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Outline

ä Particle-in-cell (PIC) methods for plasmas

ä Explicit vs. implicit PIC

ä 1D ES implicit PIC

ë Charge and energy conservation
ë Moment-based acceleration

ä Generalization to Multi-D EM PIC: Vlasov-Darwin model

ë Review and motivation for Darwin model
ë Conservation properties (energy, charge, and canonical momenta)
ë Numerical benchmarks
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Introduction
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Kinetic Plasma Simulation

ä A fully ionized collisionless plasma: ions, electrons, and electromagnetic fields
ä Challenge: integrate electron-ion-field kinetic system on an ion time-scale and a system length

scale while retaining electron kinetic effects accurately.

(We are developing a new implicit algorithm for long-term, system-scale simulations. )

ä Problem features a hierarchical description:
ë How to design a multiscale algorithm?
ë How to respect conservation laws, and constraints?
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Particle-in-cell (PIC) methods for kinetic plasma simulation

∂t f + v · ∇ f +
F
m
· ∇v f = 0

ä Lagrangian solution by the method of characteristics:

f (x, v, t) = f0

(
x−

∫ t

0
dtv, v− 1

m

∫ t

0
dtF
)

; x(t = 0) = x0 ; v(t = 0) = v0

ä PIC approach follows characteristics employing macroparticles (volumes in phase space)

f (x, v, t) = ∑p δ(x− xp)δ(v− vp)

ẋp = vp

v̇p =
qp

mp
(E + v× B)

∂tB +∇× E = 0

−µ0ε0∂tE +∇× B = µ0j

∇ · B = 0

∇ · E =
ρ

ε0

δ(x− xp) −→ S(x− xp) ; Ep = ∑
i

EiS(xi − xp) ; ji = ∑
p

jpS(xi − xp)
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State-of-the-art classical PIC algorithm is explicit

ä Classical explicit PIC: “leap-frogs” particle positions and velocities, field-solve at position update:

ä Implementation is straightforward, but...
ä Performance limitations:

ë CFL-type instability: min(ωpe∆t < 1, c∆t < ∆x). Minimum temporal resolution
ë Finite-grid instability:∆x < λDebye . Minimum spatial resolution
ë Memory bound: challenging for efficient use of modern computer architectures.

ä Accuracy limitations:
ë Lack of energy conservation, problematic for long-time-scale simulations

ä To remove the stability/accuracy constraints of explicit methods, we consider implicit methods.
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Implicit PIC methods

ä Exploration of implicit PIC started in the 1980s

ë Implicit moment method 1

ë Direct implicit method 2

ä Early approaches used linearized, semi-implicit formulations:

ë Lack of nonlinear convergence
ë Particle orbit accuracy (particle and fields integrated in lock-step)
ë Inconsistencies between particles and moments
ë Inaccuracies! →Plasma self-heating/cooling 3

ä Our approach: nonlinear implicit PIC

ë Enforcing nonlinear convergence; complete consistency between particles, moments, and fields.
ë Allowing stable and robust integrations with large ∆t and ∆x (2nd order accurate).
ë Ensuring exact global energy conservation and local charge conservation properties.
ë Allowing adaptivity in both time and space without loss of the conservation properties.
ë Allowing particle subcycling → high operational intensities (compute bound).
ë Allowing fluid preconditioning to accelerate the iterative kinetic solver!

1Mason, R. J. (1981), Brackbill, J. U., and Forslund, D. W. (1982)
2Friedman, A., Langdon, A. B. and Cohen, B. I.(1981)
3Cohen, B. I., Langdon, A. B., Hewett, D. W., and Procassini, R. J. (1989)
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Fully implicit PIC: 1D electrostatic PIC
Chen et al, JCP 2011, 2012, 2013; Taitano et al, SISC (2013)
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Fully implicit PIC formulation (at first glance)

ä A fully implicit formulation couples particles and fields non-trivially (integro-differential PDE):

f n+1− f n

∆t
+ v · ∇ f n+1 + f n

2
− q

m
∇Φn+1 + Φn

2
· ∇v

f n+1 + f n

2
= 0

∇2Φn+1 =
∫

dv f n+1(x, v, t)

ä In PIC, f n+1 is sampled by a large collection of particles in phase space, {x, v}n+1
p .

ë There are Np particles, each particle requiring 2× d equations (d→dimensions),
ë Field requires Ng equations, one per grid point.

ä If implemented naively, an impractically large algebraic system of equations results:

G({x, v}n+1
p , {Φn+1}g) = 0 → dim(G) = 2dNp + Ng

ë No current computing mainframe can afford the memory requirements
ë Algorithmic issues are showstoppers (e.g., how to precondition it?)

ä An alternative strategy exists: nonlinear elimination (particle enslavement)
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Particle enslavement (nonlinear elimination)

ä Full residual G({x, v}p, {Φ}g) = 0 is impractical to implement

ä Alternative: nonlinearly eliminate particle quantities so that they are not dependent
variables:
ë Formally, particle equations of motion are functionals of the electrostatic potential:

xn+1
p = xp[Φn+1] ; vn+1

p = vp[Φn+1]

G(xp
n+1, vp

n+1, Φn+1) = G(x[Φn+1], v[Φn+1], Φn+1) = G̃(Φn+1)

Nonlinear residual can be unambiguously formulated in terms of electrostatic potential only!

ä JFNK storage requirements are dramatically decreased, making it tractable:

ë Nonlinear solver storage requirements ∝ Ng, comparable to a fluid simulation
ë Particle quantities ⇒ auxiliary variables: only a single copy of particle population

needs to be maintained in memory throughout the nonlinear iteration
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Energy-conserving (EC) Vlasov-Ampère discretization

ä Fully implicit Crank-Nicolson time discretization:

ä C-N enforces energy conservation to numerical round-off:

∑
p

mp

2
(vn+1

p + vn
p)(v

n+1
p − vn

p) = −∑
i

ε0
En+1

i − En
i

∆t
En+1

i + En
i

2
⇒ ∑

p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const

ä As a result, the formulation does not suffer from finite-grid instabilities (normal mode analysis)

ë Unconstrained spatial resolution: ∆x ≮ λD !!

ä Energy conservation is only realized when particles and fields are nonlinearly converged:
ë Requires a tight nonlinear tolerance
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Jacobian-Free Newton-Krylov Methods

ä After spatial and temporal discretization ⇒ a large set of nonlinear equations: ~G(~xn+1) =~0

ä Converging nonlinear couplings requires iteration: Newton-Raphson method:

∂~G
∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk)

ä Jacobian linear systems result, which require a linear solver⇒ Krylov subspace methods (GMRES)
ë Only require matrix-vector products to proceed.
ë Jacobian-vector product can be computed Jacobian-free (CRITICAL: no need to form

Jacobian matrix): (
∂~G
∂~x

)
k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

ë Krylov methods can be easily preconditioned: P−1
k ∼ J−1

k

JkP−1
k Pkδ~x = ~−Gk

We will explore suitable preconditioning strategies later in this talk.
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Algorithmic implementation details

ä The nonlinear residual formulation G(En+1) based on Vlasov-Ampere formulation is as follows:

1. Input E (given by JFNK iterative method)
2. Move particles (i.e., find xp[E], vp[E] by solving equations of motion)
(a) Requires inner (local) nonlinear iteration: Picard (not stiff)
(b) Can be as complicated as we desire (substepping, adaptivity, etc)

3. Compute moments (current)
4. Form Vlasov-Ampere equation residual
5. return

ä Because particle move is performed within function evaluation, we have much freedom.

ä We can explore improvements in particle mover to ensure long-term accuracy!
ë Particle substepping and orbit averaging (ensures orbit accuracy and preserves exact

energy conservation)
ë Exact charge conservation strategy (a new charge-conserving particle mover)
ë Orbit adaptivity (to improve momentum conservation)
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Particle orbit substepping

ä In applications of interest, field time-scale (∆t) and orbit time-scale (∆τ) can be well separated

ë Fields evolve slowly (dynamical time scale, ∆t)
ë Particle orbits may still undergo rapid change (∆τ � ∆t)

ä Particle orbits need to be resolved to avoid large orbit integration errors

Accurate orbit integration requires particle substepping!

ä Field does not change appreciably: time-averaged value over long time scale is sufficient

xν+1
p − xν

p

∆τ
= vν+1/2

p

vν+1
p − vν

p

∆τ
= ∑

i

En+1
i + En

i

2︸ ︷︷ ︸
slow

S(xi − xν+1/2
p )
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Energy conservation and orbit averaging

ä Particle substepping breaks energy conservation.
ä Energy conservation theorem can be recovered by orbit averaging Ampère’s law:

ε0∂tE + j = 〈j〉 ,
1

∆t

∫ t+∆t

t
dτ[· · · ]⇒ ε0

En+1− En

∆t
+ j̄ =

〈
j̄
〉

ä Orbit-averaged current is found as:

j̄ =
1

∆t

∫ t+∆t

t
dτ j ≈ 1

∆t ∑
p

Nν

∑
ν=1

qpvpS(x− xp)∆τν

ä With these definitions, exact energy conservation is recovered:

∑
p

∑
ν

mp

2
(vν+1

p + vν
p)(v

ν+1
p − vν

p) = −∑
i

ε0
En+1− En

∆t
En+1

i + En
i

2

⇒ ∑
p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const.
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Exact charge conservation: charge-conserving particle mover

ä Local charge conservation ∂tρ +∇ · j = 0 is generally violated in the discrete.
ä Local charge conservation is essential to ensure long-term accuracy (can be derived independently

from both Vlasov and Maxwell equations; “glues” them together).
ä B-spline interpolation ensure charge conservation within cell boundaries; charge conservation

broken when particles cross cell boundaries.
ë Standard strategy based on current redistribution when particle crosses boundary. [Bune-

man 1968, Morse and Nielson, 1971]
ë Current redistribution breaks energy conservation. Need a new strategy.

Here, charge conservation is enforced by stopping particles at cell boundaries.

ρi+1
2
= ∑p qp

Sm(x−x
i+1

2
)

∆x

ji = ∑p qpvp
Sm−1(x−xi)

∆x

S′m(x) = Sm−1(x+∆x
2 )−Sm−1(x−∆x

2 )

∆x


(m=1,2)
=⇒ [∂tρ +∇ · j = 0]

n+1
2

i+1
2
= 0
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Improved momentum conservation: particle orbit adaptivity

ä EC/CC PIC algorithm does not enforce momentum conservation exactly.
ë Controlling error in momentum conservation is crucial for long-term accuracy

ä Orbit integration errors can significantly affect momentum conservation: particle tunneling

ä Adaptive orbit integration can be effective in suppressing particle
tunneling and thus improve momentum conservation

ä Approach: find ∆τ to control local truncation error. Second
order estimator gives:

∆τ ≤

√√√√12εr
mp

qp

∣∣∣∣dE
dx

∣∣∣∣−1

p

ä Electric field gradient is estimated from cell-based gradient:
∂E
∂x

∣∣
p ≈

Ei+1−Ei
∆x . Provides potential barrier!

ä Particle is stopped at cell boundaries to ensure charge conservation.
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Ion acoustic shock wave
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ä Propagating IAW with perturbation level ε = 0.4, with 4000 particles/cell.

ä Realistic mass ratio (mi/me = 2000).
ä Shock wave length scale∼Debye length.
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Ion acoustic shock wave test
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Comparison against Implicit Moment Method
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Moment-based acceleration
of fully implicit kinetic solver

Chen et al., JCP (2014)
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CPU gain potential of implicit PIC vs. explicit PIC

ä Back-of-the-envelope estimate of CPU gain:

CPU ∼
(

T
∆t

)(
L

∆x

)d

npCsolver ;
Cimp

Cex ∼ NFE
∆timp

∆τimp
;

CPUex

CPUimp
∼
(

∆ximp

∆xex

)d ∆τimp

∆tex

1
NFE

ä Using reasonable estimates:

∆τimp ∼ min
[

0.1
∆ximp

vth
, ∆timp

]
∆timp ∼ 0.1ω−1

pi

∆texp ∼ 0.1ω−1
pe

k∆ximp ∼ 0.2

∆xex ∼ λD

CPUex

CPUimp
∼ 1

(kλD)d
1

NFE
min

[
1

kλD
,
√

mi

me

]

ä CPU speedup is:
ë Better for realistic mass ratios and increased dimensionality!
ë Limited by solver performance NFE (preconditioning!)
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Moment-based acceleration of fully kinetic simulations

ä Particle elimination ⇒ nonlinear residual is formulated in terms of fields/moments ONLY: G(E)
ä Within JFNK, preconditioner ONLY needs to provide field/moment update:

δE ≈ −P−1G

Premise of acceleration: obtain δE from a fluid model using current
particle distribution for closure.

ä We begin with corresponding fluid nonlinear model:

∂tnα = −∇ · Γα

mα

[
∂tΓα +∇ · (

1
nα

ΓαΓα)

]
= qαnαE +∇ ·

(
nα

(
Πα

nα

)
p

)
ε0∂tE = ∑

α

qαΓα
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Moment-based acceleration of fully kinetic simulations (cont.)

ä We formulate approximate linearized fluid equations (neglect linear temperature response):

δnα

∆t
= −∇ · δΓα

mα
δΓα

∆t
≈ qα(δnα E + nα,p δE) +∇ ·

 (
Πα

nα

)
p

δnα


ε0 δE = ∆t

[
∑

α

qαδΓα− G(E)

]

δE can be obtained from Newton state E, Newton residual G(E),
and particle closures Πα,p and nα,p
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Preconditioner performance: CPU scaling

CPUex

CPUimp
∼ 1

(kλD)d
1

NFE
min

[
1

kλD
,
√

mi

me

]
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Electromagnetic PIC:
non-radiative Darwin formulation

Chen et al, CPC 2014, 2015 (submitted)
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Implicit time-stepping and numerical dispersion of light wave4

ä Implicit time-stepping introduces numerical dispersion to light wave

ë Artificially decreases speed of light

ä Fast particles become supra-luminal numerically ⇒ light-wave excitation and radiative noise

4Brackbill, J. U., and Forslund, D. W. (1982)
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Light wave excitation and radiative noise in real simulations

ä If one keeps light wave with exact energy conservation, one gets enhanced numerical noise
due to numerical Cherenkov radiation (or possibly instability).

ä Noise-control requires numerical dissipation

Figure 1: Fourier spectrum for Weibel instability. [Markidis and Lapenta, JCP 2011].

ä Numerical dissipation breaks energy conservation

ä Solution: analytically remove light-wave when relativistic effects are not important
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Darwin model formulation (potential form)

ä Darwin model is formal O(v/c)2 approximation to Maxwell’s equations5

ë Analytically removes light-wave while preserving charge separation effects
ä Begin with Maxwell’s equations:

∂tB +∇× E = 0, (1)

1
c2 ∂tE + µ0j = ∇× B, (2)

∇ · E = ρ/ε0, (3)

∇ · B = 0. (4)

ä Consider potentials φ, A such that:

(4)⇒ B = ∇×A,

(1)⇒ E = −∇φ− ∂tA.

ä In the Coulomb gauge (∇ ·A = 0), taking c→ ∞ in transverse displacement current:

(2)⇒
�

�
�

�
�1

c2

∂2A
∂t2 −∇

2A = µ0 [j− ε0∇∂tφ] ,

∇ · (2)⇒ ε0∇2∂tφ = ∇ · j.
5Krause and Morrison (2007)
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Darwin model formulation (cont.)

ä Full Darwin system:

− 1
µ0
∇2A = j− ε0∂t∇φ, (5)

ε0∂t∇2φ = ∇ · j. (6)

∇ ·A = 0 (7)

∇2φ = −ρ/ε0 (8)

ä Enforcing involutions (Eqs. 7, 8) is critical for accuracy.
ä Careful discretization allows one to imply involutions, rather than solving for them:

ë ∇ ·A = 0 implied by Eqs. 5, 6 and careful boundary conditions: ∇2(∇ ·A) = 0

ë ∇2φ = −ρ/ε0 implied by Eq. 6 and exact PIC charge conservation: ∂tρ +∇ · j = 0

ä Minimal Darwin formulation (j obtained from particles):

∇2χ = ∇ · j,

−∇2A = µ0 [j−∇χ] ,

ε0∂tφ = χ.
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Numerical integration of Vlasov-Darwin in multi-D

ä Work directly with potential formulation, avoiding explicit involutions
ë Spatial discretization on a Yee mesh
ë Automatic enforcement of Coulomb gauge (∇ ·A = 0) and Gauss’ law (∇2φ = −ρ/ε0)
ë NO divergence cleaning needed!

ä Fully implicit, fully nonlinear time stepping (Crank-Nicolson)
ë Particles are nonlinearly enslaved, subcycled, time-adapted (implicit Boris push)
ë Exact local charge conservation (implies Gauss’ law)
ë Exact global energy conservation
ë Exact conservation of canonical momenta in ignorable directions

y y y
E  , A  , j

, E  , A  , j
    z      z    z

Φ, ρ

Bz
Bx

By

x x xE  , A  , j
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CPU speedup potential of EM implicit PIC vs. explicit PIC

ä Back-of-the-envelope estimate of CPU gain:

CPUex

CPUimp
∼
(

∆ximp

∆xex

)d ∆τimp

∆tex

1
NFE

∆τimp ∼ min
[

0.1
∆ximp

vth,e
, 0.1ω−1

ce , ∆timp

]
∆timp ∼ 0.1ω−1

pi

∆texp ∼
∆xexp

c
k∆ximp ∼ 0.2

∆xex ∼ λD

CPUex

CPUimp
∼ 1

(kλD)d
c

vth,e

1
NFE

min
[

1
kλD

,
c

vA

√
me

mi
,
√

mi

me

]

ä CPU speedup is:
ë Impacted by electron-ion mass ratio, how close electrons are to relativistic speeds.

ä Again, key is to minimize NFE.
ë We have developed a very effective moment-based preconditioner.
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EM preconditioner summary

ä We have developed a fluid preconditioner that takes into account both ion and electron linear
responses:

ë Proper asymptotic behavior:
I Large domain sizes (L� di): recover Hall MHD and MHD current responses
I Small electron-to-ion mass ratios, me/mi � 1

ë Effective for ωpe > ωce, i.e., weakly to moderately magnetized plasmas

I me
mi

>
(vA

c

)2, i.e., it limits achievable mass ratio for fixed magnetic field
I Could be overcome with proper model for gyroviscous linear response
I If strongly magnetized regimes are of interest, then ∆timp . 0.1ω−1

ce , and:

CPUex

CPUimp
∼ 1

(kλD)d
c

vth,e

1
NFE

Still strong potential for algorithmic acceleration.
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1D Electron Weibel instability

ä Isotropic ions, bi-Maxwellian electrons

mi/me = 1836, Te⊥/Te‖ = 16, Ne,i=128,000, L = 2πc/ωpe, Ng=32.
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1D Electron Weibel instability (cont.)

ä Numerical demonstration of second-order accuracy in time
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1D Kinetic Alfven Wave6

B0 = 0.00778 ; mi/me = 1836 ; kλDe = 0.003 ; vth,e/c = 0.07 ; (βe = 0.1)

ä Explicit PIC (Daughton’s NPIC):
ë 2048 mesh points, 32,000 pcles/cell (overkill for this problem), 5% energy error
ë 500 CPUs x 24 hr, 7× 106 time steps

ä Implicit PIC:
ë 32 mesh points, 2,000 pcles/cell (1000× fewer particles), 10−4% energy error
ë 16 CPUs x 29 hr, 1.3× 105 time steps, NFE ∼ 30 (rtol = 10−6)

ä CPU speedup ∼ 26 (×100 in 2D, ×104 in 3D)

6Yin et al., POP 14 (2007)
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2D Weibel instability
mi/me = 1836, Te⊥/Te‖ = 9, Npc=2000, L = π de × π de, Ng = 32× 32
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2D Weibel instability (non-uniform mesh)

Lx × Ly = 22 de × 22 de, Npc = 800, ∆t = 0.1ω−1
pi
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2D Electron Weibel instability: preconditioner performance

Lx × Ly = 22× 22 (d2
e), Npc = 200, ∆t = 0.1ω−1

pi

Nx × Ny = 128× 128

mi/me
no preconditioner with preconditioner
Newton GMRES Newton GMRES

25 5.8 192.5 3 0
100 5.7 188.8 3 0
1836 7.7 237.8 4 2.8

mi/me = 1836

Nx × Ny
no preconditioner with preconditioner
Newton GMRES Newton GMRES

16× 16 3.7 20 3 0.9
32× 32 4 38.5 3 0.9
64× 64 4.3 79.9 3 0.2
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2D KAW: impact of magnetization

Bx,0 = 0.0667, veT/c = 0.0745 (βe = 0.1), ∆t = 0.1ω−1
pi

Lx × Ly = 10× 10(d2
i )

Npc = 500
Nx × Ny = 64× 64

mi/me = 25
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linear theory (γmax=0.225)

Lx × Ly = 22× 22(d2
i )

Npc = 200, Nx × Ny = 32× 32

Fixed magnetic field

mi/me
no preconditioner with preconditioner

Newton GMRES Newton GMRES

25 4 171.9 3.2 1

150 4.5 764 4 2.9

600 7.4 4054.8 4 11.9

ωpe/ωce = 3

mi/me
no preconditioner with preconditioner

Newton GMRES Newton GMRES

150 4.5 738 4 3

600 5.8 1887 4 3.9

1836 NC NC 4 5.9
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Summary and conclusions

ä We have demonstrated a fully implicit, fully nonlinear, multidimensional PIC formulation that
features:

ë Exact local charge conservation (via a novel particle mover strategy).
ë Exact global energy conservation (no particle self-heating or self-cooling).
ë Adaptive particle orbit integrator to control errors in momentum conservation.
ë Canonical momenta (EM-PIC only, reduced dimensionality).

ä The approach is free of numerical instabilities: ωpe∆t� 1, and ∆x � λD

ë Requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems
ë Significant CPU gains (vs explicit PIC) have been demonstrated
ë The method has much potential for efficiency gains vs. explicit in long-time-scale applications:

CPUex

CPUimp
∼ 1

(kλD)d
c

vth,e︸ ︷︷ ︸
Physics

Precond.︷︸︸︷
1

NFE
.

ë Moment-based acceleration is effective in minimizing NFE, leading to an optimal algorithm.

Luis Chacon, chacon@lanl.gov


