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Abstract

A theoretical framework for the numerical solution of partial differential equation (PDE)
constrained optimization problems is presented in this report. This theoretical framework
embodies the fundamental infrastructure required to efficiently implement and solve this
class of problems. Detail derivations of the optimality conditions required to accurately
solve several parameter identification and optimal control problems are also provided in this
report. This will allow the reader to further understand how the theoretical abstraction
presented in this report translates to the application.
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Chapter 1

Theoretical Framework

Let Z,U ,Y be Hilbert spaces and Z, U are reflexive, i.e. z ∼ z ∀ z ∈ Z and u ∼
u ∀ u ∈ U . Furthermore, let J : U × Z → R and g : U × Z → Y . Lets consider an
optimization problem of the form

minimize
(u,z) ∈ U×Z

J (u, z)

subject to

g(u, z) = 0,

(1.1)

where u ∈ Uad ⊂ U and z ∈ Zad ⊂ Z. Uad and Zad denote admissible subsets of the state
and control spaces U and Z, respectively. If the following conditions are met:

1. Zad ⊂ Z is convex, bounded and closed;

2. Uad ⊂ U is convex, closed, and contains a feasiblepoint; i.e. g(u, z) = 0 has a bounded
solution operator, u : Z → U ;

3. the mapping (u, z) 7→ g(u, z) is continuous under weak convergence; and

4. J is sequentially lower semicontinuous;

there exists a solution to the optimization problem defined in Eq. 1.1 [2, 1]. The above
result ensures the existence of an optimal solution to the optimization problem defined in
Eq. 1.1. However, the uniqueness of the solution is problem dependent.

To efficiently solve the optimization problem in Eq. 1.1, first order necessary optimality
conditions and second order sufficient conditions are required to find the optimal solution.
These conditions involve the gradient of the objective function being zero at the optimal
solution and the Hessian operator being positive semidefinite at the optimal solution. These
conditions can be derived from Lagrangian multiplier theory [4].

Full-Space Formulation

Consider the optimization problem defined in Eq. 1.1 and assume that the objective
function J (u, z) and constraint g(u, z) are twice continuously differentiable with Lipschitz
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continuous second derivatives. We define a Lagrangian functional L : U × Z → R, given by

L(u, z, λ) = J (u, z) + 〈λ, g(u, z)〉U∗,U ,

If (û, ẑ) ∈ U ×Z is a local solution of Eq. 1.1, then there exists a Lagrange multiplier λ̂ ∈ U
such that the first-order necessary optimality conditions

〈Lu(u, z, λ), δu〉 = 〈Ju(u, z) + gu(u, z)
∗λ, δu〉 = 0

〈Lz(u, z, λ), δz〉 = 〈Jz(u, z) + gz(u, z)
∗λ, δz〉 = 0

〈Lλ(u, z, λ), δλ〉 = 〈g (u, z) , δλ〉 = 0

(1.2)

are satisfy for any (δu, δz, δλ) ∈ U × Z × U . Here, ∗ denotes the adjoint of an operator.

If (ũ, z̃, λ̃) satisfy Eq. 1.2, and

∇2L(ũ, z̃, λ̃) [s, s] ≥ δ ‖s2‖ ∀ s ∈ Null (∇g(u, z) [δu, δz]) ,

for a given δ > 0, then (ũ, z̃) is a strict local minimum. This statement denotes the second-
order sufficient conditions.

Applying Newton’s method to the first-order necessary optimality conditions in Eq. 1.2
results in the following optimality system Luu(u, z, λ) Luz(u, z, λ) gu(u, z)

∗

Lzu(u, z, λ) Lzz(u, z, λ) gz(u, z)
∗

gu(u, z) gz(u, z) 0

 δu
δz
δλ

 = −

 Ju(u, z) + gu (u, z)∗ λ
Jz(u, z) + gz (u, z)∗ λ

g (u, z)

 , (1.3)

where, Luu(u, z, λ), Luz(u, z, λ), Lzz(u, z, λ), and Lzu(u, z, λ) are respectively defined as

Luu(u, z, λ) = Juu(u, z) + (guu(u, z)·)∗λ, (1.4)

Luz(u, z, λ) = Juz(u, z) + (guz(u, z)·)∗λ, (1.5)

Lzz(u, z, λ) = Jzz(u, z) + (gzz(u, z)·)∗λ, (1.6)

Lzu(u, z, λ) = Jzu(u, z) + (gzu(u, z)·)∗λ. (1.7)

In practice, this problem is also known as an equality constrained optimization problem.

Reduced-Space Formulation

We define a Lagrangian functional

L(u(z), z, λ) = J (u(z), z) + 〈λ, g(u(z), z)〉U∗,U ,

where 〈·, ·〉 : U∗ × U → R and u = u(z) denotes the solution to the constraint equation
g(u, z) = 0 by the implicit function theorem. Then, the objective functional becomes

Ĵ (z) = J (u(z), z)
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Computing the Fréchet derivative of Ĵ (z) and equating to zero, one has that for any δz ∈ Z,

〈∇Ĵ (z), δz〉Z∗,Z = 〈Lu(u(z), z, λ), uz(z)δz〉+ 〈Lz(u(z), z, λ), δz〉.

Then, for any δz ∈ Z and δu ∈ U we have

〈δz,Lz(u(z), z, λ)〉 = 〈Jz(u(z), z), δz〉Z∗,Z + 〈λ, gz(u(z), z)δz〉Y∗,Y
= 〈δz,Jz(u(z), z)∗ + gz(u(z), z)∗λ〉Z∗,Z

(1.8)

〈δu,Lu(u(z), z, λ)〉 = 〈Ju(u(z), z), δu〉U∗,U + 〈λ, gu(u(z), z)δu〉Y∗,Y
= 〈δu,Ju(u(z), z)∗ + gu(u(z), z)∗λ〉U∗,U ,

(1.9)

where δu = uz(z)δz.

Let λ : Z → U . Then, by the implicit function theorem, a λ ≡ λ(z) is attained such that
Lu(u(z), z, p) = 0. Notice that λ can be obtained by solving Eq. 1.9 as follows

λ = −gu(u(z), z)−∗J (u(z), z). (1.10)

Then, the reduced gradient is calculated by substituting λ, which is obtained by solving Eq.
1.10, into Eq. 1.8 as follows

∇Ĵ (z) = Jz(u(z), z) + gz(u(z), z)∗(−gu(u(z), z)−∗Ju(u(z), z))

= Jz(u(z), z) + gz(u(z), z)∗λ(z)
(1.11)

The application of the Hessian operator to direction δz is computed by differentiating
Lz(u(z), z, λ(z)) with respect to u(z), z, and λ(z) as follows:

∇2J (z)δz = Lzu(u(z), z, λ(z))δu+ Lzz(u(z), z, λ(z))δz + Lzλ(u(z), z, λ(z))δλ, (1.12)

where δλ ≡ λz(z)δz. Thus, in order to find ∇2J (z)δz we need to find δu ∈ U and δλ ∈ U .

Notice that g(u(z), z) = 0 for all z ∈ Z. This means that gz(u(z), z)δz = 0 for all δz ∈ Z.
Exapanding this equality yields

gz(u(z), z)δz = gu(u(z), z)δu+ gz(u(z), z)δz = 0. (1.13)

Solving Eq. 1.13 for δu, gives

δu = −gu(u(z), z)−1gz(u(z), z)δz. (1.14)

Then, δλ is found by differentiating Lu(u(z), z, λ(z)) with respect to u(z), z, and λ(z) as
follows

Luu(u(z), z, λ(z))δu+ Luz(u(z), z, λ(z))δz + Luλ(u(z), z, λ(z))δλ = 0. (1.15)

Differentiating Eq. 1.9 with respect to λ(z) yields

Luλ(u(z), z, λ(z)) = gu(u(z), z)∗. (1.16)
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Substituting Eq. 1.16 into Eq. 1.15 yields

Luu(u(z), z, λ(z))δu+ Luz(u(z), z, λ(z))δz + gu(u(z), z)∗δλ = 0. (1.17)

Solving Eq. 1.17 for δλ gives

δλ = −gu(u(z), z)−∗
[
Luu(u(z), z, λ(z))δu+ Luz(u(z), z, λ(z))δz

]
, (1.18)

where δu is given by Eq. 1.14. Lastly, differentiating Eq. 1.8 with respect to λ(z) yields

Lzλ(u(z), z, λ(z)) = gz(u(z), z)∗ (1.19)

After substituting Eq. 1.19 into Eq. 1.12, the application of the Hessian to direction
δz ∈ Z is defined as

∇2Ĵ (z)δz = Lzu(u(z), z, λ(z))δu+ Lzz(u(z), z, λ(z))δz + gz(u(z), z)∗δλ, (1.20)

where δu and δλ are respectively defined in Eqs. 1.14 and 1.18.

To summarize, the application of the Hessian operator to direction δz ∈ Z is calculated
as follows:

1. Solve g(u(z), z) = 0 for u(z)

2. Solve gu(u(z), z)∗ λ = −Ju(u(z), z) for λ

3. Solve gu(u(z), z) δu = gz(u(z), z) δz for δu

4. Solve gu(u(z), z)∗ δλ = −
[
Luu(u(z), z, λ(z)) δu+ Luz(u(z), z, λ(z)) δz

]
for δλ

5. Compute

∇2Ĵ (z) δz = Lzu(u(z), z, λ(z)) δu+ Lzz(u(z), z, λ(z)) δz + gz(u(z), z)∗ δλ

The reduced-space formulation allows us to reformulate the optimization problem defined
in Eq. 1.1 as an unconstrained optimization problem of the form

minimize
z∈Z

Ĵ (z),

where the reduced gradient is given by Eq. 1.11 and the application of the Hessian operator
to direction δz is given by Eq. 1.20.
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Main Operators

Althought in practice, the algorithms utilized to solve full-space and reduced-space prob-
lems can differ, there are common features that are required to effectively solve these prob-
lems. For instance, optimality conditions are derived and implemented to find the optimal
solution to the optimization problem defined in Eq. 1.1. From the previous theoretical dis-
cussion, the reader can notice that these optimality conditions rely on the same operators
to calculate both the gradient and Hessian. These common operators are

J(u, z), Ju(u, z), Jz(u, z), Juu(u, z), Juz(u, z), Jzz(u, z), Jzu(u, z)

g(u, z), gu(u, z), gz(u, z), (gu(u, z))
∗, (gz(u, z))

∗,

(guu(u, z)·)∗, (guz(u, z)·)∗, (gzz(u, z)·)∗, (gzu(u, z)·)∗.
(1.21)

By defining these sixteen operators, the algorithms used to solve full-space and reduced-space
problems can share the same interface. Allowing practitioners to easily apply full-space and
reduced-space formulations to solve PDE-constrained optimization problems.

Several PDE constrained optimization problems are presented in Chapter 2. First order
optimality conditions and second order sufficient conditions are derived and presented for
each problem. These examples will allow readers to understand the theoretical framework
presented herein as well as enable readers to bridge the gap between theory and application.
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Chapter 2

Optimality Conditions

Parameter Identification in the Poisson Equation

A prototypical parameter identification (inverse) problem is to estimate the coefficient z
from measurements û related to the solution u of the elliptic boundary value problem:

−(z ui),i = f in Ω

u = 0 on ∂Ω
(2.1)

Here, Ω ⊆ Rd, d ∈ {1, 2, 3}, is the computational domain with boundary ∂Ω. For a steady-
state heat equation, z is the coefficient of thermal diffusion, u is the temperature distribution,
û are the temperature measurements, and f is a given heat source. In the following we use
standard tensor notation with Einstein summation. The indices i and j take on the values
1, . . . , d. Partial differentiation is denoted by a comma.

We consider the nonlinear programming problem (NLP)

minimize
(u,z) ∈ U×Z

β

2
〈u− û, u− û〉+R(z)

subject to

−(z ui),i = f in Ω,

(2.2)

where U = {u : u ∈ H1(Ω), u = 0 on ∂Ω}, Z = {z : z ∈ L2(Ω), z > 0}, and R(·) denotes a
regularization functional. Hm(Ω) are Sobolev spaces of square integrable functionals whose
m-th derivatives are also square integrable. Whenever m = 0 we shall keep the notation
with L2(Ω). The L2 inner products for the space U is defined as

〈u, v〉 :=

∫
Ω

u(x) v(x)dx,

First-Order Necessary Optimality Conditions. The Lagrangian associated with the NLP
defined in Eq. 2.2 is given by

L(u, z, λ) =
β

2
〈u− û, u− û〉+R(z) + 〈λ,−(z ui),i − f〉

13



If {ũ, z̃} ∈ U ×Z is a local solution to the NLP in Eq. 2.2, there exists Lagrange multipliers
λ ∈ U , such that the first-order necessary optimality conditions hold at {ũ, z̃}, i.e.

∇L(u, z, λ)(δu, δz, δλ) = Lu(u, z, λ)δu+ Lz(u, z, λ)δz + Lλ(u, z, λ)δλ = 0 (2.3)

Second-Order Sufficient Conditions. If (ũ, z̃, λ) ∈ U ×Z ×U satisfy the first-order necessary
optimality conditions and the Hessian operator exist and is positive semidefinite, then (ũ, z̃)
is a strict local minimum.

Operators. The required operators for the paramater identification problem are defined as

J(u, z) =
β

2
〈u− û, u− û〉+R(z) (2.4)

〈Ju(u, z), δu〉 =
∂

∂u

(
β

2
〈u− û, u− û〉+R(z)

)
= β〈u− û, δu〉

(2.5)

〈Jz(u, z), δz〉 =
∂

∂z

(
β

2
〈u− û, u− û〉+R(z)

)
= 〈Rz(z), δz〉

(2.6)

〈Juu(u, z), δu〉 =
∂

∂u

(
β〈1, u− û〉

)
= β〈1, δu〉

(2.7)

〈Juz(u, z), δz〉 =
∂

∂z

(
β〈1, u− û〉

)
= 0 (2.8)

〈Jzz(u, z), δz〉 =
∂

∂z

(
〈1, Rz(z)〉

)
= 〈Rzz(z), δz〉

(2.9)

〈Jzu(u, z), δu〉 =
∂

∂u

(
〈1, Rz(z)〉

)
= 0 (2.10)

g(u, z) = −(z ui),i − f = 0 in Ω (2.11)

〈gu(u, z), δu〉 = 〈λ,−(z ui),i − f, 〉 = 0 ∀ λ ∈ U
= 〈λi, z ui〉 − 〈λ, uini〉∂Ω − 〈f, λ〉
= 〈λi, z ui〉 − 〈λ, f〉

=
∂

∂u

(
〈λi, z ui〉 − 〈λ, f〉

)
= 〈λi, z δui〉
= 〈−(z λi),i, δu〉+ 〈λini, δu〉∂Ω

= 〈−(z λi),i, δu〉

(2.12)
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The application of the divergence theorem results in a set of homogeneous Dirichlet
boundary condition in Eq. 2.12. since u ∈ U and λ ∈ U . Therefore, u = λ = 0 on ∂Ω by
definition of the space U . This definition will be used in the subsequent derivations.

〈gz(u, z), δz〉 = 〈λ,−(z ui),i − f〉 = 0 ∀ λ ∈ U
= 〈λi, z ui〉 − 〈λ, uini〉∂Ω − 〈λ, f〉
= 〈λi, z ui〉 − 〈λ, f〉

=
∂

∂z

(
〈λi, z ui〉 − 〈λ, f〉

)
= 〈λiui, δz〉

(2.13)

〈δu, (gu(u, z))∗〉 = 〈λ,−(z ui),i − f〉 = 0 ∀ λ ∈ U
= 〈λi, z ui〉 − 〈λ, uini〉∂Ω − 〈λ, f〉
= 〈λi.z ui〉 − 〈λ, f〉
= 〈−(z λi),i, u〉+ 〈λini, u〉∂Ω − 〈λ, f〉
= 〈−(z λi),i, u〉 − 〈λ, f〉

=
∂

∂u

(
〈u,−(z λi),i〉∗ − 〈f, λ〉∗

)
= 〈δu,−(z λi),i〉∗

(2.14)

〈δz, (gz(u, z))∗〉 = 〈λ,−(z ui),i − f〉 = 0 ∀ λ ∈ U
= 〈λi, z ui〉 − 〈λ, uini〉∂Ω − 〈λ, f〉

=
∂

∂z

(
〈λi, z ui〉 − 〈λ, f〉

)
= 〈λi ui, δz〉
= 〈δz, ui λi〉∗

(2.15)

〈(guu(u, z))∗, δu〉 =
∂

∂u

(
〈1,−(z λi),i〉

)
= 0 (2.16)

〈(guz(u, z))∗, δz〉 = 〈w,−(z λi),i〉 = 0 ∀ w ∈ U

=
∂

∂z

(
〈wi, z λi〉 − 〈w, λ〉

)
= 〈λiwi, δz〉

(2.17)

〈(gzz(u, z))∗, δz〉 =
∂

∂z

(
〈1, ui λi〉

)
= 0 (2.18)

〈(gzu(u, z))∗, δu〉 = 〈v, ui λi〉 ∀ v ∈ Z
= 〈−(vλi),i, u〉+ 〈λini, u〉∂Ω

=
∂

∂u

(
〈−(vλi),i, u〉

)
= 〈−(vλi),i, δu〉

(2.19)
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Discretization. We define finite-dimensional subspaces Uh ⊂ U with basis Uh = span{φm}Mm=1

and Zh ⊂ Z with basis Zh = span{ψm}Mm=1. This leads to uh =
∑M

m=1 u
m
i φ

m
i , zh =∑N

n=1 z
nψn, and λh =

∑M
m=1 λ

mφm. Furthermore, the quantities δuh and δzh can be respec-

tively approximated as follows: δuh =
∑M

m=1 δu
mφm and δzh =

∑N
n=1 δz

nψn. Subsequently,
the Galerkin approximation of the required operators to solve the parameter identification
problem are defined as

J(uh, zh) =
β

2
〈uh − û, uh − û〉+R(zh) (2.20)

Ju(u
h, zh) =

Nelem∑
e=1

(
M∑
a=1

β〈φa, uh − û〉

)
(2.21)

Jz(u
h, zh) =

Nelem∑
e=1

(
N∑
a=1

〈ψa, Rz(z
h)

)
(2.22)

Juu(u
h, zh) =

Nelem∑
e=1

(
M∑
a=1

M∑
b=1

β〈φa, φb〉

)
(2.23)

Juz(u
h, zh) = 0 (2.24)

Jzz(u
h, zh) =

Nelem∑
e=1

(
N∑
a=1

N∑
b=1

〈ψa, Rzz(z
h)ψb〉

)
(2.25)

Jzu(u
h, zh) = 0 (2.26)

g(uh, zh) =

Nelem∑
e=1

(
M∑
a=1

〈φai , zhuhi 〉 − 〈φa, f〉

)
(2.27)

gu(u
h, zh) =

Nelem∑
e=1

(
M∑
a=1

〈φai , zhλhi 〉

)
(2.28)

gz(u
h, zh) =

Nelem∑
e=1

(
N∑
a=1

〈ψa, uhi λhi 〉

)
(2.29)

(gu(u
h, zh))∗ =

Nelem∑
e=1

(
M∑
a=1

〈zhλhi , φai 〉

)
(2.30)

(gz(u
h, zh))∗ =

Nelem∑
e=1

(
M∑
a=1

〈λhi uhi , ψa〉

)
(2.31)

(guu(u
h, zh))∗ = 0 (2.32)

(guz(u
h, zh))∗ =

Nelem∑
e=1

(
M∑
a=1

N∑
b=1

〈ψbλhi , φai 〉

)
(2.33)
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(gzz(u
h, zh))∗ = 0 (2.34)

(gzu(u
h, zh))∗ =

Nelem∑
e=1

(
M∑
a=1

N∑
b=1

〈φai λhi , ψb〉

)
(2.35)

Parameter Identification in Linear Elastostatics

A parameter identification problem in linear elastostatics is to estimate the shear mod-
ulus µ and bulk modulus κ from displacement measurements {ûi}i=1,...,d. Let Ω ⊆ Rd,
d ∈ {1, 2, 3}, be the computational domain with boundary ∂Ω = ∂Ωu ∪ ∂Ωτ . The regions
∂Ωu ⊂ ∂Ω and ∂Ωτ ⊂ ∂Ω are the boundaries where Dirichlet and Neumann conditions are
respectively applied. We use standard tensor notation with Einstein summation. The indices
i, j, k, and l take on the values 1, . . . , d. Partial differentiation is denoted by a comma.

The partial differential equations (PDEs) of linear elastostatics are given by

−(Cijkl εkl), j = 0 in Ω

u = 0 on ∂Ωu

(Cijkl εkl)nj = τi on ∂Ωτ ,

(2.36)

where {ui}i=1,...,d denotes the displacement in the i-th direction and τi denotes the surface
traction in the i-th direction. The unit outward normal component in the i-th direction on
∂Ωτ with respect to the region Ω is denoted by nj.

The fourth-order tensor of elastic moduli is given by

Cijkl = κ δij δkl + µ

(
δik δjl + δil δjk −

2

3
δij δkl

)
(2.37)

and the strain tensor is defined as the symmetric part of the displacement gradient, as follows

εkl =
1

2
(uk,l + ul,k) . (2.38)

Lets consider the following NLP

minimize
(u,µ,κ) ∈ Ui×G×B

β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

subject to

−(Cijkl
1

2
(uk,l + ul,k)), j = 0 in Ω,

(Cijkl
1

2
(uk,l + ul,k))nj = τi in ∂Ωτ

(2.39)

where Ui = {ui : ui ∈ H1 (Ω) , ui = 0 on ∂Ω}, G = {µ : µ ∈ L2(Ω), µ > 0}, and B = {κ : κ ∈
L2(Ω), κ > 0}. Hm(Ω) are Sobolev spaces of square integrable functionals whose m-th
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derivatives are also square integrable. Whenever m = 0 we shall keep the notation with
L2(Ω). The L2 inner products for the space Ui

〈ui, vi〉 :=

∫
Ω

ui(x) vi(x)dx. (2.40)

Similarly, the L2 inner products for the spaces G and B is defined as

〈u, v〉 :=

∫
Ω

u(x) v(x)dx, (2.41)

First-order neccesary optimality conditions. The Lagrangian associated with the NLP defined
in Eq. 2.39 is given by

L(ui, µ, κ, λi) =
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

+ 〈λi,− (Cijkl εkl), j〉 − 〈λi, ((Cijkl εkl)nj − τi)〉∂Ωτ

(2.42)

If (ũi, µ̃, κ̃) ∈ Ui × G × B is a local solution to the NLP in Eq. 2.39, there exists Lagrange
multipliers λi ∈ Ui, such that the first-order necessary optimality conditions hold at (ũi, µ̃, κ̃),
i.e.

∇L(ui, µ, κ, λi)(δui, δµ, δκ, δλi) = Lu(ui, µ, κ, λi)δui + Lκ(ui, µ, κ, λi)δµ
+ Lκ(ui, κ, λi)δκ+ Lλ(ui, µ, κ, λi)δλi = 0

Second-Order Sufficient Conditions. If (ũi, µ̃, κ̃, λi) ∈ Ui × G × B × Ui satisfy the first-order
necessary optimality conditions and the Hessian operator exist and is positive semidefinite,
then (ũi, µ̃, κ̃) is a strict local minimum.

Operators. Let z ≡ {µ, κ} ∈ G × B, then the operators required to solve the paramater
identification problem are defined as

J(ui, z) =
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ) (2.43)

〈Ju(ui, z), δui〉 =
∂

∂ui

(
β〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

)
= β〈ui − ûi, δui〉

(2.44)

〈Jz(ui, z), δz〉 =
∂

∂z

(
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

)
=

[
〈Rµ(µ), δµ〉
〈Rκ(κ), δκ〉

] (2.45)

〈Juu(ui, z), δui〉 =
∂

∂ui

(
β〈1, ui − ûi〉

)
= β〈1, δui〉

(2.46)

〈Juz(ui, z), δz〉 =
∂

∂z

(
β〈1, ui − ûi〉

)
= 0 (2.47)
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〈Jzz(ui, z), δz〉 =
∂

∂z

([
〈1, Rµ(µ)〉
〈1, Rκ(κ)〉

])
=

[
〈Rµµ(µ), δµ〉
〈Rκκ(κ), δκ〉

] (2.48)

〈Jzu(ui, z), δui〉 =
∂

∂ui

([
〈1, Rµ(µ)〉
〈1, Rκ(κ)〉

])
= 0 (2.49)

g(ui, z) =

[
−(Cijkl

1
2
(uk,l + ul,k)), j = 0 in Ω

(Cijkl
1
2
(uk,l + ul,k))nj − τi = 0 on ∂Ωτ

]
(2.50)

〈gu(ui, z), δui〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

=
∂

∂u

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉 − 〈λi, τi〉∂Ωτ

)
= 〈1

2
(λi,j + λj,i) Cijkl,

1

2
(δuk,l + δul,k)〉

= 〈−(Cijkl
1

2
(λk,l + λl,k)),j, δui〉+ 〈(Cijkl

1

2
(λk,l + λl,k))nj, δui〉∂Ωτ

= 〈−(Cijkl
1

2
(λk,l + λl,k)),j, δui〉

(2.51)

The boundary in Eq. 2.51 is defined as ∂Ω = ∂Ωτ∪∂Ωu. The application of the divergence
theorem yields a set of homogeneous Dirichlet boundary condition on ∂Ωu since λi ∈ Ui and
ui ∈ Ui. Therefore, ui = λi = 0 on ∂Ωu by definition of the space Ui. Finally, in order to
ensure the validity of the set of equations defined in Eq. 2.51, proper Neumann boundary
condition need to be defined. Therefore, a set of free Neumann boundary conditions is
defined on ∂Ωτ , i.e. (Cijkl

1
2
(λk,l +λl,k))nj = 0 on ∂Ωτ . These definitions will be used in the
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subsequent derivations.

〈gz(ui, z), δz〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

=
∂

∂z

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉 − 〈λi, τi〉∂Ωτ

)
=

[
〈1

2
(λi,j + λj,i)C

µ
ijkl

1
2
(uk,l + ul,k), δµ〉

〈1
2
(λi,j + λj,i)C

κ
ijkl

1
2
(uk,l + ul,k), δκ〉

]

(2.52)

〈δui, (gu(ui, z))∗〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

=
∂

∂u

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉 − 〈λi, τi〉∂Ωτ

)
= 〈1

2
(λi,j + λj,i) Cijkl,

1

2
(δuk,l + δul,k)〉

= 〈−(Cijkl
1

2
(λk,l + λl,k)), j, δui〉

+ 〈(Cijkl
1

2
(λk,l + λl,k))nj, δui〉∂Ωτ

= 〈−(Cijkl
1

2
(λk,l + λl,k)), j, δui〉

= 〈δui,−(Cijkl
1

2
(λk,l + λl,k)),j〉∗

(2.53)

The boundary in Eq. 2.53 is defined as ∂Ω = ∂Ωτ∪∂Ωu. The application of the divergence
theorem yields a set of homogeneous Dirichlet boundary condition on ∂Ωu since λi ∈ Ui and
ui ∈ Ui. Therefore, ui = λi = 0 on ∂Ωu by definition of the space Ui. Finally, in order
to ensure the validity of the set of adjoint equations defined in Eq. 2.53, proper Neumann
boundary condition are required. Therefore, a set of free Neumann boundary conditions is
defined as (Cijkl

1
2
(λk,l+λl,k))nj = 0 on ∂Ωτ . These definitions ensure a self-adjoint operator
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in Eq. 2.53 [3].

〈δz, (gz(ui, z))∗〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

=
∂

∂z

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉 − 〈λi, τi〉∂Ωτ

)
=

[
〈1

2
(λi,j + λj,i) Cµ

ijkl
1
2
(uk,l + ul,k), δµ〉

〈1
2
(λi,j + λj,i) Cκ

ijkl
1
2
(uk,l + ul,k), δκ〉

]
=

[
〈δµ, 1

2
(ui,j + uj,i) Cµ

ijkl
1
2
(λk,l + λl,k)〉∗

〈δκ, 1
2
(ui,j + uj,i) Cκ

ijkl
1
2
(λk,l + λl,k)〉∗

]

(2.54)

〈(guu(ui, z))∗, δui〉 =
∂

∂ui

(
〈1,−(Cijkl

1

2
(λk,l + λl,k)),j〉

)
= 0 (2.55)

〈(guz(ui, z))∗, δz〉 = 〈wi,−(Cijkl
1

2
(λk,l + λl,k)),j〉 = 0 ∀ w ∈ Ui

= 〈1
2

(wi,j + wj,i),Cijkl
1

2
(λk,l + λl,k)〉

− 〈wi, (Cijkl
1

2
(λk,l + λl,k))nj)〉∂Ωτ

=
∂

∂z

(
〈1
2

(wi,j + wj,i),Cijkl
1

2
(λk,l + λl,k)〉

)
=

[
〈1

2
(wi,j + wj,i)C

µ
ijkl

1
2
(λk,l + λl,k), δµ〉

〈1
2
(wi,j + wj,i)C

κ
ijkl

1
2
(λk,l + λl,k), δκ〉

]
(2.56)

〈(gzz(ui, z))∗, δz〉 =
∂

∂z

([
〈1, 1

2
(ui,j + uj,i) Cµ

ijkl
1
2
(λk,l + λl,k)〉

〈1, 1
2
(ui,j + uj,i) Cκ

ijkl
1
2
(λk,l + λl,k)〉

]
= 0 (2.57)

〈(gzu(ui, z))∗, δui〉 =

[
〈1, 1

2
(ui,j + uj,i) Cµ

ijkl
1
2
(λk,l + λl,k)〉

〈1, 1
2
(ui,j + uj,i) Cκ

ijkl
1
2
(λk,l + λl,k)〉

]

=


〈1,−ui(Cµ

ijkl
1
2
(λk,l + λl,k)),j〉

+〈1, ui(Cµ
ijkl

1
2
(λk,l + λl,k))nj〉∂Ωτ

〈1,−ui(Cκ
ijkl

1
2
(λk,l + λl,k)),j〉

+〈1, ui(Cκ
ijkl

1
2
(λk,l + λl,k))nj〉∂Ωτ


=

∂

∂ui

([
〈−(Cµ

ijkl
1
2
(λk,l + λl,k)),j, ui〉

〈−(Cκ
ijkl

1
2
(λk,l + λl,k)),j, ui〉

])
=

[
〈−(Cµ

ijkl
1
2
(λk,l + λl,k)),j, δui〉

〈−(Cκ
ijkl

1
2
(λk,l + λl,k)),j, δui〉

]
(2.58)
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In the preceding equations, Cµ
ijkl and Cκ

ijkl are defined as

Cµ
ijkl = δik δjl + δil δjk −

2

3
δij δkl (2.59)

Cκ
ijkl = δij δkl (2.60)

Discretization. We define finite-dimensional subspaces Uhi ⊂ Ui with basis Uhi = span{φmi }Mm=1,
Gh ⊂ G with basis Gh = span{ψn}Nn=1, and Bh ⊂ B with basis Bh = span{χo}Oo=1. This
leads to uhi =

∑M
m=1 u

m
i φ

m
i , µh =

∑N
n=1 µ

nψn, κh =
∑O

o=1 κ
oχo,and λhi =

∑M
m=1 λ

m
i φ

m
i .

Furthermore, the quantities δuhi , δµ
h, δκh, and δλhi can be respectively approximated as

follows: δuhi =
∑M

m=1 δu
m
i φ

m
i , δµh =

∑N
n=1 δµ

nψn, and δκh =
∑O

o=1 δκ
oχo. Subsequently,

the Galerkin approximation of the required operators to solve the parameter identification
problem are defined as

J(uhi , z
h) =

β

2
〈uhi − ûi, uhi − ûi〉+R(µh) +R(κh) (2.61)

Ju(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

β〈φai , uhi − ûi〉

)
(2.62)

Jz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1 β〈ψa, Rµ(µh)〉∑O
a=1 β〈χa, Rκ(κ

h)〉

])
(2.63)

Juu(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

M∑
b=1

β〈φa, φb〉

)
(2.64)

Juz(u
h
i , z

h) = 0 (2.65)

Jzz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1

∑N
b=1 β〈ψa, Rµµ(µh)ψb〉∑O

a=1

∑O
b=1 β〈χa, Rκκ(κ

h)χb〉

])
(2.66)

Jzu(u
h
i , z

h) = 0 (2.67)

g(uhi , z
h) =

Nelem∑
e=1

(
M∑
a=1

〈1
2

(φai,j + φaj,i),Cijkl
1

2
(uhk,l + uhl,k)〉 −

M∑
a=1

〈φai , τi〉∂Ωτ

)
(2.68)

gu(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

〈1
2

(λhi,j + λhj,i)Cijkl,
1

2
(φak,l + φal,k)〉

)
(2.69)

gz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1〈ψa,

1
2
(λhi,j + λhj,i)C

µ
ijkl

1
2
(uhk,l + uhl,k)〉∑O

a=1〈χa,
1
2
(λhi,j + λhj,i)C

κ
ijkl

1
2
(uhk,l + uhl,k)〉

])
(2.70)

(gu(u
h
i , z

h))∗ =

Nelem∑
e=1

(
M∑
a=1

〈1
2

(φai,j + φaj,i),Cijkl
1

2
(λhk,l + λhl,k)〉

)
(2.71)
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(gz(u
h
i , z

h))∗ =

Nelem∑
e=1

([ ∑N
a=1〈ψa,

1
2
(uhi,j + uhj,i)C

µ
ijkl

1
2
(λhk,l + λhl,k)〉∑O

a=1〈χa,
1
2
(uhi,j + uhj,i)C

κ
ijkl

1
2
(λhk,l + λhl,k)〉

])
(2.72)

(guu(u
h
i , z

h))∗ = 0 (2.73)

(guz(u
h
i , z

h))∗ =

Nelem∑
e=1

([ ∑M
a=1

∑N
b=1〈

1
2
(φai,j + φaj,i)C

µ
ijkl

1
2
(λhk,l + λhl,k), ψ

b〉∑M
a=1

∑O
b=1〈

1
2
(φai,j + φaj,i)C

κ
ijkl

1
2
(λhk,l + λhl,k), χ

b〉

])
(2.74)

(gzz(u
h
i , z

h))∗ = 0 (2.75)

(gzu(u
h
i , z

h))∗ =

Nelem∑
e=1

([ ∑M
a=1

∑N
b=1〈

1
2
(λhi,j + λhj,i)C

µ
ijklψ

b, 1
2
(φak,l + φal,k)〉∑M

a=1

∑O
b=1〈

1
2
(λhi,j + λhj,i)C

κ
ijklχ

b, 1
2
(φak,l + φal,k)〉

])
(2.76)

Parameter Identification in Linear Elastodynamics

An example of a parameter estimation problem in linear elastodynamics is to identify the
shear modulus µ and the bulk modulus κ from complex-valued displacement measurements
ûi=1,...,d. We define Ω ⊆ Rd, d ∈ {1, 2, 3}, to be the computational domain with boundary
∂Ω = ∂Ωu∪∂Ωτ , where ∂Ωu and ∂Ωτ are the regions where Dirichlet and Neumann conditions
are respectively applied. In the subsequent derivations we use standard tensor notation with
Einstein summation for linear elastodynamics equations given in frequency domain. The
indices i, j and k take on the values 1, . . . , d. Partial differentiation is denoted by a comma.

The PDEs of linear elastodynamics in frequency domain are given by

−(Cijkl εkl), j = ω2ρ ui in Ω,

ui = 0 on ∂Ωu,

(Cijkl εkl)nj = τi on ∂Ωτ ,

(2.77)

where {ui}i=1,...,d denotes the complex-valued displacement in the i-th direction and τi de-
notes the surface traction in the i-th direction. The unit outward normal component in the
i-th direction on ∂Ωτ with respect to the region Ω is denoted by nj. Mass density is denoted
by ρ, while ω stands for the angular frequency. The fourth-order tensor of elastic moduli,
Cijkl, is defined in Eq. 2.37 and the symmetric part of the displacement gradient, εkl, is
defined in Eq. 2.38.

Lets consider the following NLP

minimize
(ui,µ,κ) ∈ Ui×G×B

β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

subject to

−(Cijkl
1

2
(uk,l + ul,k)), j = ω2ρ ui in Ω,

(Cijkl
1

2
(uk,l + ul,k))nj = τi on ∂Ωτ

(2.78)
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where Ui = {ui : ui ∈ H1 (Ω) , ui = 0 on ∂Ωu}, G = {µ : µ ∈ L2(Ω), µ > 0}, and B =
{κ : κ ∈ L2(Ω), κ > 0}. Hm(Ω) are Sobolev spaces of square integrable functionals whose
m-th derivatives are also square integrable. Whenever m = 0 we shall keep the notation
with L2(Ω). The L2 inner products for the space Ui is defined as

〈ui, vi〉 :=

∫
Ω

ui(x)vi(x)dx, (2.79)

where the overline denotes complex conjugation. The L2 inner products for the spaces G
and B is given by Eq. 2.41.

First-order neccesary optimality conditions. The Lagrangian associated with the NLP defined
in Eq. 2.39 is given by

L(ui, µ, κ, λi) =
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

+ <
[
〈λi,−(Cijkl

1

2
(uk,l + ul,k)), j − ω2ρ ui〉

− 〈λi, ((Cijkl
1

2
(uk,l + ul,k)nj − τi)〉∂Ωτ

] (2.80)

If (ũi, µ̃, κ̃) ∈ Ui × G × B is a local solution to the NLP in Eq. 2.39, there exists Lagrange
multipliers λi ∈ Ui, such that the first-order necessary optimality conditions hold at (ũi, µ̃, κ̃),
i.e.

∇L(ui, µ, κ, λi)(δui, δµ, δκ, δλi) = Lu(ui, µ, κ, λi)δui + Lκ(ui, µ, κ, λi)δµ
+ Lκ(ui, κ, λi)δκ+ Lλ(ui, µ, κ, λi)δλi = 0

Second-Order Sufficient Conditions. If (ũi, µ̃, κ̃, λi) ∈ Ui × G × B × Ui satisfy the first-order
necessary optimality conditions and the Hessian operator exist and is positive semidefinite,
then (ũi, µ̃, κ̃) is a strict local minimum.

Operators. Let z ≡ {µ, κ} ∈ G × B, then the operators required to solve the paramater
identification problem are defined as

J(ui, z) =
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ) (2.81)

〈Ju(ui, z), δui〉 =
∂

∂ui

(
β〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

)
= β〈ui − ûi, δui〉

(2.82)

〈Jz(ui, z), δz〉 =
∂

∂z

(
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

)
=

[
〈Rµ(µ), δµ〉
〈Rκ(κ), δκ〉

] (2.83)

〈Juu(ui, z), δui〉 =
∂

∂ui

(
β〈1, ui − ûi〉

)
= β〈1, δui〉

(2.84)
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〈Juz(ui, z), δz〉 =
∂

∂z

(
β〈1, ui − ûi〉

)
= 0 (2.85)

〈Jzz(ui, z), δz〉 =
∂

∂z

([
〈1, Rµ(µ)〉
〈1, Rκ(κ)〉

])
=

[
〈Rµµ(µ), δµ〉
〈Rκκ(κ), δκ〉

] (2.86)

〈Jzu(ui, z), δui〉 =
∂

∂ui

([
〈1, Rµ(µ)〉
〈1, Rκ(κ)〉

])
= 0 (2.87)

g(ui, z) =

[
−(Cijkl

1
2
(uk,l + ul,k)), j = ω2ρ ui in Ω

(Cijkl
1
2
(uk,l + ul,k))nj − τi = 0 on ∂Ωτ

]
(2.88)

〈gu(ui, z), δui〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρ ui〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui

= 〈1
2

(λi,j + λj,i) Cijkl,
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωτ

− 〈λi, ω2ρ ui〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

= 〈1
2

(λi,j + λj,i) Cijkl,
1

2
(uk,l + ul,k)〉 − 〈λi, ω2ρ ui〉 − 〈λi, τi〉∂Ωτ

= 〈−(Cijkl
1

2
(λk,l + λl,k)), j, ui〉 − 〈λi, ω2ρ ui〉 − 〈λi, τi〉∂Ωτ

+ 〈(Cijkl
1

2
(λk,l + λl,k))nj, ui〉∂Ωτ

=
∂

∂ui

(
〈−(Cijkl

1

2
(λk,l + λl,k)), j, ui〉 − 〈λi, ω2ρ ui〉 − 〈λi, τi〉∂Ωτ

)
= 〈−(Cijkl

1

2
(λk,l + λl,k)), j − ω2ρ λi, δui〉

(2.89)

The boundary in Eq. 2.89 is defined as ∂Ω = ∂Ωτ∪∂Ωu. The application of the divergence
theorem yields a set of homogeneous Dirichlet boundary condition on ∂Ωu since λi ∈ Ui and
ui ∈ Ui. Therefore, ui = λi = 0 on ∂Ωu by definition of the space Ui. Finally, in order to
ensure the validity of the set of equations defined in Eq. 2.89, proper Neumann boundary
condition need to be defined. Therefore, a set of free Neumann boundary conditions is
defined on ∂Ωτ , i.e. (Cijkl

1
2
(λk,l +λl,k))nj = 0 on ∂Ωτ . These definitions will be used in the
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subsequent derivations.

〈gz(ui, z), δz〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρ ui〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui

= 〈1
2

(λi,j + λj,i) Cijkl,
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωτ

− 〈λi, ω2ρ ui〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

=
∂

∂z

(
〈1
2

(λi,j + λj,i) Cijkl,
1

2
(uk,l + ul,k)〉 − 〈λi, ω2ρ ui〉 − 〈λi, τi〉∂Ωτ

)
=

[
〈1

2
(λi,j + λj,i) Cµ

ijkl
1
2
(uk,l + ul,k), δµ〉

〈1
2
(λi,j + λj,i) Cκ

ijkl
1
2
(uk,l + ul,k), δκ〉

]

(2.90)

〈δz, (gz(ui, z))∗〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρ ui〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui

= 〈1
2

(λi,j + λj,i) Cijkl,
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωτ

− 〈λi, ω2ρ ui〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

=
∂

∂z

(
〈1
2

(λi,j + λj,i) Cijkl,
1

2
(uk,l + ul,k)〉

− 〈λi, ω2ρ ui〉 − 〈λi, τi〉∂Ωτ

)
=

[
〈δµ, 1

2
(ui,j + uj,i) Cµ

ijkl
1
2
(λk,l + λl,k)〉∗

〈δκ, 1
2
(ui,j + uj,i) Cκ

ijkl
1
2
(λk,l + λl,k)〉∗

]

(2.91)
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〈δui, (gu(ui, z))∗〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρ ui〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui

= 〈1
2

(λi,j + λj,i) Cijkl,
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωτ

− 〈λi, ω2ρ ui〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

= 〈1
2

(λi,j + λj,i) Cijkl,
1

2
(uk,l + ul,k)〉 − 〈λi, ω2ρ ui〉 − 〈λi, τi〉∂Ωτ

= 〈−(Cijkl
1

2
(λk,l + λl,k)), j, ui〉 − 〈λi, ω2ρ ui〉 − 〈λi, τi〉∂Ωτ

+ 〈(Cijkl
1

2
(λk,l + λl,k))nj, ui〉∂Ωτ

=
∂

∂ui

(
〈−(Cijkl

1

2
(λk,l + λl,k)), j, ui〉 − 〈λi, ω2ρ ui〉 − 〈λi, τi〉∂Ωτ

)
= 〈δui,−(Cijkl

1

2
(λk,l + λl,k)),j − ω2ρ λi〉∗

(2.92)

The boundary in Eq. 2.92 is defined as ∂Ω = ∂Ωτ∪∂Ωu. The application of the divergence
theorem yields a set of homogeneous Dirichlet boundary condition on ∂Ωu since λi ∈ Ui and
ui ∈ Ui. Therefore, ui = λi = 0 on ∂Ωu by definition of the space Ui. Finally, in order
to ensure the validity of the set of adjoint equations defined in Eq. 2.92, proper Neumann
boundary condition are required. Therefore, a set of free Neumann boundary conditions is
defined as (Cijkl

1
2
(λk,l+λl,k))nj = 0 on ∂Ωτ . These definitions ensure a self-adjoint operator

in Eq. 2.92.

〈(guu(ui, z))∗, δui〉 =
∂

∂u

(
〈1,−(Cijkl

1

2
(λk,l + λl,k)),j − ω2ρ λi〉

)
= 0 (2.93)

〈(guz(ui, z))∗, δz〉 =

(
〈wi,−(Cijkl

1

2
(λk,l + λl,k)),j − ω2ρ λi〉

)
∀ wi ∈ Ui

= 〈1
2

(wi,j + wj,i),Cijkl
1

2
(λk,l + λl,k)〉 − 〈wi, ω2ρ λi〉

− 〈wi, (Cijkl
1

2
(λk,l + λl,k))nj〉∂Ωτ

=
∂

∂z

(
〈1
2

(wi,j + wj,i),Cijkl
1

2
(λk,l + λl,k)〉 − 〈wi, ω2ρ λi〉

)
=

[
〈1

2
(wi,j + wj,i) Cµ

ijkl
1
2
(λk,l + λl,k), δµ〉

〈1
2
(wi,j + wj,i) Cκ

ijkl
1
2
(λk,l + λl,k), δκ〉

]
(2.94)

〈(gzz(ui, z))∗, δz〉 =
∂

∂z

([
〈1, 1

2
(ui,j + uj,i) Cµ

ijkl
1
2
(λk,l + λl,k)〉

〈1, 1
2
(ui,j + uj,i) Cκ

ijkl
1
2
(λk,l + λl,k)〉

])
= 0 (2.95)
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〈(gzu(ui, z))∗, δui〉 =

[
〈1, 1

2
(ui,j + uj,i)C

µ
ijkl

1
2
(λk,l + λl,k)〉

〈1, 1
2
(ui,j + uj,i)C

κ
ijkl

1
2
(λk,l + λl,k)〉

]

=


〈1,−ui(Cµ

ijkl
1
2
(λk,l + λl,k)) ,j〉

+〈1,−ui(Cµ
ijkl

1
2
(λk,l + λl,k))nj〉∂Ωτ

〈1,−ui(Cκ
ijkl

1
2
(λk,l + λl,k)) ,j〉

+〈1, ui(Cκ
ijkl

1
2
(λk,l + λl,k))nj〉∂Ωτ


=

∂

∂ui

([
〈−(Cµ

ijkl
1
2
(λk,l + λl,k)), j, ui〉

〈−(Cκ
ijkl

1
2
(λk,l + λl,k)), j, ui〉

])
=

[
〈−(Cµ

ijkl
1
2
(λk,l + λl,k)), j, δui〉

〈−(Cκ
ijkl

1
2
(λk,l + λl,k)), j, δui〉

]
(2.96)

Discretization. We define finite-dimensional subspaces Uhi ⊂ Ui with basis Uhi = span{φmi }Mm=1,
Gh ⊂ G with basis Gh = span{ψn}Nn=1, and Bh ⊂ B with basis Bh = span{χo}Oo=1. This
leads to uhi =

∑M
m=1 u

m
i φ

m
i , µh =

∑N
n=1 µ

nψn, κh =
∑O

o=1 κ
oχo,and λhi =

∑M
m=1 λ

m
i φ

m
i .

Furthermore, the quantities δuhi , δµ
h, δκh, and δλhi can be respectively approximated as

follows: δuhi =
∑M

m=1 δu
m
i φ

m
i , δµh =

∑N
n=1 δµ

nψn, and δκh =
∑O

o=1 δκ
oχo. Subsequently,

the Galerkin approximation of the required operators to solve the parameter identification
problem are defined as

J(uhi , z
h) =

β

2
〈uhi − ûi, uhi − ûi〉+R(µh) +R(κh) (2.97)

Ju(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

β〈φai , uhi − ûi〉

)
(2.98)

Jz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1 β〈ψa, Rµ(µh)〉∑O
a=1 β〈χa, Rκ(κ

h)〉

])
(2.99)

Juu(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

M∑
b=1

β〈φa, φb〉

)
(2.100)

Juz(u
h
i , z

h) = 0 (2.101)

Jzz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1

∑N
b=1 β〈ψa, Rµµ(µh)ψb〉∑O

a=1

∑O
b=1 β〈χa, Rκκ(κ

h)χb〉

])
(2.102)

Jzu(u
h
i , z

h) = 0 (2.103)

g(uhi , z
h) =

Nelem∑
e=1

(
M∑
a=1

〈1
2

(φai,j + φaj,i),Cijkl
1

2
(uhk,l + uhl,k)〉

−
M∑
a=1

〈φai , ω2ρ uhi 〉 −
M∑
a=1

〈φai , τi〉∂Ωτ

) (2.104)

gu(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

〈1
2

(λhi,j + λhj,i) Cijkl,
1

2
(φak,l + φal,k)〉 −

M∑
a=1

〈ω2ρ λhi , φ
a
i 〉

)
(2.105)
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gz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1〈

1
2
(λhi,j + λhj,i)C

µ
ijkl

1
2
(uhk,l + uhl,k, ψa)〉∑O

a=1〈
1
2
(λhi,j + λhj,i)C

κ
ijkl

1
2
(uhk,l + uhl,k, χa)〉

])
(2.106)

(gu(u
h
i , z

h))∗ =

Nelem∑
e=1

(
M∑
a=1

〈1
2

(φai,j + φaj,i),Cijkl
1

2
(λhk,l + λhl,k)〉 −

M∑
a=1

〈φai , ω2ρ λhi 〉

)
(2.107)

(gz(u
h
i , z

h))∗ =

Nelem∑
e=1

([ ∑N
a=1〈ψa,

1
2
(uhi,j + uhj,i)C

µ
ijkl

1
2
(λhk,l + λhl,k)〉∑O

a=1〈χa,
1
2
(uhi,j + uhj,i)C

κ
ijkl

1
2
(λhk,l + λhl,k)〉

])
(2.108)

(guu(u
h
i , z

h))∗ = 0 (2.109)

(guz(u
h
i , z

h))∗ =

Nelem∑
e=1

([ ∑M
a=1

∑N
b=1〈

1
2
(φai,j + φaj,i)C

µ
ijkl

1
2
(λhk,l + λhl,k), ψ

b〉∑M
a=1

∑O
b=1〈

1
2
(φai,j + φaj,i)C

κ
ijkl

1
2
(λhk,l + λhl,k), χ

b〉

])
(2.110)

(gzz(u
h
i , z

h))∗ = 0 (2.111)

(gzu(u
h
i , z

h))∗ =

Nelem∑
e=1

([ ∑M
a=1

∑N
b=1〈

1
2
(φai,j + φaj,i),C

µ
ijkl

1
2
(λhk,l + λhl,k)ψ

b〉∑M
a=1

∑O
b=1〈

1
2
(φai,j + φaj,i),C

κ
ijkl

1
2
(λhk,l + λhl,k)χ

b〉

])
(2.112)

Parameter Identification in Nonlinear Elasticity

A parameter identification problem in nonlinear elastostatics is to estimate the shear
modulus µ and bulk modulus κ from displacement measurements {ûi}i=1,...,d. We define
Ω ⊆ Rd, d ∈ {1, 2, 3}, is the computational domain on the reference configuration with
boundary ∂Ω = ∂Ωu∪∂Ωτ . The regions ∂Ωu and ∂Ωτ are the boundaries where Dirichlet and
Neumann conditions are respectively applied. Once more, we use standard tensor notation
with Einstein summation. The indices i, j, k, and l take on the values 1, . . . , d. Partial
differentiation is denoted by a comma.

The partial differential equations (PDEs) of nonlinear elastostatics are given by

−(FikSkj), j = 0 in Ω

u = 0 on ∂Ωu

(FikSkj)nj = τi on ∂Ωτ ,

(2.113)

where {ui}i=1,...,d denotes the displacement in the i-th direction and τi denotes the surface
traction in the i-th direction. The unit outward normal component in the i-th direction on
∂Ωτ with respect to the region Ω is denoted by nj.

The second Piola-Kirchhoff stress tensor for a Saint Venant-Kirchhoff material is defined
as

Sij = CijklEkl (2.114)

and the fourth-order tensor of elastic moduli is given by Eq. 2.37.
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The Green strain tensor Eij is defined as

Eij =
1

2
(FkiFkj − δij) , (2.115)

where the deformation gradient Fij is given by

Fij =
∂ui
∂x0

j

+ δij. (2.116)

The Kronecker delta is denoted as δij and a material point in the reference configuration
as x0. The Green strain tensor defined in Eq. 2.115 can be expressed in terms of the
displacement field as

Eij =
1

2
(ui,j + uj,i + uk,iuk,j) . (2.117)

Lets consider the following NLP

minimize
(ui,µ,κ) ∈ Ui×G×B

β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

subject to

−(FikSkj), j = 0 in Ω,

(FikSkj)nj = τi in ∂Ωτ

(2.118)

where U = {ui : ui ∈ H1(Ω), ui = 0 on ∂Ωu}, G = {µ : µ ∈ L2(Ω), µ > 0}, and B = {κ : κ ∈
L2(Ω), κ > 0}. Hm(Ω) are Sobolev spaces of square integrable functionals whose m-th
derivatives are also square integrable. Whenever m = 0 we shall keep the notation with
L2(Ω). The L2 inner product for the space Ui is given by Eq. 2.40 and the L2 inner product
for spaces G and B is given by 2.41.

First-order neccesary optimality conditions. The Lagrangian associated with the NLP defined
in Eq. 2.118 is given by

L(ui, µ, κ, λi) =
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

+ 〈λi,−(FikSkj), j〉+ 〈λi, (FikSkj)nj − τi〉∂Ωτ

(2.119)

If (ũi, µ̃, κ̃) ∈ Ui × G × B is a local solution to the NLP in Eq. 2.39, there exists Lagrange
multipliers λi ∈ Ui, such that the first-order necessary optimality conditions hold at (ũi, µ̃, κ̃),
i.e.

∇L(ui, µ, κ, λi)(δui, δµ, δκ, δλi) = Lu(ui, µ, κ, λi)δui + Lκ(ui, µ, κ, λi)δµ
+ Lκ(ui, κ, λi)δκ+ Lλ(ui, µ, κ, λi)δλi = 0

Second-Order Sufficient Conditions. If (ũi, µ̃, κ̃, λi) ∈ Ui × G × B × Ui satisfy the first-order
necessary optimality conditions and the Hessian operator exist and is positive semidefinite,
then (ũi, µ̃, κ̃) is a strict local minimum.
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Operators. Let z ≡ {µ, κ} ∈ G×B. Furthermore, the tensors λi,j and wi,j are symmetric and
are respectively defined as λi,j = 1

2
(λi,j + λj,i) and wi,j = 1

2
(wi,j + wj,i). Thus, the operators

required to solve the paramater identification problem are defined as

J(ui, z) =
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ) (2.120)

〈Ju(ui, z), δui〉 =
∂

∂ui

(
β〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

)
= β〈ui − ûi, δui〉

(2.121)

〈Jz(ui, z), δz〉 =
∂

∂z

(
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

)
=

[
〈Rµ(µ), δµ〉
〈Rκ(κ), δκ〉

] (2.122)

〈Juu(ui, z), δui〉 =
∂

∂ui

(
β〈1, ui − ûi〉

)
= β〈1, δui〉

(2.123)

〈Juz(ui, z), δz〉 =
∂

∂z

(
β〈1, ui − ûi〉

)
= 0 (2.124)

〈Jzz(ui, z), δz〉 =
∂

∂z

([
〈1, Rµ(µ)〉
〈1, Rκ(κ)〉

])
=

[
〈Rµµ(µ), δµ〉
〈Rκκ(κ), δκ〉

] (2.125)

〈Jzu(ui, z), δui〉 =
∂

∂ui

([
〈1, Rµ(µ)〉
〈1, Rκ(κ)〉

])
= 0 (2.126)

g(ui, z) =

[
−(FikSkj), j = 0 in Ω

(FikSkj)nj − τi = 0 on ∂Ωτ

]
(2.127)
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〈gu(ui, z), δui〉 = 〈λi,−(FikSkj), j〉+ 〈λi, (FikSkj)nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui
= 〈λi,j, FikSkj〉 − 〈λi, (FikSkj)nj〉∂Ωτ

+ 〈λi, (FikSkj)nj − τi〉∂Ωτ

=
∂

∂ui

(
〈λi,j, FikSkj〉 − 〈λi, τi〉∂Ωτ

)
= 〈λi,j, δui,kSkj〉+ 〈λi,j, FipCpjkl (

1

2
(δuq,kFql))

+ 〈λi,j, FipCpjkl (
1

2
(Fqkδuq,l))〉

= 〈−(λi,kSk,j), j, δui〉+ 〈(λi,kSkj)nj, δui〉∂Ω

+ 〈−(λi,rFrpCpjkl (
1

2
Fkl)), j, δui〉

+ 〈(λi,rFrpCpjkl (
1

2
Fkl))nj, δui〉∂Ω

+ 〈−(λi,rFrpCpjkl (
1

2
Flk)), j, δui〉

+ 〈(λi,rFrpCpjkl (
1

2
Flk)nj, δui〉∂Ω

= 〈−(λi,kSkj), j, δui〉+ 〈−(λi,rFrpCpjkl (
1

2
Fkl)), j, δui〉

+ 〈−(λi,rFrpCpjkl (
1

2
Flk)), j, δui〉

(2.128)

The boundary in Eq. 2.51 is defined as ∂Ω = ∂Ωτ∪∂Ωu. The application of the divergence
theorem yields a set of homogeneous Dirichlet boundary condition on ∂Ωu since λi ∈ Ui and
ui ∈ Ui. Therefore, ui = λi = 0 on ∂Ωu by definition of the space Ui. Finally, in order to
ensure the validity of the set of equations defined in Eq. 2.51, proper Neumann boundary
condition need to be defined. Therefore, a set of free Neumann boundary conditions is defined
on ∂Ωτ , i.e. (λi,kSkj)nj = 0, (λi,rFrpCpjkl (

1
2
Fkl))nj = 0, and (λi,rFrpCpjkl (

1
2
Flk)nj = 0.

These definitions will be used in the subsequent derivations.

〈gz(ui, z), δz〉 = 〈λi,−(FikSkj), j〉+ 〈λi, (FikSkj)nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui
= 〈λi,j, FikSkj〉 − 〈λi, (FikSkj)nj〉∂Ωτ

+ 〈λi, (FikSkj)nj − τi〉∂Ωτ

=
∂

∂z

(
〈λi,j, FikSkj〉 − 〈λi, τi〉∂Ωτ

)
=

[
〈λi,jFipCµ

pjklEkl, δµ〉
〈λi,jFipCκ

pjklEkl, δκ〉

]
(2.129)
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〈δui, (gu(ui, z))∗〉 = 〈λi,−(FikSkj), j〉+ 〈λi, (FikSkj)nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui
= 〈λi,j, FikSkj〉 − 〈λi, (FikSkj)nj〉∂Ωτ

+ 〈λi, (FikSkj)nj − τi〉∂Ωτ

=
∂

∂ui

(
〈λi,j, FikSkj〉 − 〈λi, τi〉∂Ωτ

)
= 〈λi,j, δui,kSkj〉+ 〈λi,j, FipCpjkl (

1

2
(δuq,kFql))

+ 〈λi,j, FipCpjkl (
1

2
(Fqkδuq,l))〉

= 〈δui,j, Sikλk,j〉∗ + 〈δui,j, (
1

2
Fip) Cpjkl λk,qFql〉∗

+ 〈δui,j, (
1

2
Fip)Cpjkl Fqkλq,l〉∗

= 〈δui,−(Sikλk,j), j〉∗ + 〈δui, (Sikλk,j)nj〉∗∂Ω

+ 〈δui,−((
1

2
Fip) Cpjkl λk,qFql), j〉∗

+ 〈δui, (
1

2
Fip) Cpjkl λk,qFql)nj〉∗∂Ω

+ 〈δui,−(
1

2
Fip)Cpjkl Fqkλq,l), j〉∗

+ 〈δui, (
1

2
Fip)Cpjkl Fqkλq,l)nj〉∗∂Ω

= 〈δui,−(Sikλk,j), j〉∗ + 〈δui,−((
1

2
Fip) Cpjkl λk,qFql), j〉∗

+ 〈δui,−(
1

2
Fip)Cpjkl Fqkλq,l), j〉∗

(2.130)

The boundary in Eq. 2.130 is defined as ∂Ω = ∂Ωτ ∪ ∂Ωu. The application of the
divergence theorem yields a set of homogeneous Dirichlet boundary condition on ∂Ωu since
λi ∈ Ui and ui ∈ Ui. Therefore, ui = λi = 0 on ∂Ωu by definition of the space Ui. Finally,
in order to ensure the validity of the set of adjoint equations defined in Eq. 2.130, proper
Neumann boundary condition are required. Therefore, a set of free Neumann boundary
conditions is defined on ∂Ωτ and is given by (Sikλk,j)nj = 0, ((1

2
Fip)Cpjklλk,qFql)nj = 0, and

((1
2
Fip)CpjklFkqλq,l)nj = 0 on ∂Ωτ .

〈δz, (gz(ui, z))∗〉 = 〈λi,−(FikSkj), j〉+ 〈λi, (FikSkj)nj − τi〉∂Ωτ = 0 ∀ λi ∈ Ui
= 〈λi,j, FikSkj〉 − 〈λi, (FikSkj)nj〉∂Ωτ

+ 〈λi, (FikSkj)nj − τi〉∂Ωτ

=
∂

∂z

(
〈λi,j, FikSkj〉 − 〈λi, τi〉∂Ωτ

)
=

[
〈λi,jFipCµ

pjklEkl, δµ〉
〈λi,jFipCκ

pjklEkl, δκ〉

]
=

[
〈δµ,EijCµ

ijkpFlpλk,l〉∗
〈δκ, EijCκ

ijkpFlpλk,l〉∗
]

(2.131)
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〈(guu(ui, z))∗, δui〉 = 〈wi,−(Sikλk,j), j〉+ 〈wi,−((
1

2
Fip) Cpjkl λk,qFql), j〉

+ 〈wi,−(
1

2
Fip)Cpjkl Fqkλq,l), j〉 = 0 ∀ wi ∈ Ui

= 〈wi,j, Sikλk,j〉 − 〈wi, (Sikλk,j)nj〉∂Ω

+ 〈wi,j, (
1

2
Fip) Cpjkl λk,qFql〉 − 〈wi, ((

1

2
Fip) Cpjkl λk,qFql)nj〉∂Ω

+ 〈wi,j, (
1

2
Fip) Cpjkl Fqkλq,l〉 − 〈wi, ((

1

2
Fip) Cpjkl Fqkλq,l)nj〉∂Ω

=
∂

∂ui

(
〈wi,j, Sikλk,j〉+ 〈wi,j, (

1

2
Fip) Cpjkl λk,qFql〉

+ 〈wi,j, (
1

2
Fip) Cpjkl Fqkλq,l〉

)
= 〈wi,j,Cijkl(

1

2
(δuq,kFqp))λp,l〉+ 〈wi,j,Cijkl(

1

2
(Fq,kδuq,p))λp,l〉

+ 〈wi,j, (
1

2
δui,p) Cpjkl λk,qFql〉+ 〈wi,j, (

1

2
Fip) Cpjkl λk,qδuq,l〉

+ 〈wi,j, (
1

2
δui,p) Cpjkl Fqkλq,l〉+ 〈wi,j, (

1

2
Fip) Cpjkl δuq,kλq,l〉

= 〈δui,j,Cijkl(
1

2
(wq,kFqp))λp,l〉+ 〈δui,j,Cijkl(

1

2
(Fq,kwq,p))λp,l〉

+ 〈δui,j, (
1

2
wi,p) Cpjkl λk,qFql〉+ 〈δui,j, (

1

2
Fip) Cpjkl λk,qwq,l〉

+ 〈δui,j, (
1

2
wi,p) Cpjkl Fqkλq,l〉+ 〈δui,j, (

1

2
Fip) Cpjkl wq,kλq,l〉

= 〈−(Cijkl(
1

2
(wq,kFqp))λp,l), j, δui〉

+ 〈(Cijkl(
1

2
(wq,kFqp))λp,l)nj, δui〉∂Ω

+ 〈−(Cijkl(
1

2
(Fq,kwq,p))λp,l), j, δui〉

+ 〈(Cijkl(
1

2
(Fq,kwq,p))λp,l)nj, δui〉∂Ω

+ 〈−((
1

2
wi,p) Cpjkl λk,qFql), j, δui〉

+ 〈((1

2
wi,p) Cpjkl λk,qFql)nj, δui〉∂Ω

+ 〈−((
1

2
Fip) Cpjkl λk,qwq,l), j, δui〉+ 〈((1

2
Fip) Cpjkl λk,qwq,l)nj, δui〉∂Ω

+ 〈−((
1

2
wi,p) Cpjkl Fqkλq,l), j, δui〉+ 〈((1

2
wi,p) Cpjkl Fqkλq,l)nj, δui〉∂Ω

+ 〈−((
1

2
Fip) Cpjkl wq,kλq,l), j, δui〉+ 〈((1

2
Fip) Cpjkl wq,kλq,l)nj, δui〉∂Ω

(2.132)
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〈(guz(ui, z))∗, δz〉 = 〈wi,−(Sikλk,j), j〉+ 〈wi,−((
1

2
Fip) Cpjkl λk,qFql), j〉

+ 〈wi,−(
1

2
Fip)Cpjkl Fqkλq,l), j〉 = 0 ∀ wi ∈ Ui

= 〈wi,j, Sikλk,j〉 − 〈wi, (Sikλk,j)nj〉∂Ω

+ 〈wi,j, (
1

2
Fip) Cpjkl λk,qFql〉 − 〈wi, ((

1

2
Fip) Cpjkl λk,qFql)nj〉∂Ω

+ 〈wi,j, (
1

2
Fip) Cpjkl Fqkλq,l〉 − 〈wi, ((

1

2
Fip) Cpjkl Fqkλq,l)nj〉∂Ω

=
∂

∂z

(
〈wi,j, Sikλk,j〉+ 〈wi,j, (

1

2
Fip) Cpjkl λk,qFql〉

)
+

∂

∂z

(
〈wi,j, (

1

2
Fip) Cpjkl Fqkλq,l〉

)

=


〈wi,jCµ

ijklSikλk,j, δµ〉+ 〈wi,j(1
2
Fip) Cµ

pjkl λk,qFql, δµ〉
〈wi,j(1

2
Fip) Cµ

pjkl Fqkλq,l, δµ〉
〈wi,jCκ

ijklSikλk,j, δκ〉+ 〈wi,j(1
2
Fip) Cκ

pjkl λk,qFql, δκ〉
〈wi,j(1

2
Fip) Cκ

pjkl Fqkλq,l, δκ〉



(2.133)

〈(gzu(ui, z))∗, δui〉 =
∂

∂ui

([
〈1, λi,jFipCµ

pjklEkl〉
〈1, λi,jFipCκ

pjklEkl〉

])

=


〈1, λi,jδui,pCµ

pjklEkl〉+ 〈vµ, λi,jFipCµ
pjkl(

1
2
δuq,kFql)〉

〈1, λi,jFipCµ
pjkl(

1
2
Fqkδuq,l)〉

〈1, λi,jδui,pCκ
pjklEkl〉+ 〈vκ, λi,jFipCκ

pjkl(
1
2
δuq,kFql)〉

〈1, λi,jFipCκ
pjkl(

1
2
Fqkδuq,l)〉



=



〈−(λi,pC
µ
pjklEkl), j, δui〉+ 〈(λi,pCµ

pjklEkl)nj, δui〉∂Ω

+〈−(λi,rFrpC
µ
pjkl(

1
2
Fkl)), j, δui〉

+〈(λi,rFrpCµ
pjkl(

1
2
Fkl))nj, δui〉∂Ω

+〈−(λi,rFrpC
µ
pjkl(

1
2
Flk)), l, δui〉

+〈(λi,rFrpCµ
pjkl(

1
2
Flk))nj, δui〉∂Ω

〈−(λi,pC
κ
pjklEkl), j, δui〉+ 〈(λi,pCκ

pjklEkl)nj, δui〉∂Ω

+〈−(λi,rFrpC
κ
pjkl(

1
2
Fkl)), j, δui〉

+〈(λi,rFrpCκ
pjkl(

1
2
Fkl))nj, δui〉∂Ω

+〈−(λi,rFrpC
κ
pjkl(

1
2
Flk)), j, δui〉

+〈(λi,rFrpCκ
pjkl(

1
2
Flk))nj, δui〉∂Ω



(2.134)

〈(gzz(ui, z))∗, δz〉 =
∂

∂z

([
〈1, λi,jFipCµ

pjklEkl〉
〈1, λi,jFipCκ

pjklEkl〉

])
= 0 (2.135)

Discretization. We define finite-dimensional subspaces Uhi ⊂ Ui with basis Uhi = span{φmi }Mm=1,
Gh ⊂ G with basis Gh = span{ψn}Nn=1, and Bh ⊂ B with basis Bh = span{χo}Oo=1. This
leads to uhi =

∑M
m=1 u

m
i φ

m
i , µh =

∑N
n=1 µ

nψn, κh =
∑O

o=1 κ
oχo,and λhi =

∑M
m=1 λ

m
i φ

m
i .

Furthermore, the quantities δuhi , δµ
h, δκh, and δλhi can be respectively approximated as

follows: δuhi =
∑M

m=1 δu
m
i φ

m
i , δµh =

∑N
n=1 δµ

nψn, and δκh =
∑O

o=1 δκ
oχo. Subsequently,

the Galerkin approximation of the required operators to solve the parameter identification
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problem are defined as

J(uhi , z
h) =

β

2
〈uhi − ûi, uhi − ûi〉+R(µh) +R(κh) (2.136)

Ju(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

β〈φai , uhi − ûi〉

)
(2.137)

Jz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1 β〈ψa, Rµ(µh)〉∑O
a=1 β〈χa, Rκ(κ

h)〉

])
(2.138)

Juu(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

M∑
b=1

β〈φa, φb〉

)
(2.139)

Juz(u
h
i , z

h) = 0 (2.140)

Jzz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1

∑N
b=1 β〈ψa, Rµµ(µh)ψb〉∑O

a=1

∑O
b=1 β〈χa, Rκκ(κ

h)χb〉

])
(2.141)

Jzu(u
h
i , z

h) = 0 (2.142)

g(uhi , z
h) =

Nelem∑
e=1

(
M∑
a=1

〈φai,j, Fip(uh) Cpjkl (
1

2
(Fqk(u

h) δuhq,l + δuhq,k Fql(u
h)))〉

+
M∑
a=1

〈φai,j, Sik δuhk,j〉+
M∑
a=1

〈φai , τi〉∂Ωτ

) (2.143)

Notice that Eq. 2.143 is the linearization of the nonlinear elastostatics system of equations.
This system of equations is solved using an iterative solver, e.g. Generalized Minimum
Residual (GMRES).

gu(u
h
i , z

h) =

Nelem∑
e=1

(
M∑
a=1

〈λhi,kSkj, φai,j〉+
M∑
a=1

〈λhi,rFrp(uh)Cpjkl(
1

2
Fkl(u

h)), φai,j〉

+
M∑
a=1

〈λhi,rFrp(uh)Cpjkl(
1

2
Flk(u

h)), φai,j〉

) (2.144)

gz(u
h
i , z

h) =

Nelem∑
e=1

([ ∑N
a=1〈λhi,jFip(uh)C

µ
pjklEkl(u

h), ψa〉∑O
a=1〈λhi,jFip(uh)Cκ

pjklEkl(u
h), χa〉

])
(2.145)

(gz(u
h
i , z

h))∗ =

Nelem∑
e=1

(
M∑
a=1

〈φai,j, Sikλhk,j〉+
M∑
a=1

〈φai,j, (
1

2
Fip(u

h))Cpjklλ
h
k,qFql(u

h)〉

+
M∑
a=1

〈φai,j, (
1

2
Fip(u

h))CpjklFqk(u
h)λhq,l〉

) (2.146)
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(gu(u
h
i , z

h))∗ =

Nelem∑
e=1

([ ∑N
a=1〈ψa, Eij(uh)C

µ
ijklFlp(u

h)λhk,p〉∑O
a=1〈χa, Eij(uh)Cκ

ijklFlp(u
h)λhk,p〉

])
(2.147)

(guu(u
h
i , z

h))∗ =

Nelem∑
e=1

(
M∑
a=1

M∑
b=1

〈φai,j,Cijkl(
1

2
φbq,kFqp(u

h))λhp,l〉

+
M∑
a=1

M∑
b=1

〈φai,j,Cijkl(
1

2
Fq,k(u

h)φbq,p)λ
h
p,l〉

+
M∑
a=1

M∑
b=1

〈φai,j, (
1

2
φbi,pCpjklλ

h
k,qFql(u

h)〉

+
M∑
a=1

M∑
b=1

〈φai,j, (
1

2
Fip(u

h)Cpjklλ
h
k,qφ

b
q,l〉

+
M∑
a=1

M∑
b=1

〈φai,j, (
1

2
φbi,pCpjklFqk(u

h)λhq,l)〉

+
M∑
a=1

M∑
b=1

〈φai,j, (
1

2
Fip(u

h)Cpjklφ
b
q,kλ

h
q,l〉

(2.148)

(guz(u
h
i , z

h))∗ =

Nelem∑
e=1





∑M
a=1

∑N
b=1〈φai,jC

µ
ijklSikλ

h
k,j, ψ

b〉
+
∑M

a=1

∑N
b=1〈φai,j(

1
2
Fip(u

h)Cµ
pjklλ

h
k,qFql(u

h), ψb〉
+
∑M

a=1

∑N
b=1〈φai,j(

1
2
Fip(u

h)Cµ
pjklFqk(u

h)λhq,l, ψ
b〉∑M

a=1

∑N
b=1〈φai,jCκ

ijklSikλ
h
k,j, χ

b〉
+
∑M

a=1

∑N
b=1〈φai,j(

1
2
Fip(u

h)Cκ
pjklλ

h
k,qFql(u

h), χb〉
+
∑M

a=1

∑O
b=1〈φai,j(

1
2
Fip(u

h)Cκ
pjklFqk(u

h)λhq,l, χ
b〉




(2.149)

(guz(u
h
i , z

h))∗ = 0 (2.150)

(gzu(u
h
i , z

h))∗ =

Nelem∑
e=1





∑N
a=1

∑M
b=1〈ψaλhi,pC

µ
ijklEkl(u

h), φbi,j〉∑N
a=1

∑M
b=1〈ψaλhi,rFrp(uh)C

µ
pjkl(

1
2
Fkl(u

h), φbi,j〉∑N
a=1

∑M
b=1〈ψaλhi,rFrp(uh)C

µ
pjkl(

1
2
Flk(u

h), φbi,j〉∑N
a=1

∑M
b=1〈ψaλhi,pCκ

ijklEkl(u
h), φbi,j〉∑N

a=1

∑M
b=1〈ψaλhi,rFrp(uh)Cκ

pjkl(
1
2
Fkl(u

h), φbi,j〉∑N
a=1

∑M
b=1〈ψaλhi,rFrp(uh)Cκ

pjkl(
1
2
Flk(u

h), φbi,j〉




(2.151)

Parameter Identification in Structural-Acoustics

Let D ⊆ Rd, d ∈ {1, 2, 3} be a bounded domain of interest with an interior region Ds

denoting an elastic body and an exterior region Ωa denoting an incompressible acoustic body.
Lets designate ∂Ωa as the outer boundary of region ∂Ωa and ∂Ωs as the boundary of region
Ds, which is also an interior boundary for Ωa. The structural-acosutics interactions take
place on the ∂Ωc ⊂ ∂Ωs boundary. Let ui denote the complex-valued displacement in the
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i-th direction and p denote the complex-valued pressure field. The elastic body and acoustic
fluid mass densities are respectively denoted by ρs and ρa. The elastic body shear modulus
is µ and the bulk modulus is κ. The acoustic wave number is given by k = ω

√
ς/ρa, where

ς is the acoustic fluid bulk modulus. Angular frequency is denoted by ω. In the subsequent
derivations we use standard tensor notation with Einstein summation for the fluid-structure
interaction (FSI) equations. The indices i, j, k and l take on the values 1, . . . , d. Partial
differentiation is denoted by a comma.

The PDEs of structural-acoustics are given by

−(Cijklεkl), j − ρs ω2 ui = fi in Ωs

−pi,i − k2p = 0 in Ωa

ui = 0 on ∂Ωu

(Cijklεkl)nj = τi on ∂Ωτ

(Cijklεkl)nj = −p ni on ∂Ωc

pini = f(β − jγk) p on ∂Ωa

pini = ρaω
2ui ni on ∂Ωc

(2.152)

where the structural boubdary is defined as ∂Ωs = ∂Ωτ ∪ ∂Ωu ∪ ∂Ωc. The Dirichlet and
Neumann conditions are repectively applied on ∂Ωu and ∂Ωτ . The surface traction in the
i-th direction is denoted by τi, while the unit outward normal component in the i-th direction
on ∂Ωs with respect to the region Ωs is denoted by ni. The fourth-order tensor of elastic
moduli, Cijkl, is defined in Eq. 2.37 and the symmetric part of the displacement gradient,
εkl, is defined in Eq. 2.38.

Lets consider the following NLP:

minimize
(ui,p,µ,κ)∈ Ui×P×G×B

α

2
〈ui − ûi,ui − ûi〉+R(µ) +R(κ)

subject to

−(Cijklεkl), j − ρs ω2 ui = fi in Ωs

−pi,i − k2p = 0 in Ωf

ui = 0 on ∂Ωu

(Cijklεkl)nj = τi on ∂Ωτ

(Cijklεkl)nj = −p ni on ∂Ωc

pini = f(β − jγk) p on ∂Ωa

pini = ρaω
2ui ni on ∂Ωc

(2.153)

where Ui = {ui : ui ∈ H1(Ωs), ui = 0 on ∂Ωu}, P = {p : p ∈ H1(Ωa)}, G = {µ : µ ∈
L2(Ω), µ > 0}, ad B = {κ : κ ∈ L2(Ω), κ > 0}. Hm(Ω) are Sobolev spaces of square
integrable functionals whose m-th derivatives are also square integrable. Whenever m = 0
we shall keep the notation with L2(Ω). The L2 inner product for the space P is defined as

〈u, v〉 :=

∫
Ω

u(x) v(x)dx, (2.154)
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where the overline denotes complex conjugate. The L2 inner product for the space Ui is
given by Eq. 2.79 and for the spaces G and B is given by Eq. 2.41.

First-order neccesary optimality conditions. The Lagrangian associated with the NLP defined
in Eq. 2.153 is given by

L(ui,p, µ, κ, λi, υ)

=
α

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ) + <

[
〈λi,−(Cijkl

1

2
(uk,l + ul,k)), j〉

− 〈λi, ρs ω2 ui〉 − 〈λi, fi〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc + 〈υ,−pi,i − k2ρa p〉

+ 〈υ, pini − f(β − jγk) p〉∂Ωa + 〈υ, pini − ρa ω2 ui ni〉∂Ωc

]
,

(2.155)

If (ũi, p̃, µ̃, κ̃) ∈ Ui × P × G × B is a local solution to the NLP in Eq. 2.153, there exists
Lagrange multipliers (λi, υ) ∈ Ui×P , such that the first-order necessary optimality conditions
hold at (ũi, p̃, µ̃, κ̃), i.e.

∇L(ui,p, µ, κ, λi, υ)(δui, δp, δµ, δκ, δλi, δυ)

= Lu(ui, p, µ, κ, λi, υ)δui + Lp(ui, p, µ, κ, λi, υ)δp+ Lµ(ui, p, µ, κ, λi, υ)δµ

+ Lκ(ui, p, µ, κ, λi, υ)δκ+ Lλ(ui, p, µ, κ, λi, υ)δλi + Lυ(ui, p, µ, κ, λi, υ)δυ = 0

Second-Order Sufficient Conditions. If (ũi, p̃, µ̃, κ̃, λi, υ) ∈ Ui × P × G × B × Ui × P satisfy
the first-order necessary optimality conditions and the Hessian operator exist and is positive
semidefinite, then (ũi, p, µ̃, κ̃) is a strict local minimum.

Operators. Let u ≡ {ui, p} ∈ Ui×P and z ≡ {µ, κ} ∈ G ×B, then the operators required to
solve the paramater identification problem are defined as

J(u, z) =
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ) (2.156)

〈Ju(u, z), δu〉 =
∂

∂u

(
β〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

)
=

[
β〈ui − ûi, δui〉

0

] (2.157)

〈Jz(u, z), δz〉 =
∂

∂z

(
β

2
〈ui − ûi, ui − ûi〉+R(µ) +R(κ)

)
=

[
〈Rµ(µ), δµ〉
〈Rκ(κ), δκ〉

] (2.158)

〈Juu(u, z), δu〉 =
∂

∂u

([
β〈1, ui − ûi〉

0

])
=

[
β〈1, δui〉

0

] (2.159)
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〈Juz(u, z), δz〉 =
∂

∂z

([
β〈1, ui − ûi〉

0

])
= 0 (2.160)

〈Jzz(u, z), δz〉 =
∂

∂z

([
〈1, Rµ(µ)〉
〈1, Rκ(κ)〉

])
=

[
〈Rµµ(µ), δµ〉
〈Rκκ(κ), δκ〉

] (2.161)

〈Jzu(u, z), δu〉 =
∂

∂u

([
〈1, Rµ(µ)〉
〈1, Rκ(κ)〉

])
= 0 (2.162)

g(u, z) =


−(Cijkl

1
2
(uk,l + ul,k)), j = fi + ω2ρs ui in Ωs

−pi,i − k2p = 0 in Ωa

(Cijkl
1
2
(uk,l + ul,k))nj = τi on ∂Ωτ

(Cijkl
1
2
(uk,l + ul,k))nj = −p ni on ∂Ωc

pini = f(β − jγk)p on ∂Ωa

pini = ρaω
2ui ni on ∂Ωc

 (2.163)
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〈gu(u, z), δu〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρs ui − fi〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc

+ 〈υ,−pi,i − k2p〉+ 〈υ, pini − f(β − j − γk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc = 0 ∀(λi, υ) ∈ Ui,×P

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωs

+ 〈λi,−ω2ρs ui − fi〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, pini〉∂Ωa

− 〈υ, pini〉∂Ωc − 〈υ, k2p〉+ 〈υ, pini − f(β − jγk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc

=
∂

∂u

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉+ 〈λi,−ω2ρs ui − fi〉

− 〈λi, τi〉∂Ωτ + 〈λi, p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, k2p〉

− 〈υ, f(β − jγk)p〉∂Ωa − 〈υ, ρaω2ui ni〉∂Ωc

)
= 〈1

2
(λi,j + λj,i),Cijkl

1

2
(δuk,l + δul,k)〉+ 〈λi,−ω2ρs δui〉

+ 〈λi, δp ni〉∂Ωc + 〈υi, δpi〉 − 〈υ, k2δp〉 − 〈υ, f(β − jγk)δp〉∂Ωa

− 〈υ, ρaω2δui ni〉∂Ωc

=


−〈(Cijkl

1
2
(λk,l + λl,k)), j, δui〉

+〈(Cijkl
1
2
(λk,l + λl,k))nj, δui〉∂Ωc

−〈ω2ρs λi, δui〉 − 〈ρaω2υ ni, δui〉∂Ωc

−〈υi,i, δp〉+ 〈υ ni, δp〉∂Ωa + 〈υ ni, δp〉∂Ωc

−〈k2υ, δp〉 − 〈f(β − jγk)υ, δp〉∂Ωa + 〈λini, δp〉∂Ωc



(2.164)

The structural boundary in Eq. 2.164 is defined as ∂Ωs = ∂Ωτ ∪∂Ωu∪∂Ωc. Furthermore,
the fields λi = 0 and ui = 0 on ∂Ωu since λi ∈ Ui and ui ∈ Ui. Hence, the application of the
divergence theorem yields a set of homogeneous boundary condition on ∂Ωu. However, proper
Neumann boundary conditions need to be defined to ensure the validity of the problem.
Thus, a set of free Neumann boundary conditions is defined on ∂Ωτ . Hence, (Cijkl

1
2
(λk,l +

λl,k))nj = 0 on ∂Ωτ . Finally, the derivation of Eq. 2.164 yields a set of nonhomogeneous
Neumann boundary conditions on ∂Ωc. This set of Neumann boundary conditions is defined
as (Cijkl

1
2
(λk,l + λl,k))nj = ρaω

2υ ni.

The acoustic boundary in Eq. 2.164 is defined as ∂Ω = ∂Ωa ∪ ∂Ωc. The fields υ and p
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are respectively defined in spaces υ ∈ P and p ∈ P . Thus, the application of the divergence
theorem results in a set of nonhomogeneous Neumann boundary conditions on ∂Ωa. ∂Ωc.
Therefore, υ ni = f(β − jγk)υ on ∂Ωa and υ ni = λini on ∂Ωc. These sets of acoustic
boundary conditions, coupled with the proper sets of structural boundary conditions, ensure
the validity of the operator defined in Eq. 2.164.

〈gz(u, z), δz〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρs ui − fi〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc

+ 〈υ,−pi,i − k2p〉+ 〈υ, pini − f(β − j − γk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc = 0 ∀(λi, υ) ∈ Ui,×P

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωs

+ 〈λi,−ω2ρs ui − fi〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, pini〉∂Ωa

− 〈υ, pini〉∂Ωc − 〈υ, k2p〉+ 〈υ, pini − f(β − jγk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc

=
∂

∂z

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉+ 〈λi,−ω2ρs ui − fi〉

− 〈λi, τi〉∂Ωτ + 〈λi, p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, k2p〉

− 〈υ, f(β − jγk)p〉∂Ωa − 〈υ, ρaω2ui ni〉∂Ωc

)

=


〈1

2
(λi,j + λj,i)C

µ
ijkl

1
2
(uk,l + ul,k), δµ)〉

〈1
2
(λi,j + λj,i)C

κ
ijkl

1
2
(uk,l + ul,k), δκ)〉

0
0



(2.165)
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〈δu, (gu(u, z))∗〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρs ui − fi〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc

+ 〈υ,−pi,i − k2p〉+ 〈υ, pini − f(β − j − γk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc = 0 ∀(λi, υ) ∈ Ui,×P

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωs

+ 〈λi,−ω2ρs ui − fi〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, pini〉∂Ωa

− 〈υ, pini〉∂Ωc − 〈υ, k2p〉+ 〈υ, pini − f(β − jγk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc

=
∂

∂u

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉+ 〈λi,−ω2ρs ui − fi〉

− 〈λi, τi〉∂Ωτ + 〈λi, p ni〉∂Ωc + 〈υi, pi〉

− 〈υ, k2p〉 − 〈υ, f(β − jγk)p〉∂Ωa − 〈υ, ρaω2ui ni〉∂Ωc

)
= 〈1

2
(λi,j + λj,i),Cijkl

1

2
(δuk,l + δul,k)〉+ 〈λi,−ω2ρs δui〉

+ 〈λi, δp ni〉∂Ωc + 〈υi, δpi〉 − 〈υ, k2δp〉 − 〈υ, f(β − jγk)δp〉∂Ωa

− 〈υ, ρaω2δui ni〉∂Ωc

= 〈1
2

(δui,j + δuj,i),Cijkl
1

2
(λk,l − λl,k)〉∗ + 〈δui, ω2ρs λi〉∗

+ 〈δp, λi ni〉∗∂Ωc + 〈δpi, υi〉∗ − 〈δp, k2υ〉∗ − 〈δp, f(β + jγk)υ〉∗∂Ωa

− 〈δui, ρaω2υ ni〉∗∂Ωc

=


−〈(δui,Cijkl

1
2
(λi,j + λj,i)), j〉∗

+〈(δui,Cijkl
1
2
(λi,j + λj,i))nj〉∗∂Ωc

−〈δui, ω2ρs λi〉∗ − 〈δui, ρaω2υ ni〉∗∂Ωc

−〈δp, υi,i〉∗ + 〈δp, υ ni〉∗∂Ωa
+ 〈δp, υ ni〉∗∂Ωc

−〈δp, k2υ〉∗ − 〈δp, f(β + jγk)υ〉∗∂Ωa
+ 〈δp, λini〉∗∂Ωc



(2.166)

The structural boundary in Eq. 2.166 is defined as ∂Ωs = ∂Ωτ ∪∂Ωu∪∂Ωc. Furthermore,
the fields λi = 0 and ui = 0 on ∂Ωu since λi ∈ Ui and ui ∈ Ui. Hence, the application of
the divergence theorem yields a set of homogeneous boundary condition on ∂Ωu. However,
proper Neumann boundary conditions need to be defined to ensure a self-adjoint operator.
Thus, a set of free Neumann boundary conditions is defined on ∂Ωτ . Hence, (Cijkl

1
2
(λk,l +

λl,k))nj = 0 on ∂Ωτ . Finally, the derivation of Eq. 2.164 yields a set of nonhomogeneous
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Neumann boundary conditions on ∂Ωc. This set of Neumann boundary conditions is defined
as (Cijkl

1
2
(λk,l + λl,k))nj = ρaω

2υ ni.

The acoustic boundary in Eq. 2.166 is defined as ∂Ω = ∂Ωa ∪ ∂Ωc. The fields υ and p
are respectively defined in spaces υ ∈ P and p ∈ P . Thus, the application of the divergence
theorem results in a set of nonhomogeneous Neumann boundary conditions on ∂Ωa. ∂Ωc.
Therefore, υ ni = f(β + jγk)υ on ∂Ωa and υ ni = λini on ∂Ωc. Notice the change in sign of
the Sommerfeld radiation boundary condition imaginary component. This change in sign is
due to the adjoint operation. These sets of acoustic boundary conditions ensure the validity
of the adjoint operator for this problem.

〈δz, (gz(u, z))∗〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρs ui − fi〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc

+ 〈υ,−pi,i − k2p〉+ 〈υ, pini − f(β − j − γk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc = 0 ∀(λi, υ) ∈ Ui,×P

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωs

+ 〈λi,−ω2ρs ui − fi〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − τi〉∂Ωτ

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, pini〉∂Ωa

− 〈υ, pini〉∂Ωc − 〈υ, k2p〉+ 〈υ, pini − f(β − jγk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc

=
∂

∂z

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉+ 〈λi,−ω2ρs ui − fi〉

− 〈λi, τi〉∂Ωτ + 〈λi, p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, k2p〉

− 〈υ, f(β − jγk)p〉∂Ωa − 〈υ, ρaω2ui ni〉∂Ωc

)

=


〈1

2
(λi,j + λj,i)C

µ
ijkl

1
2
(uk,l + ul,k), δµ〉

〈1
2
(λi,j + λj,i)C

κ
ijkl

1
2
(uk,l + ul,k), δκ〉

0
0



=


〈δµ, 1

2
(ui,j + uj,i)C

µ
ijkl

1
2
(λk,l + λl,k)〉∗

〈δκ, 1
2
(ui,j + uj,i)C

κ
ijkl

1
2
(λk,l + λl,k)〉∗

0
0



(2.167)
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〈(guu(u, z))∗, δu〉 =
∂

∂u




−〈1, (Cijkl

1
2
(λi,j + λj,i)), j〉

+〈1, (Cijkl
1
2
(λi,j + λj,i))nj〉∂Ωc

−〈1, ω2ρs λi,1〉 − 〈1, ρaω2υ ni〉∂Ωc

−〈1, υi,i〉+ 〈1, υ ni〉∂Ωa + 〈1, υ ni〉∂Ωc

−〈1, f(β + jγk)υ〉∂Ωa

−〈1, k2υ〉+ 〈1, λini〉∂Ωc



 = 0 (2.168)

〈(guz(u, z))∗, δz〉 =


−〈wi, (Cijkl

1
2
(λi,j + λj,i)), j, 〉

+〈wi, (Cijkl
1
2
(λi,j + λj,i))nj, 〉∂Ωc

−〈wi, ω2ρs λi〉 − 〈wi, ρaω2υ ni〉∂Ωc = 0
−〈y, υi,i〉+ 〈y, υ ni〉∂Ωa + 〈y, υ ni〉∂Ωc

−〈y, f(β − jγk)υ〉∂Ωa

−〈y, k2υ〉+ 〈y, λini〉∂Ωc = 0

 ∀ wi ∈ Ui, y ∈ P

=
∂

∂z





〈1
2
(wi,j + wj,i), Cijkl

1
2
(λk,l + λl,k)〉

−〈wi, (Cijkl
1
2
(λi,j + λj,i))nj〉∂Ωc

+〈wi, (Cijkl
1
2
(λi,j + λj,i))nj〉∂Ωc

−〈wi, ω2ρs λi〉 − 〈wi, ρaω2υ ni〉∂Ωc = 0
〈yi, υi〉 − 〈y, υ ni〉∂Ωa − 〈y, υ ni〉∂Ωc

+〈y, υ ni〉∂Ωa + 〈y, υ ni〉∂Ωc

−〈y, f(β − jγk)υ〉∂Ωa

−〈y, k2υ〉+ 〈y, λini〉∂Ωc = 0





=


〈1

2
(wi,j + wj,i) Cµ

ijkl
1
2
(λk,l + λl,k), δµ〉

〈1
2
(wi,j + wj,i) Cκ

ijkl
1
2
(λk,l + λl,k), δκ〉

0
0



(2.169)

〈(gzz(u, z))∗, δz〉 =
∂

∂z



〈1, 1

2
(ui,j + uj,i)C

µ
ijkl

1
2
(λk,l + λl,k)〉

〈1, 1
2
(ui,j + uj,i)C

κ
ijkl

1
2
(λk,l + λl,k)〉

0
0


 = 0 (2.170)
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〈(gzu(u, z))∗, δu〉 =


〈1, 1

2
(ui,j + uj,i)C

µ
ijkl

1
2
(λk,l + λl,k)〉

〈1, 1
2
(ui,j + uj,i)C

κ
ijkl

1
2
(λk,l + λl,k)〉

0
0



=
∂

∂u





〈1,−ui(Cµ
ijkl

1
2
(λk,l + λl,k)), j〉

+〈1, ui(Cµ
ijkl

1
2
(λk,l + λl,k))nj〉∂Ωs

〈1,−ui(Cκ
ijkl

1
2
(λk,l + λl,k)), j〉

+〈1, ui(Cκ
ijkl

1
2
(λk,l + λl,k))nj〉∂Ωs

0
0





=



−〈(Cµ
ijkl

1
2
(λk,l + λl,k)), j, δui〉

+〈(Cµ
ijkl

1
2
(λk,l + λl,k))nj, δui〉∂Ωs

−〈(Cκ
ijkl

1
2
(λk,l + λl,k)), j, δui〉

+〈(Cκ
ijkl

1
2
(λk,l + λl,k))nj, δui〉∂Ωs

0
0



(2.171)

Discretization. Lets define finite-dimensional subspaces Uhi ⊂ Ui with basis Uhi = span{φmi }Mm=1,
Ph ⊂ P with basis Ph = span{ψn}Nn=1, Gh ⊂ G with basis {θo}Oo=1, and Bh ⊂ B with ba-
sis {χp}Pp=1. This leads to uhi =

∑M
m=1 u

m
i φ

m
i , ph =

∑N
n=1 p

nψn, µh =
∑O

o=1 µ
oθo, κh =∑P

p=1 κ
pχp, λhi =

∑M
m=1 λ

m
i φ

m
i , and υh =

∑N
n=1 υ

nψn. Furthermore, the quantities δuhi , δp
h,

δµh, δκh, δλi, and δυh can be respectively approximated as follow: δuhi =
∑M

m=1 δu
m
i φ

m
i ,

δph =
∑N

n=1 p
nψn, δµh =

∑O
o=1 µ

oθo, δκh =
∑O

p=1 κ
pχp, δλhi =

∑M
m=1 δλ

m
i φ

m
i , and δυh =∑N

n=1 δυ
nψn. Subsequently, the Galerkin approximation of the required operators to solve

the parameter identification problem are defined as

J(uh, zh) =
β

2
〈uhi − ûi, uhi − ûi〉+R(µh) +R(κh) (2.172)

Ju(u
h, zh) =

Nelem∑
e=1

(
M∑
a=1

β〈φai , uhi − ûi〉

)
(2.173)

Jz(u
h, zh) =

Nelem∑
e=1

([ ∑O
a=1 β〈θa, Rµ(µh)〉∑P
a=1 β〈χa, Rκ(κ

h)〉

])
(2.174)

Juu(u
h, zh) =

Nelem∑
e=1

(
M∑
a=1

M∑
b=1

β〈φa, φb〉

)
(2.175)

Juz(u
h, zh) = 0 (2.176)

Jzz(u
h, zh) =

Nelem∑
e=1

([ ∑O
a=1

∑O
b=1 β〈θa, Rµµ(µh)θb〉∑P

a=1

∑P
b=1 β〈χa, Rκκ(κ

h)χb〉

])
(2.177)

Jzu(u
h, zh) = 0 (2.178)
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g(uh, zh) =

Nelem∑
e=1





∑M
a=1〈

1
2
(φai,j + φaj,i),Cijkl

1
2
(uhk,l + uhl,k)〉

−
∑M

a=1〈φai , ρs ω2 uhi + fi〉
−
∑M

a=1〈φai , τi〉∂Ωτ +
∑M

a=1〈φai , ph ni〉∂Ωc = 0∑N
b=1〈ψbi , phi 〉 −

∑N
b=1〈ψbi , k

2 ρa p
h〉

−
∑N

b=1〈ψb, f(β − jγk) ph〉∂Ωa

−
∑N

b=1〈ψb, ρa ω2 uhi ni〉∂Ωc = 0




(2.179)

gu(u
h, zh) =

Nelem∑
e=1




∑M

a=1〈
1
2
(φai,j + φaj,i),Cijkl

1
2
(λhk,l + λhl,k)〉

−
∑M

a=1〈φai , ρs ω2 λhi 〉+
∑M

a=1〈φai , ρa ω2 υh ni〉∂Ωc = 0∑N
b=1〈ψbi , υhi 〉 −

∑N
b=1〈ψb, k

2 ρa υ
h〉

−
∑N

b=1〈ψb, f(β − jγk) υh〉∂Ωa

−
∑N

b=1〈ψb, λhi ni〉∂Ωc = 0



 (2.180)

gz(u
h, zh) =

Nelem∑
e=1



∑O

a=1〈θa,
1
2
(λhi,j + λhj,i)C

µ
ijkl

1
2
(uhk,l + uhl,k)〉∑P

a=1〈χa,
1
2
(λhi,j + λhj,i)C

κ
ijkl

1
2
(uhk,l + uhl,k)〉

0
0


 (2.181)

(gu(u
h, zh))∗ =

Nelem∑
e=1





∑M
a=1〈

1
2
(φai,j + φaj,i),Cijkl

1
2
(λhk,l + λhl,k)〉

−
∑M

a=1〈φai , ρs ω2 λhi 〉
+
∑M

a=1〈φai , ρa ω2 υh ni〉∂Ωc = 0∑N
b=1〈ψbi , υhi 〉 −

∑N
b=1〈ψb, k

2 ρa υ
h〉

−
∑N

b=1〈ψb, f(β − jγk) υh〉∂Ωa

−
∑N

b=1〈ψb, λhi ni〉∂Ωc = 0




(2.182)

(gz(u
h, zh))∗ =

Nelem∑
e=1



∑O

a=1〈θa,
1
2
(uhi,j + uhj,i)C

µ
ijkl

1
2
(λhk,l + λhl,k)〉∑P

a=1〈χa,
1
2
(uhi,j + uhj,i)C

κ
ijkl

1
2
(λhk,l + λhl,k)〉

0
0


 (2.183)

(guu(u
h, zh))∗ = 0 (2.184)

(guz(u
h, zh))∗ =

Nelem∑
e=1



∑M

a=1

∑O
b=1〈

1
2
(φai,j + φaj,i)C

µ
ijkl

1
2
(λhk,l + λhl,k), θ

b〉∑M
a=1

∑O
b=1〈

1
2
(φai,j + φaj,i)C

κ
ijkl

1
2
(λhk,l + λhl,k), χ

b〉
0
0


 (2.185)

(gzz(u
h, zh))∗ = 0 (2.186)

(gzu(u
h, zh))∗ =

Nelem∑
e=1



∑M

a=1

∑O
b=1〈

1
2
(φai,j + φaj,i)C

µ
ijkl

1
2
(λhk,l + λhl,k), θ

b〉∑M
a=1

∑O
b=1〈

1
2
(φai,j + φaj,i)C

κ
ijkl

1
2
(λhk,l + λhl,k), χ

b〉
0
0


 (2.187)
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Optimal Control in Structural-Acoustics

Lets consider the structural-acoustics partial differential equations defined in Eq. 2.152.
An optimal control problem in structural-acoustics can be defined as: estimate the surface
traction forces zi that yield a desired displacement field, i.e.

minimize
(ui,p,zi)∈ Ui×P×Zi

α

2
〈ui − ûi, ui − ûi〉+R(zi)

subject to

−(Cijkl
1

2
(uk,l + ul,k)), j = ρs ω

2 ui + fi in Ωs

−p,ii − k2p = 0 in Ωa

ui = 0 on ∂Ωu

(Cijkl
1

2
(uk,l + ul,k))nj = zi on ∂Ωz

(Cijkl
1

2
(uk,l + ul,k))nj = −p ni on ∂Ωc

pni = f(β − iγk) p on ∂Ωa

pni = ρfω
2ui ni on ∂Ωc

(2.188)

where Ui = {ui : ui ∈ H1(Ωs), ui = 0 on ∂Ωu}, P = {p : p ∈ H1(Ωa)}, and Zi = {zi : zi ∈
L2(∂Ωz)}. The L2 inner products for spaces Ui and P are respectively defined in Eqs. 2.79
and 2.41.

First-order neccesary optimality conditions. The Lagrangian associated with the optimal
control problem defined in Eq. 2.188 is given by

L(ui, p, zi, λi, υ) =
α

2
〈ui − ûi, ui − ûi〉+R(zi) + <

[
〈λi,−(Cijkl

1

2
(uk,l + ul,k)), j〉

− 〈λi, ρs ω2 ui〉 − 〈λi, fi〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − zi〉∂Ωz

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc + 〈υ,−pi,i − k2ρa p〉

+ 〈υ, pini − f(β − jγk) p〉∂Ωa + 〈υ, pini − ρa ω2 ui ni〉∂Ωc

]
,

(2.189)

If (ũi, p̃, z̃i) ∈ Ui×P×Zi is a local solution to the optimal control problems in Eq. 2.189, there
exists Lagrange multipliers (λi, υ) ∈ Ui × P , such that the first-order necessary optimality
conditions hold at (ũi, p̃, z̃i), i.e.

∇L(ui, p, zi, λi, υ)(δui, δp, δzi, δλi, δυ) = Lu(ui, p, zi, λi, υ)δui + Lp(ui, p, zi, λi, υ)δp

+ Lµ(ui, p, zi, λi, υ)δzi + Lκ(ui, p, zi, λi, υ)δλi + Lυ(ui, p, zi, λi, υ)δυ = 0

Second-Order Sufficient Conditions. If (ũi, p̃, z̃i, λi, υ) ∈ Ui × P × Zi × Ui × P satisfy the
first-order necessary optimality conditions and the Hessian operator exist and is positive
semidefinite, then (ũi, p, z̃i) is a strict local minimum.
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Operators. Let u ≡ {ui, p} ∈ Ui×P , then the operators required to solve the optimal control
problem are defined as

J(u, zi) =
α

2
〈ui − ûi, ui − ûi〉+R(zi) (2.190)

〈Ju(u, zi), δu〉 =
∂

∂u

(
α

2
〈ui − ûi, ui − ûi〉+R(zi)

)
=

[
= α〈ui − ûi, δui〉

0

] (2.191)

〈Jz(u, zi), δzi〉 =
∂

∂zi

(
α

2
〈ui − ûi, ui − ûi〉+R(zi)

)
= 〈Rz(zi), δzi〉

(2.192)

〈Juu(u, zi), δu〉 =
∂

∂u

([
α〈1, ui − ûi〉

0

])
=

[
α〈1, δui〉

0

] (2.193)

〈Juz(u, zi), δzi〉 =
∂

∂zi

([
α〈1, ui − ûi〉

0

])
= 0 (2.194)

〈Jzz(u, zi), δzi〉 =
∂

∂zi

(
〈1, Rz(zi)〉

)
= 〈Rzz(zi), δzi〉

(2.195)

〈Jzu(u, zi), δu〉 =
∂

∂u

(
〈1, Rz(zi)〉

)
= 0 (2.196)

g(u, zi) =


−(Cijkl

1
2
(uk,l + ul,k)), j = fi + ω2ρs ui in Ωs

−pi,i − k2p = 0 in Ωa

(Cijkl
1
2
(uk,l + ul,k))nj = zi on ∂Ωz

(Cijkl
1
2
(uk,l + ul,k))nj = −p ni on ∂Ωc

pini = f(β − jγk)p on ∂Ωa

pini = ρaω
2ui ni on ∂Ωc

 (2.197)
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〈gu(u, zi), δu〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρs ui − fi〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − zi〉∂Ωz

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc

+ 〈υ,−pi,i − k2p〉+ 〈υ, pini − f(β − j − γk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc = 0 ∀(λi, υ) ∈ Ui,×P

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉 − 〈λi, (Cijkl

1

2
(uk,l + ul,k))nj〉∂Ωs

+ 〈λi,−ω2ρs ui − fi〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − zi〉∂Ωz

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, pini〉∂Ωa

− 〈υ, pini〉∂Ωc − 〈υ, k2p〉+ 〈υ, pini − f(β − jγk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc

=
∂

∂u

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉+ 〈λi,−ω2ρs ui − fi〉

− 〈λi, zi〉∂Ωz + 〈λi, p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, k2p〉

− 〈υ, f(β − jγk)p〉∂Ωa − 〈υ, ρaω2ui ni〉∂Ωc

)
= 〈1

2
(λi,j + λj,i),Cijkl

1

2
(δuk,l + δul,k)〉+ 〈λi,−ω2ρs δui〉

+ 〈λi, δp ni〉∂Ωc + 〈υi, δpi〉 − 〈υ, k2δp〉 − 〈υ, f(β − jγk)δp〉∂Ωa

− 〈υ, ρaω2δui ni〉∂Ωc

=


−〈(Cijkl

1
2
(λk,l + λl,k)), j, δui〉

+〈(Cijkl
1
2
(λk,l + λl,k))nj, δui〉∂Ωc

−〈ω2ρs λi, δui〉 − 〈ρaω2υ ni, δui〉∂Ωc

−〈υi,i, δp〉+ 〈υ ni, δp〉∂Ωa + 〈υ ni, δp〉∂Ωc

−〈k2υ, δp〉 − 〈f(β − jγk)υ, δp〉∂Ωa + 〈λini, δp〉∂Ωc



(2.198)

The structural boundary in Eq. 2.198 is defined as ∂Ωs = ∂Ωz ∪ ∂Ωu ∪ ∂Ωc. The fields
λi = 0 and ui = 0 on ∂Ωu since λi ∈ Ui and ui ∈ Ui. Hence, the application of the divergence
theorem yields a set of homogeneous boundary conditions on ∂Ωu. Furthermore, in order
to ensure the validity of the operators derived in Eq. 2.198, proper Neumann boundary
condition are required. Thus, a set of free Neumann boundary conditions is defined on
∂Ωz, i.e. (Cijkl

1
2
(λk,l + λl,k))nj = 0 on ∂Ωz. Finally, notice that the derivation shown in

Eq. 2.198, yields a set of nonhomogeneous Neumann boundary condition on ∂Ωc defined as
(Cijkl

1
2
(λk,l + λl,k))nj = ρaω

2υ ni.

The acoustic boundary is defined as ∂Ω = ∂Ωa ∪ ∂Ωc. The application of the divergence
theorem yields nonhomogeneous Neumann boundary conditions on ∂Ωa and ∂Ωc. Therefore,
these sets of boundary conditions are defined as υ ni = f(β − jγk)υ on ∂Ωa and υ ni =
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λini on ∂Ωc. These sets of structural and acoustic boundary conditions ensure the validity
of the equations defined in Eq. 2.198.

〈gz(u, zi), δzi〉 =
∂

∂zi

(
〈λi,−(Cijkl

1

2
(uk,l + ul,k)), j − ω2ρs ui − fi〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − zi〉∂Ωz

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc

+ 〈υ,−pi,i − k2p〉+ 〈υ, pini − f(β − j − γk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc = 0

)
∀(λi, υ) ∈ Ui,×P

= 〈λi, δzi〉∂Ωz

(2.199)

〈δzi, (gz(u, zi))∗〉 =
∂

∂zi

(
〈λi,−(Cijkl

1

2
(uk,l + ul,k)), j − ω2ρs ui − fi〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − zi〉∂Ωz

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc

+ 〈υ,−pi,i − k2p〉+ 〈υ, pini − f(β − j − γk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc = 0

)
∀(λi, υ) ∈ Ui,×P

= 〈λi, δzi〉∂Ωz

= 〈δzi, λi〉∗∂Ωz

(2.200)

〈(gzz(u, zi))∗, δzi〉 =
∂

∂zi

(
〈1, λi〉∂Ωz

)
= 0 (2.201)

〈(gzu(u, zi))∗, δu〉 =
∂

∂u

(
〈1, λi〉∂Ωz

)
= 0 (2.202)
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〈δu, (gu(u, zi))∗〉 = 〈λi,−(Cijkl
1

2
(uk,l + ul,k)), j − ω2ρs ui − fi〉

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − zi〉∂Ωz

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc

+ 〈υ,−pi,i − k2p〉+ 〈υ, pini − f(β − j − γk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc = 0 ∀(λi, υ) ∈ Ui,×P

= 〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉

− 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj〉∂Ωs

+ 〈λi,−ω2ρs ui − fi〉+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj − zi〉∂Ωz

+ 〈λi, (Cijkl
1

2
(uk,l + ul,k))nj + p ni〉∂Ωc + 〈υi, pi〉 − 〈υ, pini〉∂Ωa

− 〈υ, pini〉∂Ωc − 〈υ, k2p〉+ 〈υ, pini − f(β − jγk)p〉∂Ωa

+ 〈υ, pini − ρaω2ui ni〉∂Ωc

=
∂

∂u

(
〈1
2

(λi,j + λj,i),Cijkl
1

2
(uk,l + ul,k)〉+ 〈λi,−ω2ρs ui − fi〉

− 〈λi, zi〉∂Ωz + 〈λi, p ni〉∂Ωc + 〈υi, pi〉

− 〈υ, k2p〉 − 〈υ, f(β − jγk)p〉∂Ωa − 〈υ, ρaω2ui ni〉∂Ωc

)
= 〈1

2
(λi,j + λj,i),Cijkl

1

2
(δuk,l + δul,k)〉+ 〈λi,−ω2ρs δui〉

+ 〈λi, δp ni〉∂Ωc + 〈υi, δpi〉 − 〈υ, k2δp〉 − 〈υ, f(β − jγk)δp〉∂Ωa

− 〈υ, ρaω2δui ni〉∂Ωc

= 〈1
2

(δui,j + δuj,i),Cijkl
1

2
(λk,l − λl,k)〉∗ + 〈δui, ω2ρs λi〉∗

+ 〈δp, λi ni〉∗∂Ωc + 〈δpi, υi〉∗ − 〈δp, k2υ〉∗ − 〈δp, f(β + jγk)υ〉∗∂Ωa

− 〈δui, ρaω2υ ni〉∗∂Ωc

=


−〈(δui,Cijkl

1
2
(λi,j + λj,i)), j〉∗

+〈(δui,Cijkl
1
2
(λi,j + λj,i))nj〉∗∂Ωc

−〈δui, ω2ρs λi〉∗ − 〈δui, ρaω2υ ni〉∗∂Ωc

−〈δp, υi,i〉∗ + 〈δp, υ ni〉∗∂Ωa
+ 〈δp, υ ni〉∗∂Ωc

−〈δp, k2υ〉∗ − 〈δp, f(β − jγk)υ〉∗∂Ωa
+ 〈δp, λini〉∗∂Ωc



(2.203)

The structural boundary in Eq. 2.203 is defined as ∂Ωs = ∂Ωz ∪ ∂Ωu ∪ ∂Ωc. The fields
λi = 0 and ui = 0 on ∂Ωu since λi ∈ Ui and ui ∈ Ui. Hence, the application of the divergence
theorem yields a set of homogeneous boundary conditions on ∂Ωu. Furthermore, in order
to ensure a self-adjoint operator, proper Neumann boundary condition are required. Thus,
a set of free Neumann boundary conditions is defined on ∂Ωz, i.e. (Cijkl

1
2
(λk,l + λl,k))nj =

0 on ∂Ωz. Finally, a set of nonhomogeneous Neumann boundary condition is defined on
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∂Ωc. This set of nonhomogeneous Neumann boundary condition is a consequence of the
derivations shown in Eq. 2.203 and is defined as (Cijkl

1
2
(λk,l + λl,k))nj = ρaω

2υ ni.

The acoustic boundary is defined as ∂Ω = ∂Ωa ∪ ∂Ωc. The application of the divergence
theorem yields nonhomogeneous Neumann boundary conditions on ∂Ωa and ∂Ωc. Therefore,
these sets of boundary conditions are defined as υ ni = f(β + jγk)υ on ∂Ωa and υ ni =
λini on ∂Ωc. Notice the change in sign of the Sommerfeld radiation boundary condition
imaginary component. This change in sign is due to the adjoint operation. These sets of
structural and acoustic boundary conditions ensure the validity of the adjoint equations
defined in Eq. 2.203.

〈(guu(u, zi))∗, δu〉 =
∂

∂u




−〈(1,Cijkl

1
2
(λi,j + λj,i)), j〉

+〈1, (Cijkl
1
2
(λi,j + λj,i))nj〉∂Ωc

−〈1, ω2ρs λi〉 − 〈1, ρaω2υ ni〉∂Ωc

−〈1, υi,i〉+ 〈1, υ ni〉∂Ωa + 〈1, υ ni〉∂Ωc

−〈1, f(β − jγk)υ〉∂Ωa

−〈1, k2υ〉+ 〈1, λini〉∂Ωc



 = 0 (2.204)

〈(guz(u, zi))∗, δzi〉 =
∂

∂zi




−〈1, (Cijkl

1
2
(λi,j + λj,i)), j〉

+〈1, (Cijkl
1
2
(λi,j + λj,i))nj〉∂Ωc

−〈1, ω2ρs λi〉 − 〈1, ρaω2υ ni〉∂Ωc

−〈1, υi,i〉+ 〈1, υ ni〉∂Ωa + 〈1, υ ni〉∂Ωc

−〈1, f(β − jγk)υ〉∂Ωa

−〈1, k2υ〉+ 〈1, λini〉∂Ωc



 = 0 (2.205)

Discretization. Lets define finite-dimensional subspaces Uhi ⊂ Ui with basis Uhi = span{φmi }Mm=1,
Ph ⊂ P with basis Ph = span{ψn}Nn=1, and Zhi ⊂ Zi with basis {θoi }Oo=1. This leads to uhi =∑M

m=1 u
m
i φ

m
i , ph =

∑N
n=1 p

nψn, zhi =
∑O

o=1 z
o
i θ
o
i , λ

h
i =

∑M
m=1 λ

m
i φ

m
i , and υh =

∑N
n=1 υ

nψn.
Furthermore, the quantities δuhi , δp

h, δzhi , δλi, and δυh can be respectively approximated as
follow: δuhi =

∑M
m=1 δu

m
i φ

m
i , δph =

∑N
n=1 p

nψn, δzhi =
∑O

o=1 z
o
i θ
o
i , δλ

h
i =

∑M
m=1 δλ

m
i φ

m
i , and

δυh =
∑N

n=1 δυ
nψn. Subsequently, the Galerkin approximation of the required operators to

solve the optimal control problem are defined as

J(uh, zhi ) =
α

2
〈uhi − ûi, uhi − ûi〉+R(zhi ) (2.206)

Ju(u
h, zhi ) =

Nelem∑
e=1

(
M∑
a=1

α〈φa, uhi − ûi〉

)
(2.207)

Jz(u
h, zhi ) =

Nelem∑
e=1

(
O∑
a=1

〈θa, Rz(z
h
i )

)
(2.208)

Juu(u
h, zhi ) =

Nelem∑
e=1

(
M∑
a=1

M∑
b=1

α〈φa, φb〉

)
(2.209)

Juz(u
h, zhi ) = 0 (2.210)
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Jzz(u
h, zhi ) =

Nelem∑
e=1

(
O∑
a=1

O∑
b=1

〈θa, Rzz(z
h
i )θb〉

)
(2.211)

Jzu(u
h, zhi ) = 0 (2.212)

g(uh, zhi ) =

Nelem∑
e=1





∑M
a=1〈

1
2
(φai,j + φaj,i),Cijkl

1
2
(uhk,l + uhl,k)〉

−
∑M

a=1〈φai , ρs ω2 uhi + fi〉
−
∑M

a=1〈φai , zi〉∂Ωz +
∑M

a=1〈φai , ph ni〉∂Ωc = 0∑N
b=1〈ψbi , phi 〉 −

∑N
b=1〈ψbi , k

2 ρa p
h〉

−
∑N

b=1〈ψb, f(β − jγk) ph〉∂Ωa

−
∑N

b=1〈ψb, ρa ω2 uhi ni〉∂Ωc = 0




(2.213)

gu(u
h, zhi ) =

Nelem∑
e=1




∑M

a=1〈
1
2
(φai,j + φaj,i),Cijkl

1
2
(λhk,l + λhl,k)〉

−
∑M

a=1〈φai , ρs ω2 λhi 〉+
∑M

a=1〈φai , ρa ω2 υh ni〉∂Ωc = 0∑N
b=1〈ψbi , υhi 〉 −

∑N
b=1〈ψb, k

2 ρa υ
h〉

−
∑N

b=1〈ψb, f(β − jγk) υh〉∂Ωa

−
∑N

b=1〈ψb, λhi ni〉∂Ωc = 0



 (2.214)

gz(u
h, zhi ) =

Nelem∑
e=1

(
O∑
a=1

〈λhi , θai 〉

)
(2.215)

(gu(u
h, zhi ))∗ =

Nelem∑
e=1





∑M
a=1〈

1
2
(φai,j + φaj,i),Cijkl

1
2
(λhk,l + λhl,k)〉

−
∑M

a=1〈φai , ρs ω2 λhi 〉
+
∑M

a=1〈φai , ρa ω2 υh ni〉∂Ωc = 0∑N
b=1〈ψbi , υhi 〉 −

∑N
b=1〈ψb, k

2 ρa υ
h〉

−
∑N

b=1〈ψb, f(β − jγk) υh〉∂Ωa

−
∑N

b=1〈ψb, λhi ni〉∂Ωc = 0




(2.216)

(gz(u
h, zhi ))∗ =

Nelem∑
e=1

(
O∑
a=1

〈θai , λhi 〉

)
(2.217)

(guu(u
h, zhi ))∗ = 0 (2.218)

(guz(u
h, zhi ))∗ = 0 (2.219)

(gzz(u
h, zhi ))∗ = 0 (2.220)

(gzu(u
h, zhi ))∗ = 0 (2.221)

Optimal Control in Steady-State Acoustics

An optimal control problem in steady-state acoustics is to estimate the source term gi
to obtain a desired pressure field û. We define Ω ⊆ Rd, d ∈ {1, 2, 3}, as the computational
domain with boundary ∂Ω = ∂Ωu∪∂Ωr. The regions ∂Ωu and ∂Ωr are the boundaries where
Dirichlet and Neumann conditions are applied, respectively. Once more, we use standard
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tensor notation with Einstein summation. The index i takes on the values 1, . . . , d. Partial
differentiation is denoted by a comma.

The PDEs of steady-state acoustics are given by

−ui,i − k2u = z in Ω

u = 0 on ∂Ωu

uini = f (β − jγk)u on ∂Ωr,

(2.222)

where u denotes the complex-valued pressure field. The fluid mass density is denoted by ρf .
The acoustic wave number is given by k = ω

√
κf / ρf , where κf is the fluid bulk modulus.

Angular frequency is denoted by ω.

Impedance boundary conditions are imposed on ∂Ωr to allow the acoustic wave to pass
through and not reflect back into the computational domain. The geometric factor related
to the metric factors of the curvilinear coordinate system used on the boundary is denoted
by γ and the spreading loss term is denoted by β.

Lets consider the following optimal control problem

minimize
(u,z) ∈ U×Z

α

2
〈u− û, u− û〉+R(z)

subject to

−ui,i − k2u = z in Ω,

uini = f (β − jγk)u in ∂Ωr

(2.223)

where U = {u : u ∈ H1 (Ω) , u = 0 on ∂Ωu}, Z = {z : z ∈ L2(Ω)}. Hm(Ω) are Sobolev
spaces of square integrable functionals whose m-th derivatives are also square integrable.
Whenever m = 0 we shall keep the notation with L2(Ω).

First-order neccesary optimality conditions. The Lagrangian associated with the optimal
control problem defined in Eq. 2.223 is given by

L(u, g, λ) =
α

2
〈u− û, u− û〉+R(z)

+ <[〈λ,−ui,i − k2u− z〉+ 〈λ, uini − f(β − jγk)u)〉]
(2.224)

If {ũ, z̃} ∈ U × Z is a local solution to the optimal control problem in Eq. 2.2, there exists
Lagrange multipliers λ ∈ U , such that the first-order necessary optimality conditions hold
at {ũ, z̃}, i.e.

∇L(u, z, λ)(δu, δz, δλ) = Lu(u, z, λ)δu+ Lz(u, z, λ)δz + Lλ(u, z, λ)δλ = 0 (2.225)

Second-Order Sufficient Conditions. If (ũ, z̃, λ) ∈ U ×Z ×U satisfy the first-order necessary
optimality conditions and the Hessian operator exist and is positive semidefinite, then (ũ, z̃)
is a strict local minimum.
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Operators. The operators required to solve the optimal control problem are defined as

J(u, z) =
α

2
〈u− û, u− û〉+R(z) (2.226)

〈Ju(u, z), δu〉 =
∂

∂u

(
α

2
〈u− û, u− û〉+R(z)

)
= α〈u− û, δu〉

(2.227)

〈Jz(u, z), δz〉 =
∂

∂z

(
α

2
〈u− û, u− û〉+R(z)

)
= 〈Rz(z), δz〉

(2.228)

〈Juu(u, z), δu〉 =
∂

∂u

(
α〈1, u− û〉

)
= α〈1, δu〉

(2.229)

〈Juz(u, z), δz〉 =
∂

∂z

(
α〈1, u− û〉

)
= 0 (2.230)

〈Jzz(u, z), δz〉 =
∂

∂z

(
〈1, Rz(z)〉

)
= 〈Rzz(z), δz〉

(2.231)

〈Jzu(u, z), δu〉 =
∂

∂u

(
〈1, Rz(z)〉

)
= 0 (2.232)

g(u, z) =

[
−ui,i − k2u = z in Ω

uini = f(β − jγk)u on ∂Ωr

]
(2.233)

〈gu(u, z), δu〉 = 〈λ,−ui,i − k2u− z〉+ 〈λ, uini − f(β − jγk)u〉∂Ωr = 0 ∀ λ ∈ U
= 〈λi, ui − k2u− z〉 − 〈λ, uini〉∂Ω + 〈λ, uini − f(β − jγk)u〉∂Ωr

= 〈λi, ui − k2u− z〉 − 〈λ, f(β − jγk)u〉∂Ωr

= 〈−λi,i, u〉+ 〈λini, u〉∂Ω − 〈λ, k2u+ z〉 − 〈λ, f(β − jγk)u〉∂Ωr

=
∂

∂u

(
〈−λi,i, u〉 − 〈λ, k2u+ z〉+ 〈λini, u〉∂Ωr − 〈λ, f(β − jγk)u〉∂Ωr

)
= 〈−λi,i, δu〉 − 〈k2λ, δu〉+ 〈λini, δu〉∂Ωr − 〈f(β − jγk)λ, δu〉∂Ωr

(2.234)

In Eq. 2.234 the boundary is defined as ∂Ω = ∂Ωr ∪ ∂Ωu. Since λ ∈ U and u ∈ U ,
then λ = u = 0 on ∂Ωu. Hence, the application of the divergence theorem results in a set of
homogeneous boundary conditions on ∂Ωu. However, the Sommerfeld radiation boundary
condition are nonhomogeneous on ∂Ωr, i.e. u 6= 0. Resulting in a set of nonhomogeneous
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boundary condition defined as λini = f(β − jγk)λ on ∂Ωr.

〈gz(u, z), δz〉 = 〈λ,−ui,i − k2u− z〉+ 〈λ, uini − f(β − jγk)u〉∂Ωr = 0 ∀ λ ∈ U
= 〈λi, ui − k2u− z〉 − 〈λ, uini〉∂Ω + 〈λ, uini − f(β − jγk)u〉∂Ωr

= 〈λi, ui − k2u− z〉 − 〈λ, f(β − jγk)u〉∂Ωr

= 〈−λi,i, u〉+ 〈λini, u〉∂Ω − 〈λ, k2u+ z〉 − 〈λ, f(β − jγk)u〉∂Ωr

=
∂

∂z

(
〈−λi,i, u〉 − 〈λ, k2u+ z〉+ 〈λini, u〉∂Ωr − 〈λ, f(β − jγk)u〉∂Ωr

)
= −〈λ, δz〉

(2.235)
〈δu, (gu(u, z))∗〉 = 〈λ,−ui,i − k2u− z〉+ 〈λ, uini − f(β − jγk)u〉∂Ωr = 0 ∀ λ ∈ U

= 〈λi, ui − k2u− z〉 − 〈λ, uini〉∂Ω + 〈λ, uini − f(β − jγk)u〉∂Ωr

= 〈λi, ui − k2u− z〉 − 〈λ, f(β − jγk)u〉∂Ωr

= 〈−λi,i, u〉+ 〈λini, u〉∂Ω − 〈λ, k2u+ z〉 − 〈λ, f(β − jγk)u〉∂Ωr

= 〈u,−λi,i〉∗ + 〈u, λini〉∗∂Ω − 〈k2u+ z, λ〉∗ − 〈u, f(β + jγk)λ〉∂Ωr

=
∂

∂u

(
〈u,−λi,i〉∗ − 〈k2u+ z, λ〉∗ + 〈u, λini〉∗∂Ωr − 〈u, f(β + jγk)λ〉∗∂Ωr

)
= 〈δu,−λi,i〉∗ − 〈δu, k2λ〉∗ + 〈δu, λini〉∗∂Ωr − 〈δu, f(β + jγk)λ〉∗∂Ωr

(2.236)

In Eq. 2.236 the boundary is defined as ∂Ω = ∂Ωr ∪ ∂Ωu. Since λ ∈ U and u ∈ U ,
then λ = u = 0 on ∂Ωu. Hence, the application of the divergence theorem results in a set of
homogeneous boundary conditions on ∂Ωu. However, once again, the Sommerfeld radiation
boundary condition are nonhomogeneous on ∂Ωr. This yields a set of nonhomogeneous
boundary condition defined as λini = f(β + jγk)λ on ∂Ωr. Notice the change in sign of the
Sommerfeld radiation boundary condition imaginary component. This change in sign is due
to the adjoint operation.

〈δz, (gz(u, z))∗〉 = 〈λ,−ui,i − k2u− z〉+ 〈λ, uini − f(β − jγk)u〉∂Ωr = 0 ∀ λ ∈ U
= 〈λi, ui − k2u− z〉 − 〈λ, uini〉∂Ω + 〈λ, uini − f(β − jγk)u〉∂Ωr

= 〈λi, ui − k2u− z〉 − 〈λ, f(β − jγk)u〉∂Ωr

= 〈u,−λi,i〉∗ + 〈u, λini〉∗∂Ω − 〈k2u+ z, λ〉∗ − 〈u, f(β + jγk)λ〉∂Ωr

=
∂

∂z

(
〈u,−λi,i〉∗ − 〈k2u+ z, λ〉∗ + 〈u, λini〉∗∂Ωr − 〈u, f(β + jγk)λ〉∗∂Ωr

)
= −〈δz, λ〉∗

(2.237)

〈(guu(u, z))∗, δu〉 =
∂

∂u

(
〈1,−λi,i〉 − 〈1, k2λ〉+ 〈1, λini〉∂Ωr − 〈1, f(β + jγk)λ〉∂Ωr

)
= 0

(2.238)

〈(guz(u, z))∗, δz〉 =
∂

∂z

(
〈1,−λi,i〉 − 〈1, k2λ〉+ 〈1, λini〉∂Ωr − 〈1, f(β + jγk)λ〉∂Ωr

)
= 0

(2.239)
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〈(gzu(u, z))∗, δu〉 =
∂

∂u

(
〈1, λ〉

)
= 0 (2.240)

〈(gzz(u, z))∗, δz〉 =
∂

∂z

(
〈1, λ〉

)
= 0 (2.241)

Discretization. We define finite-dimensional subspaces Uh ⊂ U with basis Uh = span{φm}Mm=1

and Zh ⊂ Z with basis Zh = span{ψn}Nn=1. This leads to uh =
∑M

m=1 u
mφm, zh =∑N

n=1 z
nψn, and λh =

∑M
m=1 λ

mφm. Furthermore, the quantities δuh and δzh can be respec-

tively approximated as follow: δuh =
∑M

m=1 δu
mφm and δzh =

∑N
n=1 δz

nψn. Subsequently,
the Galerkin approximation of the required operators to solve the optimal control problem
are defined as

J(uh, zh) =
α

2
〈uh − û, uh − û〉+R(zh) (2.242)

Ju(u
h, zh) =

Nelem∑
e=1

(
M∑
a=1

α〈φa, uh − û〉

)
(2.243)

Jz(u
h, zh) =

Nelem∑
e=1

(
N∑
a=1

〈ψa, Rz(z
h)

)
(2.244)

Juu(u
h, zh) =

Nelem∑
e=1

(
M∑
a=1

M∑
b=1

α〈φa, φb〉

)
(2.245)

Juz(u
h, zh) = 0 (2.246)

Jzz(u
h, zh) =

Nelem∑
e=1

(
N∑
a=1

N∑
b=1

〈ψa, Rzz(z
h)ψb〉

)
(2.247)

Jzu(u
h, zh) = 0 (2.248)

g(u, z) =

Nelem∑
e=1

(
M∑
a=1

〈φai , uhi 〉 −
M∑
a=1

〈φa, k2uh〉+
M∑
a=1

〈φa, f(β − jγk)uh〉∂Ωr

)
(2.249)

gu(u, z) =

Nelem∑
e=1

(
M∑
a=1

〈φai , λhi 〉 −
M∑
a=1

〈φa, k2λh〉+
M∑
a=1

〈φa, f(β − jγk)λh〉∂Ωr

)
(2.250)

gz(u, z) =

Nelem∑
e=1

(
N∑
a=1

〈λh, ψa〉

)
(2.251)

(gu(u, z))
∗ =

Nelem∑
e=1

(
M∑
a=1

〈φai , λhi 〉 −
M∑
a=1

〈φa, k2λh〉+
M∑
a=1

〈φa, f(β + jγk)λh〉∂Ωr

)
(2.252)

(gz(u, z))
∗ =

Nelem∑
e=1

(
N∑
a=1

〈ψa, λh〉

)
(2.253)

(guu(u, z))
∗ = 0 (2.254)
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(guz(u, z))
∗ = 0 (2.255)

(gzz(u, z))
∗ = 0 (2.256)

(gzu(u, z))
∗ = 0 (2.257)
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