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Abstract

The LUX detector is currently in operation at the Davis Campus at the 4850’ level of the Sanford Underground Research
Facility (SURF) in Lead, SD to directly search for WIMP dark matter. Knowing the type and rate of backgrounds is
critical in a rare, low energy event search, and LUX was designed, constructed, and deployed to mitigate backgrounds,
both internal and external. An important internal background are decays of radon and its daughters. These consist of
alpha decays, which are easily tagged and are a tracer of certain backgrounds, and beta decays, some of which are not
as readily tagged and present a background for the WIMP search. We report on studies of alpha decay and discuss
implications for the WIMP search.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. LUX Experiment and Detector

The LUX experiment is a direct search for weakly interacting massive particles (WIMPs), which could
make up the dark matter [1]. The detector uses a total of 370kg of liquefied xenon (LXe) with 250kg
actively instrumented as a time projection chamber (TPC). It is deployed at the 4850 Level of the Sanford
Underground Research Facility (SURF) in Lead, SD [2]. The first WIMP search results from LUX are
reported in [3]. Background characterization and mitigation is very important for low-energy rare event
searches like LUX [4]. To limit the backgrounds the detector is constructed from materials screened for
radioactivity, is deployed underground to shield against cosmic radiation, and uses a water tank to shield out
neutrons and gammas from the rock walls. This work used 3.8 live days of data collected with no calibration
sources present between May and June 2013 to investigate events from the alpha decays in the 23U and
232Th decay chains. Here we report on the alpha event rates and energy spectrum, and discuss the related
WIMP search backgrounds.

The LUX TPC, depicted in fig. 1, has two 61-channel PMT arrays above and below 270 kg LXe sur-
rounded by a dodecagon of PTFE panels to reflect and direct primary scintillation signals (S1) to the arrays.
Five electrode grids establish a 181-V/cm field to drift electrons from event sites in the LXe to a gaseous
xenon (GXe) region with a 6.0-kV/cm electric field where electroluminescence produces a secondary scin-
tillation signal (S2). This S2 light is used to determine the (x, y) position of events and the time difference
of the S1 and S2 signals gives the z depth (see axes in fig. 1).

2. Event Selection and Correction

The LUX TPC aims to measure <25 keV,, WIMP-like nuclear recoils in its active region. Alpha events
with 5-9 MeV energies produce large signals and so present unique challenges. To reduce selection bias of
requiring an S2 signal for alphas, the top-bottom asymmetry is used as an alternative to the S1-S2 timing
between paired pulses. The top-bottom asymmetry (7BA), defined as TBA = (t — b)/(t + b), is the difference
of the light read out of the top 7 and bottom b PMT arrays divided by the total light read out by both arrays
and correlates to z-position. Figure2 shows the uncorrected S1 pulse area as a function of the TBA (left
plots) and depth from the gate grid (right plots) for six apparent populations of alpha events. Events with a
large z are more negative in 7BA in fig. 2 and exhibit saturation as the light from those events are distributed
among a smaller number of PMTS in the bottom array than those higher in the detector. The overall slope of
the alpha signals in the top plots of fig. 2 is due to the z-dependent light collection efficiency in the bottom
PMT array. We use the red-highlighted band of alpha events to derive a position-dependent correction to the
S1 signals.

To properly correlate the onset of saturation in 7BA to the event depth, the spectrum of alpha S1 signals
in TBA is compared with the z-based spectrum of S1-S2 paried pulses. This latter spectrum is varied by
varying z until the integrated counts of the largest peak in both spectra were equal. This correlates -0.7 in
TBA to z=34.4cm. Thus data from the upper 34.4 cm of the active region are used to identify events and
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Fig. 1: Cutaway drawing of the LUX detector showing the active region, PTFE walls, PMT arrays, and
nested Ti cans.

measure the event rates of the alpha populations, and these values are scaled to the full PMT-to-PMT height
to account for what the 270-kg S1-sensitive region should be able to observe.

3. Energy Identification and Decay Rates

The spectrum of unpaired S1 pulses in 7BA is scaled from pulse size in photoelectrons (phe) to energy
in MeV with a single parameter scaling using the largest alpha peak (**’Rn) as an anchor. The alpha
populations in the energy spectrum, fig. 3, are identified from the known energies of two well-known high-
A decay chains: *U and ?*Th, which are given in table 1. The six peaks observed in the energy spectrum
are fit with a sum of five Gaussians and a Crystal Ball Distribution [5] to find their individual counts, and
their rates are scaled from the fractional volume to the full 270-kg PMT-to-PMT LXe volume. The results
are shown in table 2. The inset in fig. 3 shows that 2°Po events suffer S2 loss from its location at the detector
boundaries, motivating this S1-only analysis.

There are eight important alpha populations in the two decay chains, but only seven are observed in LUX,
and two of the seven are indistinguishable. The >'*Po decay rate is suppressed due to pulse identification
inefficiencies, and the rate shown here accounts for this effect. The locations of the seven alpha populations
correlate to their positions in the decay chains and their respective half-lives and help explain their presence
in the LUX low-background data.

4. 233U and >2Th Decay Chains and Alpha Locations

The locations of the alpha-emitting isotopes of the 2*U and 2*’Th decay chains are shown in (12, 7) in
fig.4a and in (x,y) in fig. 4b, with their Q-values and half-lives given in tables 1 and 2, respectively. Note
that 2!°Po, the only alpha emitter after the long-lived 2'°Pb in the 2*¥U chain, is predominantly found on the
walls and cathode, as expected due to plate-out effects. The 2!°Po alpha decays on the PTFE reflectors are
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Fig. 2: (Top) Uncorrected alpha data and (bottom) alpha data corrected with the strong second band (red).
The vertical dashed lines in the bottom plots enclose equal amounts of red data.

Decay Isotope Known Measured
Chain Energy (MeV) | Energy (MeV)
22Rn 5.59 5.59 +0.08*
238 ¥pg 6.16 6.12+0.10
2po 7.84 7.80 = 0.20
210pg 5.30 5.22 +0.09
720Rn 6.41 6.47 +0.09
232, 2T6pg 6.91 6.95 +0.10
27B; 6.21 6.12+£0.10
2Zpg 8.83 not measured

Table 1: Run03 alphas found in the LUX detector, their measured energies, and their parent decay chain.
Stated errors in the measured energies are the sigmas of the five Gaussian plus one Crystal Ball Distribution
fit. The known energies are the decay Q-values, except for 2!°Po, whose listed energy is the alpha energy
alone because its 2°°Pb daughter recoils into passive material (cathode, anode, or teflon). 218pg and 212Bj
are close in energy such that they do not appear as separate peaks in the spectrum. *The ?>’Rn line was used
to anchor the S1 pulse size-to-energy scaling.
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Fig. 3: Energy spectrum with fits and known energies. All vertical line energies are the decay Q-value,
except for 2!°Po, which is the alpha emission energy alone. See text regarding this apparent offset. Inset:
210pg alpha event spectra of S1-only data compared to S1 pulses successfully paired with S2 pulses. The
S1-S2 paired events appear at lower S1 pulse area do to energy lost in passive material from the recoiling
206Pb.

potentially problematic for the dark matter search, because of the substantial (@,n) cross-section of fluorine.
In LUX, however, this background source is expected to be sub-dominant (see table 3).

With their relatively short half-lives, the presence of the ?°Rn and 2'®Po isotopes from the >3>Th chain
in the first (x,y) quadrant (Q1) of the active region near the LXe surface is consistent with a source in the
circulation system. This expectation is borne out by internally injected #*™Kr with #;/, = 1.83 hr, which is
used for energy calibrations and circulation diagnostics of the detector. Figure 5 is a still from a movie made
from a typical injection of #*™Kr and shows the distribution of events throughout the LUX TPC active region
9.45 minutes from the start of the injection. Both the 3*™Kr events observed before they diffuse throughout
the active region and the short-lived 2°Rn and 2'%Po alpha events appear at the top of the active region in Q1.
As the 3¥MKr is introduced into the active region by the circulating LXe, we infer that the 2*>Th daughters
are introduced in the same fashion. Further work is being carried out to verify this conclusion and remove
this source if practical and necessary.
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Fig. 4: The (r%,z) (a) and (x, y) (b) locations of the alpha populations during the first WIMP data collection
are explained by their half-lives and position within the respective decay chains. A dead PMT can be seen
as the hole in the (x, y) distributions.
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Dece.ly Isotope | Half-life Event Rate (mHz) Location
Chain
22ZRn 3.82 dy 17.9 + 0. 2415 + 1.3y5 Uniform in bulk
28po 3.05min | 14.4 + 0. 24 + L.1gs* Uniform in bulk
B8y TPo [ 162.30 us | 3.5 % 0.1 £ 034 Sparse throughout bulk
o > 143 Walls
Po | 138.38 dy >172 Cathode
2Rn | 55.80sec | 2.6+ 0.1y = 0.4y | Quadrantl, sparse in bulk
1 ZT6pg 0.15 sec 2.8 + 0.1 + 0.5 | Quadrant I, sparse in bulk
217Bj 60.54 min | 14.4 + 024, + L.1g* Uniform in bulk
21Zpg 0.30 us not measured not observed

Table 2: Rates of the alphas measured in the Run03 data. Statistical errors are based on VN counting
statistics. Systematic errors are from the wandering of means of the alpha energies throughout the data used
in this work. The 2'#Po rate is adjusted for a 52% event reconstruction efficiency from the measurement to
the listed value. The 2!'°Po populations are suppressed due to S2 loss from their positions in the detector.
*The 2!°Bi population is undifferentiated from 2'3Po rate, and so is reported with the same rate.
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Fig. 5: A still from a movie produced during the injection of the 33™Kr internal calibration source, taken
9.45 minutes after the start of the injection. The event pattern here is similar to that observed of the >’Rn
and 2'®Po events, and suggests a close source of these short-lived isotopes.

5. Conclusions

The WIMP search backgrounds resulting from radon decays in LUX are listed in table 3. The F(a,n)Na
rate of 2!°Po events on the PTFE walls is subdominant to neutrons from all 122 PMTs by a factor of 33.
The 2%Pb recoils are a nuclear recoil background, but except for possible misconstructed positions are
outside the fiducial volume and so were not a large threat to the first LUX WIMP search results. The 0.10-
0.41 mDRU_,, 2'*Pb untagged beta rate inferred from alpha decays bracketing this decay is a factor of a few
lower than the PMT ER background in the detector, which mitigates the potential threat of that background
[6, 7]. A gamma search in the 300-350 keV,, range gives a 0.23 mDRU,, upper bound on the 214pp beta [8].
Any backgrounds resulting from the fast >>Th daughters are not expected to impact future WIMP searches
and have no impact on the LUX WIMP search result reported in [3]. These background measurements were
used in the overall LUX background model [8, 4] to calculate the WIMP limit published in Ref. [3].
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Background Rate Comparison/Context
F(e,n)Na from 2™°Po « on PTFE 14.3 mHz = 0.012 n/day PMTs: 0.4 n/day all tubes
206pp 102 keV recoils 21.5mHz Fiducialization removes these
[aispg, > Dauapy, > Do, 0.10-0.41 mDRU¢, from this work PMT ER BG: 0.5 mDRU,,
214pp untagged 8 <0.23 mDRU,, high-energy y search in a 100 kg fiducial
270 kg total active region

Table 3: Rates of radon-related backgrounds and their comparison to other backgrounds in LUX.
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