
Practitioners have no useful guide for choosing the length, and tend to pick numbers
fairly arbitrarily. We give a principled mathematical argument showing that it suffices
for the length to be proportional to the number of desired number of edges. We also
prescribe a method for choosing this proportionality constant. We run a series of ex-
periments showing that the distributions of common graph properties converge in this
time, providing empirical evidence for our claims.
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Chapter 3

Comparing Community Assignments

In this section, we explore scalability and resolution limits of information theoretic community
assignment comparisons methods. Comparing a community assignment to a ground truth is one
way to assess the quality of a community detection algorithm. However, the methods typically
used in the literature have some significant issues.

We explore the scalability of normalized mutual information in the context of comparing com-
munity detection algorithms on social networks. Dunbar’s social science theory bounds the size
of meaningful communities of people, yet social networks grow without bound. We analyze the
implications of these conditions and corroborate our results with experiments. The latter use the
LFR benchmark generator and the Louvain community detection algorithm.

Our work is not complete, but we give algebraic arguments that the ubiquitous normalized mu-
tual information (NMI) distance measure favors refinement (splitting the communities into smaller
pieces) over solutions found by the most popular algorithm. We have initial arguments that NMI
also favors refinement over small perturbations of community members. This problem also in-
creases with scale. We defer that discussion to a future research paper as they are not yet in a state
for public release.

3.1 Introduction

Community detection in networks is becoming a mature field in the sense that thousands of papers
on the subject have been published in the past decade. However, some of the most fundamental
questions still have not been answered in a compelling way. These range from the mere defini-
tion of “community” to the best algorithms to find communities in various contexts to the best
ways to compare community assignments. In this section, we work with an intuitive definition of
community (a tightly-connected subgraph), we generate community assignments using the well-
cited Louvain algorithm [18], and we focus on the issue of comparing two different community
assignments. We find that one of the most familiar and heavily used comparison methods has
fundamental problems when applied to synthetic data generated using realistic assumptions.

Dunbar’s classical thesis in social science is based on a careful study of primates’ social
groups. [26] He found evidence that social groups were defined by each member’s knowledge
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of the pairwise relationships of other members in the group. He used regression to relate the brain
sizes of various species of primates to observed group sizes and argued that the relationship was
causal and bounded by the quadratic knowledge requirement. Extrapolating his results to human
brain sizes, he arrived at what is colloquially known as the Dunbar number: an informal limit of
roughly 150 (with loose confidence bounds) for the sizes of meaningful human social groups.

We accept this number as reasonable and explore the consequences of such a limit on the com-
parison of two community assignments in social networks. In this paper, we restrict our attention to
the fundamental context of non-overlapping communities. Since our community sizes are bounded
by a constant, the number of communities grows without bound. We claim that methods for evalu-
ating community detection algorithms should scale. For the moment, we informally define this to
mean that they should provide similar qualitative information as the size of the network increases,
but community sizes remain Dunbar-constrained.

We show that according to NMI, a pathologically-refined community assignment “out-performs”
the most highly cited algorithm in the most important region of the study space: fuzzy commu-
nities that are hard to detect. It does this because NMI does not scale. We show below that as
the graph size increases, holding community sizes small, NMI judges the difference between the
pathological assignment and the ground truth to be smaller and smaller. This happens despite the
fact that the relative sizes of the communities in the two assignments remains the same.

It is not our goal in this paper to solve the problems that we expose. Our contribution is to
illustrate fundamental problems inherent in applying NMI to community comparison.

3.2 Background

The mutual information between two clusterings X and Y of a set of objects is defined as

I(X ,Y ) = ∑
i j

pi j(X ,Y ) log
pi j(X ,Y )

pi(X)p j(Y )
(3.1)

where pi is the likelihood that a randomly selected object is in partition xi ∈ X , p j is defined
similarly for Y , and pi j is likelihood that a randomly selected object is in both partition xi ∈ X and
y j ∈ Y .

Mutual information is typically normalized to constrain its value to [0,1]. There are various
similar ways to do this, but we follow [90] and others who normalize with:

NMI(X ,Y ) =
2I(X ,Y )

H(X)+H(Y )
(3.2)

where H(X) is the entropy of partitioning X

H(X) =−∑
i

pi(X) log pi(X). (3.3)
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The Modularity of a partitioning of the vertex set of a graph is a measure of the extent to which
the communities of the partitioning have more internal edges than would be expected under a null
model. [87] Its mathematical definition is not relevant to this paper, but it or its variants serve
as the objective function for many community detection algorithms. Community assignments of
maximum modularity are shown by [30] to suffer from a resolution limit. The communities of such
assignments have minimum size proportional to the square root of the total number of edges in the
network. One implication of this limit is that communities that are Dunbar-constrained would not
be resolved in a solution of maximum modularity.

The Louvain algorithm [18] attempts to deal with this problem by collapsing the graph into a
hierarchy of nested communities, letting the user select from a variety of resolution options. Its
kernel operation is to move a single vertex from its current community to join the community of
one of its neighbors. Although each move is designed to maximize the change in modularity, the
algorithm as a whole offers an informal way to address the resolution limit: simply look at the
various levels of the hierarchy and pick one that makes sense rather than one that maximizes the
global modularity. This algorithm is extremely popular in the literature and can be run efficiently
on very large graph instances. We choose it to represent community detection algorithms in our
study. However, note that our goal is not to praise or criticize it or any other algorithm.

We choose the LFR benchmark generator [72] since it is heavily used in the community detec-
tion literature. This generator accepts three fundamental parameters: α , the exponent for a power
law distribution of vertex degrees, β , the exponent for a power law distribution of community
sizes, and µ , a mixing parameter that decides how tightly connected the communities are. The
latter generally ranges from 0.1 (on average, 9 out of 10 connections per vertex are internal) to 0.7
(only 3 out of 10 are internal). There are other LFR parameters that bound the distributions. For
example, we specify a and a range of community sizes [10,15] for our experiments, keeping vertex
degree constant at 8.

3.3 Misleading information from NMI

Figure 3.1 shows a common idiom among community detection papers. The x-axis is the LFR
µ parameter. Moving from left to right, communities become fuzzier and harder to identify. The
y-axis is the NMI between the LFR ground truth community and the that found by an algorithm.
The four lines are meant to represent the solution qualities of various algorithms as communities
become fuzzier. Intuitively, higher on the y-axis is better. It has become common to judge one
algorithm as “better” than another if its performance line stays high farther to the right of the plot.
For example, in the figure, we would be tempted to declare the “CRP” algorithm the winner of
this comparison. After all, its NMI with the ground truth is roughly 0.8 at the LFR µ value of
0.6, which indicates quite fuzzy communities. The other algorithms can’t manage better than NMI
values of roughly 0.5 at that point.

However, this information can be quite misleading. Consider a trivial “algorithm” that simply
places each vertex alone in its own community. We will call that the singleton solution. Figure 3.2
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Figure 3.1. A typical plot comparing community detection algo-
rithms

includes the performance of this solution.

Figure 3.2. The singleton solution as an algorithm

Perhaps surprisingly, the singleton solution is right in the mix with respect to quality as mea-
sured by NMI. At the fuzziest community levels, it even seems to dominate the competition. Fur-
thermore, we will show that this phenomenon is even worse as the graph size grows, holding
community size relatively constant (in keeping with Dunbar’s theory).

3.4 The scalability of NMI

Let X = 〈X1,X2, . . . ,XK〉 be our LFR ground truth community assignment, i.e. a partitioning of the
vertex set of a graph. Each community will have constant size nx. Let Y = 〈Y1,Y2, . . . ,Yn〉 be the
singleton assignment. The probability that a randomly chosen vertes is in Xi and Yj is:

p(Xi,Yj) =
|Xi∩Yj|

n
=

nxy

n
=

1
n
.
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The probability that it is in Xi is:
p(Xi) =

nx

n
,

and we note the useful expression:

p(Xi,Yj)

p(Xi)p(Yj)
=

n|Xi∩Yj|
nxny

.

Since we are considering Y to be the singleton assignment, we have:

n|Xi∩Yj|
nxny

=
n(1)
nx(1)

=
n
nx
.

Plugging into the equation for NMI, we have:

NMI(X ,Y ) = −
2∑x∈X ∑y∈Y nxy log(n nxy

nxny
)

∑x∈X nx log(nx
n )+∑y∈Y ny log(ny

n )

= 1− lognx

2logn− lognx
.

This expression clearly approaches 1.0 as n→ ∞. With one million vertices and communities
of size 10, NMI(X ,Y ) = 0.909.

3.5 Discussion

Community detection algoritms should produce good quality solutions in social networks with
Dunbar-bounded communities and ever-increasing numbers of vertices. We have shown that NMI
is not a suitable way to judge this quality, at least as typically used in practice. The graph com-
munity assignment is transformed into a clustering problem of balls and bins, losing the edge
information. We have other work showing other problems as well as the scaling issue highlighted
in the previous section, and we plan to publish these results.
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Chapter 4

Approximately Finding Patterns in Graphs

This section considers two different ways to do approximate matching of graphs. In each case, we
can assume we are given a target graph and would like to find instances that are “close to” it in
a library or collection of uncertain graphs. This collection could be a set of candidate subgraph
matches taken from a large graph. This is typical of finding patterns in geospatial semantic graphs,
typical of work for the PANTHER grand challenge, for instance. The collection could also be
individual graphs from some other application where we wish to compare a new graph from the
“wild” to a set of known graphs.

In Section 4.1, we wish to answer the question “What is the probability that a given candidate
is an instance of the target?” We were motivated by the approximate subgraph matching problem
in geospatical semantic graphs. Generally the pattern is a small graph with attributes (properties).
We explicitly assume that the target is rare, and therefore there are not enough (good) data for
training. The method combines expert elicitation with regression to match a beta distribution.

In Section 4.2, we describe a way to compute a distance measure between graphs and to cluster
sets of similar graphs. This method is largely topological and intended for graphs with perhaps
10,000 nodes.

4.1 Learning a Beta Distribution

This section describes one possible method for finding a pattern of interest in a larger graph under
uncertainty. It has the advantage of statistical foundations and can give a confidence interval on
match quality. However, it depends upon care eliciation of expert knowledge. This eliciation must
estimate a series of conditional probabilities. It will likely be difficult for the expert to give high-
quality answers. The expert must also estimate his/her uncertainty at each step, which is even
more challenging. Also the sequential nature of the eliciation, considering a set of attributes in a
given order, makes the probability calculations also order dependent. This may not be intuitive for
someone trying to use this information to make a decision.

Our goal is to find a small pattern in a large graph. Computer scientists can think of this as
approximate subgraph isomorphism. The graph has attributes on both the nodes and the edges.
By this we mean certain properties or features with values. They can be real numbers, categorical
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values (from a fixed finite set), binary values, etc. There is some tolerance or uncertainty in the
pattern at multiple levels, both at the fundamental properties or attributes of the nodes and in the
existence and combination of the pieces into a whole. There is also uncertainty in the attributes of
the large graph we search to find approximate instances of the pattern.

Throughout this section, we use a canonical example where the large graph is a geospatial
semantic graph representing an aerial image. Nodes represent features on the ground such as
buildings, roads, patches of grass, trees, lakes, etc. The pattern is a general high school. It has
a classroom building, a parking lot, and a football field. The classroom building should be of
ground type “building” and should be in a certain size range (say, a range of acceptable areas with
decreasing value down to some minimum and up to some maximum size). The parking lot should
be of ground type “pavement” and also fit in a (different) size range. The football field should be of
ground cover “grass,” at least for areas with sufficient rainfall, though “dirt” or a mixture of “dirt”
and “grass” may also be acceptable. The football field should have a certain aspect ratio and be a
certain size (within tolerance). The football field should be sufficiently near the building and the
parking lot should be sufficiently near the building.

We describe one possible procedure for answering the following question: Given a subset of
the large graph which is a candidate match for the pattern, what is the quality of the match? In
this section, we describe how to give a probabilistic answer: “The probability this pattern is a
high school is 65%. This is a mean probability. The actual probability is between 52% and 78%
with 95% confidence.” Both the mean and the confidence interval are based on “best available
information” as described below. It is possible to generalize to give a probability distribution over
a set of competing possibilities (“What is the probability this is a high school vs a middle school
vs a church vs something else?”). However, that description is out of the scope of this discussion.

A prior distribution incorporates knowledge from experience or other forms of expertise to
express general uncertainty in whether a set of objects represents a high school or not based on the
attributes of the objects. One can think of it as a distribution representing normal variation in high
schools (not to be confused with the normal distribution). Usually, one updates a prior distribution
based on some data (observation) to get a posterior distribution for that data instance. In this first-
pass method, we are creating a distribution that depends on the observed data using a reasonably
simple calculation.

There are many examples of high schools, even if you focus on, say, urban high schools in the
US northeast. One can use a set of examples to create a prior distribution. However, we assume
for this section that the pattern we seek is rare. It is something we want to recognize if we see
it, but we may never see it. For the sake if discussions we refer to these hard-to-observe patterns
as unicorn farms. In this setting, we are forced to use expert knowledge. Someone who has been
thinking about what a unicorn farm might look like can help us build the prior. There are careful
formal elicitation processes that require extensive study and training to master. We will describe
one way elicit data from an expert for this particular problem later in the section.

We will now describe how to produce a predictive distribution for the probability a single
candidate “entity” is of the type being searched for. If there are multiple candidates, one may repeat
this procedure for each candidate independently. We assume the candidate has been determined by
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a preliminary screening search. For example, in the preliminary search, the area of the building is
at least the minimum and at most the maximum value specified by an expert.

We consider information accumulating piece by piece indexed as i = 1, . . . ,na, where na is
the number of attributes. That is, we consider each attribute in a consistent order. The order is
set by the order of elicitation, described later. It can be determined by an expert’s opinion of
importance, or could be arbitrary. But once set by the elicitation, we will consider each attribute
in that given order. For example, building size might correspond to i = 1, presence of grassy area
might correspond to i = 2, aspect ratio of grassy area might correspond to i = 3, and so forth.

We denote the probability that a candidate C is “of interest” after considering the first i attributes
by θi.

We wish to produce a distribution (at attribute i) that reflects our belief about the possible values
of θi ∈ (0, 1). Here is one possbile way to create a predictive distribution.

Prior Distribution for θi.
The simplest predictive distribution for θi is to use a modeled prior. Since θi ∈ (0, 1) we need
the support of this prior to be the unit interval, and the natural (and flexible) choice is a beta
distribution. The density of a beta distribution is usually written as

g(θi|αi,βi) =
Γ(αi +βi)

Γ(αi)Γ(βi)
θ

αi−1
i (1−θi)

βi−1; 0 < θi < 1. (4.1)

where αi > 0 and βi > 0 are parameters and Γ(h) is the Gamma function:

Γ(h) =
∫

∞

0
xh−1e−xdx

for h > 0. It’s probably easier to think of the Gamma function based on its properties. It’s an
extension of the factorial function, extended to real values except negative integers. There is a nice
discussion in the course notes for Scott Hyde [61], which we summarize now. If h is a positive
integer, then Γ(h) = (h−1)!. The function satisfies a recursive property similar to factorial:

Γ(h) = (h−1)Γ(h−1). (4.2)

This relationship, along with tables of values for Γ(h) for 1 < h < 2 make it relatively straightfor-
ward to compute Γ(h) for any h (except negative integers). See Hyde’s web page [61] for some
examples. The Gamma function should be implemented in any standard statistics package. For
example, it’s in R. The ratio of Gamma functions that is the normalization constant in the beta
distribution with density given above (4.1) is also 1/B(αi,βi), where the denominator is a beta
function.

Note that the parameters of the beta prior in (4.1) are indexed by attribute number. The prior
reflects expert belief about the possible values of the probability that candidate C is of interest at
attribute i – that is, his/her belief about the possible values of θi. The greatest belief will be given
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by the mode of this distribution. The expected value and variance are

E(θi) =
αi

αi +βi

var(θi) =
αiβi

(αi +βi)2(αi +βi +1)
(4.3)

An interval that contains 90% or 95% of our belief about the value of θi is given by the central
90% or 95% of the density (4.1).

There are many pairs of αi and βi that give the same mean value. For example, whenever
αi = βi, the beta distribution has a mean of 1/2. But larger values of αi = βi have smaller variance,
reflecting greater confidence. See Robinson [106] for a nice discussion of the beta distribution
applied to prediction of batting averages in baseball. Even if the reader knows only a little about
baseball, this is a nice discussion. Robinson’s example case illustrates that the higher confidence
comes from more real trials blended with prior beliefs.

We would like to update values of αi and βi as information becomes available or is considered
in sequence. To do this, first reparameterize (4.1) as

µi =
αi

αi +βi

φi =
1

αi +βi +1
. (4.4)

Notice that both αi and βi are allowed to vary over i, but only in a constrained manner so that φi
remains constant over i. µi is the mean of the beta distribution we are using to model θi. If we must
give a single best guess at θi, it will be this mean. The parameter φ controls confidence intervals
and comes from elicitation of confidence from experts.

One might consider a supervised learning approach, learning based on labeled examples, for
setting the prior distribution. For a “unicorn farm” there probably will not be enough data for such
an approach. Even for high schools, where there is a fair number of training instances, supervised
learning may not be a good idea for this particular approximate matching problem. The reason is
the training data sets would need to be even larger than under “regular” supervised learning. We
need a lot of covariates because of interactions among the pieces. For example, in the high school
case, there are six attributes; building size, pavement area, grass area, grass aspect ratio, distance
between grass and pavement and distance between building and pavement. If we allow for all
possible interactions among these attributes, we would require 62 parameters (6 main effects, 15
two-way interactions, 20 three-way, 15 four-way and 6 five-way). Certainly this number could be
reduced, but it is quite possible we could end up with a model that has 10 to 15 parameters.

Without sufficient training data, we must choose parameter values based on expert opinion.
Here’s an outline of a potential procedure: sequential updating based on expert opinion. This
outline is specific for the high school problem, but it generalizes to other settings.
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We use regression to find the expected values for the probability a candidate is a high school
depending upon the values of the relevant attributes/features. The key element in this potential
procedure is to determine parameter values βi sequentially, indexed over attributes. Regression
parameters are normally denoted by β . But that conflicts with using it as a parameter of the beta
distribution. We make the substitution to γ for clarity for non-statisticians.

Recall that mean µi is a function of beta distribution parameters αi and βi. We find these
parameters by regression, where γi,0 and γi,1 are the linear regression variables, the intercept and
slope values respectively, for attribute i.

log
(

µi

1−µi

)
=

i

∑
j=1

(γ j,0 + γ j,1z j) (4.5)

where z j is defined in the following list.

Define the following quantities:

• C is the candidate entity, a subgraph (generally a small set of connected set of nodes and
edges) selected from the larger graph. It might pass some minimum selection criteria, such
as containing a building in the size range 6,000 to 30,000 square meters, having a large
> 10,000m2 paved region and a grassy area in the vicinity.

• θi are probabilities that candidate C is of interest at attribute i, i = 1, . . . ,na (or a possibly
earlier point of determination)

• Let x1 be building size for C, x2 the area of the nearby paved area, x3 the area of the grassy
area, x4 the aspect ratio of the grassy area, x5 the distance between paved area and building,
and x6 the distance between paved and grassy areas.

• Let T1, . . . ,T6 denote “target” values for the six attributes as determined by expert opinion.
For example, we might choose T1 = 10,000, T2 = 15,000, T3 = 10,000, T4 = 2.5, T5 = 75
and T6 = 275.

• Variables zi represent deviation of the candidate’s value for attribute i from the target value
for attribute i.

• Variables xi represent the candidate’s attribute values.

• pi and ∆i are determined from expert opinion. pi is the additional probability the candidate
is of interest if it matches the target for the ith attribute beyond the probability of interest for
matches on the first i−1 attributes. Note that ∑i pi ≤ 1. ∆i gives the decrease in probability
of a candidate being of interest per unit deviation away from the target value of attribute i.
See the description below.

Note: There appears to be an alternative interpretation of of pi that may be easier to elicit.
The ∑i pi represents the probability the candidate is of interest if all the attributes precisely
match their target value. That is, the conditions on the probability must be perfectly met. The
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reason this sum is not generally equal to 1 is that the experts should allow for other objects
that match the template but are not high schools. Since the pi partition the total probability,
you can think of them as weighting the importance of the individual attributes. That piece
pi can be earned (or not earned) by an attribute. The computation/procedure below doesn’t
quite work that way, since otherwise it would not be as sensitive to order as it is. However,
this kind of elicitation may lead to a less order-dependent method.

Step 1
Construct the covariate

z1 = |x1−T1| or z1 =
|x1−T1|

σ1
, (4.6)

where, in the later alternative, σ1 would need to be determined somehow.

Expert opinion provides two values

• If x1 = T1 (or z1 = 0) then the probability a candidate entity is of interest is p1.

• For every unit x1 differs from T1 (or every unit of z1) the probability a candidate entity is of
interest decreases by ∆1.

From this information we can determine values of γ1,0 and γ1,1 in (4.5). The model at attribute
i = 1 is

log
(

µ1

1−µ1

)
= γ1,0 + γ1,1z1 (4.7)

For x1 = T1, or equivalently z1 = 0, where the candidate value on attribute 1 exactly matches the
target, expert opinion has provided that µ1 = p1 so that

γ1,0 = log
(

p1

1− p1

)
(4.8)

For x1 6= T1, or equivalently z1 6= 0, expert opinion gives µ1 = p1−∆1z1. Using (4.7) we have

γ1,1 =
1
z1

(
log
[

p1−∆1z1

1− (p1−∆1z1)

]
− γ1,0

)
(4.9)

Step 2
Construct the covariate

z2 = |x2−T2| or z2 =
|x2−T2|

σ2
, (4.10)

where, in the latter alternative, σ2 would need to be determined somehow.

Expert opinion now provides two values.

• Given that µ1 = p1 (i.e., x1 was the target T1), if x2 = T2 (or z2 = 0) then the probability a
candidate entity is of interest is p1+ p2. Note that this means the expert provides information
on the increase in probability caused by x2 being its target value given that x1 was its target
value.
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• For every unit x2 differs from T2 (or every unit of z2), the probability a candidate entity is of
interest p2 decreases by ∆2.

From this information we can determine values of γ2,0 and γ2,1 in (4.5). The model at attribute
i = 2 is

log
(

µ2

1−µ2

)
= γ1,0 + γ1,1z1 + γ2,0 + γ2,1z2 (4.11)

Now, for x1 = T1 (or z1 = 0) and x2 = T2 (or z2 = 0) expert opinion gives µ2 = p1 + p2 so that

γ2,0 = log
(

p1 + p2

1− (p1 + p2)

)
− γ1,0 (4.12)

For x2 6= T2 or z2 6= 0 expert opinion gives µ2 = (p1−∆1z1)+(p2−∆2z2) so that from the model,

log
(

µ2

1−µ2

)
= γ1,0 + γ1,1z1 + γ2,0 + γ2,1z2

This implies that

γ2,1 =
1
z2

(
log
[

p1−∆1z1 + p2−∆2z2

1− (p1−∆1z1 + p2−∆2z2)

]
− γ1,0− γ1,1z1− γ2,0

)
(4.13)

Step i
The progression is now established. In general, for i = 1, . . . ,na, the model is given by (4.5) where

zi = |xi−Ti| or zi =
|xi−Ti|

σi
, (4.14)

In the later case, σi would need to be determined somehow.

Expert opinion provides the incremental probabilities

pi = increase in probability given all previous attributes at targets and attribute i on target

and
∆i = decrease in pi for each unit current attribute xi differs from target Ti

Then γi,0 and γi,1 may be determined as

γi,0 = log

(
∑

i
j=1 p j

1−∑
i
j=1 p j

)
−

i−1

∑
j=1

γ j,0 (4.15)

and

γi,1 =
1
zi

[
log

(
∑

i
j=1(p j−∆ jz j)

1−∑
i
j=1(p j−∆ jz j)

)
−

i

∑
j=1

γ j,0−
i−1

∑
j=1

γ j,1z j

]
(4.16)

where, as before, the righthand sides of (4.15) and (4.16) use values we have already calculated.
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Once we have computed all the µi, and selected a φi, we can use (4.4) to compute the αi and
βi. Either way, we can use a tool like R to find the 95% region, specifically the value of θmin
with 2.5% of the distribution weight below it, and the value of θmax with 2.5% of the distribution
weight above it. The mean (θna)is our best guess, and the range [θmin,θmax] gives a 95% confidence
interval. The choice of φ , derived from elicitation, determines on the variance, hence the size of
the confidence interval, and the implied level of confidence in that answer.

Comments

1. The number of attributes included i = 1, . . . ,na could be determined by when experts believe
that an entity with all target values is an entity of interest with probability equal to or close
to 1. That is, for some small δ , choose na such that

na

∑
j=1

p j = 1−δ

2. Clearly, the order in which attributes are considered may have an effect. A check on this
whole approach could be to obtain expert opinions in several orders and compare results. An
expert’s p j values will differ depending on the order of attribute consideration.

3. This approach does not deal with interactions directly, rather it has only hidden the issue
under a blanket of expert opinion.

One could use a more complex approach when the beta distribution doesn’t adequately express
uncertainty in θi. That approach involves also using priors for the αi and βi parameters. It is more
complicated than the simple model above and probably not reasonable for a first pass.

4.1.1 An example

Here is an example using the method described above. This is slightly more complicated because
it allows the ∆ deviation values to differ depending upon whether the value is above or below the
target. The values used in this example are artificial and are intended only to illustrate the manner
in which expert opinion could be used. Any number of modifications to the procedure presented
are possible so this should not be taken to be a presentation of a finished procedure.

Suppose we have identified a candidate as a potential high school. There are six attributes to
be assessed in the high school template, 1: Building Size, 2: Size of Paved Area, 3: Size of Grassy
Area, 4: Aspect Ratio of Grassy Area, 5: Distance from Pavement to Building, and 6: Distance
from Pavement to Grassy Area. Target values and units for these attributes are

• Building Size. Observed as m2, units are 1000m2, target is T1 = 10 (i.e., 10,000m2).

• Paved Area. Observed as m2, units are 500m2, target is T2 = 24 (i.e., 12,000m2).
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• Grassy Area. Observed as m2, units are 100m2, target is T3 = 80 (i.e., 8,000m2.

• Grassy Area Aspect Ratio. Unitless, target is T4 = 2.0.

• Distance Pavement to Buildling. Observed as m, units are m, target is T5 = 50.

• Distance Pavement to Grassy Area. Observed as m, units are m, target is T6 = 200.

The steps in the proposed procedure can be summarized as follows.

1. Determine regression coefficient values {(γi,0,γi,1 : i = 1, . . . ,6} according to the procedure
outlined above. We require the values {p j : j = 1, . . . ,6} and corresponding ∆ j values. Here,
we make one elaboration in that the decrease in probability for covariate values that differ
from target is allowed to be different for covariate values that are less than the target and
those that are greater than the target. Thus, we now need values {∆ j,`,∆ j,h : j = 1, . . . ,6}.
We use p1 = 0.3 (building size), p2 = 0.2 (paved area size), p3 = 0.1 (grassy area size),
p4 = 0.2 (grassy area aspect ratio), p5 = 0.1 (distance from paved area to building) and
p6 = 0.05 (distance from paved area to grassy area). A candidate with target values for
each of the six attributes then would have probability 0.95 of being an entity of interest. We
describe how to determine the values of ∆ j,` and ∆ j,h below.

2. With regression coefficients determined in the previous step, determine values of the param-
eters of the associated beta distribution. Note that we need one additional parameter: the
φ described previously. This should be determined from confidence elicitation. For these
examples, we will treat it like a “tuning parameter.”

3. With parameters αi and βi (at attribute i), a 95% interval for the probability that the candidate
is an entity of interest is determined as (q0.025, q0.975) where

0.025 =
Γ(αi +βi)

Γ(αi)Γ(βi)

∫ q0.025

0
yαi−1(1− y)βi−1 dy

0.975 =
Γ(αi +βi)

Γ(αi)Γ(βi)

∫ q0.975

0
yαi−1(1− y)βi−1 dy

We illustrate the way to determine ∆ j,` and ∆ j,h using building size. Using units of 1000m2

for this attribute, the target was T1 = 10. Somewhat arbitrarily, but guided by our experience, we
decided that buildings less than 4,000m2 should have probability 0 of being a high school, and
similarly for buildings greater than 30,000m2 should have probability zero. Computing simple
linear decreases for buildings less than or greater than the target then produced ∆1,` = 0.05 and
∆1,h = 0.015. Figure 1 contains an illustration. We followed the same procedure for the other
attributes. Values are summarized in Table 1.
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Figure 4.1. Illustration of function to choose ∆1,` and ∆1,h.

Attribute Units Target pi Low Cut High Cut ∆i,` ∆i,h
Bldg Size 1000 10 0.30 4 30 0.0500 0.0150
Paved Size 500 24 0.20 10 38 0.0143 0.0143
Grass Size 100 80 0.10 50 120 0.0033 0.0025

Aspect Ratio NA 2.0 0.20 1.5 3.5 0.4000 0.4000
Distance 1 1 50 0.10 0 100 0.0020 0.0020
Distance 2 1 200 0.05 0 400 0.00025 0.00025

Table 4.1. Summary of setup values for six attributes in the high
school template.

Example 1
The first example has all attributes at their target values and takes φ = 0.005 (which implies quite
large values for αi and βi and thus small variances for the beta prior distribution). Results are:

attribute pred lower upper

1 bldg 0.30 0.2384827 0.3653249

2 pave 0.50 0.4307789 0.5692211

3 grass 0.60 0.5312303 0.6668655

4 aspect 0.80 0.7418233 0.8524684

5 dist1 0.90 0.8547968 0.9376059

6 dist2 0.95 0.9157908 0.9756950

Repeating this example (all attributes at target) but with φ = 0.05 produces substantially wider
intervals:
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attribute pred lower upper

1 bldg 0.30 0.1221411 0.5176262

2 pave 0.50 0.2835712 0.7164288

3 grass 0.60 0.3781208 0.8019413

4 aspect 0.80 0.5987966 0.9419732

5 dist1 0.90 0.7350336 0.9879965

6 dist2 0.95 0.8197441 0.9988709
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Example 2
In this example, we have a building that is somewhat smaller (9000m2) than the target, but all other
attributes remain at target values. The tuning parameter was φ = 0.005.

attribute pred lower upper

1 bldg 0.2500000 0.1924669 0.3122916

2 pave 0.4375000 0.3694188 0.5067714

3 grass 0.5384615 0.4690800 0.6071106

4 aspect 0.7567568 0.6949531 0.8136735

5 dist1 0.8750000 0.8257531 0.9171193

6 dist2 0.9366197 0.8989383 0.9660265

Example 3
In this example, we keep the somewhat-too-small building from example 2, increase the paved area
size to 15,000m2, increase the grassy area to 12,000m2, with a somewhat-too-small aspect ratio of
1.8. The results are

attribute pred lower upper

1 bldg 0.2500000 0.1924669 0.3122916

2 pave 0.2573458 0.1991648 0.3201457

3 grass 0.2573458 0.1991648 0.3201457

4 aspect 0.3621950 0.2969764 0.4300375

5 dist1 0.5609652 0.4916819 0.6290876

6 dist2 0.7295409 0.6658892 0.7888231

40



Example 4
The previous examples have all had relatively minor departures from target values. In this example
we take a quite large building with a quite large paved area, but there is a grassy area of about
the right dimensions nearby, although slightly farther away than target for a high school. We
used these values: Building Size 22,000m2, Paved Area 17,000m2, Grassy Area 8,000m2 (target),
Aspect Ratio 2.0 (target), Distance 1 50m (target) and Distance 2 400m. Results give much smaller
probabilities of a high school.

attribute pred lower upper

1 bldg 0.1200000 0.07872944 0.1684924

2 pave 0.1770000 0.12729916 0.2328454

3 grass 0.2439136 0.18693486 0.3057666

4 aspect 0.4624428 0.39377559 0.5318253

5 dist1 0.6593543 0.59223878 0.7234357

6 dist2 0.5770000 0.50787440 0.6446593

4.2 Bertillonage: A Statistical Measure for Graph Similarity

This section describes an approach for constructing a formal metric that characterizes the similarity
between two graphs. Our goal is to approximate the complexity of a graph with a small(er) set of
features and employ those features to identify other similar graphs. We have coined the phrase
graph Bertillonage to describe this process.

Bertillonage is a simple forensic analysis technique based on bio-metrics that was developed
in 19th century France before the advent of fingerprints. Alphonse Bertillon was a French crimi-
nologist and anthropologist who created the first system of physical measurements, photography,
and record-keeping that police could use to identify recidivist criminals. Bertillon developed an
anthropometric method based on measurements from head and body, shape of facial features, and
individual marks (tattoos, scars, etc.). These characteristics were filed with photographs of the sus-
pects and cross-indexed to permit quick, systematic access. The result was that the identification
of a suspect was systematically reduced from the search of a massive database of suspects to the
examination of small set of suspects with similar features.

The method, referred to as Bertillonage, worked well under ideal conditions, but was eventually
abandoned in favor of fingerprints.

The objective of forensic Bertillonage shares many of the same characteristics with the current
problem: using a set of graph features that capture the fundamental complexities of a graph, and
comparing the similarity of these features with the features of another graph. This similarity metric
allows quick searching of a library of graphs to find graphs with similar structural (and possibly
functional) characteristics. The resulting set of ’suspects’ can be examined manually for a detailed
comparison.
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There are two major groups of approximate graph matching/similarity methods [37]. The first
of these requires a correspondence between nodes, i.e. nodes are labeled and the labels have
meaning. For example, the graph similarity metrics proposed in [92] or the network performance
measures [25]. The second group does not require node correspondence and typically rely on
feature extraction and pattern matching or (sub) graph matching coupled with a type of node cor-
respondence. This latter group includes such methods as spectral analysis such as that proposed
by Wilson [133] for undirected graphs. (As noted by Wilson, the spectrum of a graph (i.e. the set
of eigenvalues) is considered to be too weak to be a useful tool for representing graphs).

Various other methods in this latter group include the state vector machine approach suggested
by Li, et al [78]. This approach employs the use of feature vectors which shares some general
concepts the approach we describe in Section 4.2, Also similar is the use of global algebraic feature
vectors as suggested by Fiedler [27]. Finally, there are node affinity algorithms such as PageRank
[91].

In this section, we consider graphs where there is no obvious correspondence between nodes.
They may have been created to represent different phenomena, or different individuals/settings.
Thus our data is unlabeled, in the sense that the nodes have no identity. We consider undirected
and/or directed edges. Finally, we allow incomplete data such as missing nodes or edges. Our
goal is not to determine if two graphs are isomorphic, but to determine the similarity between two
graphs. Ideally this similarity metric will have a statistical basis and it will be possible to perform
statistical hypothesis tests on the graph similarity.

Typical approaches involve some variation of iterative heuristics, edit distance, or feature/pattern
mapping. Our approach to measuring graph similarity is based on a Macindoe and Richards’ graph
comparison method [83]. They compare graphs by measuring the energy required to transform one
graph-feature-based representation into another. They represent a graph as a multi-dimensional his-
togram. The histogram counts/represents points, each of which is a feature vector of a subgraph.
Specifically each point represents an induced neighborhood subgraph for each vertex in the graph.
The set of induced subgraphs, as a whole, represents local structure. The features in the vector
are more classic global graph statistics on the induced subgraph. Macindoe and Richards then use
Earth Movers Distance (EMD) to measure the effort required to transform the histogram (weighted
multi-dimensional bins) of one graph into the histogram of another graph. This quantitative dif-
ference serves as their distance measure. Given the distance measure, Macindoe and Richards use
these pairwise graph distances to compare sets of graphs. They use heat maps, which display all
pairwise distances, and dendrograms, which is a tree structure. At every branch in a dendrogram,
elements on one side are (according to the clustering method) heuristically more closely related to
each other than to the elements on the other side. It is a way of displaying the data set according
to a particular agglomerative method, and quite sensitive to the details of the method. We describe
these various pieces in this section.

Robner [111] introduced signatures as a variable-sized substitute for classic histograms, espe-
cially for applications such as image comparison. In a histogram, multi-dimensional vectors are
placed into evenly-spaced fixed-sized bins, one for each dimension, based on the values in that
dimension. In a signature, the points are clustered, for example, using a standard methods such
as (one-dimensional) k-means [5, 80], with the clusters taking the place of the histogram bins.
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Rubin [111] describes some of the advantages of a signature. His brief description was that his-
tograms can be wasteful if many values are not represented. In his example, in a desert scene,
many of the pixels will be yellow-brown for the ground and plants, and blue for the sky, with little
in the green range. However, some elements of an image may need a fine scale to represent impor-
tant details. Any method that just picks a fixed histogram size (such as Macindoe and Richards,
who use a 0.2 granularity for all values), “cannot achieve balance between expressiveness and ef-
ficiency.” Signatures can adjust level of detail, much as adaptive grids for scientific computing
can give more cells to areas where the geometry or underlying phenomena need it, without doing
wasteful computations in simpler areas.

As an example, Figure 4.2 shows equal-sized bins for a two-dimensional data set. Many of
the bins in the upper right are empty. Figure 4.3 shows bins with different sizes, which has less
wasteful empty space. Signatures are more general than this simple rectilinear example. Points are
not assigned to a cluster based only on threshold comparisons to their element values.
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Figure 4.2. Equal Size Histogram Bins (2D). The upper right
corner has empty bins, which are computationally wasteful.

Rubner also used introduced Earth Mover’s distance (EMD) in the same paper [111]. Rubner
listed some of the advantages of EMD, paired with a signature, for image comparisons: adaptive
detail, partial matches (important when, for example, something obscures part of one image),
and allowing images of different sizes. These are all properties that can be helpful for graph
comparison.

The primary novelty of our work is the details of the graph signature and our applications. We
use simpler metrics than Macindoe and Richards, which were sufficient to give good results on
some Sandia applications. We will not describe the applications in detail in this report, though we
briefly describe then in Section 4.2.4. Macindoe and Richards’ experiments in [83] are on fifteen
real data sets. All but one have no more than 450 vertices, and the largest has 1490 nodes. In a first
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Figure 4.3. A simple example of variable Size Signature Bins
(2D).

step to an investigation over random graphs, we describe a simple example involving a library of
Erdős-Rényi random graphs. The approach can distinguish between graphs generated with slightly
different size and density parameters. We have also applied it to an application with graphs with
10,000 or more nodes. We give a list of technical differences after we describe our graph signatures
and how to compute graph similarity.
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4.2.1 Graph Signatures

Using the Macindoe-Richards method, We can partially describe some aspects of any given graph
G with a vector of features. To create our signature for graph G, we generate a set of subgraphs
Gi from graph G, as described below. We sketch the subgraphs with a small feature of topological
(that is, structural) statistics. We then cluster the resulting set of vectors in each dimension inde-
pendently using standard methods. The concatenated representation of the clusters is the signature
for graph G.

Some researchers currently use attributes as well as structural features for these vectors. How-
ever, as a first attempt to do this kind of graph comparison, we chose to use features that apply to
every graph, including those with no attribute data.

Graph Structural Metrics We now list some previously-defined graph structure metrics that
could be candidates as features in our vectors. Macindoe and Richards [83] consider leadership,
clustering coefficient, and diversity in their signature. They claim Richards and Wormald [101] first
introduced these measures. They believe this triple is particularly relevant for social networks. We
use closeness centrality, betweenness centrality, and leadership. For our applications, we wanted
metrics that were not necessarily tailored to social networks.

Centrality Metrics Centrality metrics capture node importance.

Closeness Centrality Closeness centrality (normalized) measures the (average) distance from a
particular node to all others. In and unweighted graph, if information were to start at node v
and cross all adjacent edges simultaneously in a step, and all nodes that receive that informa-
tion and relay to all their neighbors, etc, the closeness centrality measures the average time
required for a node other than v to receive the message. Closeness centrality is the inverse of
the average distance, so that nodes with small average distance get a large closeness score.
Let `(v, i) represent the length of the shortest path from node v to node i. For closeness
centrality score for node v in Graph G is:

Cv(G) =
|V |−1

∑i 6=v `(v, i)
(4.17)

Betweenness Centrality Betweenness centrality (normalized) measures the potential for a node
to control, or disrupt, the communication within the network. It is the average fraction of
shortest paths between i, j that go through a particular node, taken over all pairs i, j.

Cv(G)|i, j = ∑
i6=v6= j

[
Kgi j(v)

gi j

]
(4.18)

Where gi j is the number of shortest paths between i and j, and gi j(v) is the number of shortest
paths between i and j that contain v. For directed graphs the normalization is K = 1/(n2−
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3n+ 2) and for undirected graphs K = 2/(n2− 3n+ 2), where n is the number of nodes in
the graph. This represents the number of pairs of nodes in the graph that do not involve node
v [(n2−3n+2) = (n−1)(n−2)].

Leadership Metric [32] Measures the degree to which a particular node dominates the connec-
tions between nodes.

Cv(G) =
∑

n
i=1(dmax−dv)

(n−1)
(4.19)

If all nodes have the same degree, then the leadership metric is low (zero). Alternatively,
if one node is connected to all the other nodes, which themselves are not connected (star
graph), the centrality is maximal. This measure is for the graph as a whole, not for an
individual vertex in the graph.

Here is a metric that Macindoe and Richards use for their signatures [83]:

Clustering Metric/Clustering Coefficient Triadic closure expressed as a clustering metric:

T (G) =
3× (# triangles)

(# length-two-paths)
(4.20)

If two nodes are connected through a third node, T captures the probability that two nodes are
directly connected. Graphs with few triangles, such as bipartite graphs in the worst case, indicate
less clustering of nodes. T is maximal for a complete graph. Macindoe and Richards use 6 instead
of 3 in the numerator, though 3 (the number of length-2 paths in a triangle) is the more standard
value.

The following are two of potentially many alternative/additional graph metrics that might be
useful in the future as measures to capture local structure:

S metric The S metric captures degree diversity. It is not the same as the diversity measure Macin-
doe and Richards used. Diversity metrics capture the topological survivability [110] and
variable connectivity [3] of a graph. Is the graph dominated by a small number of large,
highly connected subgraphs, or is it composed of a large number of very loosely connected
nodes (or small subgraphs)?

For a graph with n vertices, let di be the degree of of vertex i,1 ≤ i ≤ n and let D =
{d1,d2, . . . ,dn} be the degree sequence of the graph, where, without loss of generality,
d1 ≥ d2 ≥ ·· ·dn. Define the S metric for graph G with degree sequence D as:

S(G) = ∑
(i, j)∈E

did j = ∑
i∈V

∑
j∈V

diai jd j (4.21)

where A =
[
ai j
]

is the vertex adjacency matrix. The S metric is also a summary measure for
an entire graph.
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Node Entropy The entropy of a node, sometimes referred to as diversity, is defined as the scaled
Shannon entropy of the weights of the incident edges.

D(G) = H(i)/log(di) (4.22)

H(i) = −∑
di
j=1 pi j log(pi j) (4.23)

pi j = wi j/∑
di
k=1 wik (4.24)

where di is the degree for node i, wi j is the weight of the edge between nodes i and j.

Signature Construction We now describe our graph signatures. Our choices are heuristic,
based on what worked for a particular application. We compared the graph distances we compute
via the procedure described below to ground truth distances from application experts. However,
any particular application will likely require changes to the details below. We discuss at least one
alternative after we describe the method.

Our procedure for constructing a signature of a graph is as follows:

1. For each node v in the graph, induce the 2-hop neighborhood. This is a subgraph consisting
of all nodes reachable from v by paths of length at most 2, and all edges connecting those
nodes. This neighborhood defines the local graph structure at the node. Macindoe and
Richards [83] chose the 2 neighborhood. We also found this distance is sufficient to capture
the local structure, but is not a computational burden for the graph sizes we have tested.
For large graphs with a heavy-tailed degree distribution, typical of social networks, the 1.5
neighborhood may be a more computationally reasonable subgraph. This is node v’s one-
hop neighborhood (neighbors and all edges joining them) plus all the neighbors’ neighbors,
without edges between node that are not directly connected to node v.

2. Given the induced subgraph for node i, calculate the local characteristics for this subgraph.
We used three values:closeness, betweenness, and leadership. Leadership is a property of
the subgraph. Closeness and betweenness are properties of a single node within a graph. For
the subgraph induced by vertex i’s neighborhood, we calculate closeness and betweenness
for vertex i only. Thus for the graph Gi, the 2-hop neighborhood of node i, we calculate the
triple (ci,bi, li). All elements of this triple are numbers between 0 and 1.

3. For a graph with n nodes, after computing the n triples as described in the step above, create
three sets of values, one for each dimension: C = {ci : 1 = 1 . . .n}, B = {bi : 1 = 1 . . .n}, and
L = {li : 1 = 1 . . .n}.

4. Do the above steps for all m graphs, to produce m vectors C1, . . . ,Cm, and similarly m vectors
B1, . . . ,Bm and m vectors L1, . . . ,Lm. Using k-means (or principal component analysis) iden-
tify k one-dimensional clusters for ∪ j=1...mC j. Similarly identify k one-dimensional clusters
on the union of the B vectors, and k one-dimensional clusters on the union of the L vectors.
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There is no need to use the same number of clusters k for each topological element, but we
found, for our application, that using k = 10 for each set of values gives a signature that
allows us to compare graphs.

5. For each graph G, count the number of points in each cluster: nc1, nc2, . . ., nck, nb1, nb2, . . .,
nbk, nl1, nl2, . . ., nlk. This set of counts, taken in this specific order, is the unique piece of the
signature for graph G.

6. The signature is cluster number paired with the counts. Assuming each clustering has the
same number of clusters k, then the cluster numbers for closeness are 1, . . . ,k, the cluster
numbers for betweenness are k+ 1, . . . ,2k, and the cluster numbers for leadership are 2k+
1, . . . ,3k. Thus the signature is (1,nc1), (2,nc2), . . ., (k,nck), (k+ 1,nb1), (k+ 2,nb2), . . .,
(2k,nbk), (2k+1,nl1), (2k+2,nl2), . . ., (3k,nlk).

More generally, authors represent signatures as P = {(x1, p1), . . . ,(xm, pm)}. The xi are repre-
sent a cluster. In our signature above, this is a cluster number. But it could be the numerical value
of the centroid from the k-means computation (the “average” value of points in the cluster). The
pi are the number of points in each cluster, sometimes called the weight of the cluster.

One alternative way to create a signature is to follow the first two steps above. Then, for each
graph, use a k-means clustering of the 3-dimensional (c,b, l) vectors. More generally, use higher-
dimensional k-means if the vectors of attributes/values has higher dimension. The signature is then
the centroid of each cluster and the number of points in each cluster.

4.2.2 Earth Mover’s Distance

Rubner, Tomasi, and Guibas [112] introducded Earth Movers Distance (EMD) as a measure of
similarity between images, thereby reducing the effort to find similar images within a library of
images. So far, EMD shows promise as the foundation for a graph similarity metric. The following
synopsis of Ruber’s formal description of EMD is from Robert Fisher’s web page [29], with some
corrections and clarifications.

EMD is defined for signatures of the form P= {(x1, p1), . . . ,(xm, pm)} and Q= {(y1,q1), . . . ,(ym,qn)}
where xi is the center of cluster i and represents the feature of interest, e.g. ’color’ for an image,
and pi is the weight of cluster i, e.g. number of points of that feature type in the cluster.

EMD is conceptually a transportation problem. The “earth mover” part of the problem is to
take piles of dirt, represented by P, and move them to fill in holes, represented by Q. Let F = [ fi j]
represent the flow of material between Pi (supply) to Q j (demand). Two signatures P and Q can be
compared by finding the flow F that minimizes the transportation problem:

Work(P,Q;F) =

(
min

fi j
∑
i, j

fi j`i j

)
s.t. : (4.25)
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fi j ≥ 0 earth can only be moved from P to Q (4.26)

∑
j

fi j ≤ pi the earth to be moved must no more than what is in P (4.27)

∑
i

fi j ≤ q j the earth to be moved must be no more than what Q can receive (4.28)

∑
i

fi j = min
(

pi,q j
)

move the minimum amount of earth (4.29)

Solving the transportation problem yields the optimum flow F∗ which can then be used to find
the Earth Movers Distance:

EMD(P,Q;F) =

(
min

f ∗i j
∑
i, j

f ∗i j`i j

)
/∑

i, j
f ∗i j (4.30)

where `i j is the ground distance between cluster i in signature P and cluster j in signature Q. The
ground distance is the distance between two vectors of features, which in turn requires a distance
between individual features. This distance represents the cost of turning a unit mass of one feature
into a unit mass of the feature in another signature. For EMD, the ground distance between clusters
is usually the ground distance between their centroids. Figure 4.4 depicts a basic transportation
problem where the number of clusters in P,m = 4, and the number of clusters in Q, n = 3.
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Figure 4.4. EMD as Transportation Problem

Unlike the χ2 or Kolmogorov-Smirnov(KS) distance, which are fundamentally one-dimensional,
EMD is not a bin-to-bin distance comparison between two signatures. For example, consider Fig-
ure 4.5). The K-S distance involves aligning two cumulative distribution functions over the same
domain and finding the value where they differ the most. There is an inherent order, so this is like
comparing items in order, illustrated on the right side of Figure 4.5. EMD has no inherent order,
so any red cluster and map to any combination of blue clusters.
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Figure 4.5. Some distance measures/statistical distance measures
have an inherent order, illustrated on the right side. EMD, illus-
trated on the left, allows clusters (bins) to be split and to map to
any other set of clusters (bins). In optimal solution, most pieces
will split into only a few pieces at most.

EMD is also a true metric if the ground distance is metric and if the total weights of the
two signatures are equal. This provides a metric structure for graphs and images. Rubner
et. al. [112] discuss the computational advantages of using a true metric. Computationally efficient
C implementations are available [79].

Ground distance

Ground distance is the distance between two cluster representatives, which must be defined for each
application. When the representatives are simply vectors of numbers, variants of vector norms are
popular. Since our cluster representatives are (one-dimensional) integers, our ground distance is
simply the absolute value of the difference between the pair of numbers. For example, the distance
between 2k+5 and 12 is |2k−7|. We could define distances that more harshly penalize between
clusters of, say, closeness, and clusters of betweenness. It was not necessary for our initial driving
application. For values that are categorical, a subject-matter expert must generally create a table
of values that appropriately represents how close two possible values are. As a simple example,
biologists have quantified how closely related each pair of amino acids is based on how easily one
can evolve into another in a protein sequence.

Rubner et. al. [111, 112] originally suggested Euclidean distance in Rs (the L2-norm ) as an
appropriate ground distance `i j between image color signatures. Since color is a number, one
can use the normal notion of arithmetic. Texture is more challenging. Kauchak’s lecture [64]
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summarizes papers from authors including Rubner and Tomasi. He says the Gabor Filters can be
appropriate distance metrics for texture.

There is no universally accepted ground distance metrics for all settings, but the dominant
metrics used are Ld-norms:

Ld(p,q) =

[
n

∑
i=1
|pi−qi|d

]1/d

where p = {p1, . . . , pn} and q = {q1, . . . ,qn} . For “dimension” 0 < d < 1 the norm is a not a
metric since it violates the triangle inequality. However, for d ≥ 1 the Ld-norm is referred to as the
Minkowski metric and is the basis for many ground distance measures.

Statistical Similarity

Levina and Bickel [77] demonstrated that when the ground distance is a valid metric and the two
signatures have equal total weight (and can therefore be normalized) then EMD is equivalent to
Mallows distance. Mallows distance is a statistical measure used to characterize the similarity
between distributions, in much the same way as the χ2 test.

Assume for now that the signatures P and Q are normalized and therefore depict probability
distribution functions. Define the random variables: X ∼ P, Y ∼ Q and the joint distribution
between X and Y is defined: F ∼ (X ,Y ), where X ∼ P means that random variable X is distributed
according to distribution P . Mallows distance between the distributions P and Q is then defined
as the minimum expected difference between X and Y , taken over all valid joint distributions F :

Md(P,Q) = min
F
{(EF ||X−Y ||d)1/d : (X ,Y )∼ F,X ∼ P,Y ∼ Q} (4.31)

Table 4.2. EMD - Normalized Signatures

0 1 2 3 Y
0 0.25 0.25 0 0 0.5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0.25 0.25 0.5
X 0.25 0.25 0.25 0.25

Consider Table 4.2. The far right column represents the marginal distribution of Y and the last
row represents the marginal distribution of X . The interior of the table represents the joint distribu-
tion F that we are trying to find. Our goal is to find the joint distribution, subject to the constraints
that the joint and marginal distributions must be valid, i.e. sum to one. The expectation function
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in Equations 4.31 is identical to the transportation problem described in Equation 4.25, while the
row and column constraints also have equivalent counterparts in the transportation problem.

As noted previously, for signatures with the same total mass, the EMD is a true metric on
distributions, and it is identical to the Mallows distance. Normalizing signatures with the same
mass does not affect their EMD. However, EMD on signatures is not invariant to weight scaling
unless both signatures are scaled by the same factor. Levina and Bickel [77] describe this issue in
more detail.

Mallows distance between empirical distributions is given by:

Md(P,Q) =

(
1
n

min
( j1, j2,..., jn)

n

∑
i=1
|pi−q j|d

)1/d

where the minimum is taken over all permutation of {1, . . . ,n}. That is, we consider all possible
ways to match one cluster of P to one cluster of Q.

For one dimensional signatures, the Hungarian assignment algorithm, as a special case of the
transportation problem, solves the problem. let p(1) ≤ . . . p(n) and q(1) ≤ . . .q(n) be the ordered
signature values. The Mallows distance is the Ld distance between the ordered vectors:

Md(P,Q) =

(
1
n

n

∑
i=1
|p(i)−q(i) j|d

)1/d

Issues with EMD

All is not rosy, however, in the case where the signatures are not of equal mass. If one signature is
a partial match for another signature, then a degenerate situation develops.

The following example is from Levina and Bickel[77]. Consider the two signatures in Fig-
ure 4.6. Q is a partial match for P because q1 = p1 and q4 = p4. First consider the case where both
signatures are normalized. Then Q= {(1,0.5),(4,0.5)} and P= {(1,0.25),(2,0.25),(3,0.25),(4,0.25)}.
Then, using L1 as the ground distance, we find that M1(P,Q) = EMD1(P,Q) = 0.5. Alterna-
tively, if the signatures are not normalized and again use L1 as the ground distance, we find that
EMD(P,Q) = 0. In fact, the EMD remains zero even if we add an arbitrary number of new clusters
(bins) to P, because Q will still be an exact partial match.

Alternative EMD Formulations

As noted previously, EMD is a true metric for normalized signatures. True metric can lead to more
efficient data structures and search algorithms. When the two signatures to be compared are similar
in size then EMD behaves as an approximate metric. Pele and Werman[97] suggested a variation
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Figure 4.6. EMD Degenerate Case

of EMD that penalizes for unequal sizes. Assuming, without loss of generality, that ∑ pi ≥ ∑q j
introduce an additional infinite “demand” that absorbs the excess “supply” from P.

As before, solving the transportation problem (Equation 4.25) yields the optimum flow F∗.
EMD∗ is a variant of EMD that heavily penalizes the difference in sizes. EMD∗ is not normalized.
Thus multiplying EMD by the normalization in the first term of Expression 4.33 retrieves the
unnormalized EMD, which is then augmented with the penalty.

EMD∗(P,Q;F) =
(

min f ∗i j
∑i, j f ∗i j`i j

)
+ |∑i Pi−∑ j Q j|×α maxi, j{`i j} (4.32)

=
(
EMD∗∑i, j fi j

)
+ |∑i Pi−∑ j Q j|×α maxi, j{`i j} (4.33)

where, if α ≥ 0.5 and the ground distance is a metric, then EMD* is a metric. This alternative
provides relief in two important situations: first is when the total mass of the signatures is important
and second, when the mass difference between the signatures is important. One could define a
lesser penalty for unequal weights. However, for our application, the maximum distance gives
acceptable behavior.

Here are the primary differences between the method described in this section and the work of
McIndoe and Richards [83]. In this list M-R is short for Macindoe-Richards.

• MR use histograms with fixed spacing, which is inefficient as described above. We use
variable-width bins to capture structure information, using signatures instead of classic his-
tograms.
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• M-R require normalized histograms. We do not. Normalization is not necessary and using it
can lose critical information. In reality, the only requirement is that either the signatures are
of roughly equal volume or we use the alternative EMD metric to penalize size differences.
This permits comparison of graphs of vastly different sizes.

• M-R require that the structural metrics be statistically independent. In our method signatures
can be multi-dimensional and statistically correlated.

EMD as used in this section is a formal metric that measures the information difference between
two graphs. The similarity metric is equivalent to the Akaike Information Criteria. This metric
explicitly accounts for error introduced when comparing small graphs. (This is still being tested in
practice). One limitiation of the EMD metric is that it does not permit formal hypothesis testing of
similarity.
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EMD Example In this section, we give a simple one-dimensional example of EMD and EMD∗.
Consider the two one-dimensional signatures in Figure 4.7 and assume the L1-norm (Manhattan)
is the ground distance. The solution to the associated transportation problem outlined in Equa-
tion 4.25 is summarized in Table 4.3. The bold-type numbers in the last column are the weights for
Signature 1, shown in green in Figure 4.7. The bold-type numbers in the last row are the weights
for Signature 2, shown in red in Figure 4.7. Entry (i, j) of the table holds flow value fi j from
Signature 1 to Signature 2.
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Figure 4.7. Signatures for EMD Comparison

Table 4.3. EMD Calculation for Signatures in Figure 4.7

1 2 3 4 5 6 7 8 9 Signature 1

1 0.275 0.275
2 0.296 0.296
3 0.002 0.002
4 0.052 0.026 0.021 0.032 0.131
5 0.208 0.208
6 0.048 0.048
7 0.035 0.023 0.058
8 0.03 0.054 0.014 0.098
9 0.455 0.455

Signature 2 0.285 0.421 0.028 0.021 0.240 0.166 0.023 0.054 0.469

The total flow from Signature 1 to Signature 2 is ∑i, j=1,...9 fi j = 1.571, which is the total weight
of Signature 1. To compute EMD, we consider only the fi j values where i 6= j. Flow f42 = 0.052
contributes 2∗0.052 to EMD because the L1 distance between 4 and 2 is 4−2 = 2. Summing over
all off-diagonal elements, we have EMD = 0.173. Since the total weight of Signature 2 is 0.136
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larger than the total weight of Signature 1, the excess ’supply’ is absorbed in the EMD∗ distance.
Since the maximum distance is 8 and α = 1, we have:

EMD∗(P,Q;F) =

(
EMD∗∑

i, j
fi j

)
+ |∑

i
Pi−∑

j
Q j|×α max

i, j
{di j}= 1.36 (4.34)

4.2.3 Hierarchical Cluster Analysis

Given a measure of pairwise distances, we can use hierarchical cluster analysis to heuristically
compute similarities among larger groups of graphs. The algorithm begins with each object (graph
in this case) by itself and a matrix of pairwise distances. At each step, the algorithm finds the two
objects that are closest according to the distance measure (hence, most similar in some way), and
merges them into a new larger cluster. It then updatess the distance matrix by computing distances
between the new merged object and the other objects. A dendrogram, such as the one shown in
Figure 4.10 can represent this process, where each merge combines two branches. Usually the
merges are drawn “bottom up,” so the primitive graphs are leaves of the tree, and internal nodes
represent the merging of the nodes on the left and right sides. Looking “top down,” removing the
top horizontal bar breaks the set into two pieces. These pieces were the last to merge. We will
describe below how to interpret rooted dendrograms such as the one in Figure 4.10. Unrooted
dendrograms, such as the one in Figure 4.9, are easier to interpret. Edge distances are proportional
to distances between clusters. We focus on the dendrograms based on a precomputed distance
or similarity matrix. Alternative methods, which we do not consider here, include k-means, or
fuzzy clustering. We emphasize that dendrograms are a heuristic way to view the set of graphs,
approximately grouping graphs in each branch that are more similar to each other than to the rest
of the graphs.

Given an initial set of pairwise distances, there are a number of higher-level ways to compare
distances among sets of objects. That choice determines how to update the distance matrix after
a merge. The user must choose the best method based upon a particular application (that is, what
the graphs and feature vectors represent). Sometimes this just involves trial and error, though
an experienced user may gain insight over the course of many different applications. A non-
exhaustive list of higher-level combination methods include: Ward’s, single-link, complete-link,
average, McQuitty, median, or centroid. These are the set of combination methods availabe in
the R software package. We use the hclust method from the R statistical package to produce the
dendrograms in this report.

In single-link hierarchical agglomerative clustering, the distance between two clusters is based
completely on the similarity of the two most similar members (shortest distance). That is, given
clusters C1 and C2, the distance between them is the minimum distance between a primitive mem-
ber c1 ∈C1 and a primitive member c2 ∈C2. This is a local criteria. It tends to produce elongated
clusters that are sensitive to noise and outliers. In contrast, complete-link clustering bases the
group distance on the maximum distance between a member of one cluster and a member of the
other. The details of the other methods are more complex. We have directly copied Müllner’s [84]

56



excellent descriptive table into Figure 4.8.

To appreciate how dramatic the difference between clustering methods can be, Figure 4.9 de-
picts unrooted dendrograms created from the same distance matrix. The dendrogram on the left is
based on Ward’s distance update method and the dendrogram on the right is based on the complete
(maximum distance) method.

Example

We now give a simple intuitive example. Table 4.4 presents the Euclidean distance between ten
major U.S. cities. This matrix is analogous to our similarity matrix constructed using the Earth
Movers Distance metric.

Atlanta Chicago Denver Houston LosAngeles Miami NewYork SanFrancisco Seattle WashingtonDC
Atlanta 0 587 1212 701 1936 604 748 2139 2182 543

Chicago 587 0 920 940 1745 1188 713 1858 1737 597
Denver 1212 920 0 879 831 1726 1631 949 1021 1494

Houston 701 940 879 0 1374 968 1420 1645 1891 1220
LosAngeles 1936 1745 831 1374 0 2339 2451 347 959 2300

Miami 604 1188 1726 968 2339 0 1092 2594 2734 923
NewYork 748 713 1631 1420 2451 1092 0 2571 2408 205

SanFrancisco 2139 1858 949 1645 347 2594 2571 0 678 2442
Seattle 2182 1737 1021 1891 959 2734 2408 678 0 2329

WashingtonDC 543 597 1494 1220 2300 923 205 2442 2329 0

Table 4.4. City Distances

The first step in the hierarchical clustering process is to find the pair of samples (cities) that
are the most similar, that is are the closest in Euclidean distance. This pair is Washington D.C.
and New York with a distance of 205. We join them with a node (shown as a line) a height 205 in
Figure 4.10. We must replace the two elements in the distance matrix with a merged element, and
compute its distance to all other elements. For this example, we use the complete or maximum-
distance agglomeration method. For example, to compute the distance from Chicago to the NY-
DC cluster, we consider the distance between Chicago and each city in the cluster. The distance
between Chicago and New York is 713, while the distance between Chicago and Washington D.C.
is 597. The maximum is 713, so this becomes the distance between Chicago and the NY-DC
cluster. Table 4.5 gives the new distance matrix.

After agglomeration, we search the new distance matrix for the two closest objects (groups of
one or more cities). The closest pair is Los Angeles and San Francisco with a distance of 347. We
put a connection node between these two cities at height 347. The results of this agglomeration
are presented in Table 4.6. This procedure of finding the closest pair, agglomerating, and then
updating with maximum over all pairs across a cluster, continues until all leaves are joined into
a single connected dendrogram. The final series of agglomerations is summarized in Tables 4.7
through 4.12.

By choosing the maximum (complete) combination method, cities outside a cluster consider all
nodes inside to be as far away as the maximum. Consider the line on the dendrogram in Figure 4.10
that joins Miami on the left to a cluster of New York, Washington DC, Atlanta, and Chicago on the
right. This line represents the seventh agglomeration. That is, Table 4.10 represents the distance
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Figure 4.8. A table explaining the agglomerative combination
methods in R taken directly from Müllner [84]. d[a,b] is the dis-
tance between points/elements/clusters a and b.
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Figure 4.9. Clustering: Ward’s Method (left) vs Complete
Method (right) from the same distance matrix.

matrix before this agglomeration. The smallest entry in this matrix is 1188, the distance between
Miami and the Chicago-Atlanta-NY-Washington DC cluster. Because we used the maximum dis-
tance, we consider NY to be as close to Miami as Chicago (the farthest away in the 4-city cluster).
The line joining Miami to the 4-city cluster is at height 1188. This means that all four cities are no
more than 1188 miles from Miami.

To illustrate the effect of combination rule, we also show the dendrograms based on single
or minimum (Figure 4.11) , average (Figure 4.12) , median (Figure 4.14) , Ward (Figure 4.15) ,
and McQuitty (Figure 4.16) agglomeration methods. We used the hierarchical cluster method in
the R statistical package (the hclust) method, which accepts a combination rule as a parameter.
The minimum decision rule is seldom used since it generally results in clusters of leaves that are
more heterogeneous than is desired when performing clustering. The average method is a common
alternative in which the similarities are, as the name implies, averaged at each step.

Table 4.5. First Agglomeration

Atlanta Chicago Denver Houston LosAngeles Miami SanFrancisco Seattle NY-WDC
Atlanta 0 587 1212 701 1936 604 2139 2182 748
Chicago 587 0 920 940 1745 1188 1858 1737 713
Denver 1212 920 0 879 831 1726 949 1021 1631

Houston 701 940 879 0 1374 968 1645 1891 1420
LosAngeles 1936 1745 831 1374 0 2339 347 959 2451

Miami 604 1188 1726 968 2339 0 2594 2734 1092
SanFrancisco 2139 1858 949 1645 347 2594 0 678 2571

Seattle 2182 1737 1021 1891 959 2734 678 0 2408
NY-WDC 748 713 1631 1420 2451 1092 2571 2408 0
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Figure 4.10. Dendrogram (Complete, or maximum)

Table 4.6. Second Agglomeration

Atlanta Chicago Denver Houston San-LA Miami Seattle NY-WDC
Atlanta 0 587 1212 701 2139 604 2182 748
Chicago 587 0 920 940 1858 1188 1737 713
Denver 1212 920 0 879 949 1726 1021 1631

Houston 701 940 879 0 1645 968 1891 1420
San-LA 2139 1858 949 1645 0 2594 959 2571
Miami 604 1188 1726 968 2594 0 2734 1092
Seattle 2182 1737 1021 1891 959 2734 0 2408

NY-WDC 748 713 1631 1420 2571 1092 2408 0

Table 4.7. Third Agglomeration

Ch-At Denver Houston San-LA Miami Seattle NY-WDC
Ch-At 0 1212 940 2139 1188 2182 748
Denver 1212 0 879 949 1726 1021 1631

Houston 940 879 0 1645 968 1891 1420
San-LA 2139 949 1645 0 2594 959 2571
Miami 1188 1726 968 2594 0 2734 1092
Seattle 2182 1021 1891 959 2734 0 2408

NY-WDC 748 1631 1420 2571 1092 2408 0
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Table 4.8. Fourth Agglomeration

Ch-At-NY-WDC Denver Houston San-LA Miami Seattle
Ch-At-NY-WDC 0 1631 1420 2571 1188 2408

Denver 1631 0 879 949 1726 1021
Houston 1420 879 0 1645 968 1891
San-LA 2571 949 1645 0 2594 959
Miami 1188 1726 968 2594 0 2734
Seattle 2408 1021 1891 959 2734 0

Table 4.9. Fifth Agglomeration

Ch-At-NY-WDC Den-Ho San-LA Miami Seattle
Ch-At-NY-WDC 0 1631 2571 1188 2408

Den-Ho 1631 0 1645 1726 1891
San-LA 2571 1645 0 2594 959
Miami 1188 1726 2594 0 2734
Seattle 2408 1891 959 2734 0

Table 4.10. Sixth Agglomeration

Ch-At-NY-WDC Den-Ho Miami Sea-San-LA
Ch-At-NY-WDC 0 1631 1188 2571

Den-Ho 1631 0 1726 1891
Miami 1188 1726 0 2734

Sea-San-LA 2571 1891 2734 0

Table 4.11. Seventh Agglomeration

Mi-Ch-At-NY-WDC Den-Ho Sea-San-LA
Mi-Ch-At-NY-WDC 0 1726 2734

Den-Ho 1726 0 1891
Sea-San-LA 2734 1891 0
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Table 4.12. Final Agglomeration

Den-Ho-Mi-Ch-At-NY-WDC Sea-San-LA
Den-Ho-Mi-Ch-At-NY-WDC 0 2734

Sea-San-LA 2734 0

0
20

0
40

0
60

0
80

0
Single

City

D
is

ta
nc

e

H
ou

st
on

M
ia

m
i

C
hi

ca
go

A
tla

nt
a

N
ew

Yo
rk

W
as

hi
ng

to
nD

C

D
en

ve
r

S
ea

ttl
e

Lo
sA

ng
el

es

S
an

F
ra

nc
is

co

Figure 4.11. Dendrogram (Single or Minimum)
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Figure 4.12. Dendrogram (Average)
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Figure 4.13. Dendrogram (Central)
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Figure 4.14. Dendrogram (Median)
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Figure 4.15. Dendrogram (Ward)
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Figure 4.16. Dendrogram (McQuitty)
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Cautions

Phylogentic trees are a type of dendrogram that highlights the physical ancestry of the leaves. Our
dendrograms represent the similarity between graphs by way of the EMD metrics. The dendro-
grams that result depict, depending on the application, the similarity between the structure and
attributes of the graphs.

Agglomeration of leaves in no way implies that one graph is either an exact or approximate
subgraph of a merged set of leaves as would be the case for a phylogenetic tree.

4.2.4 Experiments

In this section we describe experiments with artificial data we can control, and we summarize our
application of this method to real data.

Tests with Eros-Renyi Graphs

To demonstrate the use of EMD as a similarity metric, we generated a truth set of graphs and
used the procedure described above to cluster the graphs into communities with similar structural
characteristics. The truth set consisted of 200 randomly sampled, undirected Erdős-Rényi graphs
(see Section 5.1). We selected the number of vertices randomly from the set N ∈ {50, 75,100,
300, 500, 750, 1000, 1500, 2000, 3000} and selected the mean degree randomly from the set
d̄ ∈ {1,2, . . . ,10}. The probability of a connection between any two nodes in a graph is therefore
approximately: p = d̄/N .

We constructed six sets of 200 graphs using different initial random seeds and then randomly
selected 200 graphs from the 1200 graphs we generated. We generally had multiple instances of
graphs generated with the same pair of parameters to represent variation in the graph structure
even with identical combination of {N,d}. We label each sampled graph as gi−N− d̄, where the
subscripts i, N, and d refer to, respectively, a serial number for graphs with the same parameters,
number of vertices, and the average degree used to generate the graph.

We generated the pair-wise similarity metric (EMD) for all pairs of the 200 graphs, creating a
200×200 distance matrix characterizing the similarity between the graphs. Figure 4.19 shows the
dendrogram for this distance matrix based on Ward’s method for combining clusters. Another way
to visualize the dendrogram distances is the heat map, the colored matrix in Figure 4.19. There
is a matrix square for each pair of graphs (G1,G2) with a coloring representing the dendrogram
distance between the two graphs. This is the height of the node created when those two graphs
first merged (that is, when a cluster holding graph G1 first merged with a cluster containing graph
G2). Thus in the city-based example in Section 4.2.3, the distance from Miami to each of the
four cities (Chicago, New York, Atlanta, and Washington DC) is 1188. All four squares have the
same value. The heat map is symmetric across the diagonal. Darker red indicates higher similarity
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(lower distance) and lighter colors indicate higher dissimilarity.

Figure 4.17 depicts a simple dendrogram of the clusters of our 200 samples of Erdős-Rényi
graphs using Ward’s method. Figure 4.18 depicts an enlarged perspective of the lower right of this
figure. Generally graphs of similar size, N, and similar sparseness, e.g. similar average degree d
tend to be close in the tree. In addition, graphs with the same characteristics from different simula-
tion runs are also generally clustered. There is no consensus among researchers what the “correct”
dendrogram should be. So methods for validating this kind of experiment are an interesting open
question.

Figures 4.20 and 4.21 show a dendrogram and its heat map for the same Erdős-Rényi graphs,
but using the complete metric instead of Ward’s.

A Real Application

While the Erdös-Rényi-based clustering provides some measure of the success of the approximate
matching algorithm, a stronger demonstration of the potential of the algorithm is its use as a library
search tool. Consider the situation where we have a new graph, observed in the “wild”. We wish
to find similar graph(s) from within a known library of graphs. The library might be associated
with patterns of network behavior or cellular function. A graph from the wild might represent an
unknown, potentially toxic cellular function. We can search the library for graphs with similar
structural characteristics with the hope of gaining insight into the nature of the observed graph.
Figure 4.22 depicts the results of a sample retrieval where the library is queried for the three
closest matches to the “wild graph.” Again, the size and mean degree of the retrieved graphs are
similar to the characteristics of the unknown graph. The search also gives the user estimates of the
distance (dis-similarity) between the observed graph and those in the library.

Other Applications

Figure 4.23 depicts another application where there is benefit characterizing the similarity between
graphs. Graphs based on network traffic are noisy: servers drop off, isolating segments of the
network, websites are down for maintenance, users are absent due to travel, etc. The result is that
tracking or monitoring network traffic to identify anomalous behavior can be difficult if this noise
is not considered. The availability of a network similarity measure provides a statistical metric
similar to that used in production control charts to detect significant deviations of the network
from ’normal operation’ without having to explicitly characterize what is meant by ’normal’.
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Figure 4.17. Dendrogram Clustering of Erdős-Rényi Graphs

67



g6
_3

00
_1

0
g5

_5
00

_1
0

g3
_5

00
_1

0
g4

_5
00

_1
0

g6
_3

00
_9

g3
_5

00
_9

g4
_5

00
_9

g5
_5

00
_9

g3
_1

00
0_

10
g6

_7
50

_9
g6

_7
50

_1
0

g4
_1

00
0_

10
g5

_1
00

0_
10

g3
_5

00
_8

g6
_3

00
_7

g6
_3

00
_8

g4
_5

00
_8

g5
_5

00
_8

g4
_2

00
0_

10
g5

_2
00

0_
10

g3
_2

00
0_

10
g6

_1
50

0_
9

g6
_1

50
0_

10
g3

_1
00

0_
9

g4
_1

00
0_

9
g5

_1
00

0_
9

g3
_1

00
_1

0
g4

_1
00

_9
g5

_1
00

_9
g3

_1
00

_9
g4

_1
00

_8
g4

_1
00

_1
0

g5
_1

00
_1

0
g3

_1
00

_8
g5

_1
00

_8
g6

_7
5_

8
g4

_1
00

_7
g3

_1
00

_6
g6

_7
5_

7
g6

_7
5_

10
g3

_1
00

_7
g5

_1
00

_7
g6

_7
5_

9
g6

_3
00

0_
9

g4
_2

00
0_

8
g3

_2
00

0_
8

g5
_2

00
0_

8
g3

_5
00

_6
g4

_5
00

_6
g5

_5
00

_6
g6

_7
50

_7
g3

_1
00

0_
7

Figure 4.18. Dendrogram Clustering of Erdős-Rényi Graphs
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Figure 4.19. Heatmap of Similarity Clustering (Ward’s method)
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Figure 4.20. Dendrogram Clustering of Erdős-Rényi Graphs -
Complete
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Figure 4.21. Heatmap of Similarity Clustering- Complete
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Graph from Wild Graphs found in  Library

Figure 4.22. Library Search
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dis-similary boundary

anomaly

Figure 4.23. Anomaly Detection Via Similarity Metric Monitor-
ing
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Chapter 5

The Local Structure Graph Model

This section describes a new probabilistic graph model, the local structure graph model (LSGM).
This material will form the background material and the first of three or more technical chapters
in Emily Casleton’s PhD thesis at Iowa State University. This LDRD project supported Emily’s
research for two years.

The wide variety of applications from various disciplines for which networks have been em-
ployed demonstrates the flexibility of networks as a modeling tool. However, this diverse array of
problems has led to a diverse array of solutions from a diverse array of disciplines. Many of the
models or methods developed for the analysis of networks have been specific to the application or
worse, observed network, and thus most are ad hoc and not appropriate for other types of observed
networks [128]. In this section, we present and explore some attributes of a newly-constructed
model for the statistical analysis of observed graphs, the local structure graph model (LSGM). We
did not develop the LSGM with a specific application in mind and thus it does not suffer from
the over-fitting that is sometimes seen in current graph analysis methods. However, the model is
extremely flexible and should be applicable to many applications.

Snijders et. al. [120] described the ERGM and a subclass of the latent variable models, the latent
space models, as the two competing models for probabilistic modeling and statistical analysis
of social networks. Although specific applications may be well-suited for one approach or the
other, there are many instances where both would be applicable. Each method presents advantages
and challenges with a short list presented in Table 5.1. Snijders et. al. [120] call models that
integrate the advantages of both approaches while minimizing the difficulties “the next generation”
of models. The LSGM is a member of this new wave of graph analysis models.

Then Section 5.2 provides an overview of the newly-developed model for graph analysis, the
LSGM. The LSGM is a probabilistic graph analysis technique, with similarities and differences
between both of the existing statistical modeling techniques: the ERGM and the latent variable ap-
proaches. In Section 5.1, provides relevant background about other random graph analysis methods
and models including ERGM and latent variable approaches.

The two distinguishing features of the LSGM are a conditional specification and a neighbor-
hood definition. Similar to the latent variable approach, the model is specified through full condi-
tional binary distributions; however, in the LSGM the random variables of interest, i.e., the edge
variables, are not conditionally independent. Rather they exhibit a Markov dependence where
edges are conditionally dependent on edges that belong to the same neighborhood. Thus, the defi-
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Advantage Disadvantage
ERGM ? Scientific justification of statis-

tics
? Incorporate many network fea-
tures

? Degeneracy
? Likelihood intractable
? Cannot account for unobserved
structure

LVM ? Computationally tractable
? Not degenerate
? Can handle data that is missing
at random

? Cannot model some dependen-
cies, such as transitivity

Table 5.1. Comparison of the strengths and weaknesses of the
two probabilistic modeling approaches to network analysis: the
Exponential Random Graph Model (ERGM) and Latent Variable
Models (LVM).

nition of neighborhoods defines the dependence structure. The neighborhood structure explored in
this section is incidence, or two edges are neighbors if they share a node; however, the model can
incorporate a more general neighborhood definition. To prevent neighborhoods from becoming
too large, a problem that can lead to model degeneracy [115], we analyze nodes in a geographical
setting, either observed or imposed. From this space, a “circle of influence” around the nodes
restricts the number of potential edges.

Explicit identification of neighborhoods differentiates the LSGM from the other two methods.
Due to the conditional independence of edge variables, there is no neighborhood structure for the
latent variable models. In an ERGM, the choice of statistics in the negpotential function (5.5)
implies a dependence structure and thus neighborhood specification. However, the induced neigh-
borhood structure is rarely of interest and often meaningless. One advantage of the neighborhood
definition is its ability to explain and control local dependencies. This leads to a more straight-
forward interpretation of parameters which, in turn, leads to a better understanding of a common
issue with the ERGM: model degeneracy. Another benefit of conditional specification is that it is
possible to compute a probability for all edges, not just observed edges.

Section 5.2 contains a more detailed argument for the LSGM with focus on the combination
of conditional specification and neighborhood definition and the advantages of these features. We
explore various ways this method can generate random graphs and examine the features of the
resulting graphs. In its simplest form, the LSGM has two parameters. We demonstrate the effects
of these parameters through simulation studies. Finally, we estimate the parameters from a realized
network with a detailed interpretation of the fit.
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5.1 Background: Random Graph Models

Most of the modern methods of network modeling and construction can be traced back to the often
misinterpreted Erdös-Rényi graph. Two equivalent specifications of this model were proposed at
approximately the same time in 1959. In a series of papers, Erdös and Rényi [65] specified a
random graph model where the number of nodes, n, and the number of edges, m, are fixed and a
uniform distribution is placed on all N possible graphs, where

N =

((n
2

)
m

)
In the same year, Gilbert [35] proposed an equivalent specification of the model. Gilbert’s spec-
ification considers all graphs with a fixed number of n nodes and edge formation according to a
constant, independent probability p assigned to each of the

(n
2

)
pairs of nodes. From this specifica-

tion, the likelihood of a particular graph can be represented as a binomial distribution. In an unjust
twist of history, this second specification proposed by Gilbert is is often referred to as the Erdös-
Rényi graph. Some researchers do acknowledge Gilbert’s contribution, referring to this model as
the Erdös-Rényi-Gilbert model. It is also called the Bernoulli graph [47], Poisson model [21], or
classical random graph model [65].

Kolaczyk [65] defines a (random) network model as the collection

{Pθ (G),G ∈ G ;θ ∈Θ}

where G is the set of all possible graphs and Pθ is a probability distribution over G with param-
eter vector θ . We discuss three common approaches to specifying a random-graph model. The
first method is to restrict the set of graphs under consideration, G , by identifying a desired set of
features, such as the number of nodes and edges. As in the specification of Erdös and Rényi, Pθ is
then specified as a uniform distribution over the resulting set of possible graphs. The next approach
to specifying the model is to induce Pθ through an algorithmic generating mechanism which simu-
lates a graph. Random variables are often assigned to certain components of the generative process
and probability distributions specified for the random variables. A limitation of this method from a
statistical viewpoint is the frequent lack of a likelihood function for the entire graph. Although the
generative algorithm may induce Pθ , in most instances it is prohibitively difficult to formulate and
is rarely, if ever, attempted. The last approach is to explicitly specify Pθ by associating subgraph
configurations and covariate information with graph topology of interest. This is the approach
taken by most statisticians in the field of network analysis.

The three approaches to model specification are not mutually exclusive nor do they encompass
all possibilities. For instance, the Erdös-Rényi-Gilbert model can be cast as a model which fits into
all three categories. Some generative methods have only partial probability structures. Thus, it is
not clear how to take a graph generated through some of the methods and perform a probability
analysis.

The next two subsections introduce some of the contributions to the field of network science.
The previous work is divided into that with a focus on “Algorithmic Construction” and that with
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a focus “Probabilistic Modeling”. Models under “Algorithmic Construction” mostly fall under the
first two approaches of network model specification. For most of the models discussed in this
section there is a lack of interest in a likelihood function. In contrast, models discussed in the
“Probabilistic Modeling” section are defined by a likelihood and thus follow the third approach to
network model specification. Neither section represents an exhaustive list of the proposed methods
and models in the literature, as the field of network science is vast and quickly evolving.

Most of the discussion concerns simple graphs, or graphs with unweighted edges and no self-
loops, although we extend this where necessary. Edges of the graph can be directed or undirected.
We assume that the graph is observed at a single point in time, thus ignoring recent work on
dynamic aspects of networks. Let V represent the set of vertices, or nodes and E the set of edges
between pairs of nodes. Assume there are |V | = n nodes and |E| = m edges. In this section, we
represent a graph G by edge values collected into Y, the n×n adjacency matrix. Each entry Yi j a
binary random variable designating the presence, Yi j = 1, or absence, Yi j = 0, of an edge between
nodes i and j. We represent a realization of the graph as y.

Lastly, although the term graph is often referred to as the mathematical representation of a
network, the two terms will be used interchangeably throughout this section. We attempt to keep
the notation consistent, rather than retaining what individual authors use. See Table 5.2 for a list
of notation for this section.

5.1.1 Graph Analysis: Algorithmic Construction

The defining feature of the graph analysis techniques that will be discussed in this section is the
absence of a likelihood function of the entire graph, either from a lack of consideration or from
an inability to discern the functional form. This work has been published largely in the computer
science and statistical physics literature where the focus is on the ability to generate “realistic”
graphs. Researchers in this area have condensed networks of interest into common, seemingly
important features. The goal of the proposed graph-generation algorithm is to quickly generate a
graph with as many of the important features as possible. These algorithms may require parameter
specificagtion and there is often probability involved in the formation and deletion of edges. How-
ever, given an observed network, these models cannot usually estimate values for the parameters,
quantify uncertainty, or account for measurement error.

The argument for algorithmic graph generation is to gain an understanding of the processes
that lead to the formation of an observed graph [75]. Often the network to be analyzed is observed
at a single point in time. Intuitively, if the algorithm results in a graph comparable to the observed
network, it is plausible that the observed graph arose as a result of operations similar to those taken
by the algorithm. Understanding the graph formation procedure can lead to an ability to detect
abnormalities in another observed network, allow one to compress a large network into a smaller
one with the same features [21], or to extrapolate and test out scenarios on graphs which cannot be
observed [75], e.g., the Internet in five years. It can also enable more rigorous testing of algorithms
designed for networks that “look like” the single example.
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Three features are commonly observed in “real” networks [73]: a skewed or heavy-tailed de-
gree distribution, a small diameter, and clustering. Generators aim to emulate these three features
exactly as they appear in a network of interest, in addition to as many other features as possible.
For example, a recently proposed model boasts the ability to simulated graphs which match real
networks on 11 network characteristics [38]. We describe only the three generally agreed upon,
most important features.

The degree of a node is the number of edges incident with the node [113]. In an undirected
graph, the degree of node i, denoted d(i), is found by summing over either the ith row or column
ofthe adjacency matrix, d(i) = Y+ j = ∑

n
j=1Yi j. The degree distribution is the collection of degrees

for all nodes in the graph, {d(1),d(2), . . . ,d(n)}. Many networks of interest contain a few nodes
with a large degree while a majority of the nodes have a small degree. There are generally nodes
at all scales in between, with lower-degree vertices more frequent. In a social network such as
Facebook, this implies there are a few popular people, e.g., celebrities, while most people have
far fewer connections. In a graph of the Internet, there are a few websites to which many other
sites link, e.g., Wikipedia, Google, while a vast majority have substantially fewer. This phenomena
suggests the degree distribution is heavily right skewed. Historically, one common example or, is
a power law with probability density function of the form

p(d(x)) = A×d(x)−γ (5.1)

where A> 0 and γ > 1 is the power law exponent. Networks with this property are called scale-free
graphs [10]. The value of γ is often used as a metric to determine how well the algorithm was able
to replicate the degree distribution of the observed network [7], although estimation of the exponent
is not straightforward nor is the method to compute it consistent. For example, Chakrabarti and
Faloutsos [21] list seven of the more commonly used methods.

The second important feature is a measure of graph connectedness. Distance between nodes
in graph theory is defined as the number of edges on the shortest path between them. If no such
path exists, the distance is defined to be infinity. A graph is connected if all distances are finite
and unconnected otherwise. The diameter of the graph is the maximum distance between all pairs
of nodes [44]. If the graph is disconnected, often is suffices to consider the largest connected
subgraph [113]. Alternatively, one can compute the effective diameter, which is the minimum
number of edges between some, often large, percentage of the pairs of nodes [21]. The length of
the diameter in empirical networks is quite small, especially compared to the size of the network,
resulting in the “small-world” effect. For example, Watts and Strogatz [132] examined a graph
with 225,226 movie actors as nodes with an edge between actors in the same film. The diameter
of the largest connected component was 3.65In the same work, Watts and Strogatz found the US
power grid, represented as 4,941, nodes had a diameter of 18.7.

Clustering is the final important feature for graph generators to replicate. This phenomena
refers to the large number of triangles in an empirical network. Transitivity is a related concept.
In a social network setting, transitivity implies that two individuals are more likely to be friends if
they share a common friend over two individuals chosen from the population at random. Newman,
Watts, and Strogatz [86] claim the probability is several orders of magnitude greater for nodes with
a distance of two between them. The clustering coefficient C quantifies the amount of clustering.
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This statistic is the proportion of the length-2 paths, or “wedges,” that are closed and thus form a
triangle as is shown in the formula below.

C =
3×Number of triangles

Number of length-2 paths
(5.2)

Empirical networks have a larger value of a clustering coefficient than if edges were formed at
random. The movie actor example of [132] has a clustering coefficient of 0.79, so 79% of possible
triangles were closed. The authors contrast this with a single graph of the same number of nodes
and edges generated by placing the edges at random which resulted in a clustering coefficient of
0.00027.

Researchers have identified som limitations of the graph generation algorithmic approach to
network analysis. First, although the algorithms attempt to recreate as many features of the realized
network of interest as possible, there is no consideration as to if these features are sufficient or
necessary descriptions of network structure [28]. The important features are chosen because they
appear frequently in observed graphs, although recent analysis suggests some features are not as
ubiquitous as previously believed [38]. In fact, Bar, Gonen and Wool [7] suggest that the power law
degree distribution demonstrated in the Autonomous Systems (AS) network, a crucial component
of Internet connectivity, may be a consequence of the manner in which the data were collected.
Descriptions used to summarize the algorithms do not explore the full parameter space [38] and
are given as point estimates without a measure of uncertainty, and thus the summary quantities of
the “real” networks can be highly misleading [28].

Statistical methods for estimating the model parameters of observed data are also lacking [28].
When statistical methods are used, they are sometimes applied incorrectly or without regard for
assumptions. As an example, one way to estimate the power law exponent (γ in Equation 5.1) is
to plot the degree distribution on a log-log scale and estimate the slope either through ordinary
least squares or visual inspection. This approach has been used even in the presence of strong
non-linearity [38]. There is no ability to account for or quantify measurement error or biased data.
Again, Bar, Gonen, and Wool[7] suggest that up to 50% of the edges in the AS network are not
observed; however, even with this acknowledgement, the authors claim they “cannot model data
that are unknown”.

Despite the statistical limitations of graph generating algorithms, a lot of attention has been
given to the approaches in the statistical physics and computer science literature. In 2010, Ko-
laczyk [66] speculated that at least 2/3 of the published work on network analysis focused on
descriptive methods. We discuss a few historically important and illustrative examples of graph
generating algorithms. Many of the algorithms not included in the discussion are slight variations
of those considered. Those discussed are a very small fraction of the algorithms available as [38]
stated, ”Alternative graph generation mechanisms appear every day”.
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5.1.2 Random Graph Models

Random Graph Models are those for which the set of possible graph G has been defined and equal
probability is place on each graph, G ∈ G . Models of this type are those specified according to the
first approach discussed by Kolaczyk [65]. A random graph model is then completely determined
by the set of plausible graphs of interest. This can be accomplished in one of two ways: by explic-
itly stating the set or by determining the possible graphs that could arise from a graph generation
algorithm.

As was mentioned in Section 5.1, the Erdös-Rényi-Gilbert model can be cast as all three types
of model specification. To partially justify this claim, we discuss this model as a random graph
model. In this context, the Erdös-Rényi-Gilbert model is often referred to as the classical random
graph model or just the random graph. With the specification of Erdös and Rényi, the set G is
defined as all graphs with a n nodes and m edges for fixed numbers n and m. Gilbert’s specification
of this model can be considered a graph generation scheme. Goldenberg et. al. [38] refer to models
that were originally proposed to describe a single, static network, but can be cast as a process to
generate a graph as “pseudo-dynamic”. For the Erdös-Rényi-Gilbert model, the process begins
with n disconnected nodes. Each pair of nodes is considered in turn and an edge is added between
them with probability p = m/

(n
2

)
, independent of all previous edge decisions. The set of nodes

remain fixed and once an edge is added, there is no mechanism to remove it.

One advantage of the Erdös-Rényi-Gilbert model is that many properties can be calculated ex-
actly [86]. Much attention has been given to “phase changes” [28] or “phase transitions” [21]. One
such transition occurs occurs at λ = pn = 1. For λ < 1, the graph will contain small, disconnected
groupings of edges. The phase associated with λ > 1 is characterized by one giant component
[28]. A giant component is defined as a strongly connected set of nodes containing a majority of
the nodes of the graph [65] which scales up with the size of the network. Newman, Watts, and
Strogatz [86] add the existence of a giant component to the list of features desired in a graph that
represents reality. Because of this giant component, graphs simulated for λ > 1 do possess the
small-world property. However, these graphs fail to reproduce the other two important features
observed in empirical graphs from the “real world” [21]. The degree distribution of the Erdös-
Rényi-Gilbert model is Binomial and approaches a Poisson as n→ ∞ and therefore, the graphs
resulting from the generative method are not scale-free. Because the edges forming independently,
there is no pressure for triangle formation and thus the graphs lack the desired clustering. Often,
the Erdös-Rényi-Gilbert model is used as a “straw-man” model, as newly proposed algorithms
demonstrate their worth by comparison to the Erdös-Rényi-Gilbert model.

In order to address some of the shortcomings of the classical random graph model, one pro-
posed solution is to restrict G to only graphs with desired properties and make each of these graphs
equally likely. Graph generation algorithms of this type are called generalized random graph mod-
els. Modifications to the set G are intended to produce graphs with feature such as small clusters
of highly connected nodes, more triangle closures [28], or most commonly a specified degree dis-
tribution [2]. For this last type of restriction, the number of nodes and the degree distribution of the
graph are fixed. Thus, the set of possible graphs in this generalized random graph model is a subset
of those allowed under the Erdös-Rényi-Gilbert model, given Erdös and Rényi’s specification. We
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focus on restrictions to G which fix the degree distribution.

The method to simulate a graph with a specified number of nodes and a marginal degree distri-
bution is as follows. Begin with a graph of n unconnected nodes. Each node is randomly assigned
a degree or number of edges to which the node is an end point. Nodes are then joined until none of
the nodes have any extra degrees. The standard algorithms developed to perform this last step are
the matching algorithm and switching algorithm, discussed in [65]. Alternatively, the Chung-Lu
model [2] begins with a list of node degrees, not necessarily drawn from any distribution. The final
graph matches the desired distribution asymptotically, but individual nodes can have degrees other
than the desired degree.

Like the classical random graph model, mathematical properties for the generalized random
graph model where the degree distribution is fixed can be solved in the limit of large n. Specifically,
if the degree distribution is fixed as a power law of form shown in Equation 5.1, the existence of
a giant component, as well as its size, can be determined as a function of A and the power law
exponent, γ . Under this approach, the diameter and average path length of the graphs in this set
can also be determined [2]. More generally, if the specified degree distribution is not necessarily a
power law, the emergence of the giant component can be computed based on the first two moments
of the degree distribution and its size as a function of the number of nodes n.

The criticism of the generalized random graph model is that it often only matches the degree
distribution, and if the giant component exists the small world property, but often fails to account
for the high level of transitivity, the third important feature for graph algorithms to consider. In
addition, Krivitsky et. al. [70] note that this model cannot distinguish between two graphs which
have the same degree distribution but with structure that differs according to other metrics.

5.1.3 Small World Models

Network analysis began with the classical random graph model and a goal of understanding its
properties. As the number and availability of observed networks increased, the limitations of the
classical random graph model as a representation of reality became more clear. This realization
prompted what Kolaczyk [65] refers to as a significant historical shift in the approach to network
analysis. The move was away from a theoretical understanding of the random graph model and to
the creation of models designed to explicitly generate a graph with features of interest. Clearly,
the generalized random graph model could be considered of this type with its ability to recreate
a specified degree distribution exactly. A seminal work that helped to spur this change to graph
generation is Watts and Strogatz [132] which introduced the small-world model.

A small-world model is highly connected and transitive [38], resulting in a small diameter but
large value of the clustering coefficient of Equation 5.2. The combination of these two features is
not possible with the random graph model because as the number of nodes increases the diameter
also increases, while the clustering coefficient is inversely related to the number of nodes [65].
Watts and Strogatz [132] envisioned a spectrum of randomness for networks. At one extreme is
the regular graph which exhibits no randomness. In a regular graph, all nodes have the same degree.
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(a) Regular, p = 0 (b) Small World, p = 0.2 (c) Random, p = 1

Figure 5.1. Demonstration of the Small-World model of [132].
The graphs increase in randomness from right to left.

A particular regular graph of interest to Watts and Strogatz is has n nodes equally spaced on the
circumference of a circle and each node is connected to its closest k neighboring nodes. There will
be an edge between node i and the closest k/2 nodes clockwise on the circle and k/2 in the counter-
clockwise direction from node i. An example with n = 20 and k = 4 is shown in the far left plot of
Figure 5.1. This kind of regular graphs is valuable as they result in a high value of the clustering
coefficient, C. At the other end of the randomness spectrum is what Watts and Strogatz [132]
refer to as a random graph. A random graph contains the same number of edges, m = kn, where
each edge connects two nodes chosen independently and at random, excluding the possibility of
self-loops and multi-edges. An example of a random graph with n = 20 and m = 4× 20 = 80
is shown on the far right of Figure 5.1. The advantage of a random graph is the small diameter,
or small-world behavior. The Small-World model, also known as the Watts-Strogatz Model, is a
compromise between the regular and random graphs on the randomness spectrum, which is able to
retain both advantageous features, the high clustering of the Watts-and-Strogatz regular graph and
the small-world property of the random graph.

The small-world model can also be cast as a generation mechanism and thus is a “pseudo-
dynamic” model as defined by [38]. The process of generating a small-world model begins with a
regular graph of n nodes each with k connections. Each edge is considered in turn and has a fixed,
independent probability p of being rewired. If an edge is to be rewired, one node of the edge is
relocated to a different node, chosen uniformly from the remaining n− 2 nodes. Again, care is
taken to avoid self-loops and multi-edges, thus the number of edges remains constant at m = kn.
The middle plot of Figure 5.1 shows a small-world network with probability to rewire each edge,
p = 0.2. The parameter p controls the amount of randomness. In the extremes, p = 0 implies that
no edges are rewired, resulting in the regular graph. A p = 1 implies that all edges are rewired and
thus a random graph is simulated.

The disadvantage of the small-world model is that it does not produce graphs with a power
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law degree distribution. The regular graph will have a degenerate degree distribution as all nodes
have degree k and the random graph has a Binomial degree distribution. The small-world model
will have a degree distribution somewhere between the two extremes; however, the value of p
is often chosen to be small and thus the degree distribution more often resembles the degenerate
distribution of the regular graph. In addition, there do not exist formal statistical methods to assess
the fit of this model to empirical networks nor to examine the evolution of the Small-World model
[38]. The properties of the Small-World model are not as easily accessible as the random graph
models of Section 5.1.2. Kolacyzk [65] describes this as an “open problem”, although there have
been some attempts.

5.1.4 Preferential Attachment

The preferential attachment models are network growth models [65] since they are designed to
model the evolution of a network over time. The basis of the modern varieties of preferential at-
tachment models was developed by Barabási and Albert specifically to model the expansion of
the World Wide Web (WWW). The authors were motivated by the observation that new webpages
tended to form links to the more popular, currently existing pages. The rationale behind the ap-
proach has been referred to as the rich get richer or cumulative advantage [21] and is related to
Zipf’s Law and the Chinese Restaurant Process [128].

In contrast to the network approaches previously discussed, the preferential attachment models
allow for network growth through the addition of nodes. The process of generating a network
begins with n0 nodes and m0 edges. At each iteration one new node is added to the network with
q < n0 edges to existing nodes. The probability a new node connects to an existing node v is
proportional to v’s degree. Thus, if d(v) represents the degree of node v, the probability node v
will connect to the newly added node is

pv =
d(v)

∑i d(i)
(5.3)

After t iterations the graph will contain n0 + t nodes and m0 +qt edges. An important property of
the preferential attachment model is that it produces graphs which are scale free. In fact, as the
number of iterations grows, the power law exponent γ approaches 3 [65] regardless of the number
of nodes added at each iteration, q [21]. The resulting graph also exhibits a small-world behavior.
Asymptotic bounds have been determined for the diameter of the preferential attachment graphs
which related to the number of nodes logarithmically [76].

There are numerous limitations of the networks produced by the original inception of the pref-
erential attachment method. First, the diameter growth as the number of nodes increases may not
match realistic graphs as some recent evidence suggests the diameter may actually shrink as the
network grows [75]. The small-world behavior is present but the model does not include a knob to
control it [128]. Another feature that is not controlled within the model is the power law exponent
which always approaches γ = 3. Although the shape of the degree distribution, particularly the
tails, may change as new nodes are added, the average degree remains constant at q. Empirical
evidence suggests that as a network grows the average degree should increase rather than remain

84



constant [21]. Next, the model is unable to produce networks with a dense core and leaves be-
cause new edges are added in sets of size q [7]. It does not produce graphs with several connected
components or isolated nodes [21]. The model was developed for simulating undirected graphs.
Modifications have been attempted to produce a directed network, but were unable to recreate
reciprocity [17].

When a deficiency of the original preferential attachment model is presented, it is often fol-
lowed with a modified version that addresses the stated inadequacy. The simplicity of the approach
has also led to its many extensions. Chakrabarti and Faloutsos [21] detail ten of these extension
and which inadequacy of the original preferential attachment model it addresses. For example, the
initial attractiveness model allows for a more general power law by adding a parameter A to the
edge connectivity probability in Equation 5.3 so that it becomes

pv =
d(v)+A

∑i[d(i)+A]

with the resulting power law exponent γ = 2+ A
q . A more elaborate variation is the forest fire model

presented in [76]. This model results in networks that are scale free, have a decreasing diameter,
an increasing average degree, are directed, and allows for community structure. Two additional
parameters are used in this model: a forward burning probability, p f b, and a backward burning
ratio, rbb. At each iteration, a new node is added to the graph and edges are added according to the
following steps:

1. Choose an “ambassador node”, w uniformly at random from the existing nodes of the graph.
Form a link from the new node to w.

2. Draw a random number, n1 from the binomial distribution with mean (1− p f b)
−1.

3. Choose n1 of the currently existing edges of node w. Select edges that are directed to
node w with probability rbb times less than edges that are directed away from node w. Let
w1,w2, . . . ,wn1 represent the nodes at the other ends of the edges selected.

4. Connect the newly added node with a directed edge to w1,w2, . . . ,wn1 .

5. Repeat steps 2 and 3 recursively for each of the w1,w2, . . . ,wn

Extensions to the forest fire method allow isolated nodes, or orphans, to choose multiple ambas-
sador nodes.

The preferential attachment models are an example of how many of the algorithmic graph gen-
erators are applied to create networks and the forest fire model an example of how complicated
the algorithms can become. Simulated networks resulting from these models are mostly used as
a basis of comparison to certain characteristics of realized networks. The goal is for the simu-
lated networks to match the realized graphs of interest on the characteristics studied. Metrics and
statistics have also been developed to test the resemblance of the simulated graph to the network
of interest. Often these values relate back to the three main features of a network. Little effort has
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been made to statistically fit the models to network data or attempt to estimate the parameters of
the model for a given observation. However, code in the newly-released FEASTPACK [67] does
contain methods for estimating parameters for the BTER model [117].

5.1.5 Graph Analysis: Probabilistic Modeling

In contrast to the algorithmic graph generators of the previous section, the models described in this
section can be described with a likelihood function. Therefore, it is possible to formulate a statisti-
cal model for an entire graph with a joint distribution and to conduct statistical inference. Models
described in this section are able to estimate controlling parameters and determine probability for
a realized graph, and assess the fit of the model. Although it is possible to generate graphs from
this model, these models go beyond generation.

We discuss in detail two broad classes of probabilistic modeling of random graphs that are
common in the literature. First, is the Exponential Random Graph Model (ERGM). This model
specifies a joint distribution for the collection of variables that represent the edges with a goal of
describing global network features through interactions of local edge configurations. Conversely,
the models categorized as Latent Variable Models focus on the properties of the individual nodes
[60] of the graph. This category encompasses a wider range of hierarchical graph models. The
common thread between these models are that the edges variables are specified as conditional
distributions considered to be independent given some latent variable, such as block membership
or position within a social space.

5.1.6 Exponential Random Graph Models

Exponential Random Graph Models (ERGM) are possibly the most widely used and extensively-
studied model that falls under the category of probabilistic modeling. The models arose out
of collaborations between sociology, psychology, and statistics and were originally developed
to model social networks. Unlike many of the other analysis techniques discussed, the ERGM
has been applied to more than just that area in which it was originally intended, such as biol-
ogy/medicine [43, 118]. Its popularity can be attributed to the ERGM’s ability to represent graph
topology while allowing for complex dependencies.

Introduction An ERGM is specified as a joint distribution for Y in the exponential family form
[65]. The use of the exponential family is attractive because the sufficient statistics are explicitly
tied to parameters and are equal to their expected values [55]. The functional form of the joint
distribution can be represented as

Pr(Y = y) =
1
κ

exp

{
∑

T⊆C
θT gT (y)

}
(5.4)

where
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• C is the set of all paris of nodes that could possible be joined by an edge; almost exclusively
this is all pairs of nodes, so |C|=

(n
2

)
• T ⊆C is a subset of the possible edges and is often referred to as a configuration

• θT is the parameter corresponding to configuration T

• gT (y) = ∏
(i, j)∈T

yi j is a network statistic, which is equal to 1 only when the configuration T

occurs in y

• The summation in the exponent is referred to as the negpotential function

Q(Y) = ∑
T⊆C

θT gT (y) (5.5)

• κ = ∑
Y

exp

{
∑

T⊆C
θT gT (y)

}
is the normalizing constant

• Define ξ ≡ {y : Pr(Y = y)> 0} to be the support

The negpotential function is given much attention because defining the negpotential defines the
joint distribution, up to a constant. Specifying a particular set of parameters, θT , or equivalently
network statistics, gT (y), to be included in the negpotential specifies the ERGM. Often these statis-
tics represent counts of subgraph features, such as the number of edges, number of triangles, or
number of edges in a particular block, and the corresponding coefficients would represent density,
transitivity, and block effect, respectively. A majority of model development for the ERGM has
focused on the parameters or statistics to be included in the negpotential function. There have
been four main phases in the development of the ERGM. First, the proposal of a model of form
Equation 5.4 for network analysis. Next, the relaxing of an independence assumption to allow
for more complex dependence structures, followed by the proposal of parameters not motivated
by dependence. The most recent wave of development involves the introduction of new parame-
ters designed specifically to address model degeneracy, a common issue with the application of an
ERGM to realized networks.

Many studies point to the seminal work of Holland and Leinhardt [55] as the first introduction
of the ERGM. This work proposes a log-linear model, termed the p1 model, in the form of Equa-
tion 5.4 to model the dyads of a directed social network. A dyad is defined as a pair of nodes and
the possible ties between them, which in an unweighted, directed graph could be 0, 1, or 2. Net-
work analysis at the time was only descriptive, focusing on aspects such as the degree distribution
or the distribution of attributes on the nodes. In contrast, Holland and Leinhardt [55] were able to
stochastically model the patterns of relationships. An advantage of the p1 model is a simultaneous
estimation of a parameter to represented reciprocity, or a tendency for a edge to be reciprocated,
and a parameter for differential attractiveness which occurs when a few nodes attract a compara-
tively large number of edges. The authors noticed both reciprocity and differential attractiveness
appeared in social networks at a rate greater than if edges were allowed to form at random.
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One disadvantage of the p1 model is that it assumes independence between the dyads. This
assumption results in a likelihood which is a product of probabilities for each dyad, which was
necessary to estimate the parameters through standard statistical techniques. Relaxing this as-
sumption was identified by the authors to be difficult at the time. The next development of the
ERGM was introduced by Frank and Strauss [31] who incorporated a more general definition of
dependence. They adopted Besag’s [13] methods from spatial statistics and applied them to social
networks. It is because of this consideration of complex dependence that Frank and Strauss [31]
is also referenced as the origin of the ERGM. Although the paper proposes a general dependence
structure, Frank and Strauss give the most attention to the Markov graph, which we discuss in
detail below.

One important contribution of Frank and Strauss [31] was defining a dependence graph. The
nodes of a dependence graph represent the potential edges from the original graph. An edge be-
tween nodes in the dependence graph indicates the two corresponding random variables are condi-
tionally dependent. The Markov graph has an incidence definition of dependence, thus, two edges
are conditionally dependent if they share a common node. In the dependence graph this implies
that there are no edges between disjoint sets of node indices. Stated another way, let {i, j} and
{m,n} represent two potential edges in the original graph and thus two nodes in the dependence
graph. If {i, j}∩{m,n}= /0 then there will not be an edge between these nodes in the dependence
graph. The set of random variables on which a particular random variable is conditionally depen-
dent, and thus is linked in the dependence graph, will be called its neighborhood. For example,
in a model with Markovian dependence, the neighborhood of for a given edge, Yi, j can be stated
as {Yr,s : (i, j)∩ (r,s) 6= /0}. We use this definition of neighborhood throughout this section, even
though some literature uses other graph features for the neighborhood.

To apply Besag’s [13] the methods to social networks, we use the Hammersly-Clifford Theo-
rem. This important theorem has been stated and proven in various forms and in multiple refer-
ences. (For the original see [22], for one similar to what we use see [23]) First, define a clique to be
a single random variable or a set of random variables such that every pair within the set is pairwise
mutually conditionally dependent, given the rest of the graph. Besag [13] showed that, under mild
conditions, the negpotential function can be expanded uniquely over ξ as a summation over config-
urations of random variables, i.e., that the negpotential takes the form shown in Equation 5.5. The
Hammersly-Clifford Theorem states that the parameter, θT , will be non-zero only if the random
variables in the corresponding configuration T form a clique. Thus, the incidence dependence of
[31] imply that the non-zero parameters will correspond to triangles and k-stars in the dependence
graph. A k-star configuration results from k edges which all share a common node. Although the
order of the stars can be k = 1, . . . ,n− 1, we consider only k = 1,2, making a more manageable
number of parameters. The triad model consists of a term for 1-stars, i.e., number of edges or
density, 2-stars, and triangles. In addition, the model includes an assumption of homogeneity so
that all isomorphic graphs are equivalent.

The parameters, θT , included in the negpotential function of the Markov graph are the result
of the Markovian dependence structure. The next refinement in ERGM specification began with
Wasserman and Pattison [131] who proposed a slew of possible parameters or statistics motivated
by graph topology. Models of this type were named p∗ in honor of the p1 model [55]. Wasser-
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man and Pattison [131] contains four tables of possible parameters with a statement that those
listed are just a subset of the possibilities. They recommend five methods for choosing the param-
eters for the negpotential. One of the suggested methods is to consider the resulting conditional
dependence between possible edges. However, even in the other methods when the dependence
between edges may not be explicitly modeled, the choice of statistics induces a conditional edge
dependence structure. The authors describe some of the induced conditional dependencies, but for
others admit that identifying the sets of conditionally dependent variables is not immediate and
that some models induce “arbitrary complexity”. The authors use trial and error to determine the
best fitting model for an example dataset, although, according to Besag [16] do not “reach any par-
ticular conclusion”. Varying the parameters in the negpotential leads to changes in the underlying
dependence structure. Thus, although the authors acknowledge that the conditional dependence
structure is determined by the choice of parameters, they often fail to identify the induced structure
or recognize the effect of changing this structure. More recently, Goodreau [39] pared down the
list of parameter-choosing methods by describing two approaches: considering the nature of the
dependence or the combination of parameters that fit the empirical network best.

The extension to include arbitrary statistics in the negpotential function, Q(Y), proposed in [131]
provides a straightforward method for considering exogenous attribute information in an ERGM.
The parameters and statistics discussed up to this point have been endogenous, or functions of
the graph itself, e.g., number of edges or transitivity. Exogenous attributes do not depend on the
structure of the graph and can be incorporated at the level of the individual nodes, edges, or as sym-
metric functions of nodal covariates. An example of how to include an exogenous attribute of a
node is through a main effect term which allows for a different value in the negpotential dependent
upon the covariate value of the node [39]. A similar example for pairs of nodes is assortative mix-
ing. This parameter attempts to capture the increased probability of edges to form between nodes
within a particular attribute class [40]. When this effect is uniform across attribute classes, it is re-
ferred to as uniform homophily. For example, consider a friendship network between grade-school
aged children. A uniform homophily term could represent the higher probability of friendships to
form between children within the same grade. Differential homophily allows for a different pa-
rameter to describe this effect within the different attribute classes. For the grade-school example,
a differential homophily term could be used to describe how friendships are more likely to form
within gender and how females tend to make more friends than males [59]. As a final example, if
the covariate is continuous, such as age, the absolute value of the difference can be included as a
statistic, and the corresponding parameter would allow the probability to vary monotonically with
the value of the absolute difference [39]. Attribute-based parameters and statistics do not affect
the dependence structure. Thus, these parameters lead to a dyad-independence model if no other
terms are included to account for a more complex dependence.

An approach that considers the affect of the dependence structure of higher-order statistics are
the two extensions to the ERGM termed “neighborhood-based” models presented in [95]. The
first model uses what the authors refer to as social settings, or groupings of nodes based on some
condition, typically an attribute value. A particular model may have multiple social settings, and
these social setting may overlap. Two edges are considered conditionally independent if they do
not occupy a common setting, although it is not implied that they are conditionally dependent if
they do. The purpose of this approach is to limit the number of conditionally dependent random
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Figure 5.2. Configuration which leads to partial conditional de-
pendence.

variables, or the size of the neighborhoods. The second model includes configurations of at least
four nodes such that every pair of edges are part of a path of length three. An example of such a
configuration is shown in Figure 5.2. The dependence structure induced by this form of statistics is
termed partial conditional dependence. Two random variables are partially conditionally dependent
if their dependence status is determined by the state of a third random variable. For the example
shown in Figure 5.2, the two dashed, red lines will lie on a path of length three and therefore be
conditionally dependent only if the solid, black edge is realized.

There are other extensions of the ERGM including to networks with multiple relations [96],
networks with values on the edges [105], or including the attributes into the dependence graph to
predict node-level attributes given the graph topology [103]. We do not discuss these extensions
in detail. The final, significant contribution to the study of the ERGM we discuss is alternating or
geometrically weighted statistics of [121] and [104]. We postpone full consideration of this new
specifications until Section 5.1.8 on degeneracy because these terms address this specific issue.

Although the ERGM is expressed as a joint distribution, it can also be expressed as a condi-
tional log-odds. This is often how the model is presented as it allows for a more natural parameter
interpretation. Consider the random variable representing a potential edge, Yi j. The model in
Equation 5.4 implies the following full conditional distribution

logit[Pr(Yi j = 1|Yc
i j = yc

i j)] = ∑
T⊆C

θT δ g(y)i j (5.6)

where Yc
i j represents all edges in the network other than edge i j and δ g(y)i j is the vector of change

statistics. The change statistics is computed as

δ g(y)i j = gT (y+i j)−gT (y−i j)

where gT (y+i j) is the value of the network statistic if edge i j is forced to be present while the rest
of the graph remains unchanged and gT (y−i j) is the analogous value when edge i j is constrained to
be absent. The change statistic is interpreted as the effect on the network statistics if the particular
random variable is changed from 0 to 1, while all other random variables remain constant. As an
illustrative example, if gT (y) represents the density of the graph, the change statistic is 1 for all
potential edges, because the addition of an edge will always increase the density by 1.
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A parameter, θT , of Equation 5.6 is interpreted as the increase in conditional log-odds of a
network as a result of a unit increase in the corresponding statistic. The conditional probability for
Yi j depends on the rest of the graph, Yc

i j, only through the change statistic. The interpretation is
from the point of view of the edges. If the model includes a homogeneity assumption, as is usually
the case, the parameter values indicate the type of edges which are most probable, e.g., those that
close triad, those that connect two nodes within the same attribute class, etc. Individual parameters
interpretation is heavily dependent upon the other terms included in the model. For example, if the
model includes two k-star statistics for k1 < k2, then the interpretation of the parameter for k2 is
the effect on the conditional log-odds of the network due to k2-stars adjusted for the number of k1
stars [65]. Although this is partially due to the fact that there are

(k2
k1

)
k1-stars within a k2-star, a

confounding of interpretation occurs even if the statistics are not nested.

5.1.7 Estimation & Goodness-of-Fit

Exact maximum likelihood estimation (MLE) has never been a viable option for the ERGM. Com-
puting the MLE would require repeated evaluation of a normalizing constant that involves a sum
over all possible graphs. As the number of possible graphs grow super-exponentially with the
number of nodes, |G | = 2(

n
2) this is computationally intractable even for trivially small networks

[102]. For example, the number of simple graphs that can be formed from only 10 nodes is over
35 trillion. Thus, since the inception of ERGM, approximation methods have been devised to esti-
mate the parameters. Unfortunately, model proposals have outpaced the estimation methods. The
discussion below will focus on the more commonly used techniques for estimating the parame-
ters of an ERGM: maximum pseudo-likelihood, two approximate maximum likelihood estimation
techniques based on Monte Carlo simulations, and some recently proposed methods in Bayesian
estimation.

Basag developed maximum pseudo-likelihood estimation (MPLE) for lattice [13] and non-
lattice [14] data for applications of spatial statistics. Frank and Strauss [31] and Strauss and
Ikeda [125] introduced MPLE to social networks and the ERGM. The pseudo-likelihood (PL)
function is an approximation to the joint distribution and is computed as the product of the full
conditional distributions. For the ERGM, this is the product of the conditional distributions shown
in Equation 5.6. The problematic normalizing constant cancels out in the conditional distributions,
and thus the PL function is always available in closed form.

A reason for the widespread use of MPLE was the ease and speed at which the PL can be max-
imized. Strauss and Ikeda [125] proved that the MPLE is equivalent to the maximum likelihood
of a logistic regression where the data plays the role of both the dependent and independent vari-
ables. Using standard statistical software the PL can therefore be maximized through an iteratively
reweighed Gauss-Newton least squares procedure. However, Geyer and Thompson [33] point out
that the PL function is not the true likelihood for any model. The two functions are simply com-
putationally identical. Standard errors reported from the logistic regression fit are not applicable
to the PL maximizers because logistic regression presumes the independent variables are fixed and
dependent variables are random. For the PL scenario both are random since they both are copies
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of the data.

Although the PL approach is fast and provides an intuitive solution to the intractable normal-
izing constant, its use has been heavily criticized in the network analysis literature. The most
common complaints are that the PL overestimates dependence and structural effects [81], under-
estimates standard errors, and performs poorly in practice. These issues are exacerbated when the
dependence between random variables is strong. If random variables are independent, the PL is
equivalent to maximum likelihood (ML). In a case study using DNA fingerprinting, Geyer and
Thompson [33] compared their MLE approach to MPLE and found that MPLE estimated much
higher values of a dependence parameter, produced unreasonable probabilities, and overall pro-
vided a very bad fit to the data. Robins et. al. [104] compared standard errors between ML and PL
and found that on average PL standard errors were smaller, but could differ from ML by three to
four times in either direction. Other identified issues with the PL method are that it is not admis-
sible for a squared error loss function because it is not a function of complete sufficient statistics
[119], it can produce infinite values even if the function converges [47], and, becauase it is approx-
imate, it can fail to indicate when the model has become degenerate [104]. Lastly, the properties
of the MPLE, specifically within the context of the ERGM, are not well understood and there is no
asymptotic theory to base confidence intervals and hypothesis tests [65].

Besag [16] suggests that the MPLE is not likely to perform well for the ERGM unless the
dependence between edge variables is weak. Camino and Fried [19] and Hoff et. al. [53] argue that
ERGMs are more global than local, while Handcock [47] argues that the PL considers only local
information. The PL function does not take into consideration the parameter space or normalizing
constant. Thus, if this space is constrained or if the normalizing constant is an important aspect
of the model, then PL is likely not to be an adequate estimation technique. Basag [15] describes
MPLE as “a simple tool from another era” that will eventually become obsolete and recommends
simulation because of recent increases in computing capabilities [16].

As an alternative to PL, two Monte Carlo approaches can approximate the parameters of an
ERGM. The first, based on the work of Geyer and Thompson [33], is Markov Chain Monte
Carlo-Maximum Likelihood Estimator (MCMC-MLE). It is a stochastic approximation of the log-
likelihood and a maximization of the approximation. Hunter and Handcock [58] were the first to
apply it to the ERGM. Snidjers [119] proposed the second method. He approximates the MLE
through a stochastic approximation to the moment equation. It is based on the Robbins-Monro
algorithm, a stochastic version of the Newton-Raphson algorithm. Both methods assume the abil-
ity to sample graphs from a specified ERGM. This is most directly accomplished through a Gibbs
sampler using the full conditional of the log-odds shown in Equation 5.6 to update random vari-
ables in turn. Other methods update groups of variables at a time [119] or use a pure Metropolis
algorithm [58].

To calculate the MCMC-MLE, first consider the log-likelihood

`(θ) =

{
∑

T⊆C
θT gT (y)− log(κ(θ))

}

where the normalizing constant has been written to emphasize its dependence on the unknown
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parameter vector, θ . The key idea behind this approach is that the parameter values that maximize
`(θ) are equivalent to those that maximize the log of the likelihood ratio

r(θ ,θ 0) = ∑
T⊆C

[
(θT −θ

0
T )gT (y)

]
− log[κ(θ)−κ(θ 0)] (5.7)

for some fixed and constant θ
0. The difference of normalizing constants can be approximated by

generating a sample of M graphs from the ERGM with parameter values θ
0 and noticing that

exp[κ(θ)−κ(θ 0)] = E
θ

0

{
exp ∑

T⊆C
(θT −θ

0
T )gT (y)

}

Thus, an approximation of the likelihood ratio in Equation 5.7 is

r̂M(θ ,θ 0) = ∑
T⊆C

[
(θT −θ

0
T )gT (yobs)

]
− log

{
1
M

M

∑
i=1

exp

[
∑

T⊆C
(θT −θ

0
T )gT (yi)

]}

and maximization of this equation approximates the MLE. [58] also proposed a method for ap-
proximating the standard errors of this estimate, performing a likelihood ratio test and extended
this method to the curved exponential family which is sometimes necessary for the degeneracy-
combating parameters discussed in the following section. Another extension of the MCMC-MLE
approach of [33] was proposed by [49] to estimate parameters while accounting for measurement
error resulting from a partial observation of the network.

The other main approach presented in [119] is based on the Robbins-Monro algorithm which
solves equations of the form Eθ [Z] = 0 for a random vector Z. To estimate the parameters of the
ERGM, the random vector takes the form Z = g(y)−g(yobs). The iteration step is

θ̂
(n+1)

= θ̂
(n)−anD−1

n Z(n)

where Pr(Z(n)|Z(1), . . . ,Z(n−1))≡ Pr(Z|θ = θ̂
(n)
). The an is known as the gain sequence and is

a sequence of positive values that converge to 0. If an = 1/n and Z has an exponential family, the
optimal choice of Dn is the derivative matrix [65]. For the ERGM this is given by

D j,k =
∂ 2κ(θ)

∂θ j∂θk

The three phase algorithm presented in [119] is based on this approach and includes a check for
validity and a method to compute the covariance matrix of the estimator.

Bayesian methods of estimation have not been extensively considered for the ERGM despite
the fact that they are appropriate for quantifying uncertainty of the estimated model parameters
and for formally comparing competing models [19]. [134] used an empirical Bayes approach to
the p1 model of [55] which estimates the model parameters through a Newton-Raphson step and
then uses an EM algorithm step to estimate the covariance parameters. The full algorithm cycles
through both steps and hence was termed the EM-Newton algorithm. [36] extended this to a fully
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Bayesian approach and also considered a model which includes a block effect parameter, but did
not consider a model with a dependence structure beyond dyad-independence.

Computational complexity is the main reason that Bayesian estimation techniques have lagged
behind for the ERGM. Usual MCMC algorithms are able to sample from posterior distributions as
long as they are known up to a constant. The ERGM is doubly intractable because it is not possible
to evaluate the normalizing constant of the posterior or the likelihood. This was overcome by [19]
who adapted the exchange algorithm to network analysis. The algorithm involves augmenting the
data with y′ and parameters with θ

′ and sampling from the augmented posterior density

π(θ ′,y′,θ |y) ∝ π(y|θ)π(θ)h(θ ′|θ)π(y′|θ ′)

where the posterior of interest, π(θ |y) is a marginal distribution. The distribution π(y′|θ ′) is the
same exponential family form as π(y|θ) and the auxiliary density, h(θ ′|θ), can be any arbitrary
distribution with dependence on θ . The algorithm first samples the augmented data, y′, and param-
eters, θ

′, through a Gibbs sampler and then proposes a swap between θ and θ
′. The significance of

this method is that in the Metropolis acceptance probability, all intractable normalising constants
cancel. A further difficulty arises when trying to sample y′ as it requires exact sampling [60]. [19]
propose sampling the augmented data using a“tie no tie” sampler which is computationally faster
than a single dyad updating approach. In order to improve mixing and speed of convergence, [19]
also recommend using population MCMC which combines multiple, simultaneous chains. An-
other similar approach was presented in [68] which samples from an extended sample space using
the linked importance sampler auxiliary (LISA) Metropolis-Hastings algorithm. Like [49], this
work also focuses on networks that are only partially observed and thus the LISA algorithm is part
of a larger sampling scheme that also samples from the distribution of missing values.

One area which has not been fully developed for the ERGM, or network analysis in general, is
assessing the fit of the model to an observed network. [113] indicates four groupings of existing
model assessment techniques: ground truth comparison, link prediction, model comparison, and
graphical goodness-of-fit. The first two approaches are possible only when the network is assumed
to be know and are often used to compare two generative methods. Model comparison includes
likelihood based measures, such as AIC [39], or Bayesian model selection such as selecting the
model that minimizes the expected predictive deviance [36]. [41] warn against using the model
comparison measures because they fail to indicate the manner in which the model is misspecified.
Rather, the recommendation is for the graphical goodness-of-fit method presented in [57]. In this
approach, a large number of graphs are simulated from the model with the estimated parameters.
From these simulations a distribution of structural aspects are computed. Examples of structural
aspects to consider are the number of realized edges, the number of triangles, or the average path
length between pairs of nodes. The structural aspects can be the sufficient statistics included in
the model or not. If the value of these structural aspects from the observed network appears to be
a common value of the corresponding distribution obtained from the simulations, the the model
is determined to be a good fit. The model is determined to fit poorly if the structural aspect was
not a statistic included in the model. An observed value of a statistic included in the negpotential
that is unlikely based on the distribution of simulated structural aspects is an indication of model
degeneracy, an issue which we now discuss.

94



5.1.8 Degeneracy

A complication that has been recognized and well documented with the application of the ERGM
to empirical networks is that of model or inferential degeneracy. The term degeneracy has been
used to refer to a variety of undesirable model behaviors. Most of these behaviors are a result of
the model placing a large amount of probability on a very small subset of the theoretically possible
networks. Often these highly plausible networks are radically dissimilar and frequently include the
complete (all edges realized) and empty (no edges realized) graphs. The phenomena has led to the
definition of a “useful model” in [47] and [48] as one for which the probabilistic structure places
a large amount of probability on graphs that could reasonably be produced by the underlying pro-
cess. [48] lists three interrelated capabilities a useful model should possess: simulation, parameter
estimation, and model assessment. These three features are lacking or extremely difficult in degen-
erate models. Because the ERGM cannot be degenerate in the strict sense [114], this behavior has
also been referred to as near-degeneracy [104]. This issue is not unique to the ERGM as a similar
behavior has also been recognized in a more general class of models for interactive systems [124]
and is similar to long-range dependence observed in the Ising model [119].

The inability of degenerate models to simulate reasonable graphs can result in a failure to
estimate model parameters. As described in the previous section, parameter estimation requires
the use of a sampling scheme due to the intractable normalizing constant. If a large amount of
probability is placed on a few, disparate graphs, the algorithms mixes very slowly, hardly moving
for millions of steps [114]. One proposed solution to the slow mixing is the inclusion of a graph
complement step in the Markov chain. At each step and with a small probability, the value of all
random variables is reversed, e.g., for binary valued graphs Y(t+1) = 1−Y(t) [119]. Although this
allows the algorithm to explore extreme modes of the distribution, this does not diminish the fact
that the model is degenerate. The issue of degeneracy is not a failure of the algorithm or statistical
inference technique, but rather the underlying or stationary distribution, [114], [121] or as a result
of model mis-specification [40]. The MCMC-MLE algorithm fails to find an estimate when the
subset of plausible graphs do not resemble the network of interest. The estimation technique
requires that the model produce the observed values of the sufficient statistics [121] and even with
the graph complement step, the algorithm may continually jump over the observed values.

If an estimation algorithm does converge and estimates are obtained, simulated graphs from
the fitted model could still fail to reproduce much of the graph structure observed in the realized
network. One instance of this phenomena was explained via change statistics by [121]. When
the ERGM is simulated with a Gibbs sampler, the conditional distributions are stated as logistic
regression with the change statistics playing the role of the independent variables, as shown in
Equation 5.6. The edge values are updated one at a time, either by cycling through all edges in the
graph or through random selection. Consider a model with a moderately-sized, positive value of
the triangle or any of the k ≥ 2 star statistics. Changing one random variable to 1 could induce a
large increase in the change statistics of other random variables, causing these edges to be realized
with high probability, which in turn creates an increase in the change statistics for other edges, and
so forth. This effect was termed an “avalanche of change” by [121] and would quickly force the
algorithm to the complete graph with little probability of moving away. The graphical goodness-
of-fit method of [57], described in the previous section, was motivated by this commonly observed
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lack of fit. In addition, [41] and [104] have suggested as a method to detect model degeneracy to
check if the observed model could possibly have been produced by the fitted model.

Most of the work on diagnosing the cause of model degeneracy has identified a parameter
space issue. We discuss in detail below three approaches to identifying the offending parameter
values. Other potential causes include a large sample problem as discussed in [124] and [125]
who prove that for a fixed set of parameters, the expected density approaches 1 as the number of
nodes increases to infinity. Likewise, [115] warn against applying an ERGM to “large” graphs
without explicitly defining “large”, citing neighborhoods which grow as a function of the number
of nodes as the culprit for degenerate models. Another suggested reason for the degeneracy is the
dominating global nature of the ERGM over local structure which is especially especially relevant
when attempting to find the MPLE [47]. [68] proved that a model which contain nested, degenerate
models will also be degenerate. This implies that the issue of degeneracy can not be remedied by
adding additional parameters into the model.

The first attempt to identify the subset of the parameter space which leads to degenerate models
to be discussed relies the theory of discrete linear exponential families and the geometry of the
parameter space. [47], [48] extend results from [9, see Cor 9.6] and [102] makes use of Shannon’s
entropy to identify the problem areas. To explain the method in [47] and [48], let gT 1(y), . . . ,gT 2(y)
represent the statistics chosen to be included in the negpotential function, Q(Y) of Equation 5.5,
and let C represent the convex hull of the combination of possible values of the statistics computed
from all possible graphs, {gT(y) : y ∈ G }. [47] proved that the MLE does not exist if the observed
values of the statistics, gT(yobserved), fall on the relative boundary of C. This situation, he argues,
occurs quite frequently in practice. Similarly, define C1 to be the convex hull of the space formed by
the statistic values computed from M simulated graphs, {gT(y∗1), . . . ,gT(y∗M)}. If gT(yobserved)
falls on the relative boundary of C1, the MCMC-MLE does not exist. Therefore, if C1 ⊂C there
are observed statistics values for which the MLE exists, but the MCMC-MLE does not. This led
to the proposed solutions of a Bayesian analysis where the prior distribution restricted all its mass
to the non-offending areas of the parameter space.

Both [47] and [102] identified the problem region with a case study: a model with the density
and 2-star parameter to a network with n = 7 nodes and a model with the density and triangle pa-
rameters to a network with n = 9 nodes, respectively. [47] identify the degenerate region through
the convex hull method discussed above while [102] uses Shannon’s entropy to quantify the amount
of degeneracy where lower entropy corresponds to more degenerate parameter values. Both works
concluded that the degenerate regions have a nicer, more identifiable form in the mean value pa-
rameterization rather than the natural parameterization of the exponential family. If we refer to
the region of the parameter space for which degeneracy is not an issue as the effective parameter
space [47], in both of the case studies this area was found to be much smaller than the theoretical
parameter space. Although the case studies represent only two possible ERGM specifications on
unrealistically small networks, [102] claims that the results can be extended to any ERGM with
nodes labeled arbitrarily and no node level information included.

[114] also recognizes the issue of degeneracy as related to the discrete exponential family
model, characterizing the issue as one of stability. He separately defines a stable distribution and a
stable sufficient statistic. A distribution is stable if the maximum values of the negpotential func-
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tion, Q(y), over all possible graphs is bounded by some constant times the number of degrees of
freedom, N, for large N. A stable sufficient statistic is one with a maximum value that is bounded
in a similar manner. For the ERGM, the degrees of freedom, N, are equal to the number of possible
edges, or N = n(n−1)/2 for a simple graph. The unstable distributions are characterized by exces-
sive sensitivity and near degeneracy. Sensitivity is defined as distributions with unbounded nearest
neighbor log-odds, where two possible graphs are considered nearest neighbors if the graphs are
equivalent with the exception of a single edge. Six different ERGM specifications were analyzed
to identify the regions of the parameter space which exhibited instability. All models contain a
density term, the first three contain the 2-star, triangle, and both; the remaining three contain each
one of the geometrically-weighted statistics, which we discuss in detail below. Regions of insta-
bility are identified for all six models. The first two are stable only when they are generalized to a
Bernoulli graph, i.e., when the 2-star and triangle parameters are zero. The area of stability for the
third model with a density, 2-star, and triangle term is also very restrictive. For the models with the
geometrically weighted terms, the area of stability is non-negligible, providing some optimism;
however, care is still needed to avoid the unstable parameter regions.

Identification of degenerate parameter space regions of an ERGM has also been examined
by researchers outside the disciplines of statistics and sociology. [17] examine the mixing time
for an MCMC of the ERGM specified with a density and triangle parameter. A high and low
temperature regime are defined and identified for the parameter space. The authors showed that
the algorithm mixes exponentially slow in the low temperature regime and as Θ(n2 logn) in the
high temperature regime. However, the authors also showed that models with parameter values in
the high temperature regime are asymptotically independent and thus are not appreciably different
from the Erdös-Rényi graph. This coincides with the region of instability found for the model
by [114] for the same ERGM specification. [93] and [94] investigate the degeneracy issue with
analysis techniques from statistical physics for two ERGM specifications: the specification with
a density and two-star parameter, called the two-star model, and the specification with a density
and transitivity parameter, called the clustering model. For the two-star model, the authors used
the Hubbard-Stratonovich transform and saddle-point expansions, to determine the region of the
two-parameter space where degeneracy occurs. High and low density phases which are separated
by a coexistence region are identified in a phase diagram. This coexistence region corresponds to
a symmetry-broken phase. The symmetry breaking that describes the coexistence phase results in
similar behavior as the stability defined by [114]. The separation of these three phases corresponds
to a conventional continuous phase transition. As a result of this analysis the authors concluded
that the degeneracy problem, at least in this particular ERGM, is analogous to a phenomenon in
physics known as phase separation. The coexistence region was also identified for the clustering
model in [94]. For this particular model, the degenerate region corresponds to parameter values
that indicate a moderate number of triangles. The finding led the authors to conclude that without
some augmentation, the clustering model will never adequately describe a real-world network.

In addition to the case studies mentioned above, special attention has been given to degenerate
ERGM specifications that include a term for transitivity, and to a lesser extent to those with k-star
terms. Inclusion of a term that accounts for transitivity has been shown to be important because the
closure of triangles is a main feature that separates realized networks, at least for social networks,
from those generated independently and at random [121]. However, incorporation of a term that
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Figure 5.3. Scatterplot of number of edges against the number
of triangles from a simulation study conducted by [104] for an
ERGM with density parameter fixed at -1.5 and triangle parameter
ranging from 0 to 1.

successfully reflects the amount of transitivity in the observed network has been a difficult task.
This problem was explored through simulations in [104] who found that for an ERGM that in-
cluded only a density and triangle term, an increase in the value of the triangle parameter does
not correspond to a smooth increase in the number of triangles in the simulated graph. Instead
what occurs is a tendency to resemble either a high or low density Erdös-Rényi graph, in agree-
ment with the conclusion of asymptotic independence of the same model presented in [17]. The
number of triangles in the simulations of [104] occur uniformly throughout the graph and form
as a function of less or more edges with a dramatic jump, shown in Figure 5.3, between the two
extremes. Therefore, the model is unable to adequately describe a graph with a moderate number
of triangles. If the parameter estimate is obtained with MCMC-MLE, the parameter is estimated to
be the value at which the jump occurs. The probability distribution of the statistic is bimodal with
a combination of the low density graphs to the left of the jump and the high density graphs to the
right [121].

One proposed reason for the difficulty in the representing transitivity with only a triangle pa-
rameter is the existence of other effects contributing to the formation of triangles [121]. For ex-
ample, three relationships could form independently between three students in the same class, not
because of a shared relation, but because of the shared covariate value. Even if a term is included
in the model to explain the covariate effect, the two processes are not acting on the edges indepen-
dently although they are modeled as such [41]. Another reason for the difficulty with modeling
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Figure 5.4. An example 5-triangle.

transitivity through a count of triangles is the manner in which the model introduces triangles does
not correspond to how they appear in observed networks. The model wants to place the increasing
number of triangles uniformly through the network, where it has been observed that groups of tri-
angles tend to form dense “clumps” of triangles [104] . These clumps of edges are not completely
connected [121] and thus the more triangles to which an edge is a part of, the less likely it is to
be part of a new triangle. These observations have led to the formation of a new specification for
representing transitivity, the alternating k-triangles statistic.

The alternating k-triangle statistic was proposed by [121] in an effort to model transitivity but
avoid the avalanche effect that leads to degeneracy. The authors claim that transitivity in observed
networks is important but complex, and that a statistic that merely counts the number of triangles
is overly simplistic. A k-triangle is a set of k triangles that share a common edge, often referred
to as the base; see Figure 5.4 for an example 5-triangle. The formula for the alternating k-triangle
statistic is

AKTλ (y) = 3T1 +
m−2

∑
k=2

(−1)k+1 Tk(y)
λ k−1

where Tk is the number of k-triangles. The increasing denominator gives decreasing probability to
higher-order triangles as per the empirical observation noted above. The value of λ controls the
type of transitivity. Larger values of λ lead to smaller probability given to higher-order triangles
where smaller values lead to a localized effect [58]. The alternating signs of increasing terms also
aim to prevent large cliques of edges.

The alternating k-triangle statistic is included in the ERGM as a term in the negpotential func-
tion with a single parameter coefficient. The value of λ can either be considered known or esti-
mated. [121] consider the value fixed citing that the conclusions obtained remained constant for
various values of λ . If this value is to be estimated, the ERGM is no longer within the standard
exponential family as the negpotential is not a linear function of the parameters. [58] present the
details for estimation in a curved exponential family for an ERGM where λ is to be estimated us-
ing MCMC approximation to the likelihood. This work does recommend estimating this parameter
unless theoretical considerations imply a particular value.

[121] show that an ERGM with the alternating k-triangle statistic satisfies the partial condi-
tional dependence of [95]. Thus, the dependence graph for this particular model is realization
dependent. The authors argue for a more generalized dependence structure than the Markovian
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dependence claiming that edges that are not incident could possibly be conditionally dependent.
[104] claim that considering cliques of size greater than three is necessary to avoid degeneracy.
The alternating k-triangle statistic allows for edges that, if realized, would create a four-cycle to be
conditionally dependent. To make this connection more clear, the two red, dashed lines in Figure
5.4 are not incident, but would be conditionally dependent under the partial conditional dependence
structure.

The authors ([121]) admit that inclusion of the alternating k-triangle statistic makes interpre-
tation of model parameters more difficult and that it does not lead to a simple representation of
dependency [115]. As a demonstration of the parameter interpretation, consider the case study of
collaboration relationships between n = 36 partners in a law firm presented in [121]. One model
fit to this data included the alternating k-triangle statistic and multiple attribute-based statistics.
A significant coefficient for the k-triangle term is interpreted as evidence of a triangle formation
process beyond what could be explained by considering only attributes. When an additional term
is included to to represent the degree distribution, the significant k-triangle parameter indicates
that transitivity is not the result of popularity of nodes. [104] interpret a significant and positive
k-triangle parameter as indication of a core-periphery structure resulting from transitivity, rather
than popularity. Although the k-triangle statistics appears “contrived”, it is argued that a contrived
statistic is necessary due to the complex processes that work together to create the static view of
the network.

[56] proposes an alternative formulation for the k-triangle statistic based on a shared partner
statistics which leads to more clear interpretation of parameters. The edgewise shared partner
statistic, EPk(y) counts the number of edges that are realized with both nodes connecting to exactly
k other nodes. The alternating k-triangle statistic is then equivalent to the geometrically-weighted
edgewise shared partner statistic,

GWESPθ (y) = eθ
m−2

∑
i=1

{
1− (1− e−θ )i

}
EPi(y)

where θ = logλ in the original formulation. This parameterization is particularly useful when
the value of λ is to be estimated because of the desired restriction to positive values. With this
formulation of the statistic, a significant, positive parameter would be interpreted as the more
edges two nodes have in common, the less the motivation is to form more common edges.

The alternating k-triangle statistic was novel in its approach because rather than counting local
configurations, the statistic attempts to summarize an entire distribution of subgraph counts [59].
Two other distribution-summarizing statistics were also presented by [121] with the same goal of
decreasing the effects of degeneracy. The first is the alternating k-star statistic

AKSλ (y) =
m−1

∑
k=2

(−1)−k Sk(y)
λ k−2 (5.8)

where SK(y) counts the number of k-stars. The alternating k-star statistic is an attempt to model the
degree distribution. The Markov model of [31] proposed including terms for all k-stars, restricting
it to only the first two to decrease the number of parameters from n−1 to 2. The alternating k-star
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statistic also restricts the number of parameters from n−2 to 2, if the value of λ is to be estimated.
Therefore, inclusion of the ASKλ (y) can be seen as modeling all k stars but maintaining a reduction
of the parameter space. As the issue of degeneracy has been identified as a parameter space issue,
limiting attention to a subset of the parameter space can lead to an increased probability that the
MLE exists.

The other statistic introduced in [121] is the alternating k-twopath statistic

AKPλ (y) =
m−2

∑
k=1

(−1)−k Pk(y)
λ k−2

where Pk(y) counts the number of k-twopaths which are similar to a k-triangle, but without the
base. The purpose of the alternating k-twopath statistic is to be used in conjunction with the alter-
nating k-triangle statistic. If both statistics are included the k-triangle parameter can be interpreted
exclusively as transitivity, rather than as transitivity and the necessary conditions for transitive
closure. [56] provided equivalent geometrically weighed versions of ASKλ (y) and AKPλ (y) as
well.

The most recent adaptation to counter degeneracy is the hierarchical ERGM of [115]. In this
work, the issue of model degeneracy is attributed to large and growing neighborhoods, where a
neighborhood of an edge refers to the set of edges on which the original edge is conditionally
dependent. For a simple graph with Markovian dependence where all

(n
2

)
edges are possible, each

potential edge has a neighborhood of size 2(n− 2). Thus, as the number of nodes increases, so
does the size of the neighborhoods.

The first feature of the hierarchical ERGM is a partitioning of the nodes into K local “neigh-
borhoods”. These “neighborhoods” are non-overlapping, although edges can form between them.
This interpretation of “neighborhood” is more consistent with the concept of a community; thus,
in order to avoid confusion, the rest of this description reflects this terminology. The community
structure is not necessarily an observable feature of the graph, nor are the number of communi-
ties required to be known a priori. The second feature of the proposed model is local dependence
and global independence. The distribution function of the graph is separated into a within- and
between-community probability mass function (PMF). If Y(kl) = {Yi j : i ∈Nk, j ∈Nl} represents
the edges that could form between nodes in community k and nodes in community l, the condi-
tional probability function for the entire graph Y given the community membership, X, is written
as

P(Y = y|X = x) =
K

∏
k=1

P(Y(kk) = y(kk)|X = x)
K

∏
k<l

P(Y(kl) = y(kl)|X = x)

Each PMF can include a different set of sufficient statistics and thus parameters to estimate and
each set of parameters for the between- and within-community PMF induce a different depen-
dence structure on a subset of the graph. A Bayesian inference method is presented to estimate the
number of communities, node community membership, and all sets of parameters. This computa-
tionally expensive procedure requires an approximation to the prior and an exchange algorithm to
sample from the posterior.
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5.1.9 Latent Variable Models

The subclass of probabilistic network models known as latent variable models encompasses a
broad class of models that are hierarchical in nature. The common thread between latent variable
models is the edge variables are specified as conditional distributions and considered conditionally
independent given some latent variable, such as block membership or position within a social
space. [113] claim that any model which treats the nodes as exchangeable can be represented as
a latent variable model. In contrast to the ERGM where the interpretation of the model identifies
highly probably edges, the focus of an analysis from a latent variable model is on the role and
position of individual nodes of the graph. The goal of incorporating a latent structure is to account
for some of the variability of the topological features in the observed network [38]. While the
ERGM is really only one a single model with extensions, the latent variable category includes a
variety of models. We discuss the random effects models, latent block models, and latent space
models.

Random Effects Models The simplest random effects model is the p2 model, a random effects
version of the p1 model of [55] introduced by [127]. Both the p1 and p2 models were developed
for directed social networks and contain parameters to describe density, reciprocity, and node-level
expansive/productive effects and popular/attractive effects. In the p1 model the node-level param-
eters are modeled as fixed effects with a potentially unique value for each node. For identifiability
purposes, constraint must be placed on this set of parameters. In contrast, the p2 model treats
node-level parameters as crossed random effects and aims to estimate the parameters of the un-
derlying distribution from which they could have reasonably been drawn [38]. Covariates can be
incorporated into the p2 model, at the node-level with additional modeling of the attractiveness and
productivity parameters and/or by modeling the density and reciprocity parameters as functions of
dyad-level covariates. The coefficients of the covariates are modeled as fixed effects and hence
the p2 model can be viewed as a generalized linear mixed model [136]. The remaining node-level
variability not explained by the covariates is incorporated into the correlated random effects. If
there is no covariate information, the p2 model is merely a more parsimonious version of the p1
model [113].

Parameter estimation of the p2 model was originally conducted via an Iterative Generalized
Least Squares algorithm [127]. Because p2 is a nonlinear model, the algorithm requires a lin-
earization step based on a Taylor series expansion of the likelihood function around the current
estimate of the parameters. [136] introduced three Bayesian methods for parameter estimation of
the p2 model. All approaches implement a Gibbs sampler, with separate updating steps for the
random effects, covariance matrix, and fixed parameters. The full conditional distributions of the
random and fixed effects cannot be directly sampled; thus, the three separate approaches explore
three different proposal distribution for the required Metropolis-Hasting steps.

The other area in which random effects have been utilized for network analysis is by incor-
porating them into a generalized linear model (GLM) framework, first introduced by [51]. The
purpose of the random effects are to model higher-order dependence. For example, within-node
dependence can be represented as random intercepts on the random effects terms. Traditionally,
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a GLM assumes observations are conditionally independent given regression coefficients, or fixed
effects, whereas the model presented in [51] assumes conditional independence given the random
effects terms. An estimation scheme is also presented where the regression coefficients, fixed
effects, and covariances of the random effects are estimated with a standard Bayesian analysis.

The generalized bilinear regression model presented in [52] is a direct extension to the gen-
eralized linear mixed-effects model discussed above. The extension is to include a bilinear effect
into the error structure to incorporate third-order dependence, or dependence between triples of
random variables. This bilinear effect is also referred to as a reduced-rank interaction term and is
an inner product of latent characteristic vectors. Latent characteristic vectors are then modeled as
independent K-dimensional multivariate normal distributions with mean zero and diagonal covari-
ance matrices. This inner product can be viewed as a mean zero random effect. As an application
of this method, [52] analyze a valued network of international relations in central Asia.

The methods of [52] are applied in [54] to a network of bilateral trade in an analysis to deter-
mine how it is affected by various country attributes, such as capitalism, conflict, cooperation and
democracy, among others. Although not statistically novel, through this approach the authors were
able to explain three-fourths of the variability in the network by accounting for second- and third-
order dependence over the standard gravity model that had traditionally been able to explain only
one-half. In addition, through the random effects, correlations were modeled between importer,
exporter, and dyadic relations, where they had previously been modeled as independent. One of
the more interesting result of the analysis was that bilateral trade was not significantly impacted by
conflict between two countries, although cooperation between two countries led to a significantly
increased amount of bilateral trade.

5.1.10 Latent Blockmodels

In the most general sense, blockmodels are models which classify the nodes of the graph into
groupings, often referred to as blocks. There are two, potentially overlapping, concepts of block
structure. This first is that edges are more likely to form between nodes classified within the same
block than between nodes in disparate blocks. This is the approach adopted by the computer sci-
ence community where a block is often referred to as community. One of the main open challenges
in this field is that of “community detection”, or uncovering these groups of nodes [38]. The sec-
ond definition of block is motivated by the notion of structural equivalence [28]. Two nodes are
defined to be structurally equivalent if the relations between those nodes and all other nodes in the
graph is equivalent. A relaxation of the this concept often referred to as stochastic equivalence can
be descried as two nodes that relate to similar nodes in a similar manner. With this second defini-
tion, the purpose of blocking is to capture the main structural features of the network [122]. Within
the statistics literature models that incorporate block structure have been referred to as stochastic
blockmodels. This work can be partitioned into either a priori or a posteriori.

The a priori blockmodels were introduced by [129] and are presented as an extension of the
p1 model of [55]. These models do not fit under the heading of “Latent” Blockmodels as one
assumption is that the block structure is observed. The block structure is incorporated into the p1
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model by inclusion of a block-specific parameter that accounts for block membership and adjusts
the other parameters in the model, such as expansiveness and popularity, for this membership.

The obvious disadvantage of the stochastic blockmodels of [129] is the requirement to know the
block membership a priori. When this information is unknown, blockmodels of the second type,
a posteriori, are used to infer the group membership. An early attempt was made by [130] who
fit the p1 model to data, grouped nodes based on the estimates of the productivity and popularity
parameters, and then, given the group structure, fit a pair-dependent stochastic blockmodel. The
pair-dependent stochastic blockmodel specifies the joint distribution of the edge random variables
given parameter values and the block membership.

Extensions to the pair-dependent approach were presented in [122] and [88] for undirected,
binary graphs with only two blocks and directed, weighted networks and an arbitrary number of
blocks, respectively. Both approaches include two assumptions: the number of blocks is known
and given block membership, edge probabilities are independent. Block membership is inferred
from the pattern of edges and estimated through a Gibbs sampler which alternatively samples the
parameters of the model and the block membership of the nodes. Membership probabilities and pa-
rameters are assessed through posterior distributions. Parameter identifiability is an issue common
for mixture models as the model can only distinguish between different partitions, not the distinct
labeling of them. This leads to distinct parameter values resulting in the same probability distri-
bution. One proposed solution is to impose order restrictions on the block probabilities; however,
the method was shown to lead to poor group identification when probabilities of different blocks
are similar. Therefore, the approach taken in [88] is to restrict attention to posterior distributions
of functions which are invariant to relabeling.

Specification of blockmodels requires two components: the block model itself and an index of
the nodes and the blocks to which they belong [38]. An extension of the second component is the
mixed-membership stochastic blockmodel. For the previously mentioned stochastic blockmodels
, there is a one-to-one mapping from node to block. In contrast, the mixed-membership model
specifies an array of memberships for each node, so that the block to which the node belongs
depends upon the node with which it would potentially join, thus, group membership is “context
dependent” [28]. For directed graphs, each node’s membership array is of length 2n− 2. The
motivation for this model is that the parameters of the block model describe the global features of
the graph, while the membership arrays capture the node-specific patterns [38].

5.1.11 Latent Space Models

The main idea of the latent space models is that the nodes of the graph can be represented in a
low-dimensional, latent space and the distance between two nodes affects the probability that an
edge forms between them. Given the position of the nodes, or rather the distance between them,
the probability of the edges are conditionally independent. One purpose of this latent space is to
incorporate the effects due to unmeasured covariates [128].

The latent space model was originally developed by [53]. In this work the authors proposed
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two models: the distance model and the projection model. The models differ in the way in which
the latent space is incorporated into the probability. Euclidean distance is used by the distance
model, although the authors point out that any metric could be used. A metric over the latent space
inherently incorporates reciprocity, through the symmetry requirement of a metric, and transitivity,
through the triangle inequality. Due to its ease of interpretability, the distance model has been
more widely used in practice [113]. The projection model incorporates the latent positions of two
nodes through the projection of the position of one node onto the direction of the other. This is
a measure of similarity two nodes share with respect to some characteristics and depends on the
angle the positions create in Bilinear latent space [113]. The projection model has been shown to
be most appropriate when the graph is strongly asymmetric. If additional covariate information is
available, the model also allows this information to be explicitly incorporated.

As originally conceived, the latent space model is able to capture three important features of
networks: transitivity, reciprocity, and homophily of attributes. One aspect of networks that the
model cannot account for is that of clustering, also referred to as community structure. To incor-
porate this feature [50] introduced an extension named the Latent Position Cluster Model. This
extension explicitly models clusters in the latent space using a mixture of spherical Gaussian dis-
tributions on the positions in the latent space. [70] extended this model even further by combining
the approach of [50] and [52] in the Latent Cluster Random Effects Model. This model is able to
account for heterogeneity of the nodes, in addition to the four previously mentioned features of
networks. Node-specific random effects are added to represent sociality effects in an undirected
network, and for directed networks a sender and receiver effect is specified for each node. The
dimension of the latent space and the number of clusters is not assumed to be known a priori.
Choosing these values is viewed as a model selection problem.

All of the approaches mentioned above can be cast as a generalized linear model as defined
by three features: the error model, Pr(Yi j), the linear model, ηi j, and the link function g(µi j) =
ηi j where µi j = E(yi j). The models described above are presented as an analysis method for
unweighted graphs and thus the error model is Pr(Yi j) = Bernoulli(µi j) with link function g(µi j) =

log
(

µi j
1−µi j

)
. It is the linear model, ηi j, to which the additional terms are added. As an example, if

Zi represents the latent position of node i and xi, j a dyad-level covariate between nodes i and j, the
link function, or conditional log-odds given model parameters (α,β ) and latent positions, for the
projection model of [53] can be written as

ηi j = α +β
′xi, j +

Z′iZ j

|Z j|

The extension to consideration of clustering is to assume the Zis are realizations from a finite
mixture of multivariate distributions and the extension to account for node heterogeneity is ac-
complished by adding random effects terms to the linear model. When the latent space model
is constructed in this manner the extension to a weighted graph is natural by specifying a differ-
ent error model and link function. This approach was demonstrated by [70] on a network where
the edges are counts and thus the error model used is Pr(Yi j) = Poisson(µi j) with link function
g(µi j) = log(µi j).

Estimation of the unknown values of the latent space models can be accomplished through
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either maximum likelihood or a Bayesian analysis of posterior distributions. [50] detail both ap-
proaches. The maximum likelihood is conducted in two stages. The first stage estimates the
distances between the nodes in the latent space, a relatively simple task as the log-likelihood is a
convex function of the distances. Multidimensional scaling is then used to determine the positions
of the nodes. The second stage involves determining the MLE of the model parameters, (α,β ),
and the parameters of the Gaussian mixture model, when necessary. Although this approach is
fast and simple, the two separate stages imply that information about the first stage is not used in
the estimation of the parameters in the second, and vice versa. A more common approach is to
estimate all unknowns simultaneously with MCMC sampling.

The Bayesian approach to estimation utilizes a Gibbs sampler to cycle through the model pa-
rameters, latent positions, and group memberships, if clustering is of interest. For most parameters,
it is possible to specify a conjugate prior and sample directly from the posterior distribution, but
not all, and thus some Metropolis-Hastings steps are also necessary. Although this approach in-
corporates all information into each step, it is more computationally intensive than its frequentist
counterpart, and does not scale well for large graphs. To update the latent position of each of the n
nodes requires the calculation of n−1 terms of the log-likelihood and the updating of the model pa-
rameters (α,β ) requires all O(n2) terms be computed (either n(n−1) for directed or 0.5∗n(n−1)
for undirected) [98]. In practice, this estimation technique has been infeasible for n > 1000.

Due to the inability of the Bayesian estimation technique to adequately scale to large graphs,
alternative methods have been proposed. [98] propose an approximation to the log-likelihood
which is motivated by the approach of case-controls studies. This uses networks’ general sparsity,
i.e., a row or column in the adjacency matrix contains an order of magnitude more 0’s than 1’s. In
the analogy, the 1’s are the cases and the 0’s are the controls and the proportion of non-ties, i.e.,
0’s, are approximated through sampling. The authors show that this approach reduces computation
time from O(n2) to O(n). Variational methods have also been used to approximate the Bayesian
estimation of latent space models [60].

Another issue with a Bayesian analysis of the latent space models is that the likelihood is
invariant to rotation and reflection of the nodal positions and if a Euclidean space is used, also to
translation [60]. In addition, if clustering is considered, the likelihood is invariant to the relabeling
of the clusters, or the “label-switching problem” as it is known in mixture models [50]. The
proposed solution to these issues requires a post processing of the MCMC output. The former
is addressed by performing a Procrustean transformation on the posterior draws so that the result
is close to a reference configuration, typically the MLE of the positions centered at the origin
[53]. Alternatively, the framework proposed by [50] aims to correct both identifiability issues by
minimizing the Bayes risk relative to a Kullback-Leibler divergence. In this approach the goal is
to find a configuration that gives edge values closest to the posterior predictive distribution.
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V Set of nodes/vertices
E Set of edges
n Number of nodes/vertices
m Number of edges
Y n×n adjacency matrix
Yi j Random variable representing possible edge i j
d(i) Degree of node i
γ Power Law exponent
C Clustering coefficient
G Set of all possible graphs
G a graph
Q(Y) Negpotential function
δ g(y)i j Change statistic

Table 5.2: Table of notation for Section 5

5.2 Local Structure Graph Models (LSGM)

The local structure graph model (LSGM) is a new class of graph models defined in terms of global
structure with interpretable and controllable local dependence. Two defining characteristics of
the LSGM are the specification for each potential edge, y(si), of a full conditional distribution,
P(y(si)|y(s j); j 6= i), and a neighborhood, Ni = { j : s j is a neighbor of si}. These two features
taken together with an assumption of Markov dependence induce a direct functional dependence
between those random variables defined to be neighbors,

Pr(y(si)|y(s j); j 6= i) = Pr(y(si)|y(s j); j ∈ Ni)

The probability of the presence of an edge is dependent upon the value of its neighbors.

The features of the LSGM were motivated by the Markov Random Field (MRF) model, a com-
mon tool used in the analysis of geo-referenced data such as images or spatially-located data. The
modeling goal of both applications is to model dependence between locations that are “close” to
each other, where “close” is defined with respect to some metric. Intuitively, the value at a par-
ticular location should be influenced by those sites which are nearby and less so by those that are
further away. The MRF, through the definition of neighborhoods and conditional specification,
allows one to incorporate the spatial dependence between the pixels in an image or the data collec-
tion sites and leads to the acknowledgement and specification of a local structure. Typical choices
for neighborhoods are the four- or eight–nearest neighbors for data collected on a regular grid or
common border for data collected from spatial areas, such as states or counties.

The connection between a MRF and network analysis is not novel. In fact, to any MRF corre-
sponds an acyclic algebraic graph with undirected edges [63]. However, in it common application,
the collection of random variables defining the MRF represent the nodes of the graph. In the pre-
viously mentions applications, random variables would be assigned to the pixels of an image or
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locations on a map because it is the value at the pixel or the status at the location that is of primary
concern. The model then assigns each node in the graph a conditional distribution and a neighbor-
hood. In contrast, the LSGM defines the random variables and neighborhoods on the edges of the
graph, as it is the existence of the edge that is of interest.

In this regard, the LSGM can be interpreted as incorporating an additional level of modeling
to the common MRF approach. To see this, consider the neighborhood structure of the LSGM as
represented through a dependence graph, a concept presented in [31]. In the dependence graph
each possible edge of the original graph is assigned to a node. A connection between nodes in
the dependence graph indicates the corresponding random variables are conditionally dependent.
Two example networks and dependence structures with resulting dependence graphs are shown in
Figure 5.2. The first example demonstrates the Markovian dependence of the ERGM as two edges
are conditionally dependent if they are incident. The second example demonstrates the flexibility
in the definition of a neighborhood. For this dependence structure, two edges are conditionally
dependent if they connect the same number of red, or odd-numbered nodes. The dependence graph
is comprised of three disconnected, yet internally fully connected subgraphs of edges that join the
same number of red nodes. Because the nodes of the dependence graph represent the edges of the
original graph, the MRF is placed on the nodes of the dependence graph. Thus, the dependence
graph corresponds to the spatial locations or image pixels in the common application of a MRF.
The additional level of modeling is that the nodes represent the edges of a different graph.

The idea of a neighborhood within network analysis has also been used elsewhere, although the
definition of a neighborhood has not been consistently applied. Within the LSGM, a neighborhood
contains edges which are conditionally dependent. Neighborhoods are restricted to be symmetric
so that i ∈ N j implies j ∈ Ni. In this definition, neighborhoods are overlapping and a neighborhood
is defined for each potential edge in the network. Other works have used the term neighborhood
to partition the nodes of the network. For these approaches, the idea of a neighborhood is more
closely aligned with a community or block structure where nodes within the same community are
treated either equivalently or similarly [115].

The focus of this article is on simple networks, thus, the conditional distributions are binary
distributions. However, this approach can be generalized to weighted graphs by considering a
different conditional distribution, such as Beta or Gaussian. The binary conditional distribution
expressed in exponential family form is

fi(y(si)|y(Ni)) = exp [y(si)Ai(y(Ni))−Bi(y(Ni))] (5.9)

where y(Ni) represents the values of the random variables in the neighborhood of y(si). The depen-
dence among the random variables is modeled through the function Ai which is referred to as the
natural parameter function and Bi, a function of Ai. For binary conditionals, the natural parameter
function takes the form:

Ai(y(Ni)) = log
(

κi

1−κi

)
+ ∑

j∈Ni

ηi, j[y(s j)−κ j] (5.10)

and the form of Bi is log[1+ exp(Ai(y(Ni)))]. The sets of parameters, {κi : i ∈ E} and {ηi, j :
i ∈ E, j ∈ Ni} represent the global and local structure of the network, respectively, and will be
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Figure 5.5. Two example networks and dependence structures
with resulting dependence graphs.

109



Model specified as negpotential
Q(Y)⇔ Pr(Y = y)→{PrI(y(si)|y(s j); j 6= i) : i = 1, . . . ,n}

Negpotential ⇔ Joint distribution → Induced full
conditional distribu-
tions

Model specified as conditional distributions
{Pr(y(si)|y(s j); j 6= i) : i = 1, . . . ,n}→ Qc(Y)⇔ Prc(Y = y)

Full condi-
tional
distributions

→ Constructed
Negpotential

⇔ Constructed
Joint distribu-
tion

Figure 5.6. Relationship between the negpotential, joint distri-
bution, and full conditional distributions when either the model is
specified as the negpotnetial or full conditionals.

discussed in detail below. It should be noted that the parameterization of the natural parameter
function in Equation 5.10 is the centered version of [20] and [62]. This parameterization has been
shown to separate the global from the local structure leading to a more independent interpretation
of parameters, as long as the value of η does not become “too large”. We will reserve a discussion
of what is meant by “too large” for the section on model parameters.

The specification of any collection of conditional distributions does not necessarily lead to a
valid joint distribution on Y, thus there are certain conditions that must be satisfied. [63] detail
the requirements for a joint distribution to exist and correspond to the set of specified conditional
distributions. For the construction of a LSGM, the condition to check is that term of the summation
in the natural parameter function is symmetric for any pair of edges. This implies that neighbor-
hoods and η-parameters must be symmetric, i.e., i ∈ N j implies j ∈ Ni and ηi, j = η j,i. If the joint
distribution exists, it is uniquely determined by the set of conditionals [4].

Section 5.1.6 discussed how an ERGM is specified by determining appropriate configurations,
or parameters and statistics, to include in the negpotential function of Equation 5.5. The negpoten-
tial function is given much attention because defining the negpotential defines the joint distribution,
up to a constant. Thus, a particular ERGM is specified by defining the joint distribution for all edge
random variables. This specification implies a set of induced full conditional distributions but does
not directly model them. In contrast, the LSGM is defined by specifying a set of full conditional
distributions which then imply a constructed negpotential function and thus joint distribution. This
relationship between the two different methods of model specification is demonstrated in Figure
5.6.
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The constructed negpotential function for the LSGM has been determined [62] to be

QC(Y) =
n

∑
i=1

y(si)

[
log
(

κi

1−κi

)
− ∑

j∈Ni

ηi, jκ j

]
+

n

∑
i=1

∑
j∈Ni

ηi, jy(si)y(s j) (5.11)

This function implies the LSGM fits into the framework of the traditional ERGM. The difference
is the way in which the model is specified.

Network features can be partitioned into those that affect the global structure and those that
affect the local structure. The existence of these two structures has been recognized in the analysis
of empirical networks [115], [39]. The global structure is defined as patterns seen in the overall
network, such as density. Features that allow for departures from the global structure at a local
level would be classified as local structure. An example of the local structure is transitivity. By
specifying the model through conditional distributions the local structure is directly modeled and
thus there is greater control over it. According to [13], specification of a model through conditional
distributions leads to a more natural generation. Thus, if it is desired to model and understand the
local structures in a network, this can be achieved by specifying the model with the LSGM [62].

Again, other network analysis approaches have specified a model through conditional distribu-
tions. Most notably, the latent variable models specify the edge random variables as conditional
distributions which are independent given some latent variable, such as block membership or posi-
tion in social space. In this class of models, the edge random variables do not have a neighborhood
structure, because there is no modeling of dependence between the edges. The combination of a
neighborhood definition and conditional specification for each potential edge of the graph makes
the LSGM a unique approach within the realm of network analysis which not only incorporates a
local structure, but it allows the modeler to control it.

5.2.1 Model Parameters

The natural parameter function of Equation 5.10 contains two sets of parameters, {κi : i ∈ E} and
{ηi, j : i ∈ E, j ∈ Ni}. Stated in its most general form allows for a different κi for every edge y(si)
and a different ηi, j for every y(s j) ∈ Ni. Restrictions must be placed on this set of parameters for
model identifiability. The effect of the model parameters will be demonstrated for the simplest case
where κi = κ ∀i ηi, j = η ∀i, j ∈ Ni. The example network displayed in the first panel of Figure
5.7 will be used to illustrate the features of the model parameters. This network is composed of
97 nodes and 824 possible edges, those of which are displayed in Figure 5.7. If two nodes are not
connected in this plot, the probability this edge will be realized is set to zero.

The first parameter considered is κ . The κ parameter represented the large-scale structure of
the network and controls the density or proportion of possible edges which are realized. Because
this parameter represents a proportion, it has a well defined parameter space over the interval (0,1).
This parameter can be interpreted as the marginal mean of realized edges. The second panel of Fig-
ure 5.7 displays the resulting proportion of edges realized in the example network when κ is varied
over its parameter space and η = 5 is fixed. Ten-thousand networks were simulated for each κ
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(a) Example used to demonstrate
effect of model parameters. Gray
lines indicate all possible edges.

(b) The effect of varying κ on the
proportion of possible edges re-
alized. Points represent the me-
dian of 10,000 simulations and red,
dashed lines 95% envelopes.

(c) Proportion of the 64 possible
edges in the disconnected group in
the Northwest corner realized for
κ = 0.5 in 10,000 simulations.

Figure 5.7. Example which demonstrates the effect of model
parameters.

value with a burn-in of 10,000 while thinning with 500 simulations between each simulation re-
tained. The points in the plot represent the median proportion realized in the 10,000 networks and
the red, dashed lines represent 95% envelopes. This indicates there is a strong, monotonic relation-
ship between the value of κ and the resulting proportion of edges realized with little variability,
especially towards the boundaries of the parameter space.

The effect of the second parameter is less obvious. The parameter η represent the local, or
small-scale, structure and can be interpreted as a dependence parameter. This parameter controls
the extend to which groups behave together or independently. If η = 0, there is no dependence
between edges, and the value of an edge’s neighbors does not affect its probability of being real-
ized. This is most clearly seen by examining Equation 5.10. For this case, the probability of edge
formation is an independent Bernoulli trial with success probability κ . For larger values of η , the
value of the neighbors more strongly influence the probability of an edge realization, thus forcing
an edge to be more like its neighbors.

The final panel of Figure 5.7 summarizes the proportion of 64 possible edges in the discon-
nected NorthWest clump realized for each of 10,000 simulations obtained from two models. Both
models have κ of 0.5; the gray, solid histogram represents η = 0 and blue, dashed histogram a
value of η = 10.5. For the independence scenario of the gray, solid histogram, the probability of
each edge is 0.5, regardless of the rest of the network. The resulting histogram is symmetric and
centered at κ with few of the simulations resulting in less than 40% of the edges in the group real-
ized or more than 60% realized. When the value of η is large, and thus the dependence is strong,
this grouping of edges tends to behave more like a cohesive group, with most edges either present
or absent. This is displayed in the histogram as a bimodal distribution with a mode corresponding
to the group mostly realized and a mode when the possible edges are predominately absent. Note
that the histogram for strong dependence scenario is still centered at the value of κ = 0.5. This
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implies that the marginal mean is preserved over the multiple simulations, even when the local
dependence is strong. The centered parameterization of the natural parameter function in Equation
5.10 allows for this behavior.

Often there is a need for additional modeling of the dependence parameter. In the models
presented here, this term has been adjusted to account for unequal neighborhood sizes. In its
common application, the MRF is applied to situations for which the neighborhoods are of equal
or nearly equally-sized. One example is the four-nearest neighbors on regular lattice. If this
grid is wrapped on a torus to eliminate edge effects, each random variable will have exactly four
neighbors. The approach presented here will not result in equally-sized neighborhoods, but rather
a distribution of sizes (see Figure 5.12 in Section 5.3 for an example). So that the summation
term in the natural parameter function of Equation 5.10 has a uniform effect on edges of varying
neighborhood size, the additional modeling of the dependence parameter is

ηi, j =
η

|Ni|+ |N j|
(5.12)

where |Nk| represents the size of the neighborhood of edge y(sk). The summation of neighbor-
hood sizes in the denominator assures that ηi, j = η j,i, a requirement for the existence of the joint
distribution [74].

The parameter space for η is not as clearly defined as that for the marginal mean. The previ-
ously mentioned issue of model degeneracy occurs when the local structure dominates the global
structure which was recognized by [115] as an issue of large and growing neighborhoods. A large
dependence parameters will have the same effect on the probability of edge realization as many
neighbors contributing to the summation. For example, the proportion of realized edges in 10,000
simulations of the graph shown in the first panel of Figure 5.7 for parameter values κ = 0.5 and
η = 35 is shown in Figure 5.8. In this situation, the model places most of its probability on the
nearly complete graph, and thus almost all edges are realized in all simulations. A further compli-
cation is that the values for which the model breaks down is not consistent between applications.
All that can be said is that η should not be “too large”. The recommendation by [62] is to simulate
from the fitted model to assure that the simulations appear reasonable given the observed network.
Further work in this area is a topic of ongoing research and will be further addressed in (paper 2,
in preparation).

5.2.2 Optional Features

To specify the LSGM, one must specify the form of the conditional distributions, which for simple
graphs is a binary distributions, and for each edge random variable, y(si), a neighborhood, Ni.
To aid in the specification of the neighborhood structure two optional modeling features were
considered: a potentially latent spatial location of the nodes and a saturated graph.

The first feature is the definition of a spatial location for the nodes. Again, node locations
are not necessary to the construction of a network; however, it can aid in the specification of the
second feature, a saturated graph, and the required neighborhoods. If the goal is to generate a
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Figure 5.8. Proportion of realized edges in 10,000 simulations
when κ = 0.5 and η = 35. The proportion realized does not cor-
respond to the marginal mean κ = 0.5. This is an example of an
area of the parameter space where the model is degenerate.

realistic network where the nodes have spatial location, such as locations of power lines in a power
grid or routers of the Internet, this information can be naturally incorporated here. This approach
will be used in the next section with the analysis of a network of tornadoes. If no location is
observed, node location can also be imposed through a latent, random process. This latent process
can place nodes randomly in the space through a point process or through a model-based approach
which considers attribute information.

Node locations resulting from three different point processes will be demonstrated. The first
and simplest is a homogeneous Poisson point process which results in complete spatial random-
ness. The number of nodes are chosen from a Poisson distribution with a specified intensity pa-
rameter λ . The x and y locations of each node are drawn independently from uniform distributions
over the corresponding intervals of consideration. An example of the locations of the 105 nodes
resulting from a homogeneous Poisson point process with intensity parameter λ = 100 is shown
in the first panel of Figure 5.9. An immediate extension is to define an Inhomogeneous Poisson
point process with an intensity function that depends on node location [23, page 620]. This method
allows for a large amount of flexibility in the node placement. An example with intensity func-
tion λ (x,y) = exp(2− 4x+ 3y) is shown in the middle plot of Figure 5.9. In this example nodes
are most dense in the upper-left hand corner and become sparse as x-coordinate increases and the
y-coordinate decreases. The final example is the Neyman-Scott process. Node locations resulting
from this method are clustered which can be useful in generating networks thought to contain a
community structure. The far-right panel of Figure 5.9 displays the node locations for a Neyman-
Scott process generated with a Cauchy cluster kernel [34]. If covariate information is available on
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(a) Homogeneous Poisson point
process with λ = 100.

(b) Inhomogeneous Poisson point
process with λ (x,y)= exp(2−4x+
3y)

(c) Neyman-Scott process

Figure 5.9. Examples of random node placements through dif-
ferent point processes.

the nodes that is assumed to affect the probability of an edge, this can be used to assign location
through a model based approach. One possible way in which nodal covariate information can be
incorporated into defining nodal spatial location is the unobserved “social space” of [53] and [50].

The other optional feature is the definition and use of a saturated graph. A saturated graph
identifies edges with a positive probability of being realized. In many applications it is natural to
impose a defined cutoff for which edge formation is possible. For instance, Sensor-Actuator Net-
works (SAN) have a common transmission range which is the maximum distance possible between
two connected nodes [89], and the growth factors and diffusible signaling concentration decreases
as a function of distance in biological networks making long distance edges highly improbable
[123]. The use of the saturated graph was actually presented in the example network of Figure 5.7.

The saturated graph will be defined in this work in a manner similar to the formation of a unit
disk graph [71]. Given a radius, r, an edge between two nodes within distance r will have a positive
probability of being realized. Figure 5.10 displays examples of saturated graphs with constant node
locations and various radius sizes. The first two panels display the resulting saturated graph when
a constant radius size is used for all nodes. Note the vastly different patterns that emerge as a result
of the different radius sizes. With a smaller radius size, the graph is not completely connected
with two clusters of nodes disconnected from the majority and one isolated node. With a larger
radius size, the saturated graph is now completely connected with no isolated nodes and many
more possible edges. A common feature of graphs examined in the computer science literature has
been the existence of a giant component. One way to allow for this to occur in the saturated graph
is to vary the radius size between nodes. The last panel in Figure 5.10 has a radius size of r = 0.1
for all except the three nodes highlighted in green with radius size r = 0.35.

One advantage to imposing a saturated graph is a decrease in the number of random variables
under consideration. For example, there are 213 node in the graphs of Figure 5.10. The saturated
graph with the small radius size allows for 668 possible edges. When the radius size in increased
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(a) Saturated graph defined with
r = 0.1.

(b) Saturated graph defined with
r = 0.25.

(c) Saturated graph defined with
r = 0.1 for all nodes except the
three in green with r = 0.35.

Figure 5.10. Examples of saturated graph on same set of nodes
for various radius sizes.

to r = 0.25, this increases the number of possible edges to 3467 and the combination of radius
sizes considers 873 possible edges. If there were no saturated graph and edges between all pairs
of nodes were considered, there would be

(213
2

)
= 22,578 random variables to model. In a small

example it is possible to consider an edge between all pairs of nodes; however, the direction of
current research is to analyze networks with a large number of nodes [28]. Thus, considering
an edge between all pairs of nodes will be computationally prohibitive for many of the networks
currently of interest. The definition of a saturated graph is an attempt to lessen the effect of this
issue.

In addition, the introduction of a saturated graph will affect the size of the resulting neighbor-
hoods. Assume an incidence definition of dependence is used so that two edges which share a node
are conditional dependent. In the plots of Figure 5.10, in the absence of a saturated graph, each
edge random variable would contain 2(213−2) = 422 neighbors and thus each summation in the
natural parameter of Equation 5.10 would include 422 terms. When using a saturated graph the
neighborhood size is not consistent for all random variables, but rather depends upon the number
of close edges. The average neighborhood size for the first panel of Figure 5.10 is 12.5, second
plot is 68, and for the final plot each edge is affected by, on average, 30.67 neighbors. The largest
neighborhood in any of the three examples is only 100. Thus, the use of a saturated graph not only
decreases computational time significantly, but also decreases the large and growing neighborhood
size effect, which was identified by [115] to contribute to model degeneracy. Note that the sat-
urated graph as presented in the examples presumes the nodes have spatial locations. Although
this approach is intuitive and illustrative, it is not the only possibility. Factors other than distance
between nodes can be incorporated to eliminate the possibility of edge formation.
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5.3 Application

The features of the LSGM will be demonstrated on an example network constructed from the
recorded tornadoes which originated within the state of Arkansas during April, 2011. This appli-
cation was chosen because the nodes have an observed spatial location and the example is able to
demonstrate the features of the LSGM while remaining simple. Details of the tornadoes were ob-
tained from National Oceanic and Atmospheric Administration’s (NOAA) National Climatic Data
Center (NCDC) Storm Data severe weather report database. Tornadoes with a documented starting
longitude and latitude are included in the analysis. Fifty-nine tornadoes met the criteria.

5.3.1 The Network

The nodes of the network represent the 59 tornadoes which originated within Arkansas during
April, 2011. The location of the nodes are the location of the observed point of origin of the
tornado. Tornadoes from the same family, or those which arose from the same storm event, are
also identified [1]. The location and family information, as indicated by color and number, of the
tornadoes are shown in Figure 5.11. For successively occurring tornadoes to be within the same
family, both must appear within two hours. This criteria was used to account for overnight storms
which spanned more than one day. An exemption was made for events 8, 9, 10, 11, and 12 which
all occurred within two hours, but due to their location and ordering could not have physically
originated from the same system. Thirteen storm events were identified to have produced at least
one tornado.

Edges will connect two tornadoes which originated from the same storm event. The use of a
saturated graph will be demonstrated on the Arkansas tornado network. The radius which defines
the possible edge formation will be r = 80 kilometers. This radius value is motivated by the fact
that thunderstorms can travel upwards of 80 kilometers per hour. The resulting saturated graph
contains 292 possible edges, 125 of which are realized, i.e., connecting tornadoes from the same
event.

To further justify the use of a saturated graph consider if this feature had not been used. In-
stead of 292 random variables to model, there would be

(59
2

)
= 1,711 edge random variables of

interest. Using the incidence definition of dependence, each edge random variable would have
neighborhoods of size 2(59− 2) = 114. In contrast, the saturated graph allows for a distribution
of neighborhood sizes. This distribution is shown in Figure 5.12 with an average value of 24.43
and the largest neighborhood containing 39 edges. Restricting the neighborhoods is also intuitive.
A edge which connects two tornadoes in an area of the state where few tornadoes occurred, e.g.,
event 3 in Figure 5.11, is not dependent upon edges which occur in an area where many tornadoes
occur on the other side of the state, e.g., event 7.

In summary, the Arkansas tornado network consists of 59 nodes which correspond to the start-
ing latitude and longitude of tornadoes within the state of Arkansas during April, 2011. An edge
exists between two nodes if they are in the same family, i.e., resulted from the same event. The
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Figure 5.11. Nodes of the network as defined by the tornadoes
that originated in Arkansas during April, 2011. Color and numbers
correspond to the event in which the tornado occurred.
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Figure 5.12. Distribution of the neighborhood sizes when a sat-
urated graph of r = 80 kilometers is used in the analysis of the
Arkansas tornado network.

definition of neighborhoods will be incidence and a saturated graphs will be used restricting edges
to connect two tornadoes which are at most 80 kilometers apart.

5.3.2 The Fit of the LSGM

The Local Structure Graph Model with a single marginal mean, κ , and single dependence param-
eter, η , is fit to the Arkansas tornado network. The dependence parameter will be adjusted to
account for unequal neighborhood sizes as in Equation 5.12. Point estimates of the model parame-
ters are obtained through a maximization of the log pseudo-likelihood (PL), the summation of the
log of the conditional distributions,

logPL = ∑
i
{y(si) log[pi(Ni)]+(1− y(si)) log[1− pi(Ni)]}

where pi(Ni) represents the conditional expectation for y(si)|Ni,

pi(Ni) =
exp(Ai(Ni))

1+ exp(Ai(Ni))

The PL function was introduced by [14] and is not a “true” likelihood but rather an approximation
to the likelihood function. It provides a fast and computationally tractable method to obtaining
approximations to the maximum likelihood estimates when an intractable normalizing constant
prevents a direct maximization. Estimates obtained by maximizing the PL function for a MRF
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κ̂ η̂

LSGM 0.27 (0.15, 0.75) 8.60 (4.93, 11.07)
Independence 0.43 (0.38, 0.48) —

Table 5.3. Point estimates, 90% interval estimates and p-value
for the proportion of neighborhood model assessment technique
for the LSGM and Independence models.

have been shown to be generally consistent and asymptotically normal [46]. Quantifying uncer-
tainty in PL estimators is less known and so interval estimates will be obtained through parametric
bootstrap. Networks are generated from the estimated values of κ and η using a Gibbs sampler.
Ten-thousand simulations were considered with an equal-sized burn-in period and thinning of 500
iterations. For each simulated network a value of κ and η is estimated. Percentile confidence
intervals were obtained by taking the 5th and 95th percentiles of the distributions of estimates. The
resulting point estimates and 90% confidence intervals are shown in the first row of Table 5.3.

For comparison purposes, a maximum PL estimate and parametric bootstrap interval are ob-
tained for the one parameter independence model where the dependence parameter is forced to be
zero. The results of this fit to the Arkansas tornado network are also shown in Table 5.3. Two
methods of model comparison will be presented. The first is an approximation to the likelihood-
ratio test using simulations and the second attempts to quantify how the LSGM is able to replicate
the local structure of the network.

The likelihood ratio test is a commonly used method to compare two models with nested pa-
rameter spaces. Because the likelihood is known only up to a constant for the LSGM, this exact
method cannot be used to compare the LSGM to the independence model. However, an approx-
imate approach based on simulations and the PL can be used. It is desired to test the fit of the
null model, here independence model, against the fit of the alternative model, or LSGM. The test
statistic will be the different in the log-PL value for both methods, or

D = logPL(LSGM)− logPL(Indep) (5.13)

In order to assess the significance of this test statistic, a reference distribution must be constructed
through simulations. This is done by fitting both the LSGM and independence model to the each of
the 10,000 networks simulated from the fitted independence model with κ̂ = 0.43. From the fit of
both models and for each simulations, the log-PL value is computed. The value of Equation 5.13
is then computed for each simulation, D∗h, h = 1, . . .10000. The p-value testing if the fit of the
LSGM is significantly better than the independence model is computed as

10000

∑
h=1

I(D∗h > D)

10000
(5.14)

where I(A) is the indicator function which takes the value 1 if A is true and 0 otherwise. For the
Arkansas Tornado Network the fit of the two models yields D = 14.06 with a p-value of 0.0016.
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Thus, it can be concluded based on this test that the LSGM fits the Arkansas Tornado Network
significantly better than the independence model. This implies that there is a significant amount of
local dependence which should be accounted for in the model.

The results of the simulation-based PL ratio test indicate that there is a significant amount of
local dependence, or structure, in the Arkansas tornado network. It is now of interest to quantify
how much better the LSGM is capturing the local-ness of the network with the inclusion of the
dependence parameter. To assess this trait, we will examine how well the simulations from the
fitted models are able to recreate the observed neighborhoods. As a reminder, each potential edge
is assigned a set of edges on which it is conditionally dependent. The feature of interest will be the
proportion of an edge’s neighborhood which assumes the same value as that edge. For example,
if edge at location si is not present, i.e., y(si) = 0, the proportion of neighbors which assume the
same value can be computed as

q(si) =
1

(|Ni|) ∑
j∈Ni

[
1− y(s j)

]
and if the edge at location si is realized, i.e., y(si) = 1, the proportion is

q(si) =
1

(|Ni|) ∑
j∈Ni

y(s j)

This results in a distribution of proportions {q(si), i = 1, . . . ,m} equal to the number of potential
edges. For the Arkansas tornado network, this is m = 292 with distribution shown in Figure 5.13.

To demonstrate how the LSGM is capturing the feature, consider the mean of the propor-
tion of same neighbors, q(s). For the Arkansas tornado network displayed in Figure 5.13 this is
q(s) = 0.561. This average proportion of neighbors assuming the same value as the random vari-
able can be computed for each of the simulated networks from both models. The set of average
proportions from each model, {q(s)∗Indep,h;h = 1, . . . ,10000} from the independence model and

{q(s)∗LSGM,h;h = 1, . . . ,10000} from the LSGM can be used as reference distributions to test
the significance of the average proportion from the observed network, with p-values computed in
a manner similar to Equation 5.14. For a reference distribution obtained from the independence
model the p-value is 0.0002. When the reference distribution results from the fit of the LSGM
the p-value is 0.7481. From this it can be concluded that independence model is not able to cap-
ture the local structure of the network; however, the LSGM, with its neighborhood definition and
dependence parameter, is able to recreate this feature.

The previous model assessment techniques indicate that the Arkansas tornado network exhibits
a significant amount of local dependence that is appropriately captured by the fit of the LSGM. To
see how this fit of the LSGM affects conditional expectations, consider an edge, y(si), with 20
neighbors, |Ni| = 20, where each of its neighbors also has 20 neighbors, |N j| = 20 ∀ j ∈ Ni. The
marginal expectation that this edge will be realized is fixed at κ̂ = 0.27 regardless of the value of
the neighbors. However, the conditional probability that this edge will be present, pi(Ni) is affected
by the number of neighbors assuming a positive value. This relationship is plotted in Figure 5.14.
When all neighbors of y(si) are absent, the conditional probability that y(si) = 1 is only 0.10.

121



Figure 5.13. Distribution of the proportion of neighbors assum-
ing the same value as the random variable, p(si) for the Arkansas
tornado network.
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Figure 5.14. Number of positive neighbors against conditional
expectation for a random variable with 20 neighbors. The red,
dashed, vertical line represents the marginal expectation of κ̂ =
0.27.

This increases monotonically as the number of positive neighbors increases to pi(Ni) = 0.89 when
y(s j) = 1 ∀ j ∈ Ni.

5.4 Conclusions

This work has introduced the Local Structure Graph Model, a new model for network analysis.
The two main features of the model are an explicit definition of neighborhoods and a specification
of the model through full conditional distributions. The LSGM can be interpreted as a MRF with
an additional level of modeling or as an alternative approach to specifying an ERGM. The behavior
of the model is controlled by two sets of parameters, κi which represent the large scale structure
and controls the marginal mean of the network, and ηi, j, which captures the local structure and
can be interpreted as a dependence parameter. Two optional features were introduced to aid in
the specification of the LSGM, decrease computational time, and to lessen the effect of model
degeneracy. The optional features are a potentially latent, spatial location of the nodes and a
saturated graph, which restricts edges from forming between all pairs of nodes. An application of
the LSGM was demonstrated on the network formed by the cited tornadoes in Arkansas during
April, 2011. Two simulation-based model assessment techniques indicate the Arkansas tornado
network exhibits a significant amount of local dependence that is appropriately captured by the fit
of the LSGM.
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There are natural extensions that were omitted in this work as to not introduce additional com-
plicating factors. The first extension is the inclusion of node or edge attributes into either the
global, local or dependence structure. This can be accomplished through additional modeling of
κ , η , or the neighborhood definition, respectively. In addition, the constructed negpotential of the
LSGM as currently stated in Equation 5.11 includes an assumption of pair-wise only dependence,
a common consideration of the typical application of the MRF model. This assumption implies
that cliques of size greater than two are not included in the dependence structure. An extension
would be to explicitly account for dependence between triples of random variables by allowing
for an additional summation in the expansion of the negpotential function. This will require an
extension to the centering approach of [20] as it was developed under the assumption of pair-wise
only dependence. The inclusion of attributes and the extension to cliques of size three are the focus
of a forthcoming paper.
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