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1. Executive	Summary	
 
 

In topical Report DOE/FE0002068-1 [2] technical performance evaluations on the Cambrian Potosi Formation were performed 
through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, 
structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection 
wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. 
 

In this Task the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this report) was re-run 
using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too 
small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. Also, it might 
have overestimated the injection capacity by enhancing too much the pressure relief due to the relatively close proximity between 
the injector and the infinite acting boundaries. 
 

The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles 
(48 km by 48 km), while preserving all property modeling workflows and layering. This model was retained as the base case. 
 

Potosi Dynamic Model 2013.a gives an average CO2 injection rate of 1.4 MTPA and cumulative injection of 43 Mt in 30 years, 
which corresponds to 45% of the injection target. This implies that according to this preliminary model, a minimum of three (3) 
wells could be required to achieve the injection target. The injectivity evaluation of the Potosi formation will be revisited in topical 
Report 15 during which more data will be integrated in the modeling exercise. A vertical flow performance evaluation could be 
considered for the succeeding task to determine the appropriate tubing size, the required injection tubing head pressure (THP) 
and to investigate whether the corresponding well injection rate falls within the tubing erosional velocity limit. 
 

After 30 years, the plume extends 15 miles (24 km) in E-W and 14 miles (22 km) in N-S directions. After injection is completed, the 
plume continues to migrate laterally, mainly driven by the remaining pressure gradient. After 100 years post-injection, the plume 
extends 17 miles (27 km) in E-W and 15 miles (24 km) in N-S directions.  
 

The increase of reservoir pressure at the end of injection is approximately 370 psia around the injector and gradually decreases 
away from the well. The reservoir pressure increase is less than 30 psia beyond 14 miles (22 km) away from injector. The initial 
reservoir pressure is restored after approximately 20 years post-injection. This result, however, is associated with uncertainties on 
the boundary conditions, and a sensitivity analysis could be considered for the succeeding tasks. 
 

It is important to remember that the respective plume extent and areal pressure increase corresponds to an injection of 43 Mt CO2. 
Should the targeted cumulative injection of 96 Mt be achieved; a much larger plume extent and areal pressure increase could be 
expected. 
 

Re-evaluating the permeability modeling, vugs and heterogeneity distributions, and relative permeability input could be considered 
for the succeeding Potosi formation evaluations. A simulation using several injectors could also be considered to determine the 
required number of wells to achieve the injection target while taking into account the pressure interference.  
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2. Introduction	
 

2.1. Context	
This project is part of a larger project co-funded by the United States Department of Energy (US DOE) under cooperative 
agreement DE-FE0002068 from 12/08/2009 through 9/31/2013 [1]. The entire study was to evaluate the potential of formations 
within the Cambro-Ordovician strata above the Mt. Simon Sandstone as potential targets for carbon sequestration in the Illinois 
and Michigan Basins.  The Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and 
plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, 
pressure data, and seismic data from the US DOE funded Illinois Basin – Decatur Project being conducted by the Midwest 
Geological Sequestration Consortium in Macon County, Illinois.  
  
In Topical Report DOE/FE0002068-1 [2), technical performance evaluations on the Cambrian Potosi Formation were performed 
through reservoir modeling. The data included formation tops from mud logs, well logs from the verification well (VW1) and the 
injection well (CCS1) wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from 
several waste injection wells for Potosi Formation. The Mt. Simon Sandstone was the target formation for the drilling of these 
wells.  The intention was for 2 MTPA of CO2 to be injected for 20 years. 
 
In this task, the 2010 Potosi heterogeneous model [2] (referred to as "Potosi Dynamic Model 2010" in this report) will be re-run 
using a new injection scenario; 3.2 MTPA for 30 years. Increasing the model extent could be required as the plume got close to 
the reservoir boundary in the 2010 model.  
 

2.2. Objectives	
The objectives of the task are to: 

• Re-run the Potosi Dynamic Model 2010 with the new injection scheme; 3.2 MTPA for 30 years, 
• Increase the model extent if necessary, and re-run simulation with the new injection scheme, continued by 100 years 

post injection period, 
• Evaluate the injection profile, plume extent, and areal pressure increase. 

 

2.3. Scope	
Only the Potosi heterogeneous model will be evaluated. All 2010 modeling assumptions [2] will be retained. 
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3.1.1.2. 	Porosity	and	Permeability	
Porosity and permeability were populated based on CCS1 and verification well log data [2]. Permeability was upscaled to the 
simulation model using volume-weighted harmonic averaging. Porosity was upscaled to the simulation model using volume-
weighted arithmetic averaging (Figure 3-2 and Figure 3-3). Information from both wells was propagated throughout the model with 
Sequential Gaussian simulation to create the heterogeneous model (Figure 3-4 and Figure 3-5). No core data or well test data 
was available on vertical permeability hence is assumed to be 30% of horizontal permeability [2]. Due to the vugular nature of the 
carbonate reservoir, log-derived permeability data was modified utilizing the formula below to attempt to approximate behavior 
observed in Potosi waste injection wells and during drilling of the CCS1 well [2]. Through this transform, the initially calculated 
permeability (kinitial), which responds primarily to matrix porosity, was modified to account for the proportion of porosity attributable 
to vugs. 

kmodified = kinitial x (1+2 x ϕTotal) [2] 
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Figure 3-12 Potosi Dynamic Model 2010, WBHP and reservoir pressure around injector vs. time 

 
Figure 3-11 indicates that for the base case, the targeted injection rate (3.2 MTPA) could not be achieved during the entire 
injection period using only one well. The well injection rate is constrained by the maximum allowable BHP (Figure 3-12). It 
decreases from approximately 2 MTPA at the start of the injection down to 1.4 MTPA after five years as the reservoir pressure 
increases. It gradually increases and reaches 1.5 MTPA just before injection is completed, as a dry out effect slightly enhances 
the injectivity. The estimated cumulative injection after 30 years is approximately 43 Mt (45% of the target). This implies that a 
minimum of three injector wells could be necessary. A vertical flow performance evaluation could be considered to determine the 
appropriate tubing size, the required injection THP and to investigate whether the corresponding well injection rate falls within the 
tubing erosional velocity limit. 
 
This result, however, will be revisited when more data can be integrated into the modeling exercise.  
 
Plume Extent 
Similar to Potosi Dynamic Model 2010, CO2 flows preferentially into and through thin vugular intervals, and hence creates a 
reasonably large plume extent.  After 30 years, the plume extends 15 miles (24 km) in E-W and 14 miles (22 km) in N-S directions 
(Figure 3-13). After injection is completed, the plume continues to migrate laterally, mainly driven by the remaining pressure 
gradient. After 100 years post-injection, the plume extends 17 miles (27 km) in E-W and 15 miles (24 km) in N-S directions (Figure 
3-13). Should the targeted cumulative injection of 96 Mt be achieved; a much larger plume extent could be expected. 
 
Driven by gravity force, some CO2 migrates vertically across layers and reach the top of the formation. It did not, however, change 
the plume shape significantly during 100 years post injection (Figure 3-14). As the permeability of the vugular layers is much 
higher than the non-vugular layers, the plume remains within the vugular layers and migrates laterally. 
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Figure 3-16 Potosi Dynamic Model 2013a, WBHP and reservoir pressure around injector,  
during 30 years of injection and 100 years post-injection. 
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4. Conclusions	and	Recommendations	
 

4.1. Conclusions	
 
Evaluation of the Potosi formation CO2 storage performance has been done using a derivation of 2010 modeling workflow. The 
following can be concluded: 

 The extent of Potosi Dynamic Model 2010 appears too small for the new injection target. It is not sufficient to 
accommodate the evolution of the plume. Also, the injection capacity might have overestimated by enhancing the 
pressure relief due to the relatively close distance between the injector and the infinite acting boundaries. 

 The new model Potosi Dynamic Model 2013a was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 
30 miles, (48 km x 48 km) while preserving all property modeling workflows and layering. This model is retained as the 
base case. 

 Potosi Dynamic Model 2013.a gives an average CO2 injection rate of 1.4 MTPA and cumulative injection of 43 Mt in 30 
years, which corresponds to 45% of the injection target. This implies that according to this preliminary model, a minimum 
of 3 wells could be required to achieve the injection target. This result, however, did not take into account the limitation of 
the tubing deliverability. The injectivity evaluation of the Potosi formation will be revisited when more data could be 
integrated into the modeling exercise.  

 After 30 years, the plume extends 15 miles (24 km) in E-W and 14 miles (km) in N-S directions. After injection finishes, 
the plume continues to migrate laterally, mainly driven by the remaining pressure gradient. After 100 years post injection, 
the plume extends 17 miles (27 km) in E-W and 15 miles (24 km) in N-S directions. Should the targeted cumulative 
injection of 96 Mt be achieved; a much larger plume extent could be expected. 

 The increase of reservoir pressure at the end of injection is approximately 370 psia around the injector and gradually 
decreases away from the well. The reservoir pressure increase is less than 30 psia beyond 14 miles (22 km) away from 
injector. Should the targeted cumulative injection of 96 Mt is achieved; a much larger areal pressure increase could be 
expected. The initial reservoir pressure is restored after approximately 20 years post injection. This result, however, is 
associated to uncertainties on the boundary conditions, and thus a sensitivity analysis could be considered for the 
succeeding tasks 

 

4.2. Recommendations	
 
Revisiting the following points could be considered for the succeeding Potosi formation evaluations: 

 The current permeability was derived from well logs and modified using an empirical equation to match the drilling loss 
rate. This permeability modifier could be re-evaluated should the core analysis data be available.  

 The relative permeability used in the current task is arbitrary due to the limited sources on such data. The relative 
permeability input could be reviewed should the core analysis data be available. Otherwise, published sources on CO2-
brine relative permeability could be referred. 

 The property modeling in Potosi formation is associated to uncertainties on vugs distribution and interconnectivity within 
the reservoir and thus two different realizations could be considered;  

o First realization with the presence of vugular layers where the vugs are relatively large and interconnected. 
o Second realization with smaller vugs and less interconnectivity between them. 

Also, this 2010 modeling workflow uses a big variogram range and thus could be re-visited in the next task.  
 The injectivity estimation in Potosi formation is associated to uncertainties on permeability distribution and boundary 

conditions. Sensitivity analysis on permeability and boundary conditions could be considered in the succeeding 
evaluations. 



Page 19 of 19    

 A vertical flow performance evaluation could be considered for the succeeding task to determine the appropriate tubing 
size, the required injection THP and to investigate whether the corresponding well injection rate falls within the tubing 
erosional velocity limit. 

 A simulation using several injectors could also be considered to determine the required number of wells to achieve the 
injection target while taking into account the pressure interference.  
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