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ABSTRACT

We describe two Chebyshev recursion methods for calculations with very large
sparse Hamiltonians, the kernel polynomial method (KPM) and the maximum
entropy method (MEM). They are especially applicable to physical properties
involving large numbers of eigenstates, which include densities of states, spec-
tral functions, thermodynamics, total energies, as well as forces for molecular
dynamics and Monte Carlo simulations. We apply Chebyshev methods to the
electronic structure of Si, the thermodynamics of Heisenberg antiferromagnets,
and a polaron problem.

1. Introduction

In computational condensed matter physics we are often interested in calculating
physical properties of sparse model Hamiltonians for finite systems. The number of
states N is usually much too large to apply conventional eigenvalue methods scal-
ing as O(N?). Efficient calculations of ground and isolated state properties usually
employ Lanczos recursion methods, which scale as O(N) and use only matrix-vector-
multiplies (MVM) to minimize storage. Unfortunately, Lanczos methods are ineffi-
cient and statistically uncontrolled for properties involving large numbers of eigen-
states. These include densities of states (DOS), spectral functions, thermodynamics,
total energies, forces for molecular dynamics and Monte Carlo simulations, etc. Lanc-
zos methods are also numerically unstable for large numbers of recursions without
expensive reorthogonalizations. The present paper suggests that Chebyshev recur-
sion methods'? can overcome such difficulties. They scale as O(N) for properties
involving large numbers of states if finite energy resolution and statistical accuracy
are acceptable. They are numerically stable for large numbers of recursions.

Consider the density of states (DOS) as representative of properties of interest.
The first step in applying Chebyshev methods is to scale the Hamiltonian, H = aX+5b
such that all eigenvalues X, of X lie between —1 and +1. The DOS is then

1 & |
D(X) =+ 3 6(X - X,) (1)
n=1
The data about D(X) consists of Chebyshev moments,

fm = Tr{Ta(X)) = [ 11 To(X)D(X)dX . (2)




These are more informative than power moments, 7r{X™}, at finite machine preci-
sion. Calculations use Chebyshev recursion,

Tm+1(X) = ZXTm(X) - Tm—l(X) ) (3>

with the same MVM algorithm used in Lanczos methods. Exact evaluation of M
moments uses cpu time o O(N2M). A stochastic method?, scaling as O(NMN,),
uses estimators

1
TS FZ < T (X)r > (4)

where |r > are N, Gaussian random vectors. Such data have calculable statistical vari-
ance proportional to 1/NN,. If the Hamiltonian has only local off-diagonal elements,
as in tight-binding Hamiltonians, a non-stochastic locally truncated approximation
to the Hamiltonian H; may be adequate®*. The estimator,

TS Z <i|Tn (X)) > (5)

generates data with a systematic error determined by the truncation range. Cpu
scales as O(NMJ), where J is the number of states in the truncation range. Exact
energy derivatives (or forces) can also be calculated.

2. Methods

The goal is to make the best possible estimate of the DOS using the least cpu time
and memory. The number of moments M will be be limited and subject to statistical
and systematic errors.

KPM starts with an exact expansion of the DOS

D) = s o+ 2 Tl ©)

n=1

which is then truncated at M moments. A factor ¢, is also introduced to damp the
Gibbs phenomenon,

Di(X) = s[5 + 23 it To(X)| )

n=1

The label “kernel” becomes meaningful after rewriting in the variable ¢ = cos™!(z)

in which T)n(z) = cos(m¢). Then

27 M
Dr(¢) = /0 8 — do)D(o)dd, ;5 bk(d) = 2—17; [90 +25° gm COS(m¢)J , (8)

m=1

is a simple convolution. Dg(¢) is a truncated Fourier series. The “kernel” §x(¢) is
a 2m-periodic polynomial approximation to a Dirac delta function, analogous to the
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Figure 1: KPM DOS and band energy calculation for Si 256 atom supercell.

resolution function of a spectrometer. Resolution is uniform in ¢ with width A¢ «
M. If g,, = 1, the kernel is oscillatory with a slowly decreasing envelope function
at large |¢|. The result is the Gibbs phenomenon, a lack of uniform convergence at
discontinuities in DOS. An optimal g, is determined variationally by minimizing the
uniform norm®. The resulting kernel is strictly positive, normalized and has minimal
variance in ¢>. This choice guarantees positivity of the DOS and monotonicity of
cumulative DOS required for electronic structure.
KPM can be applied to other properties such as spectral functions®,

1 1
— Ym — -
A(w)—ﬂgxgl+wlm{< ¥,]O w——H—z’nol% >} . (9)
KPM approximations use moments uQ =< Wo|OT,,(X)0}¥; >.
Applications to thermodynamics use a rapidly converging Fourier-Bessel expan-
sion of the partition function?,

2= 150 +2 3 TulBalin] (10)
m=1

The I,,(Ba) are modified Bessel functions. The partition function involves integral
rather than pointwise properties of the DOS, so the best convergence is achieved with
gm = 1.

Kernel polynomial approximations for finite temperature spectral functions can
be calculated from double moments of the form g, = Tr{T,,(X)O!T,(X)O}.

The maximum entropy method (MEM)"® can use the same Chebyshev moment
data as KPM. MEM achieves at least a factor of 4 better energy resolution than KPM.




MEM enforces prior knowledge such as positivity. It can take advantage of default
models and other known constraints to improve convergence. It is readily extended
to uncertain data. But MEM introduces a non-uniform resolution, added algorithmic
and computational complexity, and some tendency toward artifacts. For exact data,
the DOS is estimated by maximizing its entropy relative to a default model M(X),

s(p)=- . [D(X)hl (%((%ﬂ X | (11)

-1

within the constraints of the data. That is, maximize

M +1
Q=5D)= 3 Am /_  Tn(X)D(X)dX (12)

m=]

where the A,, are Lagrange multipliers. The solution is

px) = MM g (- 52 2u7,0)) (13

Finding a set of {\,,} is a dual-space non-linear convex optimization problem, which
can be solved using standard algorithms. Chebyshev moment data are advanta-
geous over power moments for MEM because they permit FFT methods to evaluate
integrals. Required cpu time scales as O(M?) and is negligible compared to data
generation time. Efficient MEM algorithms are discussed elsewhere®.

3. Applications

Chebyshev recursion methods have now been applied to a wide variety of con-
densed matter physics problems including the electronic structure and relaxation of
Si and its defects®*, the dielectric functions of quantum dots®, the many-body densi-
ties of states of the Holstein ¢ — J model 1°, the thermodynamics of the Heisenberg
model on various lattices!!, spectral functions of the disordered XXZ model?, etc.

Figure 1 illustrates the application of KPM to the electronic structure of a 216
atom Si supercell using a tight binding Hamiltonian®. This system is small enough
to be exactly diagonalized. Vertical lines are at the energies of the exact eigenstates
and their height is proportional to their degeneracy. The solid line is the KPM
approximation to the DOS obtained for 200 Chebyshev moments. A Fermi energy Er
is the energy at which the cumulative DOS Ck( E) equals the number of electrons. The
total band energy Ep is then the cumulative energy Ex(F) at Er. For band energies
KPM converges in proportion to M~? reaching 10~° accuracy at about M =~ 150.
MEM converges about a factor of 4 faster, reaching 10~° accuracy at M =~ 35.

Figure 2 applies KPM to the DOS of a 26 site Heisenberg Hamiltonian with
N = 67,108, 864. The inset blows up the low energy region. Accurate thermodynamic
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Figure 2: DOS of 26 site Heisenberg model on square lattice from stochastic KPM.

results require fewer random vectors as N increases because the variance scales as
1/NN,. In the present example, N, = 1 is sufficient to achieve an accuracy less
than 5% for the entropy down to temperatures T' = 0.5. We have calculated the
Heisenberg model on various Kagome lattices, revealing a surprising size dependence
of thermodynamic quantities such as the specific heat and static susceptibility!®.

Figure 3 compares MEM and KPM for the DOS of a 1D polaron formation prob-
lem. The Hamiltonian consists of an electron placed into a 10,000 atom chain with
a Peierls distortion, which is then allowed to relax resulting in the polaron state at
E =1.0. MEM achieves dramatically better energy resolution than KPM for isolated
states and band edges, but it tends to “ring” (or oscillate) when singular structures,
such as Van Hove singularities, are nearby.

4. Conclusions

Both KPM and MEM are efficient N-scaling methods for computational many-
body physics and electronic structure problems involving large numbers of eigenstates.
They are based on well-developed concepts in analysis and statistics such as Cheby-
shev approximations, Fourier analysis, unbiased estimators, random sampling and
non-linear optimization. They use the same MVM algorithm as Lanczos diagonal-
ization minimizing storage requirements. KPM is a controlled approximation with
known error bounds. MEM achieves significantly better resolution at the expense of
computational complexity. Both are applicable to extremely large Hamiltonians, and
complementary to Lanczos methods.
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Figure 3: Comparison of KPM and MEM for the DOS of a polaron formation problem.
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