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Abstract

A theoretical framework for the numerical solution of partial differential equation (PDE)
constrained optimization problems is presented in this report. This theoretical framework
embodies the fundamental infrastructure required to efficiently implement and solve this
class of problems. Detail derivations of the optimality conditions required to accurately
solve several parameter identification and optimal control problems are also provided in this
report. This will allow the reader to further understand how the theoretical abstraction
presented in this report translates to the application.
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Chapter 1

Theoretical Framework

Let Z,U,Y be Hilbert spaces and Z, U are reflexive, i.e. 2z ~ 2 V 2z € Z and u ~
u V wu € U. Furthermore, let J: U X Z — R and g: U x Z — ). Lets consider an
optimization problem of the form

minimize J(u, z)
(u,2) € UXZ

subject to (1.1)
g(u,z) =0,
where u € U,y CU and z € Z,y C Z. U,y and Z,4 denote admissible subsets of the state

and control spaces U and Z, respectively. If the following conditions are met:
1. Z,4 C Z is convex, bounded and closed;

2. U,q C U is convex, closed, and contains a feasiblepoint; i.e. g(u, z) = 0 has a bounded
solution operator, u: Z2 — U;

3. the mapping (u, z) — g(u, 2) is continuous under weak convergence; and

4. J is sequentially lower semicontinuous;

there exists a solution to the optimization problem defined in Eq. 1.1 [2, 1]. The above
result ensures the existence of an optimal solution to the optimization problem defined in
Eq. 1.1. However, the uniqueness of the solution is problem dependent.

To efficiently solve the optimization problem in Eq. 1.1, first order necessary optimality
conditions and second order sufficient conditions are required to find the optimal solution.
These conditions involve the gradient of the objective function being zero at the optimal
solution and the Hessian operator being positive semidefinite at the optimal solution. These
conditions can be derived from Lagrangian multiplier theory [4].

Full-Space Formulation

Consider the optimization problem defined in Eq. 1.1 and assume that the objective
function J(u, z) and constraint g(u, z) are twice continuously differentiable with Lipschitz
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continuous second derivatives. We define a Lagrangian functional £: U x Z — R, given by
L(u,z,\) = T (u, z) + (N, g(u, 2))u us

If (a,2) € U x Z is a local solution of Eq. 1.1, then there exists a Lagrange multiplier el
such that the first-order necessary optimality conditions

(Lo(u, 2, N), 0u) = (Tu(u, 2) + gu(u, 2)" A, du) =0
(L.(u,z,N),02) = (T (u,2) + g.(u, 2)* A, 6z) =0 (1.2)
(La(u, z,N),0\) = (g (u,2),0A) =0

are satisfy for any (du,dz,0\) € U x Z x U. Here, x denotes the adjoint of an operator.
If (4, z, 5\) satisfy Eq. 1.2, and
V2L(0,2,)\) [s,5] > 0||s*|| Vs Null(Vg(u, z)[0u,dz]),

for a given 0 > 0, then (a, 2) is a strict local minimum. This statement denotes the second-
order sufficient conditions.

Applying Newton’s method to the first-order necessary optimality conditions in Eq. 1.2
results in the following optimality system

Lo(u, 2, ) Loyz(u,2,\)  gulu, 2)* ou Tu(t, 2) + gu (u, 2)" A
Lo(u,z,A) Lo.(u,z,\) g.(u,2)* bz | =—| J(u,2)+g.(u,2)" X |, (1.3)
gulu, 2) g-(u, 2) 0 o\ g (u, 2)

Lo, 2, N) = Juu(u, 2) + (guu(u, 2)-)*A, (1.4)
Lo (uy 2, N) = Ty (uy 2) + (Guz(u, 2)-)"A, (1.5)
L..(u,z,\) = J,.(u, 2) + (g..(u, 2)-)*A, (1.6)
Low(u, 2, N) = T (u, 2) + (gau(u, 2)) " (1.7)

In practice, this problem is also known as an equality constrained optimization problem.

Reduced-Space Formulation

We define a Lagrangian functional
,C(U(Z), 2, /\) = j(u(z)v Z) + <)‘7 g(U(Z), Z)>U*J/l7

where (-,-): U* x U — R and u = u(z) denotes the solution to the constraint equation
g(u, z) = 0 by the implicit function theorem. Then, the objective functional becomes



Computing the Fréchet derivative of J (z) and equating to zero, one has that for any 0z € Z,
(Vj(z), 02)z+ z = (Lu(u(2), 2, A), us(2)02) + (L.(u(2), 2, A), 02).

Then, for any 0z € Z and du € U we have

<5Za ,CZ(U(Z), 2 /\)> = <jz(u<z>7 Z)? 6Z>Z*,Z + <>‘7 gz(u(Z)7 < 5Z>y* Yy (1 8)
=0z, T.(u(2),2)" + g.(u(2),2)" Nz« =z '

<6u7 ‘CU(U(Z)? 2 /\)> = <\7U(U<Z)v Z), 5U>U*M + <)‘7 gu{u(z)a Z)5u>y*7y (1 9)
= (ou, Ju(u(2), 2)" + gu(u(2), 2)" N u, ’

where du = u,(z)dz.

Let A\: Z — U. Then, by the implicit function theorem, a A = A(z) is attained such that
L, (u(z),z,p) = 0. Notice that A can be obtained by solving Eq. 1.9 as follows

A= —gu(u(z),2) " T (u(z), 2). (1.10)

Then, the reduced gradient is calculated by substituting A\, which is obtained by solving Eq.
1.10, into Eq. 1.8 as follows

~

VI (2) = T-(u(2), 2) + g(u(2), 2)
= T:(u(2), 2) + g:(u(2), 2)"A(2)
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(1.11)

The application of the Hessian operator to direction ¢z is computed by differentiating
L.(u(z),z, A(2)) with respect to u(z), z, and A\(z) as follows:

V2T (2)02 = Lou(u(2), 2, \(2))0u + L..(w(2), 2, \(2))0z + Loa(u(2), 2, M(2))A,  (1.12)
where 6\ = \,(2)dz. Thus, in order to find V27 (2)dz we need to find du € U and 6\ € U.

Notice that g(u(z), z) = 0 for all z € Z. This means that g,(u(z),2)dz = 0 for all 6z € Z.
Exapanding this equality yields

g:(u(2), 2)0z = gu(u(2), 2)0u + g.(u(z), 2)dz = 0. (1.13)
Solving Eq. 1.13 for du, gives

du = —gu(u(2),2) tg.(u(z), 2)dz. (1.14)

Then, 0\ is found by differentiating £, (u(z), z, A(z)) with respect to u(z), z, and A(z) as
follows

Low(u(z), 2, \(2))0u + Ly, (u(z), 2, A\(2))0z + Lur(u(2), 2, A(2))dA = 0. (1.15)
Differentiating Eq. 1.9 with respect to A(z) yields
Lon(u(z), 2, \(2)) = gu(u(z),2)". (1.16)
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Substituting Eq. 1.16 into Eq. 1.15 yields

Low(u(z), 2, M(2))0u + Lo, (u(2), 2, A\(2))dz + gu(u(z), 2)*0A = 0. (1.17)
Solving Eq. 1.17 for 6\ gives

ON = —gu(u(2), 2) 7 [Luu(u(z), 2, A(2))0u + Ly (u(2), 2, A(2))0z], (1.18)
where du is given by Eq. 1.14. Lastly, differentiating Eq. 1.8 with respect to A(z) yields

Loa(u(z),2,\2)) = g.(u(z), 2)" (1.19)

After substituting Eq. 1.19 into Eq. 1.12, the application of the Hessian to direction
0z € Z is defined as

V2T ()62 = Loa(u(z), 2 N2))0u+ Lox(u(2), 2, A(2))62 + . (u(z), 28, (1.20)

where du and d\ are respectively defined in Eqs. 1.14 and 1.18.

To summarize, the application of the Hessian operator to direction dz € Z is calculated
as follows:

1. Solve g(u(z),z) =0 for wu(z)

2. Solve gy (u(z2), 2)* A = —TJu(u(2),2) for A

3. Solve g,(u(z), 2) du = g.(u(2),2) 0z for du

4. Solve g,(u(2),2)* A = —[Luu(u(z), 2, A(2)) Su+ Loz (u(z), 2, A(2)) 62]  for A
5. Compute

V2T (2) 02 = Lou(u(2), 2, A(2) 0t + L. (u(2), 2, A(2)) 62 + g.(u(z), 2)* A

The reduced-space formulation allows us to reformulate the optimization problem defined
in Eq. 1.1 as an unconstrained optimization problem of the form

minimize T (2),
2€Z

where the reduced gradient is given by Eq. 1.11 and the application of the Hessian operator
to direction 4z is given by Eq. 1.20.
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Main Operators

Althought in practice, the algorithms utilized to solve full-space and reduced-space prob-
lems can differ, there are common features that are required to effectively solve these prob-
lems. For instance, optimality conditions are derived and implemented to find the optimal
solution to the optimization problem defined in Eq. 1.1. From the previous theoretical dis-
cussion, the reader can notice that these optimality conditions rely on the same operators
to calculate both the gradient and Hessian. These common operators are

J(u, 2), Julu, ), Jo(u,2), Juu(u, 2), Juz(u, 2), Jox(u,2), Jou(u, 2)
9(u, 2), gu(u, 2), g=(u, 2), (gulu,2))", (9:(u, 2))", (1.21)
(guu(ua Z)')*a (.guz(u> Z)')*a (gzz(ua Z)'>*7 (gzu(u7 Z))*
By defining these sixteen operators, the algorithms used to solve full-space and reduced-space

problems can share the same interface. Allowing practitioners to easily apply full-space and
reduced-space formulations to solve PDE-constrained optimization problems.

Several PDE constrained optimization problems are presented in Chapter 2. First order
optimality conditions and second order sufficient conditions are derived and presented for
each problem. These examples will allow readers to understand the theoretical framework
presented herein as well as enable readers to bridge the gap between theory and application.
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Chapter 2

Optimality Conditions

Parameter Identification in the Poisson Equation

A prototypical parameter identification (inverse) problem is to estimate the coefficient z
from measurements u related to the solution u of the elliptic boundary value problem:

—(zw);=f in Q (2.1)

u=0 on Of)
Here, Q C RY, d € {1,2,3}, is the computational domain with boundary 9. For a steady-
state heat equation, z is the coefficient of thermal diffusion, u is the temperature distribution,
u are the temperature measurements, and f is a given heat source. In the following we use
standard tensor notation with Einstein summation. The indices i and j take on the values
1,...,d. Partial differentiation is denoted by a comma.

We consider the nonlinear programming problem (NLP)

Y PR
py Rl tem R R

subject to (2.2)

—(Z Ui)ﬂ' = f n Q,

where U = {u: v € H'(Q), u=0o0n 90}, Z = {z: z € L*(Q), z > 0}, and R(-) denotes a
regularization functional. H™(2) are Sobolev spaces of square integrable functionals whose
m-th derivatives are also square integrable. Whenever m = 0 we shall keep the notation
with L?(Q2). The L? inner products for the space U is defined as

() = /Q u(z) v(a)dz,

First-Order Necessary Optimality Conditions. The Lagrangian associated with the NLP
defined in Eq. 2.2 is given by

L(u,z,\) = =(u—1u,u—1u)+ R(z) + N\, —(zw); — f)

o™
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If {a, 2} € U x Z is a local solution to the NLP in Eq. 2.2, there exists Lagrange multipliers
A € U, such that the first-order necessary optimality conditions hold at {, Z}, i.e.

VL(u,z,\)(0u,dz,0\) = Ly (u, 2z, \)ou + L. (u, 2, \)oz + Lx(u, 2, \)0X = 0 (2.3)

Second-Order Sufficient Conditions. If (a,2,\) € U x Z x U satisfy the first-order necessary
optimality conditions and the Hessian operator exist and is positive semidefinite, then (@, 2)
is a strict local minimum.

Operators. The required operators for the paramater identification problem are defined as

J(u,z) = g(u —u,u —u) + R(2) (2.4)
_9(b u—uu—1u z
(ul2),00) = 3 (Gtu =0 =) + B2 ) )
= G(u — u, ou)
_9(D u—u,u—1u z
(w82 = 5 (=20 = 2+ RE)) )
= (R.(2),0z)
s, 0) = o (30,0 ) .
= (1, du)
(Juz(u, 2),02) = % (6(1, u— ﬂ)) =0 (2.8)
(J.2(u, 2),0z2) = %((1,}22(2'))) 2.9)
= (R..(2),0%)
(Jou(u, 2), 0u) = % ((1, Rz(z)>) =0 (2.10)
gu,2) = —(zu;));, — f=0 in (2.11)
(gulu, 2),0u) = N\, —(zw;);, — f,) =0 V el
= (i, zu;) — (N umng)aa — (f, \)
= (A, zui) = (A f)
- 2 (tnzw) -0 2.12)
= <>\Z,z(5uz>
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The application of the divergence theorem results in a set of homogeneous Dirichlet
boundary condition in Eq. 2.12. since v € U and A € U. Therefore, u = A = 0 on 02 by
definition of the space U. This definition will be used in the subsequent derivations.

(9:(u,2),02) = (N, —(zw);, — f) =0 V Xel
= <)\17 zui> — <)\,umi>ag — <)\, f>
= (A, zu;) — (A, f)
— (s - o)

(0u, (gu(u, 2))) =N\, —(zu);, — f)=0 ¥V Ael
= (i, zu;) — (N ung)aa — (A, f)

(2.13)

)
—(z)\iiﬂ, w) + (Ang, waa — (A, f) (2.14)

L) — O f)
(=G0 - )

<6Z7 (gz(u’z))*> = </\7 _(Zui),i - f> =0 V Ael
= <)\1,7 Z'LLZ'> — </\,U,L'77/Z'>3Q — <>\, f)
= % <()\i,zui> — (A, f)) (2.15)
= <)\z U¢,62>
= (0z,u; \y)”
(gl 2" 00) = o (2 (< (M) =0 (2,10

<(guz<u> Z))*v 52) > =0 VvV weld
= 82( Wi, 2 A;) )) (2.17)
= (A

((g:+(u,2))",62) = 82 (<1,ui M) =0 (2.18)

<(gzu(uvz))*,5u> = <U,Ui )\1> Y veZ
= (= (Vi) 5, u) + (A, w)ag

) (2.19)
= %(<—(U>\z‘)wu>>
= <_<U)\i),i> 5U,>

15



Discretization. We define finite-dimensional subspaces U" C U with basis U" = span{¢™}M_,

and Z" C Z with basis 2" = span{¢"}M_,. This leads to u"* = M wrer, 2t =
ZnN:l 2mp" and A\ = an‘le A" ¢™. Furthermore, the quantities du” and 52" can be respec-
tively approximated as follows: du" = Z%Zl du™¢™ and §z" = 22;1 0z"Y". Subsequently,
the Galerkin approximation of the required operators to solve the parameter identification

problem are defined as

J(u", ") = §<uh — U, u" —4) + R(z") (2.20)

Ju(ul, 2"y = Zm (Zﬂ<¢“,uh - a>> (2.21)

J(u") 2" = » ( (W, Rz(zh)) (2.22)

Juu (U, 2") = Zm (ZZﬁ<¢“,¢”>> (2.23)

Juz(ul, 2"y =0 (2.24)

Joa(ul, 2") = iﬂ <Zz<waa RZZ(Zh)wb>) (2.25)
e=1 a=1 b=1

Jou(u",2") =0 (2.26)

S0t Al — (o f>> (2.27)

gu(u ) = (f} ;zz%) (2.28)

(iwa,um) 229

<gu<uh,zh>>*=Nm(iwz §>> (2.30)
(

> A, ¢“>> (2.31)

(Guu(u", 2"))* =0 (2.32)
(gl M) = S (ZZW"AM?)) (2.33)



(gzz(uh zh))* =0 (2.34)

(ol ) = 3% (zz B ) ) (2.35)

e=1

Parameter Identification in Linear Elastostatics

A parameter identification problem in linear elastostatics is to estimate the shear mod-
ulus ¢ and bulk modulus s from displacement measurements {@;}i=1 4. Let @ C RY,
d € {1,2,3}, be the computational domain with boundary 02 = 9, U 99,. The regions
09, C 092 and 092, C 0N are the boundaries where Dirichlet and Neumann conditions are
respectively applied. We use standard tensor notation with Einstein summation. The indices
1, 7, k, and [ take on the values 1,...,d. Partial differentiation is denoted by a comma.

The partial differential equations (PDESs) of linear elastostatics are given by

_<Cijkl 6kl),j =0 in Q
u=0 on 08, (2.36)
(Cz’jkl Ekl) nj =T7; On 897—,
where {u;}i—1,. 4 denotes the displacement in the i-th direction and 7; denotes the surface

traction in the i-th direction. The unit outward normal component in the i-th direction on
0, with respect to the region 2 is denoted by n;.

The fourth-order tensor of elastic moduli is given by

2
Cijri = K045 0y + 1 (@'k dji + 041 05 — 3 0ij 5kl) (2.37)
and the strain tensor is defined as the symmetric part of the displacement gradient, as follows
1
€pl = B (Wpy + k) - (2.38)

Lets consider the following NLP

e 16} R R
o nimize o (s = W= W) & Rlg) + Bix)
subject to
1 ) (2.39)
—(Cijm é(ukl +u)),; =0 in €,
1 .
(Cijkl 2(Ukl + k)) =7, in 09,

where U; = {u;: u; € H' (Q), u; =00n 99}, G ={u: p € L*(Q), pn>0},and B={k: k €
L*(Q), k > 0}. H™(Q) are Sobolev spaces of square integrable functionals whose m-th
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derivatives are also square integrable. Whenever m = 0 we shall keep the notation with
L?(2). The L? inner products for the space U;

(ug, v;) == / wi(z) vi(z)dz. (2.40)
Q
Similarly, the L? inner products for the spaces G and B is defined as

(u,v) ::/Qu(x)v(x)dx, (2.41)

First-order neccesary optimality conditions. The Lagrangian associated with the NLP defined
in Eq. 2.39 is given by

L(ug, i, Ky A;) = §<uz — Wy, u; — ) + R(p) + R(k)
+ (N, — (Ciju Ekl)7j> — (M ((Cijrr €rt) nj — 7))o,

(2.42)

If (a;,1,k) € U; x G x B is a local solution to the NLP in Eq. 2.39, there exists Lagrange
multipliers \; € U;, such that the first-order necessary optimality conditions hold at (4, i, &),
ie.
v‘a(uw M, K, )\z)(éula 5“7 5"{'7 6)\1> = ‘Cu(uw M, K, )\Z)(SU,L + ﬁﬁ(uia My R, )\1)5/*6
+ L (wi, 5, \i)OK + Ly (ug, po, £, A;)0N; =0

Second-Order Sufficient Conditions. If (u;, fi, R, \;) € U; X G x B x U; satisty the first-order
necessary optimality conditions and the Hessian operator exist and is positive semidefinite,
then (;, i, k) is a strict local minimum.

Operators. Let z = {u,k} € G x B, then the operators required to solve the paramater
identification problem are defined as

J(u;, 2) = §<uz — U, u; — u;) + R(p) + R(k) (2.43)

= O(u; — u, duy)
(J.(u;, 2),02) = % (§<u2 — W, u; — w;) + R(p) + R(ﬁ))
[ (a0 (249)
(R (r), 0k)
0
(Juu(us, 2), 0u;) = 9a (ﬁ(l,uZ uz)) (2.46)
(ol 2).02) = 2 (6(1, . @») 0 (2.47)



(J,.(us, 2),02) =
(2.48)

(Tou (i, 2), S13) = a%- ({ ii?ﬁﬁii D ~0 (2.49)

—(Cz’jm%(ukﬂr“l,k)),j:o in Q 1 (2.50)

g(ui, 2) = [ (Ciju %(Ukl +wg))n; —7=0 on 00,

1
(Gu(ui, 2), 0u;) = (N, _(Cijkl §<ukl + Ul,k)),j>

1
+ (Nis (Ciju 5(%1 +uwg))n; — Ty, =0 VN €Y
1

1
= (5(/\1',]‘ + i), Cijw §(Uk,l +u k)

1
— (N, (Cij 5(%1 + w k) nj)oq,

1
+ (N, (Cija §(Uk,l + k) Ny — Ti)oo, (2.51)

o (1 1
— % ((5()\17] + >\j7i)7 Cijkl é(uk,[ + ul,k)> — <)\27 Ti)a(l,.)
1 1
= <§(/\z,] + )\j,z‘) Cijkl; 5((51%71 + 5ul,k)>
1 1
= (—(Cijur 5(%,1 + Nk)) gy 0ui) 4+ ((Cijn 5()\;{71 + \k)) ng, Ous)aq,

1
= (—(Cijm 5(/\19,5 + Aik)) g, 0us)

The boundary in Eq. 2.51 is defined as 02 = 092,U02,,. The application of the divergence

theorem yields a set of homogeneous Dirichlet boundary condition on 052, since \; € U; and
u; € U;. Therefore, u; = A\; = 0 on 0€), by definition of the space U;. Finally, in order to
ensure the validity of the set of equations defined in Eq. 2.51, proper Neumann boundary
condition need to be defined. Therefore, a set of free Neumann boundary conditions is
defined on 092, i.e. (Cjjx %()‘k,l + A i) nj = 0 on 092,. These definitions will be used in the
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subsequent derivations.

1
(9-(us, 2),02) = (N, —(Cijm E(Uk,l +uk)), )

1
+ (Nis (Cij §(Ukl +u))n; —Ti)ea, =0 ¥V N €U
1 1
= <§(>\m‘ + Aji)s Cijai 5(%1 + 1))

1
— (Nis (Cij é(uk,l +uk)) nj)eq.

1
+ (Nis (Ciju 5(%1 + k) n; — Ti)oo.
1 1
= Ep <§()\'L] + X)), Cijni §(ukl +ug)) — (i Ti>6QT>
_ [ (5(Nig + Xa) Cljy 5 (W + ), Op) }
(5(Nig + i) Clig 5 (ukg + wi ), 0k)

1

(Oui, (gu(ui, 2))7) = (i) =(Cignt 5 (kg + wr)),5)

1
+ (Nis (Ciju §(Ukl +wg))n; —Tijen, =0 YV N €U

1 1
= <§()\z‘,j + Xi), Cijri §(uk,l + )

1
— (N, (Cij 5(%1 + i) nj)oq,

1
+ (Nis (Ciju E(ukl + k) nj — Ti)oo.

0 (1 1
=5 (<§(>\u + Nji), Cijrl §(ukl +ug)) — (N, Ti>89T>

1 1
= <§()\i,j + Xi) Cijn, 5(5%,; + duy))

1
= (—(Ciju Q(Ak,l + Aik)), g Ous)

1
+ ((Cijur §(>\k,l + \k)) ny, 0us) o,
1
= (—(Ciju é(Ak,l + Nk)) g, 0w

1
= (0u;, —(Cij E(Ak,z + k) g

(2.52)

(2.53)

The boundary in Eq. 2.53 is defined as 02 = 0Q2,U02,,. The application of the divergence
theorem yields a set of homogeneous Dirichlet boundary condition on 052, since \; € U; and
u; € U;. Therefore, u; = \; = 0 on 0€), by definition of the space ;. Finally, in order
to ensure the validity of the set of adjoint equations defined in Eq. 2.53, proper Neumann
boundary condition are required. Therefore, a set of free Neumann boundary conditions is
defined as (C;j %()\W + A k) n; = 0on 0€,. These definitions ensure a self-adjoint operator
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in Eq. 2.53 [3].

(62, (9=(ui, 2))*) = (Ai; —(Cijna %(Uk,z +uik)), ;)
1

+ (Nis (Cij 5

1 1
= <§()\u + i), Ciju 5(

1
— (N, (Cija 5(%,1 + ) nj)oq,

Upy + Uk))

+ (i, (Ciju 2<Ukl + i) ny — Ti)oq,
0 1
= 9 <§<)\Z] + )\j,i)y Cijrl 2<Ukl + u ) (Niy Ti) o,

) —
%()\ivj + Ajii) Czkl Q(Ukl + ), O }
5(Nij + Nii) Chipg 3 (w4 k), 0k)
Op, 5 (s j + ) Clin SNt + A ]
0k, 5 (Ui + uji) Clik Q(Akl + )

0

(s, 1) 00) = 5 (1, (Com gt + X)) ) =0

<<guz(uiﬂz))*>5z> - <wi7 _(Czﬂcl ()\kl + )\lk)) > =0 V we Z/{Z

1 1
= (5(“113 + wji) Cijrl = <)\kl + k)

—~

Cijm = (/\k:l"‘/\llc)) )>aQ

- <wia

wZJ +wJZ Czyle()\kl+>\lk 6lu>
U)ZJ +U)jz Cz]kl2<)‘kl+)‘lk 5/€>
S(uig 4 uji) Cliy 3 (Ve + M) }
o (Usy 2 ) J 7, ijkl 2 —0
(g1 2))", 62) = ( { (1, (wi +uji) Clipg 5 (At + k)

L,
1,

i

l\')ll—\l\Dl)—‘ /\

< (w1]+wjz> Cz]kl >\kl+/\lk) )

<<gzu(ui,z))*’5ui> — 2

N[ DO =

(wij + uji) Chigy 5 (Aea + M) }

(i + i) Chigy 5 (Mea + M)
< (Ciﬁm 2(/\kl + N k)) >

+(1, uz(kaz 5 Akt + Aik)) 15) a0,
(1, ( zgklg(/\kl+)‘lk)) i)
+(1, Uz( zjkl 2(>\kl + Auk)) i) o0,

( z]le Akl+>\lk>)]7ul>:|>
~ o Cir 3 (et + Aip)) g, wi)

{ (kaz 2(/\kl + k) g, Oug) }
(—(Clip 5 Akt + Mk)) g Ous)
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—(uky +wp))ny —T)oa, =0 VN €U,

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)



In the preceding equations, ijkl and Cf;; are defined as
2
ngkl = 5zk; 5jl + 61‘1 5jk — g 5@- 5kl (259)
Clir = 0ij O (2.60)

Discretization. We define finite-dimensional subspaces U" C U; with basis U = span{qu 13
Ghcg Wlth basis G" = span{wn}n ., and B" C B with basis B" = span{x 19 . This

leads to uz = an\f 1 z 'L ’ M 25:1 ,unwn’ ’ih = Zf)):l "ioxo7and A? = Zﬁ@/[ 1)\?1 :n
Furthermore, the quantities dul, (5,u , 0k and AP can be respectively approximated as
follows: dul' = Z%:l Sultgrm, duh = Zfz\[:l Su™ym, and Okt = 23:1 0k°x°. Subsequently,
the Galerkin approximation of the required operators to solve the parameter identification
problem are defined as

(ul — @, ul — ) + R(u") + R(x") (2:61)

Ju(ul, 2" f(Zﬁ oyl — > (2.62)

woo-S(EAH)

e=1
Netem M M
Jualtl, ) = (Z S B, ¢b>) (2.64)
e=1 a=1 b=1
uz(u?, M =0 (2.65)

1 1 By, uu(ﬂhﬁﬁb)
2T 2 S0 50 B0, R D (266)
Lu(ul,2") =0 (2.67)
gluy',2") = f‘j(Zé( 95, ukz;(U’éﬁu;fk))—Z( ?,mam) (2.68)

(A?,] + )‘? ) zykly a gbkl + gbl k (269)

e}
£
I~
==
IS
=
Il
Z
[z
3
R
Q
I
o
v

Egﬂwa %O\h + )‘h )ijkz %(Um + u?k) (2.70)
Za:1< ¢ %()‘h + >\h )CZM %(ukl + u?k»

(gulutl, 1)) = m(zéwzjmm w:lmk») (2.71)
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5 (uly 4+ ult) ikl ()‘Z,l—i_)‘;l,k))

(guu(ulh;Zh))* =0 (273)

n iy = S5 (] Sam Soca (3068 + 05)Chu 5N + M), 0
)= <[ Za 121; 1{5(0F; ¢],z)ijk1%(/\z,l+/\Zk)7Xb> ) (2.74)
(- (uj,2"))* =0 (2.75)

e NS et Dy (3 + M) Chit”, 3 (6 o) ]
(geulus, 1) = ([ Za:l Zb:1<%()‘h "‘)‘h )Cule >2(¢kz,l+¢l,k)> ) (276)

) 8% ([ ggﬂw, Bt + ) Ol 5OV + ) D (2.72)
2 2

N N

Parameter Identification in Linear Elastodynamics

An example of a parameter estimation problem in linear elastodynamics is to identify the
shear modulus p and the bulk modulus s from complex-valued displacement measurements
Ui=1,_a- We define Q C RY, d € {1,2,3}, to be the computational domain with boundary
00 = 00Q,U082,, where 02, and 0€); are the regions where Dirichlet and Neumann conditions
are respectively applied. In the subsequent derivations we use standard tensor notation with
Einstein summation for linear elastodynamics equations given in frequency domain. The
indices 7, 7 and k take on the values 1, ..., d. Partial differentiation is denoted by a comma.

The PDESs of linear elastodynamics in frequency domain are given by

—(Cijri€rt),j = w?p in Q,
u; =0 on 09, (2.77)
(Cijrier) nj =7 on 0€),,

where {u;}i—1,. 4 denotes the complex-valued displacement in the i-th direction and 7; de-
notes the surface traction in the i-th direction. The unit outward normal component in the
i-th direction on 0€2; with respect to the region (2 is denoted by n;. Mass density is denoted
by p, while w stands for the angular frequency. The fourth-order tensor of elastic moduli,
Cijii, is defined in Eq. 2.37 and the symmetric part of the displacement gradient, ey, is
defined in Eq. 2.38.

Lets consider the following NLP

o 3 ~
o Dinimize G (= T — ) + Rlp) + R(x)
subject to
1 2 : (2.78)
—(Cijni §<ukl +u)); =wpu; in
1
(Cijri = (ugy +wpg))nj =7 on 08

2
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where U; = {u;: u; € H' (Q), u; =00n 9Q,}, G = {u: p € L*(Q), p > 0}, and B =
{k: k € L*(Q), kK > 0}. H™(Q) are Sobolev spaces of square integrable functionals whose
m-th derivatives are also square integrable. Whenever m = 0 we shall keep the notation
with L?(Q2). The L? inner products for the space U; is defined as

(ug, vy) ::/Qui(x)@(x)dx, (2.79)

where the overline denotes complex conjugation. The L? inner products for the spaces G
and B is given by Eq. 2.41.

First-order neccesary optimality conditions. The Lagrangian associated with the NLP defined
in Eq. 2.39 is given by

Lot 15, A) = 5t~ s~ ) + R(s) + R(x)

1
+ R (N, —(Ciju 5(%1 +ug)),; — wpus) (2.80)
1
— (M, ((Cija 5(%,1 + k) Ny — 7i))oq,

If (4, fi,Rk) € U; x G x B is a local solution to the NLP in Eq. 2.39, there exists Lagrange
multipliers \; € U;, such that the first-order necessary optimality conditions hold at (1, fi, &),
ie.

V'C(uzv M, K, Al)(éuw 5/"7 5’%7 5)\1> = £u(u17 M, K, )\Z)(SUZ + En(uia s Ky )‘Z)éu
+ ‘Cﬁ(uia R, Az)é/ﬁ: + [’/\(uia M, K, >\z>5>\z =0

Second-Order Sufficient Conditions. If (u;, fi, R, \;) € U; x G x B x U; satisty the first-order
necessary optimality conditions and the Hessian operator exist and is positive semidefinite,
then (@, fi, k) is a strict local minimum.

Operators. Let z = {u,k} € G x B, then the operators required to solve the paramater
identification problem are defined as

J(ui, 2) = §<ui s — ) + R(w) + R(x) (2.81)

du; (2.82)
= B(u; — w;, duy)
(J.(uiy 2),02) = % (§<uZ Ui, u; — Uy + R(p) + R(K,))
_ { (Ryu(), 611 ] (283)
(R(K), 0K)
(Juu(us, 2), 0u;) = aii (ﬁ(l,ui - ﬂz)) (2.84)



(Juz(ui, 2),02) = % (6(1, uj — ﬂﬁ) =0 (2.85)

([&es]) .

(ol 2),S) = - ({ g’R“(M” D ~0 (2.87)

| (G s+ ), =wpu; in Q
g(u“ Z) N |: (Cz‘jkl %(um + ul,k)) n; — T, = 0 on 8QT (288)

1
(gu(ui, 2), 6ui) = (Ni; —(Cija 5(%1 + ), — wipus)

1
+ <)\Z, (Cijkl §(Uk7l + Ul,k:)) n]’ — Ti)@ﬂ,— =0 V )\z € Z/{z

1 1
= (5(/\” + )\j,z') Cijt, é(ukl +upg))

1
— ( Ny (Cij = (upy + wik)) ny)oq,

2
1
— (A, wPpu) + (N, (Cijr 5(%,1 +w k) ny — Ti)oq,
. ) 2 (2.89)
= (50\@] + X)) Cijis 5(%1 + o)) — (N, wpwi) — (N, Ti)oq,

1
= (—(Ciju 5()%,5 + M) wi) — g, wPpws) — (N, Tidaa,

1
+ ((Cijm 5()%,1 + Nk)) ny, Ui)oq,
0

1
= (—(Cijn 5(%,1 + M) — wp A, Suy)

1
(<_<Cijkl 5()\14,1 + )\l,k)),jaui> — <>\z‘;w2l)uz‘) - <)\ia7—i>8QT>

The boundary in Eq. 2.89 is defined as 02 = 0€2,U0S2,,. The application of the divergence
theorem yields a set of homogeneous Dirichlet boundary condition on 052, since \; € U; and
u; € U;. Therefore, u; = A\; = 0 on 0€), by definition of the space U;. Finally, in order to
ensure the validity of the set of equations defined in Eq. 2.89, proper Neumann boundary
condition need to be defined. Therefore, a set of free Neumann boundary conditions is
defined on 092, i.e. (Cjjx %()‘k,l + A i) nj = 0 on 092,. These definitions will be used in the
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subsequent derivations.

1
<gz(uia 2)7 52> = <)\i, _(Cijkl i(ukl + ul,k)),j - WQPUJ

1
+ (N, (Ciji 5(%,1 +wg))n; — Tijoa, =0 VN €U,

1 1
= (5(%3 + >\j,i> Cijt, 5(%1 +upk))

1
= (X, (G 5 (W + wie)) nj)oq, (2.90)

1
— (N, W2P w;) + (Niy (Ciju §(Uk,l +w ) ny — Ti)oq,
1 1
= B <§()\zj + X)) Cijkis §<Ukl + ) — (Ai,w% w;) — (i Ti>897)
_ { (5(Nij + Njs) Clig 5 (g + un), Op1)
(3(Xig + i) Cigy 5 (ury + wge), 05)

1
(02, (g:(us, 2))") = (A, =(Ciju §(Ukl + k), — w2puz-)

1
+ (Nis (Ciju é(ukl +ug))n; —Tijen, =0 VN €U

1 1
= <§()\zy + Xji) Cijn, §(Ukl +upk))

1
— (i, (Ciju 5(1%,1 + k) nj)oq,

1
— (A, w?pu) + (N, (Cijm §(Uk:,l + w k) Ny — Ti)oq,
0 1 1
=3 ((5()\@] + X;i) Cijn, §(Uk,l + )
— (i, w?puy) — (Ai,ﬁ)am)

_ { (01, 3 (i +wja) Chiyg 5 (A + Aiw))* }
(08, 5 (uij +153) Cipy 5 (Mg + Mii))”

(2.91)
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1
(6us, (gu(ui, 2))7) = (Ai, —=(Ciju 5(%1 +ug)),; — wpug)
1
+ (i, (Cija 2(
1 1
= <§(>\m + Aji) Cij, 5(%1 + uik))

Ukl+ulk)) >ag =0 V X\ €U

1
— (Miy (Ciji E(ukl + i) nj)oq,

1
— (N, WQP u;) + (Niy (Ciji §(Ukl + w)) Ny — Ti)oq,
] ] ) (2.92)
= <§()\zj + Ajz’) Cijl, §<Ukl + ) — (N, wpui) — (N, Ti)oq,

= (— (ngkz ()\kl + M) wi) — (i, w?pui) — (N, Tidaa,

+((Ciji ()\kl + Alk))”j;“i)@QT
B 0

= (0u;, —(Cijm (/\kl + X))y — w?p i)

(< (Cupt 3 et + M)yt — ) - </\z‘,Tz'>aQT)

The boundary in Eq. 2.92 is defined as 9€) = 0Q2,U0S2,,. The application of the divergence

theorem yields a set of homogeneous Dirichlet boundary condition on 052, since \; € U; and
u; € U;. Therefore, u; = \; = 0 on 0€), by definition of the space U;. Finally, in order
to ensure the validity of the set of adjoint equations defined in Eq. 2.92, proper Neumann
boundary condition are required. Therefore, a set of free Neumann boundary conditions is

defined as (C;j %O‘k,l + k) n; = 0on 0R,. These definitions ensure a self-adjoint operator

in Eq. 2.92.

0

<(guu(u27 Z))*, 5ul> = % (<1> (Cukl 2<)\kl + )\l k)) - WZP /\z>> =0 (293)

— (wi, (Cijua 5 (/\kl + Alk)) )00 (2.94)
(5 (wij +wj;), Cij 5 (/\kl + k) — (wi,w?p /\i>>

(%(wz’,j + w;i) Cliy %(/\lal + Ak), Op) }
(3(wij+wji) Clgy 5 (A + Aig), 0k)

O ([ (1,5 (uij + u;;) Cl l(AlirAlk))D
zz I3 *7 5 = — T2 e o ijl 3 7 , - 0 295
((922(wi, 2))", 62) ( { 5 (i + w;0) Chipg 5(Akt + i) (2:9)
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<<gzu(uia Z))*, 5uz>

Discretization. We define finite-dimensional subspaces U* C U; with basis U = span{qu

Ui g+ ) Chiy 5 (At 4+ Aik))
Ui g+ u50) Clipg 5 Akt + Mik))

i (Cllig 5 Akt + Mk)) 5)

mkl 2

+(1, —u;(Cy 2(/\kz + M) j)oq,
1,- (kal 5+ Aik)) )
1

o
3
(1,—
{

(2.96)

+(1, ui(CF, zgkl T Neg + Aik)) ny)oq,

< zykl Q(Akl + Aik)), s i)
Crinr s (Med + M), 5y i)

(

(

|

9 (—(
(—(
P s Akt Au)). g, Ows)
Sk 5 (Mg Aik)). 5, Ou)

-

2
C
(—(C

m=1»

Gh C G with basis Gh = Span{w"}n L, and B" C B with basis B" = span{x 19 . This
N n,/,n h _ o 0,0 d )\h — M )\m m
z ’ /’L Zn:llu 1/} » K 20:1’1 X" an ) Zm 17% Yoo

leads to ul = M
Furthermore, the quantities 5u
follows: dul = SM_ sule,

5,u Sk,

and JA? can be respectively approximated as
op™y™, and k" 200:1 0k°x°. Subsequently,

N
Zn:l

the Galerkin approximation of the required operators to solve the parameter identification

problem are defined as

J(ul, 2" = §<uf‘ U, ul — ;) + R(p") + R(k") (2.97)
Ju(ult, 2"y = Zm (Zm o ul a,->> (2.98)
Netem N a h
Lt =3 (| e ) 299
Jualh ) = (ZZ@@S%&) (2.100)
e=1 a=1 b=1
Ju(ul, 2") =0 (2.101)
Neiem N N a h\, /b
ran-S(BRIESa]) o
Ju(ul,2") =0 (2.103)
oy =3 (ZQ( 65, Gy + )
e y (2.104)
_Z< ?7“} pu >_Z< ’?7Ti>8ﬂ‘r>
3¢ (Z ; Ay 4+ M) Cigns 5 (¢kl+¢lk)> Z(WQPA?7¢?>> (2.105)
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N€ em
nohy = ! Zg:1<%(>\zj + A DCl $(upy +uly, va)) (2.106)
a= %(AZ] + )\?,i)czgkl %(uz,l + ul}fka Xa))

S 5685 + 650), Cun g (W + M) — ¢ ﬁ,uﬂpm) (2.107)

a=1 a=1

U?Z)CZk %(/\]kll—}_)‘ k)
’ %()‘kl“‘)\ i) ]) (2108)

w(uf, 2")) =0 (2.109)

(
i Zzlzwzl Zévzl<%(  + ¢ )ngk %()‘Z,l + Al}fk)a ¢b> _ (2110)
ZM ZO % i+ ¢J,z)cfgkz %O\Z,z + )‘;fk)a X°) |
(

=(uf, 2") =0 (2.111)

e S| D T (308 + 05, Ol SO + MY |
(Geulels 207 = (_zﬁlz?_xa T Gh), GOV + M) 1) ) (2.112)

Parameter Identification in Nonlinear Elasticity

A parameter identification problem in nonlinear elastostatics is to estimate the shear
modulus g and bulk modulus x from displacement measurements {u;};—1 4. We define
QO C RY d e {1,2,3}, is the computational domain on the reference configuration with
boundary 02 = 9€2,UdS),. The regions 02, and 01, are the boundaries where Dirichlet and
Neumann conditions are respectively applied. Once more, we use standard tensor notation
with Einstein summation. The indices 7, j, k, and [ take on the values 1,...,d. Partial
differentiation is denoted by a comma.

The partial differential equations (PDEs) of nonlinear elastostatics are given by

u=0 on 09, (2.113)
( szk]) =T7; OnN 8&27,

where {u;}i—1,. 4 denotes the displacement in the i-th direction and 7; denotes the surface
traction in the i-th direction. The unit outward normal component in the i-th direction on
01, with respect to the region 2 is denoted by n;.

The second Piola-Kirchhoff stress tensor for a Saint Venant-Kirchhoff material is defined
as
Sij = Cijrt B (2.114)

and the fourth-order tensor of elastic moduli is given by Eq. 2.37.

29



The Green strain tensor £j; is defined as
1
Eij = 5 (Frillj = 0ij) (2.115)

where the deformation gradient Fj; is given by

8ui

F—
J 8x?

+ 6. (2.116)

The Kronecker delta is denoted as d;; and a material point in the reference configuration
as 2. The Green strain tensor defined in Eq. 2.115 can be expressed in terms of the

displacement field as

1
Ei; = B} (wij + wj; 4wk ur ) - (2.117)

Lets consider the following NLP

- 3 R ~

(umgflil)néngllizxegxls §<UZ - U, Ui — uz> + R([/J) + R(KL)

subject to .11
—(FipSk;),; =0 in Q,

(Fikskj)nj:ﬂ' in 8QT

where U = {u;: u; € HY(Q), u; =00n 9Q,}, G = {u: p € L*(Q), p >0}, and B={x: k €
L*(Q), k > 0}. H™(Q) are Sobolev spaces of square integrable functionals whose m-th
derivatives are also square integrable. Whenever m = 0 we shall keep the notation with
L?(Q2). The L? inner product for the space U; is given by Eq. 2.40 and the L? inner product
for spaces G and B is given by 2.41.

First-order neccesary optimality conditions. The Lagrangian associated with the NLP defined
in Eq. 2.118 is given by

_ B = ~

+ Moy —(FieSkj), 5) + (Nis (FirSkj) ng — Ti)oo,

(2.119)

If (a;, i1, k) € U; x G x B is a local solution to the NLP in Eq. 2.39, there exists Lagrange
multipliers \; € U;, such that the first-order necessary optimality conditions hold at (4, fi, &),
ie.
VE(UM My Ky Al)(éulv 5:“7 6’%7 5)\1> = ‘Cu(um My Ky )\Z)(SUZ + E!@(uia W, K, )‘Z)(SM
+ E,{(Ui, K, )\Z)é/ﬁl + [,)\(Ui, u, Kk, )\Z>5>\1 =0

Second-Order Sufficient Conditions. If (u;, i, &, \;) € U; X G X B x U; satisfy the first-order
necessary optimality conditions and the Hessian operator exist and is positive semidefinite,
then (1, fi, ) is a strict local minimum.
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Operators. Let z = {u, v} € G x B. Furthermore, the tensors \; ; and w; ; are symmetric and
are respectively defined as \; ; = %()\m +A;;) and w; ; = %(wm + w;j;). Thus, the operators
required to solve the paramater identification problem are defined as

@

J(uiy 2) = =(u; — wy, u; — u;) + R(p) + R(R) (2.120)

(Ju(ug, 2), 0u;) = i (ﬁ(uz — Wi, u; — u;) + R(p) + R(m))

ou; (2.121)
= Blu; — u;, du;)
(J(us, 2),02) = % (§<u2 — i, u; — ug) + R(p) + R(H))
[ (Bt (2122)
(Ry(k), 0K)
0 N
(Juu(ug, 2), 0u;) = 5u. (ﬁ(l,ul uz)) (2.123)
= 6(1, ou;)
) S = 2 <1>Ru(,u)>
ot 2h0sh = 32 (| G0 |) (2.125)
_ { (Rypu(), 0) ]
(Ryr(K), 0K)
(Jou(us, 2), 6u;) = 8(?% ([ g%gg; D =0 (2.126)
—(FikSkj),j =0 in Q
g(ul,z) - |: (szSk]) n; —m = 0 on 8QT 1 (2127)
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<gu(uia Z)v 5%‘) = <)\i, —( ikSk:j) > + <>\i, (Fikskj) n; — 7—i>8QT =0V A\ el
= (Nij, FirSkj) — Ny (FieSkj) nj)oq,
+ <)\17 ( szk]) n; — Ti>8QT

0
= 9u (<>‘l]7FkSkj> (Mﬁﬁam)

= <)\i,ja 5Ui,kSkj> + <>\i,j’ Fz’pcpjkl (

1
<)‘w7 FipCpjni <§(Fqk5uq,l))>

= (—(A i,kSk,j),ja du;) + <()\z',k5kj) n;j, ;) o0
1
+ (= (A FrpCpja (§Fk1)),j, Ou;)

(OugnEr))

DN | —

(2.128)

1
+ (N FrpCini (§sz)) nj, 0u;) o0
1
2
Flk) nj, 5Ui>8Q

+ <_<)‘i,7”Frpijkl ( Flk)),ja 5Ui>

1
+ (i FrpChjni (5
1

= <_()\i,kskj),ja 5Ui> + <_()\i,rFrpijkl (_

2Fk1)),j:5uz’>

1
~Fu)), j, 0uy)

+ (= (Nir FrpChjni (2

The boundary in Eq. 2.51 is defined as 92 = 02,U0S2,,. The application of the divergence
theorem yields a set of homogeneous Dirichlet boundary condition on 02, since \; € U; and
u; € U;. Therefore, u; = A\; = 0 on 02, by definition of the space U;. Finally, in order to
ensure the validity of the set of equations defined in Eq. 2.51, proper Neumann boundary
condition need to be defined. Therefore, a set of free Neumann boundary conditions is defined
on 897—, i.e. ()\MSkj)nj = 0, ()\MFTpijkl(%Fkl))nj = 0, and ()\Z'J’FTPCPJ'M (%Ek) n; = 0.
These definitions will be used in the subsequent derivations.

(g-(wi, 2),02) = (N, —(FieSkj), ;) + N, (FieSk) nj — Tidan, =0V N\ €U
= < ig> FieSkj) — (Mo, (FieSki) 1) o0,
szk] n; — 7—1>8Q

(
( Nijs FirShj) — <)\z‘77—i>897)
Ai
A

szcpjklEklv 5:u>
L C

’L

i

(2.129)

lEkl,(5/<L>

pik
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<5uia (QU(ui> Z))*>

(Niy —(FieSkj), j) + (N (FieSkj) nj — TiJa, =0V N € UY;
= (Nij» FieSkj) — (N, (FieSki) nj)oa,
+ <)\’L7 < ’Lk‘Skj) n; — Ti>8QT

0
= 9u <<)‘U7stk]> <)\ia7'i>8QT>

= (Aigs 0uikSij) + (i, FipCpja (%(5% )
+ (s By ot (5 (Fyebug))
= (0uij, SikAn) " + (Oui, (%F;p) Cojrt AkgFa)”
¥ (s, (5 F) G Fdas)” 2.130)

= (0ui, —(SikAryj),5)" + (Ous, (Sik k) 75) 50

1 *
+ (0w, —((§Fz'p) Cpjrt Mg Far), )
1

+ <(5U2, (§Ep) ijkl Ak,qul) n]>gﬂ

1
+ (0w, —(QFip)ijlek)\ql) i)

1
+ <5Uia (2F )kal FueAq, 1) nJ>8Q
* 1 *
= (ui, —(SikArj),5)" + (Ous, —((QFZ-,,) Cojrt Mg Far), )
1 *
+ <5Uia _(iFip)ijk‘l Fqk)‘q,l),j>

The boundary in Eq. 2.130 is defined as 090 = 0€0, U 92,. The application of the
divergence theorem yields a set of homogeneous Dirichlet boundary condition on 052, since
Ai € U; and u; € U;. Therefore, u; = A\; = 0 on 0€2, by definition of the space U;. Finally,
in order to ensure the validity of the set of adjoint equations defined in Eq. 2.130, proper
Neumann boundary condition are required. Therefore, a set of free Neumann boundary
conditions is defined on 0f2, and is given by (S Ak ;)n; =0, ((%Ep)ijkl/\k,qul)nj =0, and
((lFip)ijlekq)\q,l)nj =0 on 8QT

2
(02, (g-(ui, 2))") = (M, = (FieSkj) ) + (N, (FieSkj) nj — Ti)aa, =0V N\ € U
= (Nij, FiSkj) — (Niy (FikSkj) n5) 0,
< ) ZkSk])nj >8QT

(
=3 ( zjan'kSkj>_<)‘i>Ti>aﬂr) (2.131)
i
i
o
0K

]klEkl

|: < Flpcp

< ‘FlpcpjklE
< El zgkap
(0K, E;

kl
l
Fip

, 041) }
o)
Ak,l)I }
Aiet)
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((Guu(ui, 2))", 0us)

1
= (w;, —(SitAr,j), ;) + (wi, —((§Fz‘p) Cojrt Mg Far), 3)

1
+ (w;, _(§Fip)cpjlek)‘ql) )=0 V w el
= (Wi j, SikAk;) — (Wi, (SikAkj) i) on

+ w5, (5 Fi) Co NeaFa) — {10, (5 Fi) Coa e Fat) 5o
+ {0 (3 Fi) G Fhad) = (01 (5Fi) Coa Fis) o
= % (<’wi,j, SikAr) + (Wi, (%Fz‘p) Crirt AeqFa)

+ (wi , (%FM,) (O Fqk)\q,1>>

= (wi, Cijkl(%(éuq,qup)))\p,l) + (Wi, Cz‘jkl(%(Fq,k(S%,p)))\p,ﬂ
i, (50040) ot M) + s, (5 Fi) Coa Mgt
+(wi,j,(15u1p) Cojur FopAqr) + <wi,j,(%Ep)cpjkl(suq,k)\q,l>
- <6uz~,j,cw<§<quF Duid + {815, Ciga (5 (Fysatg) )
+ (Oui, (1w1p) Cojrr AkgFar) + (Oui g, (lFip) Crirt Ak.qau)

2
1 1
+ (Ou 4, (§wz’,p) Cpjrt FarAg) + (u g, (§Fip) Cpjkl WqkAq1)
1
= (=(Cin(5

2
1
+((Cz’jk1(2(quF N Apa) 74, 0ui) o
1

+ <_(Cijkl(§(Fq,kqup)))‘p,l),jv du;)
1

5 (FyrWap)) Apt) 1y, 0Ui) 2

(wqﬁqup))Ap,l)m ou;)

+ ((Cijm(

1
+ <_((§wi,p) Cpjki MegFol) i, 0wi)
1

+ <((§wi,p) Cm'kl )‘k,qul) nj, 5Uz‘>aQ
1 1

+ <_((§Fip) Cpjkt AkgWqy), > Ou;) + <((§sz) Cpjkt AkgWq,) 75, 0U;) o0
1 1

(= ((Gwip) Cpjma Fuedga). 5> 0ui) + (((Gwip) Cpju Fanea) g, 0us)og

1 1
+ (—((§Fz'p) Cpjrl WerAq1), j, Oui) + <((§Fz'p) Cpjrl WqkAq1) 1f, 0U;) o0

(2.132)
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<(guz(ui7 Z>>*7 5Z> = <wi7 _(Sik/\k,j),j> + <wiv _((le) ijkl /\k,qul)7j>

2
1
+ <wi,—(§Ep>ijlek)\ql> >— 0 Vv W; GZ/{i
= (Wi j, SitAkg) — (Wi, (SikArj) 15) 00
1 1
+ (i, (5 Fip) Cpjra AvaFar) — (wis (5 Fip) Cpjia A Far) )00
1 1
+ (i, (5 Fip) Cpgia Fapdga) = (wi, (5 Fip) Cpgia ForAa) )0 2.153)
0 1 '
=3 (<wi,j, Sik k) + (Wi g, (§Fz‘p) Coji Ak,quO)
0 1
+ 3 ((wi,j, (5Fip) Coina Fqk)\q,Z>>
<wi,jC%kzlSik>‘kJ=6N> (wij (5Fip) Chig Ak Far, O41)
— <w1]( ) Cp]k:l F, k)‘q b 5:u>
wW; ;O Sik Ak j, OK w; ookl Mgy, 0K
qukls A »J 0 J F ijkl)\ 7(IF(1 0
<w1]( )kale)‘ql75"€>
0 ([ (1,\,F,C" E,@D
zu\ Wi,y *75 i) — & pikl
(gl 2100 = - (| 73 s
[ (1, X j0us pCh g Era) + (%, X jFip Cl oy (50uq 1 Fyr))
_ (1 AlJEpijkl( qkauql»
(1 )\Z](sulpcpjklEkl> (v, Ni i By CZ]kl( Sug 1 Fyr))
L < AlJEPijkl( kauql»
(=(NipChimErt), 3> 0ui) + ((NipChjp Era) i, 6ui)oa
+(=(Aip Fr CZJk( Fia)),j, 0us) (2.134)
(N FrpChiy (5 F ))ny,5uz>aﬂ
< ()\Z7TFTP p]k( lk )) 175u1>
_ +{(Xir F1pC ]kl( k) 1 OU;) o
(=(NipCrimEra) 3, 0ui) + ((NipChipy Brt) nj, 6ui) o
+(— ()‘lTFTpCpgkl( F)), s 0ui)
<()‘Z TFTPCp]kl( )) g, 6u2>39
+(= (/\“«Frp pjkz( Fix)), 5, 0us)
L <( p]kl( ))nj,6Ui>aQ ]
d ([ (1,\,;F,C" Ekl)D
22 (Ui, 2))",02) = — pikl =0 2.135
(gt 27, 02) = o [< SN (2.135)

Discretization. We define finite-dimensional subspaces U" C U; with basis U = span{qu =17
Ghcg Wlth basis G = Span{w”}n L, and B" C B with basis B" = span{x 19 . This

leads to uf = Zi\nl LuP R, 1t 27]:;1 prypr, R = 2((;):1 KkOx%and A} = Z% 1)‘?1 i
Furthermore, the quantities 5u 5,u 0k, and SA! can be respectively approximated as
follows: dul' = ZM u o, 25:1 Sp™ym, and Ok = 200:1 dk°x°. Subsequently,
the Galerkin approximation of the required operators to solve the parameter identification
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problem are defined as

W) 4+ R(u") + R(kM) (2.136)

Sy = S (Zm ol - @>> (2.137)

Tl = 3 <225<¢“7¢*’>> (2.139)

Juz(u?, M =0 (2.140)
Zb 1 wa’ uu(ﬂhﬁﬂb) }) (2.141)

w(u?, zh) =0 (2.142)
-y ( S (685 F () Coa (5 (Fyelu) Sl -+ s Fy ()

M
_'_Z z]?SZkéuk] +Z 7,77—7, Q)
a=1 a=1

Notice that Eq. 2.143 is the linearization of the nonlinear elastostatics system of equations.
This system of equations is solved using an iterative solver, e.g. Generalized Minimum

Residual (GMRES).

(2.143)

Nelem M M
a 1 a
gu(u?, Zh) = Z <Z<)‘?,kskjv w> + Z</\ZrFrp<uh)ijkl(§ Fkl(uh»a ¢z]>
a=1

e=1 a=1

M
1 a
+) <)‘ZrFrp(uh)ijkl(§Ek(uh))> m‘>)
a=1

(2.144)

) (2.145)

Nelem M
(gz(u?azh))* = Z (Z( ?,]a zk/\ Z lj? )ijkl)\]]z’qul(Uh»

a=1
M 1
+ (6%, (§Fip(“h))cmkquk(Uh))‘g,ﬂ)

Nﬁ em a
ho Jhy _ l Z(jzvzl<)‘Zjﬂp(uh)CijlEkl(uh)v¢ )
9:(ug', 2") Z O /y\h Yer: Ry ya
Zaﬂ()\@jﬂp(u )ijklEkl(u )X

e=1

(2.146)
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Netem
(Gu( Zh>>* =

e=1

Nelem
(geuluf, 2"))" =

e=1

Let D CRY d e {1,2

Netem N
— Za:l(dﬂ, EU (uh)czjle’l (uh))‘kp> 2.147
( S0, By (u)C Py ()N 2447
M
(605> Cuml 50 Fapu)Ns )
e=1 a=1 b=1
M M
1
Z Z<¢fij7 Cijkz(§Fq,k(uh)¢Z,p)AZz>
a=1 b=
M le
+ZZ< zg»( gbzpCkaZAquql( h))
a=1 b=1
(2.148)
M M
1
+ D D (085 (GFn (") Couadi 40)
a=1 b=1
M M
1
#3036 (508, o P (W) X))
a=1 b=1
M M
1
+ Z Z<¢?,j? (§Ep(“h)cpjkl¢g,k)‘g,l>
a=1 b=1
[ a1 1 (08, CliuiSu X, ") ]
+Za 121) (08 (5 Fip(u ")Ch i g Far(u), 1/’?
+Za 1Zb 1< ( ( )ngkl ( ) ql777/}> 2.149
Za 1Zb 1< : CZlek)\k]aX> (2.149)
+Za 1Zb 1< ( ( )ngkl)\Zqul<uh)7Xb>
+Za 121; {9 ( ip(u )ngmF (Uh)AZ,z:Xb> i
(gu-(ul, 2")* =0 (2.150)
[ Za 1Zb 1<wa)‘h CZszkl(uh)’¢g,j> ]
Z?V:I 2?‘71 <,l/}a)\z,r ( )ngkl(%Fkl(uh)7 (b'li),j>
Zazl Zszl <¢]\C/L[)\2TF ( )ngkl(%‘i—‘lk<uh)7 ¢?,j> (2151)
ZN Zza:Ml %Zyai§¢;Aiip )zjklEkl((luF)a{ih; ¢b >
?V:l 111‘71 Z,r rp p]kl% kl h> zg
L Za:l Zb:1<¢a)‘i,rFrp(u ) p]kl(iFlk(u )7€bi,j> i

Parameter Identification in Structural-Acoustics

,3} be a bounded domain of interest with an interior region D
denoting an elastic body and an exterior region €2, denoting an incompressible acoustic body.
Lets designate 02, as the outer boundary of region 0f2, and 02, as the boundary of region
D, which is also an interior boundary for €2,. The structural-acosutics interactions take
place on the 092, C 02, boundary. Let u; denote the complex-valued displacement in the
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i-th direction and p denote the complex-valued pressure field. The elastic body and acoustic
fluid mass densities are respectively denoted by ps and p,. The elastic body shear modulus
is o and the bulk modulus is k. The acoustic wave number is given by k = w+/</p,, where
¢ is the acoustic fluid bulk modulus. Angular frequency is denoted by w. In the subsequent
derivations we use standard tensor notation with Einstein summation for the fluid-structure
interaction (FSI) equations. The indices i, j, k and [ take on the values 1,...,d. Partial
differentiation is denoted by a comma.

The PDESs of structural-acoustics are given by

—(Cijrier).j — psw?u; = fi in
—pii—kKp=0 in Q,
u; =0 on 08,
(Cijri€r) nj =7 on 0N, (2.152)
(Cijrier) nj = —pn; on 0.
pn; = f(B—jyk)p on 99,
pini = paw’u; n; on 90,

where the structural boubdary is defined as 0Q2, = 0€2, U 02, U 0€).. The Dirichlet and
Neumann conditions are repectively applied on 0f2, and 0f).. The surface traction in the
i-th direction is denoted by 7;, while the unit outward normal component in the ¢-th direction
on 0f); with respect to the region () is denoted by n;. The fourth-order tensor of elastic

moduli, C,j, is defined in Eq. 2.37 and the symmetric part of the displacement gradient,
€x1, 18 defined in Eq. 2.38.

Lets consider the following NLP:

o RIS = T = T+ R + R()
subject to
—(Cijrier).j — pswu; = f; in Q,
—Dii — k2p = n Qy
w; = on o9, (2.153)

(Cijri€r) n; = T3 on 090,

(Cijrier) nj = —pn; on o0,

pini = f(B8—jvk)p on 09,

Pini = pawiu; on 0.

where U; = {u;: u; € HY(Q), u; = 0 on 9Q,}, P = {p:p € H (W)}, G = {u: n €
L3(), u > 0}, ad B = {k: k € L?(Q), k > 0}. H™(Q) are Sobolev spaces of square
integrable functionals whose m-th derivatives are also square integrable. Whenever m = 0
we shall keep the notation with L*(2). The L? inner product for the space P is defined as

(u,v) ::/Qu(:p)ﬁ(x)dx, (2.154)
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where the overline denotes complex conjugate. The L? inner product for the space U; is
given by Eq. 2.79 and for the spaces G and B is given by Eq. 2.41.

First-order neccesary optimality conditions. The Lagrangian associated with the NLP defined
in Eq. 2.153 is given by

E(Ui,p, M, R, >\ia U)

e ~ ~ 1
= = i = B+ RG:)+ R+ R |~ o + 1))
1
— (N psw?ug) = (i, fi) + (i, (Ciga 5(%,1 + k) Ny — Ti)oo, (2.155)
1
+ (Ai; (Cijn 5(’%1 + ) 1 + pnidoa. + (U, —pii — kK pa p)

+ (v, pini — f(B — j7k) P)oa, + (U, pini — paw” u; ni>8QC:| ,

If (@;,p,fi,k) € Uy x P x G x B is a local solution to the NLP in Eq. 2.153, there exists
Lagrange multipliers (\;, v) € U; X P, such that the first-order necessary optimality conditions
hold at (u;,p, i1, &), i.e.
Vﬁ(uiapv W, K, )\’iv U)((Suh 5]77 5;ua 6"{7 5)\7,7 5U)
= Eu(uhpa Hy Ky )‘iv U>5ul + Lp(uiapv H, K, /\i7 U)(sp + Lu(uiapv M, K, >\i7 ”U)(;/L
+ ‘Cﬁ(uiap> u, K, )\ia ”U)dli + ‘C)\(ui7p> s Ky )‘ia U)aAZ + Ev(uiapa s K, )\h U)(SU =0
Second-Order Sufficient Conditions. If (u;, p, fi, K, A, v) € Us X P X G x B x U; x P satisfy

the first-order necessary optimality conditions and the Hessian operator exist and is positive
semidefinite, then (u;, p, fi, ) is a strict local minimum.

Operators. Let uw = {u;,p} € U; x P and z = {u, k} € G x B, then the operators required to
solve the paramater identification problem are defined as

J(u,z) = §<ul — Ui, u; — ;) + R(p) + R(k) (2.156)
(Ju(u, 2),0u) = % (ﬂ(uz — U, u; — u) + R(p) + R(Ko))
~ (2.157)
_ [ Bu; — s, duy) ]
0
(J,(u,2),0z) = % <§<uZ — U, u; — Uy + R(p) + R(Fa))
_ { (Ryu(p), op1) } (2158)
(Rx(k), 0r)
0 B(1,u; — ;)
(Juu(u, 2), 0u) = —
(Euﬁ { 0 } ) (2.159)

—
—
(o)
g
<
~
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—(Cijra 5wy +wg)) ;= fi +W?peuy in Q]

—pm — k2p =0 1in Qa
(Ciju %(ukl +u))n; =7, on 0N,
(Cijur 3 (upg +wp)) nj = —pn; on €
pini = f(B —jyk)p on 0%,

2
pini = paw-u;n; on  Of)
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(2.161)
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(2.163)



(gu(u, 2), 0u) = (A, —(Ciju L

2(Ukz+ulk)) — w?psu; — fi)

1

+ (Niy (Cija 5(
1

(M, (Ciju 5(%1 + k) Ny + pni)oa

<U7 Diji — k2 > <U7pini - f(ﬁ _] - Vk)p>asza
< v, ping — paw Uy ni>89c =0 V()\l, U) S uia xXP
(

Uk + W k)) Ny — Ti)oq,

-+ -

1
(Aij + i), Ciju §(ukl +upg))

1
— (N, (Cijm §(ukl + k) nj)on,
1
+ (\i, —wpsui — fi) + (N, (Cijua §(Uk,l +w k) Ny — Ti)oq,
1
+ (Nis (Cija é(ukl + i) n; + pniea. + (Ui, pi) — (U, Dini)an
— (v, pimi)oa. — (v, K°p) + (v, pni — F(B — j7k)p)on, (2.164)
+ (U, pini — paw’u; ni)oq,
0 1
= 9 (( (Mg + Aji)s Cij é(uk,l +ue)) + (N, —wPpsus — f;)

— (N, Tidoa, + (N, pridaa, + (Vi pi) — (v, K°p)
{0, F(B — FvR)pon. — (0. pai ni>aﬂc>

1
= (5(/\13 +Xi), Cijii = (51%1 + duk)) + (N, —wzps du;)

+ (Ai, dpni)oa. + (vi, 5pz-> — (v, K20p) — (v, f(B = j7K)dp)ac,
- <U:paw2(5ui i) o,
—{(Cijrr (Mg + Aik), j» Ous)
+((Ciji %()\k,l + Aik)) 1, 0Us) o,
= —{w?ps Ai, 0u) — (paw®v i, duy)oq,
—(vi, 0p) + (v ni, 6p)aq, + (v ni, 6p)aq,
—(K*v, 6p) — (f(8 — j7k)v, 6p)oa, + (A, 6p)aq,

The structural boundary in Eq. 2.164 is defined as 092, = 92, U0, U0JS2.. Furthermore,
the fields A\; = 0 and u; = 0 on 012, since \; € U; and u; € U;. Hence, the application of the
divergence theorem yields a set of homogeneous boundary condition on 0f€2,,. However, proper
Neumann boundary conditions need to be defined to ensure the validity of the problem.
Thus, a set of free Neumann boundary conditions is defined on 0f€2;. Hence, (C;jx %O\k,l +
Aik))ny = 0 on 0F);. Finally, the derivation of Eq. 2.164 yields a set of nonhomogeneous
Neumann boundary conditions on 9€2.. This set of Neumann boundary conditions is defined
as (Ciju 3(Mkg + M) nj = paw?vn,.

The acoustic boundary in Eq. 2.164 is defined as 092 = 092, U 0f2.. The fields v and p

41



are respectively defined in spaces v € P and p € P. Thus, the application of the divergence
theorem results in a set of nonhomogeneous Neumann boundary conditions on 0€),. 0f2..
Therefore, vn; = f(6 — jyk)v on 9Q, and vn; = A\n; on 0. These sets of acoustic
boundary conditions, coupled with the proper sets of structural boundary conditions, ensure
the validity of the operator defined in Eq. 2.164.

1
<9z(U, Z), 52) = O\u _(Cijkl _(Uk,l + Uz,k)),j - prS U; — fi)

2

1
+ (i, (Ciju 5

1
(i (Cz’jkl 5(
(

v, _pzi - k2 > <U pin; — f(ﬁ ] - ’}/k) >
<U i — pawuing)oa, =0 Y(\,v) €U, ><73

1
< (Nij + Xji), Cijrr §(Uk,l + ug))

(W + W) nj — Ti)oq,

Uk + k) Ny + Pi)o

1
— (Nis (Cija §(Uk,l + w k) nj)oq,

1
+ (N, _wzps u; — fi) + (i (Cijkl 5

5 (g + wrk)) nj — Ti)oq.

(2.165)

1
+ (M, (Cija §<uk,l + i) n; +pnidea, + (Ui, pi) — (U, Dini)oq,

— (v, piniYoq. — (U, K°p) + (v, pin; — f(B — j7k)p)oc
+ (v, pin; — pawuin;)on,
0 1
=3 (< (Mij + i), Cijm E(Uk:,l + )y + iy —w2ps ui — f3)
— (N, Tidoa. + (N, pridoa, + (Vi pi) — (v, K°p)

{0 £ (5 — YK)p)on, — 0. pusu m-m)

(5N + i) Clig 5 (wrg + i), Opr))
(3(Nij + X)) Clip 5 (wny + wi), 0K))
0
0
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(61, (gu 1 2))") = (i —(Cijua =

2(“kl+ulk)> — w?psu; — fi)

1
+ (A, (Cijkl §(Ukl + u)) n; — Ti) o0,
1
My (Cij 5(%1 + w k) Ny + pni)oa

+

+ <U7 Dii — k p> <U7pini - f(ﬁ _j - /Yk)p>8§2a
+ < v, ping — paw Us; ni>69c =0 v()‘zav) € uia xP
(

1
(Aij + i) Cijna 5(“1@,1 +upg))

1
— (A, (Cija B

1
+ (\i, —wpsui — fi) + (N, (Cijua 3

1
+ (A, (Cijkl §(Ukl +uk)) n; + pni)oa, + (Ui, pi) — (U, pini)aa

- <U7pini>8ﬂc - <U7k2p> + <U7pini - f(ﬁ - ]’yk)p>8ﬂ
+ (v, pini — pawuini)oa,
0

1
3u (< ()‘ZJ + )\J %) Cijkl 5

— (A, Tidoa, + (Niy pni)oa. + (vi, pi)
—wx%wwuﬂﬁ—mmmw,wumwmmmm)

= ( ()\i,j + )\j,i), Cz]kl (5ukl —+ oy k)> O\i, —UJZ/JS 5Ui>

+ (Ni, dpni)aq. + (vi, 5pz‘> — (v, k*6p) — (v, f(B — j7k)dp)aa,
— <U,paw25ui n;)oq.

1
<§(5ui7j + 5uj7i)v Cz]kl ()\k‘l >\l,k>>* + <5Uz, szs >\z>*

+ (0, Xi i) 5o, + (005, Ui> — (6p, K*v)" — (0p, f(B+ j7k)v)hq,
— (bu;, paw?v i) 50,
—((0ui, Cijin 5(Nij + Aja)), )"
+{(6ui, Cojr 5(Nij + Aji)) ni) b,
—(Ous, W?ps Ni)* — (0Us, paw®V ni) 50,
—<(5p, Um’>* + <5p, (% nz>;‘k)ﬂa + <5p7 v n1>ch
—(0p, K2v)* — (0p, f(B+ j7k)v)ha, + (00, Aini) b,

The structural boundary in Eq. 2.166 is defined as 0€2, = 92, U082, U0JS2.. Furthermore,
the fields A; = 0 and u; = 0 on 0, since \; € U; and u; € U;. Hence, the application of
the divergence theorem yields a set of homogeneous boundary condition on 9f2,. However,
proper Neumann boundary conditions need to be defined to ensure a self-adjoint operator.
Thus, a set of free Neumann boundary conditions is defined on 0f2;. Hence, (C;jx %(/\k,l +
Aik))n; = 0 on 09,. Finally, the derivation of Eq. 2.164 yields a set of nonhomogeneous

(g + urk)) nj>8§25

(U + W) nj — Ti)oq,

(g + wr)) + (N —wpsu; — f;) (2.166)

DO | —
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Neumann boundary conditions on 9€2.. This set of Neumann boundary conditions is defined
as (Ciju %()\k,l + Aik)) ng = pawvn,.

The acoustic boundary in Eq. 2.166 is defined as 02 = 092, U 0f2.. The fields v and p
are respectively defined in spaces v € P and p € P. Thus, the application of the divergence
theorem results in a set of nonhomogeneous Neumann boundary conditions on 9€2,. 0f2..
Therefore, vn; = f(8 + jyk)v on 99, and vn; = A\;n; on 0f2.. Notice the change in sign of
the Sommerfeld radiation boundary condition imaginary component. This change in sign is
due to the adjoint operation. These sets of acoustic boundary conditions ensure the validity
of the adjoint operator for this problem.

(02, (9-(u, 2))*) = (Mi, =(Cij 1(Ukz +ug)),; — w’ps u; — fi)

2

1
+ (N, (Ciju 3

1
(Nis (Cija §(Ukl + w k) n; 4+ pni)on
(

v, —pii — kK > (v,pin; — f(B —J —YK)P)aa
(v, pin; — paw uing)oa. =0 V(N\,v) €U, xP

1 1
<§()\i,j + Aji)s Cijni B

1
— (N, (Cija i(uk,l + w k) nj)oq,

(U + W) nj — T)oq,

+ + o+

(g + urk))

1
+ <)\i, —W2Ps Ui — fz> + <)\ia (Cijkl 5

5 (Us + wik)) Ny — Ti)oa.

1
+ (N, (Cija 5(%,1 + k) ny + pnidea. + (Ui, pi) — (U, Dini)oq,
— (v, pini)oq, — (v, k2p> + (v, pin; — f(B — jyk)p)oa, (2.167)
+ (U, pini — paw’u; ni)oq,

0 1 1
82’ (( ()‘l] + )\J 2) Cijkl 5

— (N, TiYoa, + (N, pni)ea, + (vi, pi) — (v,ka)

0, F(B — 7P en, — (0, pu s nim)

(g + wg)) + (N, —w?psu; — fi)

44



—(1, (Cijr 5Ny + Xja)).5)
(1, (Cijrr 3(Xig + Aji)) nj) e,

* _ 0 —(1,w?ps Ai, 1) — (1, paw?v n3) 00, B
(G 2))", 60 = ou —(L,vi3) + (1, vni)an, + (1, v )0, =0 (2.168)
—(1, f(B+ j7k)v)on,

—<1, k2U> + <1, )\ini>8ﬂc

—(wi, (Cijrr 5(Nig + Aji)).j» )
+(wi, (Cijrr 3(Nij + i) 0y o,
—{wy, W2 ps Ai) — (wy, paw?vn;)oq, =0
uz * 5 — <w27w Ps i s Pa 1002 \V/ i € uz € P
<<g (U, Z)) ’ Z> _<yavi,i> + <ya Uni>89a + <y7 Uni>89c v Y
—(y, f(B = j7k)v)aq,
_<y7 k2U> + <ya )\ini>8QC =0 |
(3(wij +wji), Cijr 5(Aeg + k)
—(ws, (Ciju %O\i,j + Aji)) ng)o.

+(ws, (Cij %O\i,j + Aji)) nj) a0,
_9 —(w;, W?ps i) — (Wi, paw?vni)oa, =0 (2.169)
0z <yi7Uz‘> - <?J,Unz‘>a§2a - <y7vnz‘>aﬂc

+(y, v ni)aa, + (¥, v ni)aa.
—(y, f(B = jyk)v)aa.
_<y7 k2U> + <ya )\ini>8QC =0

(%(wm‘ + w;i) Cliy %(/\k,l + Ak )s Op)
<§(wi,j + U)jyi) C?jkl 5()\]@[ + )\l,k)7 (5/€>
0
0

(/\k,l + )\l,k)>
(Akg + Arg)) -0 (2.170)

5 ) %(ui,j + uj,i)cé;kl
1, 5(u;j + uj,;)CE
22\ U, *, 0z) = — < 723 ] J5t) gkl
{(922(u, 2))", 02) = 5
0

1
2
1
2
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(1,
(1,

(uij + uji)

Clin %()\kl + Aug))
(Ui,j -+ ujﬂ)C kl 3

0

0

(Akg + Aik))

D= =

<<gzu(u7 Z))*7 5u> =

(1,- (CZM 5 Akt + Auk),

+(1, u (Cy 2(>\kl + Aik)) g

9 (1, —ui (Cfipy 5Nkt + Aig)),

8u +<1, uz(ijkl %(Ak,l + )‘l,k)) n]
0
0

[ <(Cﬁ3k1 5 (At + i) g, 0us)
F{(Cy 5 kg + M) 1y, i) o,
—((Cipy 5 Mg + Aik)), 5 Ous)
F{(Cipy 5kt + M) 15, 0us) o,
0
0

)
00
)

\/Q \/Q

o0 (2.171)

Discretization. Lets define finite-dimensional subspaces U C U; with basis U* = span{¢?}M_, |
Ph C P with basis P" = span{?ﬁ”}an, Gh C G with basis {0°}9_,, and Bh C B with ba-

sis {x*}}_;. This leads to u} = Zm el pho= SN prgr, b = 09 peee, kb =
25:1 KPP, N= SoM Amgm and oh = ij:l v™)™. Furthermore, the quantities duf, dp,

m=1"% ¥

Sul, kP, 60X, and dvP can be respectively approximated as follow: dul = E Lour i,
oph = Ziv:lp”z/)”, ol = 23:1 plh°. ok = 21?:1 KPXP, 0N = Z LONT I, and duh =
ZnN:1 ov™p". Subsequently, the Galerkin approximation of the required operators to solve
the parameter identification problem are defined as

Ju" 2" = = (ul — U, ul —a) + R(u") + R(") (2.172)

(2

Ju(u",2") = Z (Zﬁ< @ ul — a@->> (2.173)

D (2.174)

)

)
Juult, ) = ( Zﬁ<¢“,¢”>> (2.175)
Ju-(u",2") =0 (2.176)

it = 55 ([ SR Z 0 R 1) )

Ju(u",2") =0 (2.178)
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e=1
Nelem
(g=(u",2")" =
e=1
Nelem
(gu2(uh7zh)) =
e=1
Nelem
(gzu(uh7 Zh>>* =
e=1

Zi\/[1<( +¢]’L) ijlg(ukl+ul}fk)>
_Za:1< z’psw U; +fl>
_Z(]l\i1<¢?>7—i>aﬂ +Za 1< z?p nl> 00, =0
Zévzl< gvpi> Zb {3 ; k2 >

— o (U0, F(B ]’Yk) >
— Y (W, paw? wl niYoq, =0
s (5

i+ 0%, Cirr 5 (AL + Ale))

_Zg/il< 17:08 2)‘h>+za 1< mpaWQUhnz>aQ

Zb 1< <& 1> Zb 1<wb kQPa >

- >0 (07, 1(6 = j7k) v")on
- Zb:l <¢b7 )‘? ni>89c =0
Z}g:l(ea %()\h + )\h )CZkl %(UZI + ulhk))
D a1 (X 5 (N "‘)\h ) Clia 3wy + uily)
0
0
[ >l (5(08 + 05.), Cagrr (ML + A1) ]

—ZM (8, ps W A})
+Za 1< zapaw2vhnz>39 =0
Zb 1< 27 z> Zb 1<1/]b kzpa >

— S on (U, F(B — jvk) vMYaq,

— 3 (W A ) aa, = 0

Z;:l( ) %( ?] + u_?,i)czykl %()\Zl + )\ ))
D a1 X %( ?3 + u?,i>cz]kl %()‘k:l + )‘l "))

0
0

DD St
DI Dt

1
2
1
2

Sl S (30,
DD S e 1(2

0
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(08 + 95, )ijkl %()‘}kL,l + /\Zk)a 0°)
(o5 + oH ) ikl %()‘Z,l + AZk)? X"

+ ¢f )ijkl %(AZ,I + /\Zk)v 0°)
i+ 95 ) I 1CYTR PV I

=0

)

’)

(2.179)

(2.180)

(2.181)

(2.182)

(2.183)

(2.184)

(2.185)

(2.186)

(2.187)



Optimal Control in Structural-Acoustics

Lets consider the structural-acoustics partial differential equations defined in Eq. 2.152.
An optimal control problem in structural-acoustics can be defined as: estimate the surface
traction forces z; that yield a desired displacement field, i.e.

(07

o Dinimize 5w — G w — )+ R(z)
subject to
1 .
—(Cijm 5(1”“ +wk)), ;= ps wu; + f; in Q,
—pai —K'p=0 in Q,
u =0 on 00, (2.188)
1
ijkl 5\ Ukl T Upk)) Ny = 24 on .
(Cijra 5 (g + ur)) 50
1
(Cijri = (ugy +upg)) nj = —pn; on o9,
2
pni = f(B —irk)p on O,
pni = ppwu;n; on o0,

where U; = {u;: u; € HY(Qy), u; =0 on 0Q,}, P ={p: p € H(Q)}, and Z; = {z;: 2 €
L?(09.)}. The L? inner products for spaces U; and P are respectively defined in Egs. 2.79
and 2.41.

First-order neccesary optimality conditions. The Lagrangian associated with the optimal
control problem defined in Eq. 2.188 is given by

0" R N 1
L(w;, p, 2i, \iyv) = 5(% — g, u; — Uy) + R(z) + R [( A, —(Cij §(Uk,l +wk)), )

1
— iy psw?ug) — (N, fi) + (i, (Cija §(Uk,l + k) nj — zi)oq.
(2.189)

1
+ (i, (Cij 5(1%,1 +urk)) ny + pngaa, + (U, —piq — k2pa D)

+ (v, ping — F(B — §7K) D)aa, + (U, Dini — paw? uin)aq, |,

If (w;, p, Z;) € Us X P x Z; is a local solution to the optimal control problems in Eq. 2.189, there
exists Lagrange multipliers (\;, v) € U; x P, such that the first-order necessary optimality
conditions hold at (@, p, Z;), i.e.
VL (us, p; ziy Aiy 0) (0Ui, Op, 023, 0N, 6U) = Lo (i, P, 25, Ai, V) 6u; + Ly (s, s 2iy Aiy 0)0p
+ Eu(“iapa Ziy >\i7 U)ézi + En(uiapa Zis >\ia U)5>\1 + EU(”’hpa Zis )\ia U)5U =0
Second-Order Sufficient Conditions. If (a;,p, Z;, Ai,v) € Uy X P X Z; X U; x P satisfy the

first-order necessary optimality conditions and the Hessian operator exist and is positive
semidefinite, then (@;, p, Z;) is a strict local minimum.
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Operators. Let u = {u;, p} € U; x P, then the operators required to solve the optimal control

problem are defined as

«

(Ju(u, z;), 0u) = (% (§<ui — Uy, w — ;) + R(zi)>

0
<Jz(u, ZZ'),(SZZ'> = 8_21(2

g(u> Zi) =

_ [ = alu; ; i, 0uy) }

«

(W — W, uy — ) + R(Zi))

= <Rz(zi)7 (SZZ>

(e, 2,020 = - (<1, Rz<zi>>)
= (R..(2i),0z)

—(Ciju 5wy +wp)),j = fi +wpsu; in Q
—Dii — kK’»p=0 in Q,
(Ciju %(uk,l +ug))n; =z on 08,
(Cijur 3(upy +wp)) nj = —pn; on €
pini = f(B —jyk)p on 0%,

2
pini = paw-u;n; on O
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(2.190)

(2.191)

(2.192)

(2.193)

(2.194)

(2.195)

(2.196)

(2.197)



1
(Gu(u, 2;), 0u) = (N, —(Ciju Q(Ukl + k), — wpsui — fi)
1
+ (Nis (Cija 5(
1

+ (N, (Ciji §(Ukl + i) ny 4+ pni)on
+ (v, —pi; — k p> (v,pin; — f(B =7 —7K)p)aq,
+ <U pin; — paw Us ni>BQc =0 V()\Z,’U) S uia xP

Uk + Wk)) Ny — 2Zi)oq.

1 1
<§<>\z‘,j + X)) Cz‘jklé(uk,l +ug)) — (N (Cz‘jkl§<uk,l + wi))ng)eq,

1
+ (Ni, —wpsu; — fi) + (N, (Ciju 5

5 (U + ury)) n; — 2i) o0,

1
+ (Nis (Ciji = (W + wir)) nj + pni)oa, + (Ui, i) — (U, Pini)on,

2
— (v, piniYoq. — (U, K°p) + (v, pin; — f(B — j7k)P)oc.
+ (U, pini — paw?ui i) oq, (2.198)

0 1
= 9 (( (Nij + i), Cijm §(Uk:,l + )y + iy —w2ps ui — fi)

— iy zidoa. + (i, pnidea, + (vi, pi) — (v, K°p)

— (v, (B = j7K)P)oq, — (v, paw’u; ni)@Qc)

1
= <§()\ZJ + /\j,i)7 ngkl (5ukz + oy k)> <)\i, —WQ,Os 5Ui>

+ (Xis dpni)aq. + (vi, 5pi> - <U>k25p> — (v, f(B — j7k)dp)an
— (v, paw®Ou; ) o,

—((Cijm %()\k,l + Aik)), g Ou)
+{(Cij %()\k,l + Aik)) ny, 0ui) o0,
= —{W?ps Aiy Ou;) — (paw?v ny, Ou;)aa,
—(Vi, 0p) + (v i, 0p)ag, + (v ni, 0p)aq.
— (v, 8p) — (F(B = j7k)v, 6p)aa, + (Nini, dp)an

The structural boundary in Eq. 2.198 is defined as 9€2, = 02, U 992, U 0€).. The fields
A; = 0 and u; = 0 on 0€, since \; € U; and u; € U;. Hence, the application of the divergence
theorem yields a set of homogeneous boundary conditions on 0€2,. Furthermore, in order
to ensure the validity of the operators derived in Eq. 2.198, proper Neumann boundary
condition are required. Thus, a set of free Neumann boundary conditions is defined on
09, i.e. (Ciju %()\k,z + Aii))n; = 0 on 09,. Finally, notice that the derivation shown in
Eq. 2.198, yields a set of nonhomogeneous Neumann boundary condition on 0f). defined as
(Cijni %(/\k,l + A\ig))nj = Paw?v .

The acoustic boundary is defined as 02 = 992, U 9€2.. The application of the divergence
theorem yields nonhomogeneous Neumann boundary conditions on 0f2, and 0€2.. Therefore,
these sets of boundary conditions are defined as vn; = f(6 — jyk)v on 98, and vn; =
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Aqn; on 0f).. These sets of structural and acoustic boundary conditions ensure the validity
of the equations defined in Eq. 2.198.

0

1
(9:(u, 2;),02;) = 92 <<)\i, —(Cijm i(ukz,l +u)),; — wpsui — fi)

1
+ (Nis (Cij 3

(kg + wik)) nj — 2i)oq.
1
+ (Ai, (Cijaa 5(%1 +uk)) nj + png)oo. (2.199)
+ (v, —pi; — K°p) + (v, pin; — f(B = — vK)p)oc
+ (v, pin; — panUi ni) o, = O> Y(\i,v) € U, XP

= (i, 02:) a0

(02, (g2 (u, 2z))*) = 9

Zj
1
+ (Nis (Cija 5

1
(Mis (Cijm 5(%,1 +w i) nj 4+ pnidaq.
(

VU, —Pii — k2p> + (v, pin; — f(B — j —Yk)p)aa

<Uapini - PaWZUi ni>8§26 = 0) V()\zﬂ)) € U;, xP

1
<<)\i7 _(Cijkl 5(%1 + Ul,k)),j — WZ/)S w — fi)

(g + urk)) nj — zi)oa.

(2.200)

((g22(u, 2))", 02) = a%- ((1, Az»)agz) =0 (2.201)

((gzulu, 2;))", 6u) = % <<17 Ai>agz> =0 (2.202)
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(61, (gu (1 22))) = (At —(Cigia =

2(“kl+ulk)) —w?psu; — fi)

1
+ (Nis (Cija 5(

1
My (Cij 5(%1 +wg)) Ny + pni)oa

+
+ <U7 Dii — k p> <U7pini - f(ﬁ _j - /Yk)p>8§2a
+ (U, pin; — paw U; ni)@ﬂc =0 V()\Z,U) € u’h xP

Uk + Wk)) Ny — 2i)oq,

<
1
( (Aij+ i) Cija é(uk,l + upg))

1
— (A, (Cija B

1
+ (\i, —wpsui — fi) + (N, (Cijua 3

1
+ (A, (Cijkl §(Ukl +u)) n; + pni)oa, + (Ui, pi) — (U, pini)aa
— (v, pini)an, — (U, K°p) + (v, pin; — f(B — j7k)p)o

+ (U, pini — paw’u; n3)ogq,

= (500 X0 G 3w + ) + (= = £
— (Niy zi)oo. + (Ni,pna)aa, + (vi, i)
— (0, Kp) = (v, f(B = j7k)p)ac. — (v, paw’u; ni)&Qc)

= < ()\i,j + )\j,i), Cz]kl (5ukl + oy k)> <)\i> —w2ps 5ui>

+ (Mi, dpni)aq. + (vi, 5pi> — (v, k*6p) — (v, f(B — j7k)dp)aa,
— (v, Paw?du; n;i)oq,

1
(5(5%,3' + 6uji), Cijr = ()\kz — M)+ (Oug, wips \i)*

+ (0p, Nini)ha, + (Opi, Uz’> — (0p, K*0)* — (6p, f(B+ jvk)v)sa,
— (Oui, pawv ni)hq,
—<(5Ui, Cijkll %O\i,j + )\j,i)),j>*
F((0us, Cijrr 5(Nij + Nja)) ) 5,
—(Ouz, w?ps Ni)* — (Oug, pawv ni)he,
—(25]9, vi)* =+ (0p, U”z’>59a + (op, Uni>396
—(0p, K*v)* — (op, f(B — jrk)v)50, + (0P, Nini) 5o

The structural boundary in Eq. 2.203 is defined as 0€2, = 990, U 92, U 9€).. The fields
A; = 0 and u; = 0 on 0, since \; € U; and u; € U;. Hence, the application of the divergence
theorem yields a set of homogeneous boundary conditions on 0€2,. Furthermore, in order
to ensure a self-adjoint operator, proper Neumann boundary condition are required. Thus,
a set of free Neumann boundary conditions is defined on 09, i.e. (Cyjp %()\k,l + Ng))n,; =
0 on 01),. Finally, a set of nonhomogeneous Neumann boundary condition is defined on

(g + urk)) nj>8QS

(U +wrk)) Ny — 2i)oa.

(2.203)

DO | —
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0%).. This set of nonhomogeneous Neumann boundary condition is a consequence of the
derivations shown in Eq. 2.203 and is defined as (C;;x %()\k,l + Aik)) ny = pawvn,.

The acoustic boundary is defined as 02 = 92, U 9€2.. The application of the divergence
theorem yields nonhomogeneous Neumann boundary conditions on 0€2, and 0f2.. Therefore,
these sets of boundary conditions are defined as vn; = f(8 + jyk)v on 99, and vn; =
Ain; on 0f).. Notice the change in sign of the Sommerfeld radiation boundary condition
imaginary component. This change in sign is due to the adjoint operation. These sets of
structural and acoustic boundary conditions ensure the validity of the adjoint equations
defined in Eq. 2.203.

<(1 kal 2<)‘1J + )\J z)) J>
+<17 (kal 2(/\1J + )\] %)) n]>69p
) _ ﬁ —(1,w?ps Ai) — (1, paw®v )00,
<(guu<uazz)) 75u> - au _<17Ui7i> ‘l‘ <17Unz>69a _|_ <1,U7’LZ 89,
—(1, f(B — j7k)v)aa
—(1L,K%0) + (1, \ing)ag,

—(1, (Cijrr 3(Xij + Xji)).5)
+(1, (Cijur 3(Xij + Aja)) nj)oe,
_ i —(1,w2p5 )‘Z> - <17paw2v ni>8Qc
B —(1,v;4) + (1, vni)aea, + (1,vn:)a0,
—(1, f(B — jyk)v)an
—<1,k21}> + <1, )\ini>3gc

=0 (2.204)

0 (2.205)

—~
—~
Q
<
I3
—~
S
N
<)
~—
~—
*
S
N
~—
Q
N
Il

Discretization. Lets define finite-dimensional subspaces U" C U; with basis U = span{¢m 1
Ph C P with basis P" = span{w”}n 1, and Z!' C Z; with basis {69} ThlS leads to u

Do U, PP = SO0 pryn, 2 = 300 2000, A = Y AT and o — > U"WL-
Furthermore, the quantities du? 5ph 5z, 6);, and dv™ can be respectively approximated as
follow: dul = S0, durt o, dpt = S0, ', 62 = O, 207, oM = S0, oXPay, and
suh = 25:1 ov™p". Subsequently, the Galerkin approximation of the required operators to
solve the optimal control problem are defined as

J(h, 2y = Sl — G ul — @) + R(2) (2.206)

Ju(uh, 2 = » (Z o, ul — a@) (2.207)
Netem O

T (u", 2}') = (Z(G“, Rz(z?)> (2.208)

> D ale, ¢b>> (2.209)

Ju-(ul, 21 =0 (2.210)



g(u”

Sl (A998, + 02,), Cajra 3 (uly +ully)
Nor, u - Zc]:/i1< i psA‘})Q u? + fl>

o — Zazljédﬁ?a Zi)oq. + Z]av:ﬁ ¢, p"niYoa, =0
T St (W0, Pty = S (00, pa )

— Sl Wb F(B = k) pMon,
- Zé\[:1<wba paw?ul ni)oq, =0

M a a
MZQ:1<%( i.j + ¢j,z’)a]\9ijkl %()‘Z,l + >‘lhk)>
Nelem _Za:1< ?7p8w2 )\?> +Za:1< ;‘lapauﬂ Uhﬂi)agc :O

") = Sl (U, vl = Dl (07K pa )

= — Sl (W0, F(B — k) v")ag,
- ZIZ)V:1<1/’b» /\? ni)oa, =0

Netem o
st )= 3 (zw, es>)
e=1 a=1
[ Zi\;(%( @54 0%, Cijr 3 (A + Al) ]
- Ziw:l< ?705 WQ )‘zh>
+ 30 (08, paw? U ni)on, =0
e—1 ZIJ)V:1< zbv Uzh> - Zé\le <1/Jb7 k2 Pa Uh>
— Sl (WP F(B = k) vM)aq,
= > (WP, N )0, = 0

(g:(u", 2"))" = i (Z@?%))

Optimal Control in Steady-State Acoustics

(2.211)

(2.212)

(2.213)

(2.214)

(2.215)

(2.216)

An optimal control problem in steady-state acoustics is to estimate the source term g;
to obtain a desired pressure field 7. We define Q C R? d € {1,2, 3}, as the computational
domain with boundary 02 = 990, U0S2,.. The regions 02, and 0f, are the boundaries where
Dirichlet and Neumann conditions are applied, respectively. Once more, we use standard
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tensor notation with Einstein summation. The index 7 takes on the values 1,...,d. Partial
differentiation is denoted by a comma.

The PDEs of steady-state acoustics are given by

—Uj; — Ky = 2z in
u=0 on 0f, (2.222)
wn; = f(B—jyk)u on 0%,

where u denotes the complex-valued pressure field. The fluid mass density is denoted by py.
The acoustic wave number is given by k = wy/ks / py, where ry is the fluid bulk modulus.
Angular frequency is denoted by w.

Impedance boundary conditions are imposed on 0f2, to allow the acoustic wave to pass
through and not reflect back into the computational domain. The geometric factor related
to the metric factors of the curvilinear coordinate system used on the boundary is denoted
by « and the spreading loss term is denoted by f.

Lets consider the following optimal control problem

minimize g(u —u,u—u) + R(z)
(u,2) € UXZ
subject to (2.223)
—Uij; — k*u =z in €,
wn; = f (68— jvk)u in 09,

where Y = {u:u€ H' (Q), u=00n 90}, Z = {2: z € L*(Q)}. H™(Q) are Sobolev
spaces of square integrable functionals whose m-th derivatives are also square integrable.
Whenever m = 0 we shall keep the notation with L*(Q).

First-order neccesary optimality conditions. The Lagrangian associated with the optimal
control problem defined in Eq. 2.223 is given by

L(u,g,A) = 5 {u = ,u — 1) + R(2) (2.224)

+ %K)\, —Uj; — k2U — Z> + <)\, Uing — f(ﬁ - ]’yk)U))]

If {u,z} € U x Z is a local solution to the optimal control problem in Eq. 2.2, there exists
Lagrange multipliers A € U, such that the first-order necessary optimality conditions hold
at {u, 2}, i.e.

VL(u,z,\)(0u,0z,0\) = Ly(u, 2, \)du+ L, (u, 2, \)oz + L (u, 2, \)oA = 0 (2.225)
Second-Order Sufficient Conditions. If (u, 2, \) € U x Z x U satisfy the first-order necessary

optimality conditions and the Hessian operator exist and is positive semidefinite, then (@, 2)
is a strict local minimum.
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Operators. The operators required to solve the optimal control problem are defined as

(0%

J(u, z) = §<u —u,u —u)+ R(z) (2.226)
0 [«
(Ju(u, z),0u) = " < (u—u,u—u)+ R(z )) (2.227)
= au —u, du)
(J,(u,z2),0z) = p <§<u — U, u— uy + R(z)) (2.228)
= (R(2),02)
(Juu(u, 2), 0u) = % (a(l, u— ﬂ>) (2.220)
= (1, 0u)
(Juz(u, 2),02) = % (a(l,u - ﬁ)) =0 (2.230)
et 21,09 = - (1.2 -
= (R,.(2),6z)
(Jou(u, 2), 0u) = aau ((1 R.(z )>) =0 (2.232)
—Uj; — Ku=2z in Q
009 = | 25 e om0, | (2233)

(gu(u, 2),0u) = (\, —u;; — Ku — 2) + (N umng — f(B — jyk)u)an, =0V A €U
= (N s — K'u — 2) — (N uni)oa + (A wing — f(B — jyk)u)on
(A ui — kQU —2) = (A (B = jrk)u)a,

= (A i U + (Aing, uan — <)‘>k2u +2) — (A, f(B = jvk)u)ea

< i w) — (A Ku 4 2) + (Aing, w)ag, — (A, f(8 - ]'Vk)ubm)

<k2>\ du) + (A, 0u)aq, — (f(B — jyk)A, 0u)aq,
(2.234)

In Eq. 2.234 the boundary is defined as 02 = 0€),. U 9€),. Since A\ € U and u € U,
then A = u = 0 on 012,. Hence, the application of the divergence theorem results in a set of
homogeneous boundary conditions on 0f2,. However, the Sommerfeld radiation boundary
condition are nonhomogeneous on 02, i.e. u # 0. Resulting in a set of nonhomogeneous
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boundary condition defined as \;n; = f(5 — jvk)A on 0€),.
(g.(u, 2),62) = (N, —u;; — Ku — 2) + (N um; — f(B — jyk)u)an, =0V AN €U
= (N = KPu = 2) = (N wmi)oa + (A wn; — f(B = jrk)u)aq,
= (Niyui = K'u — z) — (A, (B = jrk)u)oe
= (= Aiis ) + (Aing, waa — (A, K*u + z) — (N f(B = jrk)u)aq,
= % (<_)\i,i7 w) — (N Ku+ 2) + (Ning, whan, — (A, (6 — Mk)u>am>
—(\,02)
(2.235)
(6u, (gu(u, 2))*) = (N, —ui; — K2u — 2) + (N um; — f(B — j7K)u)on, =0V A elU
iy u; — K2u — 2) — (N ungdaa + (N umng — (B — jyk)u)aq
= (Niyui = K*u — 2) — (N, f(B — jrk)u)on,
(=i ) 4+ (i, w)on — (A KPu+ 2) — (A, f(8 — j7k)u)an,
(uy =Xia)™ + (u, Aina) s — (Ku+ 2, )" = (u, f(B+ j7k)N)oe,

9,
= ((u, —Nia)* = (K A+ 2, A+ (u, Ana) g, — (u, f(B —|—j7k)/\>397)

= (Gu, =) — (Ou, KAV + (Gu, Ami)ao, — (Ou, (B + j7k) N5
(2.236)

In Eq. 2.236 the boundary is defined as 92 = 09, U 0€),. Since A\ € U and u € U,
then A = u = 0 on 0f2,. Hence, the application of the divergence theorem results in a set of
homogeneous boundary conditions on 0f€2,. However, once again, the Sommerfeld radiation
boundary condition are nonhomogeneous on 0f2,.. This yields a set of nonhomogeneous
boundary condition defined as A\;n; = f(8 + jyk)A on 09,. Notice the change in sign of the
Sommerfeld radiation boundary condition imaginary component. This change in sign is due
to the adjoint operation.

(62,(g.(u, 2))") = (N, —ui; — K2u — 2) + (N wimi — f(B — j7k)u)on, =0V A e U
= (i, u; — Ku— 2) — (A, wing)ag + (N, uni — f(B — jrk)u)a
= (N, u; — kK*u — z) — (A f(B = jrk)u)aq,
= (u, =i+ (u, Nini)jo — (KCu+ 2, 0)" = (u, f(B+ k) Ao

0
=9 (<u, i) = (KPu+ 2, A+ (u, Ao, — (u, f(B +j7k)>‘>397-)

—(0z, )"
(2.237)
(a2, 0) = 5 (LA = (L) + (L A, — (L S5+ ) = 0
(2.238)
(e 20782) = 37 (LA = (LKD) + (L Ao, = (1, F(5 + 1R, ) =
(2.239)
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{(gou(u, 2))*, 6u) = 8au (<1 /\)> (2.240)

((gz2(u, 2))", 02) = % (<1, A>) =0 (2.241)

Discretization. We define finite-dimensional subspaces U" C U with ba81s U" = span{p™}M_,
and 2" C Z with basis 2" = span{t"}\_,. This leads to u" = M um¢™, 2" =
ZnN:1 2" and A\ = Zm:l A"¢™ . Furthermore, the quantities du” and dz" can be respec-
tively approximated as follow: du = 3™ su™¢™ and 62" = 32| 527", Subsequently,
the Galerkin approximation of the required operators to solve the optimal control problem
are defined as

J(h, 2" = %mh — G, uh —0) + R(2M) (2.242)
Netem M
Ju(ul, 2" = ( ol ul — ﬂ)) (2.243)
e=1 a=1
Netem N
J(u, 2" = (Zw, Rz(zh)> (2.244)
e=1 a=1
Nelem M M
Juu (U, 2 = (Zza<¢a,¢b>> (2.245)
e=1 a=1 b=1
Juo(u, 2") =0 (2.246)
Nelem N N
To(u" ") = > <ZZ<¢G, Rzz(zh)¢b>) (2.247)
e=1 a=1 b=1
Ju(u",2") =0 (2.248)
Netem M M M
g(u, z) = <Z< Loy = (K" ) (6 F(8 — jrk)u")an > (2.249)
e=1 a=1 a=1 a=1

M M M
D (A =D (0% KA + ) (e jqk)Ah)@Qr) (2.250)
a=1

g:(u,z) = f (zw,w) (2.251)

e=1 a=1

a=1

(9u(, )" = M(Z g — S (8 KA + Z(aﬁ“,f(ﬁJrﬂk)/\%m) (2.252)

(9:(u, 2))" = Z ( (WW)) (2.253)

e=1

(Guu(u, 2))" =0 (2.254)
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(2.255)
(2.256)
(2.257)
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