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Abstract

Aharonov-Bohm oscillations in a mesoscopic ballistic
ring are considered under the influence of a resonant mag-
netic field with one and two frequencies. We investigate
the oscillations of the time-averaged electron energy at zero
temperature in the regime of an isolated quantum nonlinear
resonance and at the transition to quantum chaos, when two
quantum nonlinear resonances overlap. It is shown that the
time-averaged energy exhibits resonant behavior as a func-
tion of the magnetic flux, and has a “staircase” dependence
on the amplitude of the external field. The delocalization
of the quasi-energy eigenfunctions is analyzed.

1. Introduction

Recently persistent currents has been measured in an artificial
semiconductor ring formed in a AlGaAs/AlAs heterostructure [1].
The high mobility of electrons in these devices enables one to con-
sider their motion in the ring to be ballistic, and suggests the use
of the non-interacting electron gas model for the description of the
AB-oscillations. For the model of noninteracting, ballistic electrons
in a semiconducting ring, one can pose the question: Is it possible
to regulate (for example, to increase) the amplitude of the AB os-
cillations by applying an additional periodic electromagnetic field




to the system ? In [2] this problem was investigated using a non-
resonant electromagnetic field with a high frequency, w > Ty/h.
In the low frequency limit the conductance in a metallic ring in-
fluenced by the ac field was studied in [3]. The first experimental
results on the dynamic response of mesoscopic semiconductor rings
coupled to an electromagnetic resonator, are reported in [4].

In the present article we consider a one dimensional mesoscopic
ballistic ring placed into a resonant cavity. The electrons in the ring
interact resonantly with the cavity ac magnetic field, and with the
Aharonov-Bohm electromagnetic potential, which results in AB os-
cillations. The ac magnetic field changes significantly the electron’s
quasi-energy spectrum and, generally speaking, exerts a strong in-
fluence on the AB oscillations. We investigate two regimes of the
resonant influence of the external ac magnetic field: (i) the regime
of an isolated quantum nonlinear resonance (QNR), which concept
was first introduced in [5] in a study of the influence of a resonant
external field on quantum system with non-equidistant spectrum;
and (ii) the transition to quantum chaos when two QNRs overlap.
The general approach to interaction of QNRs is developed in [6,7].

We show that QNR takes place when the frequency of the ex-
ternal field w resonates with the frequency of electron transitions
in the vicinity of the Fermi level ng: w = wp (where wr is the
Fermi frequency). When the external field possesses two resonant
frequencies, two QNRs occur in the system. Under the conditions
of overlapping of two QNRs, a transition to quantum chaos takes
place. In both cases, for an isolated QNR and for two overlapped
QNRs, we calculate the average in time shift of the ground state
energy induced by the resonant external field. We find that the en-
ergy shift exhibits characteristic resonant behavior. The structure
of these resonances depends on the value of the AB magnetic flux
a, on the amplitude A, and on the frequency w of the ac magnetec
field. We also investigate the behavior of the quasi-energy eigen-
functions contributing to the resonance dynamics of the system.




2. The Resonant Hamiltonian S
Consider a small ballistic ring of the radius R placed in the plane
(z,y) at the center of a cylindrical resonator of the radius ro. We
assume that the electrons in the ring are influenced by an exter-
nal field which is described by a vector potential A consisting of
two parts : A = A4B 4+ ARES(4). Here A4B = (0,0, A2B) and
A28 = ®/2r R, describes the AB field, with ® being the corre-
sponding magnetic flux, whereas ARES (t) describes the magnetic
field created by the resonator’s eigenmodes. The solution for one
of the eigenmodes of the cylindrical resonator can be written in the
form: AFES =0, ARES = —n(H/k*r)sin(ng)J,(kr) cos (wt — k,z),
APES = —(H[k)cos(np)J},(z)|z=kr cos (wt — k,z), where J,(z) is
the Bessel function and J'(z) = dJ(z)/dz. The frequency of this
mode is w? = ¢?(k? + k2). Below, we put k, = 0. The wave-vector
k is “quantized”: k = k], /ro, where k], is the r-th zero of the func-
tion J,(z). For example, ki, ~ 1.84, ki, ~ 5.33, k{; =~ 8.54, k{; ~
3.83, and kj, ~ 7.01. H is an arbitrary constant of order of magni-
tude of the magnetic field inside the resonator. In our general case,
the effective Hamiltonian must take into account the resonator’s
two eigenmodes, with eigenfrequencies w; and w;. Then the one-
electron Hamiltonian takes the form: H = (k*/2mR?){8/id¢ —
a — Ay sin(Ng) coswyt — Ap sin( M) cosw,t}?, where m is the elec-
tron’s mass; a = /P, and Ay ; = —(20RJIy(k12R)Hy2)/(Poky.2)
are the dimensionless flux and the amplitudes of the electromag-
netic waves. Because the problem we consider is defined on a ring,
the wave function of an electron is periodic in the angle ¢ with pe-
riod 27: ¥(p + 27,t) = ¥(p,t). Hence, it is convenient to choose
the functions |n >= (1/v/27)exp(ing), (n = 0,+1,+2,...) as a ba-
sic set. In what follows we shall consider the resonant processes in
the region near the Fermi level ng, where the values of n are rather
large: n ~ np > 1. In addition, we assume that the amplitudes of
the external field are sufficiently small: A; ; < np.

Let us now discuss some characteristic values for the param-
eters introduced above. Following (1], we choose R ~ 10~*cm,
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vp ~ 107em/s, wp ~ vp/L ~ 10"s7! and nyp ~ 10°. Let
ro ~ 1072cm, k! = k}, = 1.84. Noting that ®; =~ 4 x 10-"CGS,
we derive the relation between the dimensionless amplitude A and
the amplitude of the eigenmode of the magnetic field H in the
resonator: A = 4H, where the magnetic field H is measured in oer-
steds. Because we are dealing with the many-electron problem, we
must incorporate the Pauli exclusion principle. For this purpose,
we express the Hamiltonian A in terms of the operators ¢!, &, of
creation and annihilation of a fermion on a given energy level n:
{22,814 = bnme, {&,8L}4 = 0, {&n,én}+ = 0. Then, to lowest
order in Ay /np, we derive the following dimensionless Hamilto-
nian: H, = CmR? /B H = 3, (n— )28 é, + i\ (t) Tpnél  nén —
iA1(2) Lo 1l _nén + iA2(t) Tl arén — iAa(2) A

Yo né,t_Mé,,, where A 2(t) = Ay 2coswy ot. In deriving H,, we also
used the conditions N, M <« np.

3. Isolated Quantum Nonlinear Resonance

In this section we consider the case when the resonant external
field has only one eigenmode with frequency w; = w, and A = A,
A2 = 0. Assume that the frequency w is resonant with the tran-
sitions between the levels with numbers n and N + n of the un-
perturbed Hamiltonian, H. Then, in the rotation wave approx-
imation (RWA), the resonant Hamiltonian is time-independent:
HY = T Eéle +id T8, vé — 14T 8_yé, where E; = (1 -
a)? + (2ng — w/Nk)l, (I = n — nr), and A = Ang. The trans-
formation to the RWA is realized by using the unitary operator
U = exp{—i(w/N)t o néln).

4. Interaction of Two Quantum Nonlinear Resonances
Consider the case when the resonator’s two eigenmodes, with fre-
quencies w; and w,, influence the electron’s motion in the ring.
In this case, two QNRs can interact strongly, and a transition
to quantum chaos can occur. The equivalent resonant Hamilto-
nian (which describes the slow dynamics) is time-dependent and
posesses 1.5 degrees of freedom. The corresponding dynamics is
nonintegrable, and classically the motion is chaotic in some regions




of phase space. In the quantum case, this kind of behavior is called
“quantum chaos”. Neglecting the high-frequency oscillating terms,
we derive from H, the approximate Hamiltonian describing the
slow dynamics of two interacting QNRs: H{¥ = T, (n - (w1 -

A)/2Nin: - a) &én + ihcos AT 5 &, v — iAcos Ar T E_né,
Whete A2 = np)y ; (for simplicity, we assumed that A; = A; = A),
= (wy — wy)/2k, k = k/2mR?. The corresponding unitary op-
erator which realizes the transformation to the RWA has the form
U = exp {-wt T nc,,c,,} v = (w; +wy)/2N).
5. Numerical Simulation
In a numerical simulation, we calculated the time-averaged en-
ergy shift: AE, = limr_oo(1/T) JT AEy(7)dr, where AEy(1) =
(1/2Nnp)[E(1) ~ Eo], with E(1) =< ¥(7)| Za(n—a)?élé.|¥(r) >
being the time-dependent average energy of the system, and Ey be-
ing the energy of the ground state.

AE, ALy
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Fig. 1. Dependence of the average energy shift AEy on o; A =
0.00; wo=0; N=1.
Fig. 2. Dependence of AEgon a; A =0.05; we=0; N =1.
Define the relation between the Fermi level ny and the Fermi
frequency wr: |nr(a = 0)] = N, = (wrp/2Nk), and the dimen-
sionless detuning in frequency from wr: wo = (1/2Nx)(w — wr),
where n, = 2N, 4+ 1 is the number of electrons: in the numerical
calculations presented below we assumed that the number of elec-




trons is odd. First, we discuss the numerical results on an isolated
QNR considered in Sec. 3. When the resonant field with w = wp
(wo = 0) is applied with rather small amplitude, the dynamics of
electrons in the ring can be described within the two-level approx-
imation. This is demonstrated in Fig. 1, for A = 1073,

AL AE,
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Fig. 3. Dependence of AEgon A; a=0.5;we=0; N = 1.
Fig. 4. Dependence of AE, on a for two interacting QNRs; A = 1;
A=1;0=0N=1.
Fig. 5. Dependence of the quasi-energy functions A}”) on [, for
c=12.,1A=05A=10=0 N =1 a = 025467
(resonant value).

In this case, when a = 0.5, and the resonant conditions are sat-
isfied, two levels of the unperturbed Hamiltonian contribute to the
eigenfunctions, resulting in a narrow (8 ~ 10~3) resonance in the




behavior of the electron energy AEy(a). When A increases, more
quasi-energies are involved in the electron’s dynamics, resulting in
a complicated resonant structure in the dependence of AFE, on a.
A “double resonant” phenomenon was observed for still smaller
values of A (A = 0.05), at the resonant value of a: a = 0.5 (see
Fig. 2).

Numerical calculations also show that the second resonance in Fig.
2 has complicated substructure. The “staircase” behavior of AE,
on the perturbation parameter A is shown in Fig. 3. Notice, that
the staircase behavior of the function AEg(A) is well pronounced
only in the vicinity of the resonance.

Let us next present the results of our numerical simulations for
two interacting QNRs. Fig. 4 demonstrates the dependence of the
. time-averaged electron’s energy AEy(a) on the magnetic flux a,
for rather large value of the perturbation parameter A. This kind
of resonant structure of the function AFg on a is connected with a
significant modification in the structure of the quasi-energy eigen-
functions when the magnetic lux o varies. In the resonant case
(Fig. 5), approximately 7 unperturbed levels give a contribution
to the structure of the eigenfunction with ¢ = 8 (In Fig. 5, o is
the number of eigenfunction, and [/ is the number of the compo-
nent in the unperturbed basis). This effect can be interpreted as a
“delocalization” of the quasi-energy eigenfunctions in the system,
when two QNRs interact strongly. Usually, the problems connected
with a delocalization of the quasi-energy eigenfunctions, under the
conditions of transition to quantum chaos, are investigated in the
quasi-classical region of parameters: that is, for large number levels
involved in the dynamics, so that én > 1. In the numerical calcula-
tions presented here, we have chosen the perturbation parameter A
not too large : A < 3. At these values of A, the characteristic num-
ber of levels is of order 6n < 10. The problem of delocalization of
the quasi-energy eigenfunctions under the conditions of transition
to quantum chaos is not yet developed for this kind of systems.

Finally, we estimate the characteristic value of the average en-
ergy shift AFy, in the presence of a resonant interaction of electrons
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in a ring with the ac magnetic field. For our chosen set of param-
eters (see Sec. 2) we find AEg ~ 107* — 1073eV, which we believe
indicates that this effect is within experimentally accessible limits.
Thus we hope that these resonant AB oscillations can soon be in-
vestigated experimentally. The main theoretical issues for further
investigations include: (a) incorporating the Coulomb interaction,
which can likely be done within the framework of the Luttinger
liquid model; and (b) the influence of impurities.
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