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Outline 
§  The Particle-In-Cell algorithm. 

–  Eulerian model for the fields and Larangian 
model for particles. 

–  Source is only calculated at the grid points. 
§  The cause and effect of spatial and temporal 

aliasing in the PIC algorithm. 
–  The PIC algorithm evinces only spatial aliasing. 

§  The finite difference dispersion relation. 
§  Numerical solutions of the dispersion relation. 

–  Analysis of Finite Grid Instability 
–  Analysis of ES grid instability for charge-

conserving schemes   
§  Insight from dispersion analysis for the elimination 

of numerical instabilities 

18 Guo et al.
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Finite Difference Equations Advance the 
PIC Simulation 

§  PIC  = grid-based field representation + Lagrangian particle model 

§  PIC operates on discrete time and both continuous and discrete spaces 

§  For a time centered scheme, the particle and field advancing equations are: 

Continuous Expression Finite Difference Expression 
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where the equations for the continuous system is shown on the left and its discrete version
used in the PIC algorithm is shown on the right, n is the index of time step, t = n�t.
With the Boris algorithm for particle pushing, Eq. (4) takes on the form of a pure
rotation,

(�~v)+ � (�~v)�

�t
=

q

2m�
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⇥
(�~v)+ + (�~v)�

⇤
⇥ ~B

n

(5)

and two half accelerations (�~v)
n±1/2 = (�~v)± ± q ~E

n

�t/2m. Eqs (1)-(5) are implemented
as shown in Figure 1.

Figure 1: A schematic of how the system is advanced in an EM PIC model. Suppose
~r
n�1, ~E

n�1, ~v
n�1/2 and ~B

n�1/2 are known. First, a half-time-step push is carried out
using Eq. (1) to get ~r

n�1/2, which is used with ~v
n�1/2 to obtain the particle distribution

function and then ~J
n�1/2. Another half push is performed to get ~r

n

, then Eq. (2) is used

to get ~E
n

. Eqs. (3) and (5) are then used to obtain ~v
n+1/2 and ~B

n+1/2.

In Eq. 2, the current density is calculated at the grid points where ~E is defined.
This is exactly equivalent to spatial sampling, as the underlying particle distribution,
from which the current density is obtained, is defined on the continuous spatial variable.
There are many current deposition schemes developed for the EM PIC code, among
those the charge conserving Buneman scheme REF [] and the Esirpekov scheme REF []
are widely-used. Although the exact details of these schemes di↵er, one can attribute
their di↵erences being the particle distribution function used in the deposition step. For
example, some current deposition schemes use the concept of‘ “virtual particle” for the
deposition step. The “virtual particles” are created through a transform on the actual
particle distribution at one time step or actual distributions on several consecutive time
steps (but not at arbitrary continuous time so this is not a form of sampling in time).
Similarly, other current deposition schemes define their own transforms. In this paper,
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Spatial aliasing in PIC results from sampling 

§  In digital signal processing, sampling is the sole cause of aliasing. 
–  Continuous signal ⇒ discrete signal (A/D, sampling) : aliasing 
–  Discrete signal ⇒ continuous signal (D/A, interpolation) : convolution in 

spectrum, no aliasing   
–  Discrete signal ⇒ discrete signal (interpolation, weighted averaging) : 

convolution, filtering in spectrum, no aliasing  

§  In PIC, the particle can move freely in continuous space, therefore particle 
distribution and quantities derived from particle distribution are also defined on 
continuous spatial variable, regardless of whether such quantities at arbitrary 
spatial location are calculated or used in the code.  
–  Evaluating such a quantity (such as current) on the grid point only effectively 

involves a sampling operation. 
–  This causes spatial aliasing in Fourier space. 

ρ(k) =∑
q
S(kq ) f (kq )

J(k) = ∑
q
S(kq ) f (kq,p)∫ dp

kq = k− 2π (qx /Δx,qy /Δy,qz /Δz)
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However, there is no temporal aliasing 

§  The PIC algorithm operates entirely in a discrete time variable. In PIC, 
particles jump, they do not move smoothly.  
–  no temporal sampling 
–  operations like weighted averaging in time, or generation of particle 

information in between steps (e.g., for use in current deposition) do not 
constitutes sampling.    

–  no temporal aliasing in Fourier space. 
§  Due to the use of discrete time variable, the corresponding Fourier space 

is periodic, thus correct to only consider the contribution from the 
fundamental Brillouin zone. 
–  not equivalent to aliasing for which contribution from all Brillouin zones 

need to be summed. 
–  The perturbation for the linear eigen modes analysis needs to be 

applied to the internal variables of the system.  
–  Therefore, in PIC, time dependence of the perturbation should be in 

discrete form. 
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In Eq. 2, the current density is calculated at the grid points where ~E is defined.
This is exactly equivalent to spatial sampling, as the underlying particle distribution,
from which the current density is obtained, is defined on the continuous spatial variable.
There are many current deposition schemes developed for the EM PIC code, among
those the charge conserving Buneman scheme REF [] and the Esirpekov scheme REF []
are widely-used. Although the exact details of these schemes di↵er, one can attribute
their di↵erences being the particle distribution function used in the deposition step. For
example, some current deposition schemes use the concept of‘ “virtual particle” for the
deposition step. The “virtual particles” are created through a transform on the actual
particle distribution at one time step or actual distributions on several consecutive time
steps (but not at arbitrary continuous time so this is not a form of sampling in time).
Similarly, other current deposition schemes define their own transforms. In this paper,

5

How is the system advanced? 

§  Leap frog advance 
§  Assume number of particle per cell              , the distribution function is 

smooth 
§  Current deposition using                                                 , spatial 

sampling is implicit carried out.  
§  Half position update gives  
§  Update fields to get  
§  Full momentum update using            gives 
§  Second half position update gives   

rn−1,
v n−1/2,


En−1,


Bn−1/2

rn−1/2 ,
v n−1/2

N→∞

f (rn−1/2 ,
v n−1/2) = f0 + f1(

rn−1/2 ,
v n−1/2)

rn−1/2 ,
v n+1/2

f ''(rn−1/2 ,
v n+1/2)
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rn ,
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
En,

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f f  ‘! f ‘’  f ‘’’!
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The PIC Algorithm is Analogous, Yet 
Different from the Klimontovich Equation 

§  PIC uses a Klimontovich (or Vlasov then             ) description of the distribution, 
but it evolves this distribution in a Newtonian way with operator splitting. 

§  The discrete velocity update in PIC can be linearized for dispersion analysis 

Klimontovich equation (linearized) PIC 

Two position half updates using method of 
characteristics  
 
 
 
 

 
 
 

Velocity update in phase space 

 
 

f 000(p,x; tn+1) = f 00(p,x� v · dt/2; tn+1/2)

f 0(p,x; tn+1/2) = f(p,x� v · dt/2; tn)
@f

@t
+

p

�
r

x

f = 0

@f

@t
+

q

m
(E1 + v ⇥B1)rpf0 = 0

�p(p0,x) = q�t/m (E1 + p

0 ⇥B1/�)

f 00(p,x; tn+1/2) =

Z ⇥
f0(p

0) + f 0(p0,x; tn+1/2)
⇤
·

�(p� p

0 ��p)dp0 � f0(p
0)

f 00 ⇡ ��p ·rpf0 + f 0 (This is a linearization to f needed for linear mode analysis) 

N→∞



|  Los Alamos National Laboratory  | 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA May 2015    |  8 

Discrete update of the distribution in PIC 

§  Assume the distribution perturbation is in time- and spatial-harmonic form. 

§  Note that the arguments 𝐩 and 𝐱 are continuous variables, but 𝑡 is not, i.e., 
particles jump, they do NOT move in time, but they can have arbitrary position 
and momentum. 

§  With the exact operator for PIC position update and linearized operator for 
velocity update, the distribution evolution in one time step is, 

§  Therefore, the distribution perturbation can be solved, 

§  The pole determines the location of the alias modes 

§  The pole can also be written as  

f(p,x; tn) = f̃(p)eik·x�i!tn

f̃ 000(p) = f̃(p)e�ik·v�t � q�t/m (E1 + p⇥B1/�) ·rpf0 · e�ik·v�t/2

f̃(p) =
q�t/m (E1 + p⇥B1/�) ·rpf0 · e�ik·v�t/2

e�ik·v�t � e�i!�t
f '''(p) = f (p)e−iωΔt

csc((ω −k ⋅v)Δt / 2)→ (ω '−k ⋅v)
m
∑

−1
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Force calculation by interpolating the fields 
from temporal and spatial grid with offsets 
§  The field interpolation, grid and time offset of E and B is incorporated 

as follows,  

§  Temporal and spatial phase factors are  

4.3 Expression for

~̃F

Before we proceed, it is important to ensure that all the terms in each equation are
evaluated at the same time step with the same spatial grid. With the use of a Yee grid
for the fields, Eq. (7) implies that each spatial component of these equations are defined
at the same grid points (i.e., the reference phase on this grid has been factored out) as
the field not involved in the spatial derivative (e.g., the x component of Faraday’s law is
defined at the same grid points as B

x

, and the x component of Ampère’s law is defined
at the same grid points as E

x

etc.) It is conventional to define !
B

= !sinc (!�t/2) and
~k
E

= [k
x

sinc (k
x

�x/2) , k
y

sinc (k
y

�y/2) , k
z

sinc (k
z

�z/2)] in Faraday’s law, because the
standard PIC algorithm uses a centered scheme when calculating derivatives.1 Similarly,
for Ampère’s law in Eq. (7), we choose !

E

= !
B

and ~k
B

= ~k
E

. We will explicitly
account for any implicit phase factors that may be present due to the staggered temporal
and spatial grids, the choice of the reference phase, and the form of the finite di↵erence
operators.

In Ampère’s law from Eq. (7), ~̃J is calculated using ~J evaluated at the time step of ~B
and the spatial grid of ~E. The expression for ~J is given by Eq. (12), and is proportional to
f1 at the same time step. Furthermore, f1 is proportional to the Lorentz force, involving
~E and ~B, for which the same reference phase on the time step and grid should be used.
However, the leap-frog advance requires the Lorentz force to be evaluated a half-time-step
ahead of f1 and ~B. ~E is defined on this time step so it does not require time averaging,
but a temporal phase factor is needed to account for the half-time-step di↵erence relative
to f1. ~B is not defined on this time step and thus requires time averaging. In order to
account for the di↵erent spatial phases factored out from Eq. (7) and the Lorentz force,
one also needs to consider the spatial phase di↵erence between the staggered spatial grids
relative to that of ~E. The expression for the Lorentz force, which is extrapolated to the
particle’s position ~r and includes all the phase factors mentioned above, is given by

~F (~r, t
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(30)

where the temporal phase factors are ⌧
E

= e�i!�t/2 and ⌧
B

=
�
e�i!�t + 1

�
/2, which

results from time averaging. The spatial phase tensors are
 !
O

E

and
 !
O

B

, and ~r
l

is the
spatial grid of ~E for the corresponding component of the Lorentz force.

Now we need the elements of the spatial phase tensors
 !
O

E

and
 !
O

B

. Because the
spatial grid of ~E is used, it is clear that

 !
O

E

=
 !
I 3, i.e., the identity matrix. We also

need the spatial phase in every component of the magnetic force to be the same as the

1For non-standard PIC algorithms [11], the forms of these operators are di↵erent thus a↵ecting the
numerical dispersion and instability. The numerical dispersion analysis of these algorithms will be
presented in a future publication.
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for the fields, Eq. (7) implies that each spatial component of these equations are defined
at the same grid points (i.e., the reference phase on this grid has been factored out) as
the field not involved in the spatial derivative (e.g., the x component of Faraday’s law is
defined at the same grid points as B

x

, and the x component of Ampère’s law is defined
at the same grid points as E

x

etc.) It is conventional to define !
B

= !sinc (!�t/2) and
~k
E

= [k
x

sinc (k
x

�x/2) , k
y

sinc (k
y

�y/2) , k
z

sinc (k
z

�z/2)] in Faraday’s law, because the
standard PIC algorithm uses a centered scheme when calculating derivatives.1 Similarly,
for Ampère’s law in Eq. (7), we choose !

E

= !
B

and ~k
B

= ~k
E

. We will explicitly
account for any implicit phase factors that may be present due to the staggered temporal
and spatial grids, the choice of the reference phase, and the form of the finite di↵erence
operators.

In Ampère’s law from Eq. (7), ~̃J is calculated using ~J evaluated at the time step of ~B
and the spatial grid of ~E. The expression for ~J is given by Eq. (12), and is proportional to
f1 at the same time step. Furthermore, f1 is proportional to the Lorentz force, involving
~E and ~B, for which the same reference phase on the time step and grid should be used.
However, the leap-frog advance requires the Lorentz force to be evaluated a half-time-step
ahead of f1 and ~B. ~E is defined on this time step so it does not require time averaging,
but a temporal phase factor is needed to account for the half-time-step di↵erence relative
to f1. ~B is not defined on this time step and thus requires time averaging. In order to
account for the di↵erent spatial phases factored out from Eq. (7) and the Lorentz force,
one also needs to consider the spatial phase di↵erence between the staggered spatial grids
relative to that of ~E. The expression for the Lorentz force, which is extrapolated to the
particle’s position ~r and includes all the phase factors mentioned above, is given by

~F (~r, t
n

) = ~̃Fei(
~

k·~r�!t

n�1/2)

= q
e

X

~r

l

ei(
~

k·~r
l

�!t

n�1/2)


⌧
E

 !
S

E

(~r � ~r
l

) · !O
E

· ~̃E + ⌧
B

(
 !
O

B

· ~p
�
)⇥ !S

B

(~r � ~r
l

) · ~̃B
�
,

(30)

where the temporal phase factors are ⌧
E

= e�i!�t/2 and ⌧
B

=
�
e�i!�t + 1

�
/2, which

results from time averaging. The spatial phase tensors are
 !
O

E

and
 !
O

B

, and ~r
l

is the
spatial grid of ~E for the corresponding component of the Lorentz force.

Now we need the elements of the spatial phase tensors
 !
O

E

and
 !
O

B

. Because the
spatial grid of ~E is used, it is clear that

 !
O

E

=
 !
I 3, i.e., the identity matrix. We also

need the spatial phase in every component of the magnetic force to be the same as the

1For non-standard PIC algorithms [11], the forms of these operators are di↵erent thus a↵ecting the
numerical dispersion and instability. The numerical dispersion analysis of these algorithms will be
presented in a future publication.
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reference grid to be di↵erent for each component of the wave equation, Eq. (9). The
integer grid points in a component ↵ of Eq. (9) will be located at the points where the
component ↵ of ~E is defined. With this choice of coordinates, one can show that the �
component of the fields, in the fundamental Brillouin zone, appearing in the ↵ component
of Eq. (9) are related to the components of fields outside of the fundamental zone by
~̃E 0(~k

q

,!) =
 !
O

E

· ~̃E 0(~k,!) and ~̃B0(~k
q

,!) =
 !
O

B

· ~̃B0(~k,!) where

O��

E,↵

=

(

1, if ↵ = �

(�1)q↵+q

� , if ↵ 6= �
and O��

B,↵

=

(

(�1)q↵+q

�

+q

� , if ↵ = �

(�1)q� , if ↵ 6= �
. (31)

where � denotes the direction that is not ↵ or �, and o↵ diagonal terms are zero. We
emphasize that ~r

l

is di↵erent for each component of ~J , since the components of ~E are
defined at di↵erent points in space.

It is conventional to define the transformed finite di↵erence operators !
B

= !sinc (!�t/2)
and ~k

E

= [k
x

sinc (k
x

�x/2) , k
y

sinc (k
y

�y/2) , k
z

sinc (k
z

�z/2)] in Faraday’s law, because
the standard PIC algorithm uses a centered scheme when calculating derivatives.5 Simi-
larly, for Ampère’s law in Eq. (7), we choose !

E

= !
B

and ~k
B

= ~k
E

. We will explicitly
account for any implicit phase factors that may be present due to the staggered temporal
and spatial grids, the choice of the reference phase, and the form of the finite di↵erence
operators.

In Ampère’s law from Eq. (7), ~̃J is calculated using the components of ~J evaluated
at the time step of ~B and the spatial grids of the components of ~E. The expression for ~J
is given by Eq. (12), and is proportional to f

1

at the same time step. Furthermore, f
1

is
proportional to the Lorentz force, which involves ~E and ~B, for which the same reference
phase for the time step and grid should be used. However, according to Figure 1, the
leap-frog advance requires the Lorentz force to be evaluated a half time step ahead of f

1

and ~B. The field ~E is defined on this time step so it does not require time averaging,
but a temporal phase factor is needed to account for the half time step di↵erence relative
to f

1

. The field ~B is not defined on this time step and thus requires time averaging. In
order to account for the different spatial phases factored out from the components of Eq.
(7) and thus the Lorentz force, one also needs to consider the spatial phase di↵erence
between the staggered spatial grids relative to that of the corresponding component of
~E. The expression for the Lorentz force, which is extrapolated to a particle’s position ~r
and includes all the phase factors mentioned above, is given by

~F (~r, ~p, t
n

) = ~̃F (~k, ~p,!)ei(
~

k·~r�!t

n�1/2)

= q
e

X

~r

E

ei(
~

k·~r
E

�!t

n�1/2)

⇢

⌧
E

 !
S
E

(~r � ~r
E

) ·
 !
�

E

· ~̃E 0 + ⌧
B

~p

�
⇥
h !
S
B

(~r � ~r
B

) ·
 !
�

B

· ~̃B0
i

�

,

(32)

5For non-standard PIC algorithms, such as in Reference [18], the forms of these operators are di↵erent,
and thus a↵ect the numerical dispersion and instability. The numerical dispersion analysis of these
algorithms will be presented in a future publication.
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where � denotes the direction that is not ↵ or �, and o↵ diagonal terms are zero. We
emphasize that ~r

l

is di↵erent for each component of ~J , since the components of ~E are
defined at di↵erent points in space.

It is conventional to define the transformed finite di↵erence operators !
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the standard PIC algorithm uses a centered scheme when calculating derivatives.5 Simi-
larly, for Ampère’s law in Eq. (7), we choose !

E

= !
B

and ~k
B

= ~k
E

. We will explicitly
account for any implicit phase factors that may be present due to the staggered temporal
and spatial grids, the choice of the reference phase, and the form of the finite di↵erence
operators.

In Ampère’s law from Eq. (7), ~̃J is calculated using the components of ~J evaluated
at the time step of ~B and the spatial grids of the components of ~E. The expression for ~J
is given by Eq. (12), and is proportional to f

1

at the same time step. Furthermore, f
1

is
proportional to the Lorentz force, which involves ~E and ~B, for which the same reference
phase for the time step and grid should be used. However, according to Figure 1, the
leap-frog advance requires the Lorentz force to be evaluated a half time step ahead of f

1

and ~B. The field ~E is defined on this time step so it does not require time averaging,
but a temporal phase factor is needed to account for the half time step di↵erence relative
to f

1

. The field ~B is not defined on this time step and thus requires time averaging. In
order to account for the different spatial phases factored out from the components of Eq.
(7) and thus the Lorentz force, one also needs to consider the spatial phase di↵erence
between the staggered spatial grids relative to that of the corresponding component of
~E. The expression for the Lorentz force, which is extrapolated to a particle’s position ~r
and includes all the phase factors mentioned above, is given by

~F (~r, ~p, t
n

) = ~̃F (~k, ~p,!)ei(
~

k·~r�!t

n�1/2)

= q
e

X

~r

E

ei(
~

k·~r
E

�!t

n�1/2)

⇢
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 !
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E
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) ·
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⇥
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B

) ·
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· ~̃B0
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,

(32)

5For non-standard PIC algorithms, such as in Reference [18], the forms of these operators are di↵erent,
and thus a↵ect the numerical dispersion and instability. The numerical dispersion analysis of these
algorithms will be presented in a future publication.
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where the temporal phase factors are ⌧
E

= e�i!�t/2 and ⌧
B

=
�

e�i!�t + 1
�

/2, which
results from time averaging. These are the temporal phase factors which allow us to
factor e�i!t

n�1/2 (i.e., the temporal phase of ~B) from both sides of Ampère’s in Eq. (7).

The spatial phase tensors
 !
�

E

and
 !
�

B

remind us that the electric and magnetic
terms of the Lorentz force are out of spatial phase with one another. However, their
presence is short lived. In evaluating the sum over ~r

E

in Eq. (32) to obtain an expression

for ~̃F in terms of the transformed interpolation functions,
 ̃!
S
E

(~k) and
 ̃!
S
B

(~k), these factors
vanish.

From Eqs. (7), (31), and (32)

~̃F
⇣

~k
q

, ~p,!
⌘

= q
e

⇢

⌧
E

 ̃!
S
E

⇣

~k
q

⌘

· !O
E

· ~̃E 0
⇣

~k,!
⌘

+
⌧
B

�!
B

~p⇥  ̃!S
B

⇣

~k
q

⌘

·
h !
O

B

· ~k
E

⇥ ~̃E 0
⇣

~k,!
⌘i

�

.

(33)
We finally have an explicit expression for the current density

~̃J(~k,!) =
�iei!�t/2

2/�t

X

~q

 ̃!
S

J

(~k
q

)·
Z

~p

�
csc

n⇣

! � ~k
q

· ~v
⌘

�t/2
o

~̃F
⇣

~k
q

, ~p,!
⌘

·~r
p

f
0

d~p. (34)

Equation (34) is similar to Eq. (10) in Reference [13], but we have accounted for the
exact procedure for the distribution update in PIC and omitted a temporal aliasing e↵ect.
Note that these derivations are not equivalent, as they will produce di↵erent results when
applied to other, similar, numerical models, such as a finite di↵erence Vlasov model.

Substituting Eq. (34) into the Fourier transformed wave equation Eq. (9), we obtain
an equation of the form

 !✏ · ~̃E 0(~k,!) = 0. (35)

This has nontrivial solutions for ~̃E(~k,!) only if

Det | !✏ | = 0. (36)

Equation (36) is the numerical dispersion relation relating ~k and !.

5 Numerical Instability of the Discrete Eigenmodes

for a Relativistically Drifting Cold Plasma

Let us consider the case where the unperturbed distribution function is that for a cold
relativistically drifting plasma. For the simplest case, the drift can be taken to be in the
x̂ direction with each electron having momentum of magnitude p

0

, i.e.,

f
0

(~p) = � (p
x

� p
0

) � (p
y

) � (p
z

) . (37)

In the case of a 1-D Yee algorithm, the dispersion relation Eq. (36) becomes

!
B

�

�

�

�

�

�

✏
a

0 0
0 ✏

b

0
0 0 ✏

b

�

�

�

�

�

�

= 0, (38)
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§  The current source is given by for a simple, direct deposition scheme 
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§  Finally, the dispersion tensor and dispersion relation are,  
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spatial phase of the electric part. That is, the phase relationships are enforced among,
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Because of the way the components of ~E and ~B are staggered on the Yee grid, we
can obtain,

Oxz

B

= eiky�y/2 Oxy

B

= eikz�z/2

Oyz

B

= eikx�x/2 Oyx

B

= eikz�z/2

Ozx

B

= eiky�y/2 Ozy

B

= eikx�x/2,

where Oij

B

is a scalar phase factor. This can be expressed compactly as

 !
O

B

=

0

@
eikx�x/2 0 0

0 eiky�y/2 0
0 0 eikz�z/2

1

A (31)

which is used in Eq. (30).
From Eqs. (7) and (30),
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(32)
We finally have an explicit expression for the current. It is
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5 . (33)

Substituting this into the Fourier transformed wave equation, Eq. (9), and eliminating
~̃B from ~̃J , using Faraday’s law from Eq. (7), we obtain an equation of the form

 !✏ · ~̃E = 0. (34)

This has nontrivial solutions for ~̃E only if

Det | !✏ | = 0 (35)

Eq. (35) is the finite di↵erence dispersion relation relating ~k and !.

5 Numerical Instability from Finite Di↵erence Modes

for a Relativistically Drifting Plasma

Let’s consider the case where the unperturbed distribution function is that for a cold
relativistically drifting plasma. For the simplest case, the drift can be taken to be in the
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which is used in Eq. (30).
From Eqs. (7) and (30),
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We finally have an explicit expression for the current. It is
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Substituting this into the Fourier transformed wave equation, Eq. (9), and eliminating
~̃B from ~̃J , using Faraday’s law from Eq. (7), we obtain an equation of the form

 !✏ · ~̃E = 0. (34)

This has nontrivial solutions for ~̃E only if

Det | !✏ | = 0 (35)

Eq. (35) is the finite di↵erence dispersion relation relating ~k and !.
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which is used in Eq. (30).
From Eqs. (7) and (30),
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We finally have an explicit expression for the current. It is
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Substituting this into the Fourier transformed wave equation, Eq. (9), and eliminating
~̃B from ~̃J , using Faraday’s law from Eq. (7), we obtain an equation of the form

 !✏ · ~̃E = 0. (34)

This has nontrivial solutions for ~̃E only if

Det | !✏ | = 0 (35)

Eq. (35) is the finite di↵erence dispersion relation relating ~k and !.

5 Numerical Instability from Finite Di↵erence Modes

for a Relativistically Drifting Plasma

Let’s consider the case where the unperturbed distribution function is that for a cold
relativistically drifting plasma. For the simplest case, the drift can be taken to be in the
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where the temporal phase factors are ⌧
E

= e�i!�t/2 and ⌧
B

=
�

e�i!�t + 1
�

/2, which
results from time averaging. These are the temporal phase factors which allow us to
factor e�i!t

n�1/2 (i.e., the temporal phase of ~B) from both sides of Ampère’s in Eq. (7).

The spatial phase tensors
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E

and
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remind us that the electric and magnetic
terms of the Lorentz force are out of spatial phase with one another. However, their
presence is short lived. In evaluating the sum over ~r
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in Eq. (32) to obtain an expression

for ~̃F in terms of the transformed interpolation functions,
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vanish.

From Eqs. (7), (31), and (32)
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We finally have an explicit expression for the current density
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Equation (34) is similar to Eq. (10) in Reference [13], but we have accounted for the
exact procedure for the distribution update in PIC and omitted a temporal aliasing e↵ect.
Note that these derivations are not equivalent, as they will produce di↵erent results when
applied to other, similar, numerical models, such as a finite di↵erence Vlasov model.

Substituting Eq. (34) into the Fourier transformed wave equation Eq. (9), we obtain
an equation of the form

 !✏ · ~̃E 0(~k,!) = 0. (35)

This has nontrivial solutions for ~̃E(~k,!) only if

Det | !✏ | = 0. (36)

Equation (36) is the numerical dispersion relation relating ~k and !.

5 Numerical Instability of the Discrete Eigenmodes

for a Relativistically Drifting Cold Plasma

Let us consider the case where the unperturbed distribution function is that for a cold
relativistically drifting plasma. For the simplest case, the drift can be taken to be in the
x̂ direction with each electron having momentum of magnitude p

0

, i.e.,

f
0

(~p) = � (p
x

� p
0

) � (p
y

) � (p
z

) . (37)

In the case of a 1-D Yee algorithm, the dispersion relation Eq. (36) becomes

!
B

�

�

�

�

�

�

✏
a

0 0
0 ✏

b

0
0 0 ✏

b

�

�

�

�

�

�

= 0, (38)
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The numerical dispersion for 1D cold drifting 
plasma   
§  For a cold drifting plasma,                                          , the dispersion 

relation is  

§  The 1D E.S.-like and E.M.-like numerical dispersion are, 

x̂ direction with each electron having momentum of magnitude p0. Then,

f0 (~p) = � (p
x

� p0) � (py) � (pz) . (36)

In the case of a 1-D Yee algorithm, the dispersion relation Eq. (35) becomes

!
B

������

✏
a

0 0
0 ✏

b

0
0 0 ✏

b

������
= 0, (37)

where

✏
a

=
sin (!�t/2)

�t/2
+

ei!�t�t

�3
⇥

1X

q=�1

2 sin {(! � k
q

v0)�t/2}+ k
q

v0�t cos {(! � k
q

v0)�t/2}
(ei!�t � eikqv0�t) 2

sinc4 (k
q

�x/2) eikqv0�t,

(38)

and

✏
b

=
sin2 (!�t/2)

(�t/2)2
�sin2 (k�x/2)

(�x/2)2
+

e�i!�t/2

2��x

1X

q=�1
csc {(! � k

q

v0)�t/2}⇥

�
v0�t

�
1 + ei!�t

�
eikq�x/2 sin (k

q

�x/2) + i�x
�
ei!�t � 1

� 
,

(39)

and

!
B

=
sin (!�t/2)

�t/2
, (40)

with k
q

= k + 2⇡q/�x, v0 = p0/�0. Note that the directional subscripts have been
omitted since only one direction is being considered. Eq. (37) is clearly satisfied when
any of the following conditions are met for ! 6= 0 (!

B

= 0 only gives ! = 0 mode) :

✏
a

= 0 (41)

✏
b

= 0 (42)

In the limit we take �x ! 0, �t ! 0, and set k
q

= k, Eqs. (41) and (42) become
the dispersion equations for the Electrostatic-like (E.S.-like) and Electromagnetic-like
(E.M.-like) modes of a drifting cold plasma 2. They are, respectively,

!2 � k2 = 1/�,

(! � kv0)
2 = 1/�3.

With a finite grid and time-step, Eqs.(41) and (42) are transcendental in ! and k
and must be solved numerically. We will focus on the E.S.-like mode dispersion relation,
Eq. (41), in this paper. Before we delve into solving the full finite di↵erence dispersion
relations, we consider the simpler case with �t ! 0 and only a finite grid size �x.

2We add the ”-like” su�x, because for 1 < � the E.S.-like eigenvector is not parallel to the wave
vector. Similarly, the second mode is E.M.-like, as its eigenvector is not perpendicular to its wave vector
[12].
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where

✏
a

=
sin (!�t/2)

�t/2
� 4�t

�3

sin4 (k�x/2)⇥
1
X

q=�1

2 sin {(! � k
q

v
0

)�t/2}+ k
q

v
0

�t cos {(! � k
q

v
0

)�t/2}
k4

q

�x4

csc2 {(! � k
q

v
0

)�t/2} ,

(39)

and

✏
b

=
sin2 (!�t/2)

(�t/2)2
� sin2 (k�x/2)

(�x/2)2
+

16

��x
sin4 (k�x/2)⇥

1
X

q=�1
csc {(! � k

q

v
0

)�t/2}⇥

(�1)qv
0

�t cos (!�t/2) sin (k�x/2)��x sin (!�t/2)

k4

q

�x4

,

(40)

and

!
B

=
sin (!�t/2)

�t/2
, (41)

with k
q

= k�2⇡q/�x, v
0

= p
0

/�
0

, and �
0

= 1/
p

1� v2
0

. Note that the subscripts denot-
ing directions have been omitted since only one direction is being considered. Equation
(38) is clearly satisfied when any of the following conditions are met (!

B

= 0 only gives
! = 0 in the fundamental temporal Brillouin zone)

✏
a

= 0, (42)

✏
b

= 0. (43)

In the limit we take �x ! 0, �t ! 0, and set k
q

= k, Eqs. (42) and (43) become the
dispersion equations for the electrostatic-like (E.S.-like) and electromagnetic-like (E.M.-
like) modes of a drifting cold plasma.6 They are, respectively,

!2 � k2 = 1/�,

(! � kv
0

)2 = 1/�3.

With a finite grid size and time step, Eqs. (42) and (43) are transcendental in ! and
k and must be solved numerically. For this paper, we will focus on the E.S.-like mode
dispersion relation, Eq. (42). Before we delve into solving the full numerical dispersion
relation, we consider the simpler case with �t ! 0 and only a finite grid size �x > 0.

6We add the “-like” su�x, because for � > 1 the E.S.-like eigenvector is not parallel to the wave
vector. Similarly, the second mode is E.M.-like, as its eigenvector is not perpendicular to its wave vector
for � > 1 [19].
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like) modes of a drifting cold plasma.6 They are, respectively,
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With a finite grid size and time step, Eqs. (42) and (43) are transcendental in ! and
k and must be solved numerically. For this paper, we will focus on the E.S.-like mode
dispersion relation, Eq. (42). Before we delve into solving the full numerical dispersion
relation, we consider the simpler case with �t ! 0 and only a finite grid size �x > 0.

6We add the “-like” su�x, because for � > 1 the E.S.-like eigenvector is not parallel to the wave
vector. Similarly, the second mode is E.M.-like, as its eigenvector is not perpendicular to its wave vector
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PIC Numerical Dispersion with Aliases : 
1D E.S. Example   
§  The 1D dispersion for E.S. momentum-conserving PIC with continuous time 

variable is solved numerically with all aliases included 

§  Unstable modes (grid instability) from q ≠ 0 resonances. 

(Birdsall & Langdon) 
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Only real roots from 
q=0 resonance  
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v0=0.1 

Each alias introduces one resonance 
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PIC Numerical Dispersion with Aliases : 
1D E.S. Example   
§  Higher q resonances behave similarly but has smaller growth rate 

§  When resonance separation 2𝝅v0/dx<1, modes mix together. However, the 
dispersion can still be solved accurately with a few aliases.  
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Finite Grid Instability (dt=0) in 1D EM PIC 

§  Alias mode is stable 
by itself when 
separated from other 
modes 

§  Alias vertical location 
is proportional to alias 
mode index q 

§  FGI for dt=0 case has 
a threshold which 
corresponds to q=0,±1 
mode intersection at 
kΔx=±𝝅 

§  Peak growth rate : 

5.1 Instability from Electrostatic-like mode for �t ! 0

It is well known that PIC code exhibit a type of numerical instability due to the use of
finite size grid. The analysis of this instability can be made using the drifting cold plasma
model in the limit of infinitely small time step size [10]. Taking this limit lim�t!0 ✏a = 0,
we find that the finite di↵erence dispersion relation for the E.S.-like mode becomes,

(!
t

+ kv0)

"
1� 16�x2

�3
sin4 (k�x/2)

1X

q=�1

1

(k�x� 2⇡q)4 (!
t

�x+ 2⇡qv0)
2

#
= 0 (43)

where !
t

= !�kv0. The first factor corresponds to a second standalone ! = 0 mode and
is not of particular interest. The infinite sum is easilly evaluated with Cauchy’s residue
theorem so that the second factor in Eq. (43) becomes

1

(!
t

+ kv0) 5

�
��x2 (!

t

+ kv0)
2 sin2 (!

t

�x/2v0)
�
�x (!

t

+ kv0)
�
3�3 (!

t

+ kv0)
2

� cos (k�x)� 2}� 6v0 sin (k�x)}+ 12v20 sin
4 (k�x/2) {�x (!

t

+ kv0) + 4v0 sin (!t

�x/v0)}
+12v20 sin

2 (k�x/2) sin2 (!
t

�x/2v0) {3�x (!
t

+ kv0) + 4v0 sin (k�x1)}
 
= 0.

(44)

We now set !
t

= !
r

+ i!
i

, and numerically search for solutions in the complex plane
given a set of numerical parameters k, �x, and v0. Fig. 2 shows the solutions for !

r

and
!
i

as functions of k�x for v0 = 0.1. In general, the solutions in !
r

consist of finite grid
size plasma mode and alias modes corresponding to the poles from the sum in the second
factor in Eq. (43), therefore they can be labeled by the q index of the pole (the q = 0
mode is the finite grid size plasma E.S.-like mode, while q 6= 0 modes are alias modes).
Since the vertical location of the pole is determined by !

r

= �2⇡qv0/�x, overall these
modes are parallel to each other and also to the !

r

= 0 axis so they may not cross (We
note that similar observation applies to the Electrostatic PIC dispersion relation Eq. (7)
derived in chapter 8-11 of Ref. [10] for dt ! 0, but our calculation shows that each
alias mode is unstable from that dispersion). However, each mode also has an upper
and lower branches which extends above and below its vertical location. In Fig. 2, it
can be seen that although each mode is stable (!

i

= 0) by itself for small �x, !
i

6= 0
for su�ciently large �x due to the overlapping of branches from adjacent modes as the
vertical locations of the alias modes are lowered. Physically such overlapping can result
in unstable modes, for which !

i

> 0 (or !
i

< 0) corresponds to a growing (or damped)
mode. However, one should distinguish instability caused by overlapping of the branches
of parallel aliases modes from that caused by intersection of non-parallel modes, such as
in the classic plasma two stream instability.

Fig. 2 (b), (d), and (f) indicate that the instability first develops and its growth rate
remains largest in magnitude near k�x = ±⇡ as �x increases. This can be understood
from Fig. 2 (a), (c), and (e), of !

r

, which shows that the branches of the q = 0 mode, i.e.,
the finite grid size E.S.-like dispersion, !

r

= !±
ES

, and the branches of q = ⌥1 aliaes first
intersect at k�x = ±⇡ for �x >⇡ 0.5625. A second instability near k�x ⇡ 0 is observed
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Figure 2: Numerical solutions in the zeroth spatial Brillouin zone k�x 2 [�⇡, ⇡] to Eq.
(43) for v0 = 0.1 with varying grid spacing �x.

Fig. 2 (f) when comparing Fig. 2 (d) and (f), although the associated instability is not
as significant.

As discussed above, Fig. 2 also indicates that there exists a threshold grid spacing,
above which an unstable mode will be present. To obtain this threshold grid spacing,
we can approximate !±

ES

⇡ ±sinc2 (k�x/2) /�3/2 by keeping only the q = 0 term in Eq.
(43) and analytically solving for !

t

. Since the solution !
t

is anti-symmetric with respect
to k�x, without loss of generality, we can consider the intersection of !�

ES

with the q = 1
alias where q = 0, 1 terms will dominate the sum in Eq. (43). Therefore, to a good
approximation, !

t

satisfies,

1� 16�x2

�3
sin4 k�x

2


1

!2
t

k4�x6
+

1

(2⇡ � k�x)4 (2⇡v0 + !
t

�x)2

�
⇡ 0. (!

r

< 0) (45)

It is possible to solve for !
t

in Eq. (45) analytically. Unfortunately, the solutions
to Eq. (45) are very complicated. They are of little practical use thus not given here.
However, a comparison of these analytic solutions of the approximated dispersion Eq.
(45) with the numerical solutions of the exact dispersion Eq. (44) presented in plots (c)
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and (d) of Fig. 2 are shown in Fig. 3, for v0 = 0.1 and �x = 0.5625, to demonstrate the
accuracy of the analytic solutions. There are three solutions to Eq. (45), i.e., one stable
mode shown in Fig. 3 (a) and (b), and two unstable modes: one growing mode in Fig. 3
(c) and (d), and one damped mode in Fig. 3 (e) and (f).

Fig. 3 (d) and (f) show that the unstable modes are the upper branch of the q = 1
alias, and the !�

ES

branch of the finite grid size plasma mode. The lower branch of the
q = 1 alias in Fig. 3 (a) is predicted to be stable. Since both !

r

and !
i

plots are anti-
symmetric with respect to k�x and the upper branch of the q = 1 alias in Fig. 3 (c) is
associated with the upper right lobe in Fig. 3 (d), the lower branch of the q = �1 alias
will then be associated with the lower left lobe of !

i

and is a damped mode. Similarly,
the imaginary part the !+

ES

branch corresponds to the upper left lobe in the !
i

plots in
Figure 3 and is a growing mode, while the upper branch of the q = �1 alias is a stable
mode. Solving the q = 0,�1 analog of Eq. (45) indeed verifies these observations.

As we are most interested in when instability occurs and its peak growth rate, solving
Eq. (45) evaluated at k�x = ±⇡ gives,

!
t

(k�x = ±⇡) =

8
<

:
�⇡v0

�x

±
q

16⇡�4��3 + (⇡v0�x

)2 + 8⇡�2��3
p

4⇡�4 + (⇡v0�x

)2�3

�⇡v0
�x

±
q

16⇡�4��3 + (⇡v0�x

)2 � 8⇡�2��3
p

4⇡�4 + (⇡v0�x

)2�3
. (46)

We therefore conclude that the maximum �x that will result in completely real
solutions to Eq. (43), i.e., for the term inside the square root of the second expression in
Eq. (46) to be non-negative, is,

�xth =
⇡3�3/2v0

4
p
2

. (47)

For larger �x, the most unstable mode has an imaginary part with magnitude

|!
i

(k�x = ±⇡)| =

s����16⇡�4��3 + (
⇡v0
�x

)2 � 8⇡�2��3

r
4⇡�4 + (

⇡v0
�x

)2�3

����. (48)

The predicted threshold grid spacing compares well to the results obtained from
numerically solving Eq. (43) using a ”divide and conquer” method to determine the
maximum stable grid spacing. This is illustrated in Table 1.

5.2 Instability from the full finite di↵erence Electrostatic-like

mode

The relationship between the parameters �x and �t of Eq. (41) and the numerical
instability is investigated in this section for �t > 0. Because of the discretization in both
space and time, all solutions of Eq. (37) for ! in each spatial and temporal Brillouin
zone should be identical. We again define !

t

= !�kv0 = !
r

+ i!
i

, and shall focus on the
zeroth zone, i.e., the zone located in !

r

�t 2 [�⇡, ⇡] (note that this is shifted from the
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and is a damped mode. Similarly,
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Figure 3 and is a growing mode, while the upper branch of the q = �1 alias is a stable
mode. Solving the q = 0,�1 analog of Eq. (45) indeed verifies these observations.

As we are most interested in when instability occurs and its peak growth rate, solving
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We therefore conclude that the maximum �x that will result in completely real
solutions to Eq. (43), i.e., for the term inside the square root of the second expression in
Eq. (46) to be non-negative, is,

�xth =
⇡3�3/2v0

4
p
2

. (47)

For larger �x, the most unstable mode has an imaginary part with magnitude

|!
i

(k�x = ±⇡)| =

s����16⇡�4��3 + (
⇡v0
�x

)2 � 8⇡�2��3

r
4⇡�4 + (

⇡v0
�x

)2�3

����. (48)

The predicted threshold grid spacing compares well to the results obtained from
numerically solving Eq. (43) using a ”divide and conquer” method to determine the
maximum stable grid spacing. This is illustrated in Table 1.

5.2 Instability from the full finite di↵erence Electrostatic-like

mode

The relationship between the parameters �x and �t of Eq. (41) and the numerical
instability is investigated in this section for �t > 0. Because of the discretization in both
space and time, all solutions of Eq. (37) for ! in each spatial and temporal Brillouin
zone should be identical. We again define !

t

= !�kv0 = !
r

+ i!
i

, and shall focus on the
zeroth zone, i.e., the zone located in !

r

�t 2 [�⇡, ⇡] (note that this is shifted from the
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Finite Grid Instability (dt>0) in 1D EM PIC 

§  Similar threshold as the dt=0 
case for q=0,±1 mode 
intersection  

§  This condition is easily 
satisfied in typical simulation 
with large drift velocity 

v0 �xth �x�

1/20 0.2746 0.2741
1/10 0.5523 0.5517
3/20 0.8363 0.833
1/5 1.130 1.128
1/4 1.438 1.435
1/2 3.401 3.396p
3/2 13.43 13.40

9/10 17.14 17.12
95/100 29.84 29.82
975/1000 51.02 50.98
999/1000 579.2 578.8

Table 1: Comparison of the analytic and numerically found threshold grid spacing for
the 1D dispersion when dt ! 0. The maximum grid spacing that does not result in
an instability is predicted to be �xth. The largest grid spacing found from numerically
solving Eq. (43) is given by �x�.

instead of !.

5.2.1 Approximation of the dispersion by truncation

Evaluating the infinite sum in Eq. (41) exactly is di�cult, so instead we multiply Eq.
(41) by �3 csc4(k�x/2)/4�xS, truncate the infinite sum at the Nth term and make the
approximation,

✏N
a

⇡ 0 (49)

with

✏N
a

=
�3csc4 (k�x/2)

2S2�x2
sin [(Sv0k�x+ !

t

�t) /2]

�
NX

q=�N

2

(k�x� 2⇡q)4
csc (⇡qSv0 + !

t

�t/2)

+
Sv0

(k�x� 2⇡q)3
csc2 (⇡qSv0 + !

t

�t/2) cos (⇡qSv0 + !
t

�t/2) ,

where S = �t/�x is the Courant number. For FDTD Yee solver to be stable, S < 1.
There are, however, unavoidable e↵ects of approximating the sum in Eq. (41) with any

finite sum. One e↵ect is that solutions which is from a truncated term and responsible
for unstable modes will not be present over some parameter ranges. This e↵ects will
be most significant when the aliases associated with such terms are responsible for the
leading, or near leading, instability. Such leading instability is usually due to the first
few terms in the sum as further terms will be smaller by a ratio 1/(k�x � 2⇡q). This
consideration justifies a truncation of the infinite sum at a relatively small N . Another
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mode at k�x = 0 is 2 arccos (1� S2�x2/2�3). When S�x/�3/2 ⌧ 1, !
t

�t|0±(k�x =
0) ⇡ ±S�x/�3/2 = ±�t/�3/2 and the branch separation is about 2S�x/�3/2 = 2�t/�3/2.

At k�x = ±⇡, we obtain

�8S�x csc(!�t/2)

⇡4�3
� 2S2�xv0 csc3(!�t) sin(!�t)

⇡3�3
+

2 sin[(⇡Sv0 + !�t)/2]

S�x
= 0, (51)

which can be solved analytically to give !
t

�t|0±(k�x = ±⇡) and the branch sepa-
ration there. But the result is again very complicated and not given here. Instead we
present a approximate yet simple prediction of the instability from q = 0,±1 modes
below.

Similar to the dt ! 0 case, when the lower branch of the q = 1 (or q = �1) alias
mode and the q = 0 mode intersect at k�x = ⇡ (or �⇡), it causes an instability, as
shown in Figure 5. In Fig. 5 (b), the upper lobe near k�x = ⇡ is associated with the
upper branch of the q = 1 mode, and the lower lobe is from the lower branch of the q = 0
alias mode.

Figure 5: The � instability for S = 0.075, �x = 4.6, v0 = 0.6. (a) !
r

�t , (b) !
i

�t.

The condition for these two modes to touch at k�x = ⇡ can be approximately found
by letting |!

t

�t|0(k�x = 0)| = |!
t

�t|1±(k�x = 0)|, i.e. �t/�3/2 = 2⇡S, which gives
�x�

th

= 2⇡v0�3/2, where the superscript � is used to denote the threshold for this type of
mode overlapping. When �x is close to or larger than this value, the intersection of the
q = 0 and q = ±1 modes give rise to the instability shown in Fig. 5, which we name the
�-instability. While for �x <⇡ �x�

th

, these two modes detach with both modes being
stable. However, due to the folding of high q alias modes into a lower location than
the q = 1 mode, it is possible that such mode can interact with q = 0 mode causing
instability. The growth rate for the instability in this case usually does not lead as it
involves a high q mode. The threshold of the �-instability is not very restricting, typical
simulation grid size satisfies �x < �x�

th

for su�ciently large v0. However, as �x is
decreased, the q = ±1 mode will be folded into the opposite half of the zeroth Brillouin
zone and intersects with ! = 0 mode which is discussed in the next section.
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Finite Grid Instability (dt>0) in 1D EM PIC 

§  The location of the qth alias mode is at                                , 
§  Alias modes fold into the zeroth Brillouin zone when |qSv0| >1/2  
§  Linear mode due to non-charge conserving current deposition 
§  The folded alias mode can intersect with 𝜔=0 mode causing instability  
§  This is the dominate FGI for the case with large drift velocity 

M. D. Meyers et al., submitted to JCP 

5.2.3 Instability from the interaction between ! = 0 mode and alias modes

It can be shown that q = 0, 1 modes first touch at k�x = ⇡ and !
t

�t = �⇡S as the
separations of the branches of each mode equal at k�x = ⇡. We note that k�x = ⇡ and
!
t

�t = �⇡S is also on the !
t0 mode, i.e., the !

t0 mode also touches the q = 0, 1 modes
at the same location. It has been observed that the intersection of the !t0 mode with
the q = 0 mode is always stable, while the intersection with |q| > 0 alias modes is always
unstable.

We devote the remainder of this section to analyzing the instability resulting from
!
t0-alias intersections, since this type of instability is by far the most prevalent in the

parameter range v0 . 1 of our interest.
To obtain a simple expression for the peak growth rate that results from an intersec-

tion of the qth alias with !
t0, we will approximate the solution to Eq. (37) in the vicinity

of !
t

�t|q± by including only the qth term in the sum. Therefore, we can solve

�3csc4 (k�x/2)

2S2�x2
sin {(Sv0k�x+ !

t

�t) /2}� 2

(k�x� 2⇡q)4
csc (⇡qSv0 + !

t

�t/2)

� Sv0

(k�x� 2⇡q)3
csc2 (⇡qSv0 + !

t

�t/2) cos (⇡qSv0 + !
t

�t/2) = 0
(52)

exactly for !
t

�t.
The analytic solutions to Eq. (53), which is shown in Figure 6, are accurate for all

k�x, as long as there is no overlapping alias with smaller |q| index, but they are also
complicated. We focus on the q > 0 alias and notice that the peak growth rate of this alias
occurs near where it intersects !

t0, we then solve Eq. (53) with k�x = 2⇡ (qS� n) /S,
where n is an integer and qS � 1/2  n < qS + 1/2. When n = 0, the qth alias is at
!�t = �2⇡qS and not folded into the upper Brillouin zone. While !

t0 mode is between
�⇡S and ⇡S. Therefore, there is no interaction or instability between the !

t0 mode and
alias modes for n = 0 (i.e., when this mode is not folded). For n 6= 0, one can rewrite
Eq. (53) as,

1 + c1 cot (↵) + c2/
⇥
1 + cot2 (↵)

⇤
= 0 (53)

where c1 = (k�x/2 � ⇡q)S = �n⇡, c2 = 4 (�1)n+1 �3
⇥
S�x sinc2 (n⇡/S)

⇤�2
, and ↵ =

⇡qS+ !
t

�t/2.
Since n 6= 0, the qth alias is folded and there are three solutions to Eq. (54) in the

zeroth Brillouin zone. One solution for !
t

�t is completely real, and two solutions have
a nonzero imaginary part. The latter are of interest and are complex conjugates. For
|!

i

�t| ⌧ 1, we find that

!
i

�t ⇡ (�1)n+1 p3 (n⇡)1/3

�

⇥
sinc2 (n⇡/S)S�x/2

⇤2/3
(54)

Eq. (55) allows us to predict the growth rate at the intersection of the qth alias with !
t0,

when qS 2 (n� 1/2, n+ 1/2].
For q < 0 alias mode, we solve an equation that is exactly the same as Eq. (54) to

get the same peak growth rate from its intersection with the !
t0 mode. This is due to
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Peak growth rate : 

𝑞=2 
𝑞=−3 
𝑞=1 

𝑞=−1 
𝑞=3 
𝑞=−2 

E.S.-like 

E.S.-like mode, the branches of which we will denote by !±
ES

(!+

ES

> 0, !�
ES

< 0), and
|q| > 0 alias modes, similar to the �t ! 0 case, there is a negative-slope linear mode that
passes through the origin. This mode corresponds to the second ! = 0 mode that could
not be factored from ✏

a

, as was possible in Eq. (43) for the �t ! 0 case. The inability to
factor this mode from Eq. (38) stems from the inexact charge conservation in the current
deposition scheme of Eq. (6). It can be shown that solutions with ! = 0 (exactly) and
~J = ~0 (exactly) only exist if charge is exactly conserved. Therefore, a solution of ! ⇡ 0
is embedded in ✏

a

in Eq. (41).
This mode is given approximately by !

t0

�t ⇡ �k�xS, where we have introduced the
scaled Courant number S = Sv

0

. Furthermore, the vertical locations of the |q| > 0 alias
modes are no longer necessarily proportional to q as these modes need to be folded into
the fundamental Brillouin zone and can intersect !

t0

. With these di↵erences, one can
expect an instability to occur in the following two scenarios:

1. The finite space-time E.S.-like mode and alias modes intersect each other. Because
we are interested only in the leading instability, we will analyze the intersection of
the finite space-time E.S.-like mode and the q = ±1 aliases in detail and note that
this is of concern only over limited paramater ranges.

2. Alias modes intersect !
t0

(see Figure 4). This causes instability across a significant
portion of the parameter ranges and is often responsible for the leading instability.

To investigate these two types of instabilities, we will first determine the location of
the |q| > 0 alias modes. Similar to the �t ! 0 case, in the non-relativistic limit (i.e.
v
0

⌧ 1) and for su�ciently small q, the location of the qth (q 6= 0) alias is determined
by !q

t

= �2⇡qv
0

/�x or !q

t

�t = �2⇡qS. The relativistic generalization can be found
from the pole, sin (⇡qS+ !q

t

�t/2) = 0, in the qth term in Eq. (48). The solution is
!q

t

�t = 2⇡(n � qS), where n is an integer and n 2 [qS � 1/2, qS + 1/2) for q > 0,
n 2 (qS � 1/2, qS + 1/2] for q < 0, so !q

t

�t 2 [�⇡, ⇡]. Note that, in contrast to the
non-relativistic case, it is possible for the value of an alias to switch signs (i.e., for some

S we can have !
+|q|
t

�t > 0, and !
�|q|
t

�t < 0).
To ensure that an intersection of the second type will occur, we must enforce that

the aliases with q > 0 (q < 0) span at least part of the !
t

�t range occupied by the
positive (negative) segment of !

t0

(i.e. at least one of these aliases must intersect !
t0

).
The spacing between consecutive aliases is 2⇡S. Therefore, the condition on S and N is
2⇡NS + ⇡S > 2⇡, or S > 1/(N + 1/2). For the two N values used to obtain the plots
in Figure 4, this condition is satisfied by N = 1. We see the mode responsible for the
leading instability does not change, nor does the magnitude of the leading instability
when we set N = 3.

The locations of the alias modes deserve some further discussion. When 2S = l/m,
where l,m are coprime integers, it can be shown that there are only 2m + 1 possible
locations equally spaced in the interval !

t

�t 2 [�⇡, ⇡] for the alias modes. For example,
when S = 1/2, all q > 0 aliases will be located at !q

t

�t = {�⇡, 0} (although the exact
location of the alias branches may be somewhat di↵erent than these two values). The q <
0 modes will be at symmetric locations between 0 and ⇡. Similarly, for S = {1/4, 3/4},
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Equivalent velocity for charge-
conserving deposition 

§  Charge-conservation can be enforced in current 
deposition on microscopic (grid) scale and macroscopic 
(cell) scale. 

§  Esirkepov scheme and Villasenor-Buneman scheme are 
examples of these two views.  

§  These two schemes are equivalent in 1D, but not so in 
higher dimension 

§  Equivalent velocity in spectral domain can be defined: 

§  Alias mode is unstable by itself           

J. Villasenor, 0. Buneman / Rigorous charge conservation for local EM field solvers 309
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Boundaries experiencing
current flow K

Loc& Origins for sections 1 ~nd 2 of
move4 Loc& Origin

Fig. 2. Four-boundary case. In the simplest, most common
type of move, motion of the charge will only create a current Boundaries Experiencing
across four cell boundaries. A move as shown will create the current flow
four fluxes J~1,J~2,J~and J52 as given in eqs. (6)—(9). The Fig. 3. Seven-boundary case. A charge can also move in a way
coordinates (x, y) describing the location of the charge center which affects the flux across seven boundaries. The total move
at the start of the move are measured relative to the “local of Ax, Ay can be treated as a four-boundary move of Ax1,

origin.” Ay1 followed by another four-boundary move of Ax2, Ay2.
See eqs. (10)—(15) in text.

width is ~ — x at the start of the move and complex case is the seven-boundary move, shown
decreases linearly to ~ —x — z~xat the end; the below in fig. 3.
average width, which is relevant for linear rno- The seven boundary case can be treated as two
tion, is ~ — x — ~x. Note that the main compu- four-boundary moves — the first with the charge
tational effort is four multiplications, no more center starting at x, y and moving a distance
than in the area weighting procedure which is ~, ~y1 and the second with the charge moving
necessary when the longitudinal electric field is from x~,Yi a distance .~x2, ~y2. There are
calculated from charge densities. For the four- actually four “cases” of seven boundary moves,
boundary case (but not for the seven- and ten- depending on the direction of charge motion.
boundary cases discussed below) our currents, Equations for the case where the right edge of
given in eqs. (6)—(9), are the same as those calcu- the charge comes to rest with x > 1 are given
lated by Morse and Nielson. In general charges below:
may move in a way that they will affect the
current on more than four boundaries. A more ~~x1= 0.5 X, (10)

Figure 8: Simulation results for a 1-D drifting cold plasma for the same parameters as
Figure 4. Panel (a) shows the dispersion plot for the electric field parallel to the plasma
drift from time steps 50 to 200. Panel (b) shows the growth rate over the same time
interval as in (a) for spatial Fourier modes in the vicinity of where !

t0

intersects the
q = �1 and q = 3 aliases. The simulation results are the solid green line, and analytic
solutions for !

i

�t from Eq. (52) have been overlaid in red and blue (scatter), for the
q = �1 and q = 3 aliases, respectively, for comparison.

aliases in that reference’s Eq. (13), one obtains a formula for ~̃J that is our Eq. (34). The
authors of that reference note that they have chosen to absorb the phase factors ⌧

E

, ⌧
B

, !
O

E

, and
 !
O

B

into their interpolation functions, where we have written ours explicitly.
The 1-D cold plasma dispersion tensor elements in Eqs. (39) and (40) of this paper

are the expressions analogous to those in Eq. (19) of Reference [14]. Our results agree
exactly with that reference.

Related work was also presented in Reference [13]. Here, however, the Esirkepov
charge conserving current deposit scheme [17] is assumed. If the procedure in Section 4
is followed to obtain the current, one arrives at an expression that is identical in form to
Eq. (34). The di↵erence is that instead of being given by ~v = ~p/�, the charge conserving
Esirkepov “velocity” is now
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(55)
which is consistent with Eq. (7) from Reference [13]. The operator k

r

�

qB

= (�1)q�kr

�

B

for
the � component. The expression for the charge conserving current (obtained by replacing

27

~p/� inside the integral in Eq. (34)) is identical in form to Eq. (10) of Reference [13].
Another widely used charge conserving current deposit scheme is that from Reference
[16], for which the charge conserving Villasenor-Buneman “velocity” is given by
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In the 1-D case, ~v
E

and ~v
VB

are identical. Then, the dispersion relation on the Yee
mesh is

sin {(Sv
0

k�x+ !
t

�t) /2}
"
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This is the consistent with the result one obtains using Eqs. (7), (9), and (10), the in-
terpolation functions, and Fourier transformed finite di↵erence operators from Reference
[13] to construct the current.

The first factor in Eq. (57) has a solution of !
t0

, which is detached completely from
the aliases. Instead, the aliases are unstable all by themselves. Numerical solutions to
Eq. (57) with the same parameters as Figure 4 are shown in Figure 9 (a) and (b), and
simulation results showing the dispersion plot and growth rates are in (c) and (d).

This simulation was initialized with the same particle parameters, box size, boundary
conditions, and initial field amplitude as in the run presented in Section 6. The only
di↵erence is that here the perturbing wave number was set to k = 3.6, which is near
where the numerical solutions predict the most unstable mode should be. The simulation
dispersion plot and growth rates were obtained from time steps 350 to 500. The growth
rates were obtained using the same method as in Section 6.

A comparable treatment for the dispersion relation with an infinitesimal time step,
Eq. (44), comes from chapter 8-11 of Reference [1]. Equation (7) of chapter 8-11 describes
the non-relativistic (� ! 1) E.S. mode with an infinitesimal time step derived for an E.S.
PIC code. The dispersion relation is

1� 4�x2 sin2 (k�x/2) sin (k�x)
1
X

q=�1

1

(k�x� 2⇡q)3 (!
t

�x+ 2⇡qv
0

)2
= 0. (58)

Solving Eq. (58) with, for example, v
0

= 0.1 and �x = 0.5, reveals that the aliases
are unstable by themselves without intersecting. This stands in contrast to the findings
of Section 5 and Figure 2 (a) and (b).

7.2 Consequences of Not Conserving Charge

There are two types of charge conservation in PIC. They stem from the di↵erential
(microscopic) and integral (macroscopic) forms of the continuity equation, respectivly.
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Simulation verification 

Figure 9: Numerical solutions to Eq. (58) for the same parameters as in Figure 4, and
the simulation results that verify them. Panels (a) and (b) are the numerical solutions
for the real and imaginary parts of !

t

�t. Panel (c) is the dispersion plot from time steps
350 to 500. Panel (d) shows the growth rate over the same time interval as in (c) for
spatial Fourier modes in the vicinity of the fastest growing mode. The simulation results
are the solid green line, and numerical solutions for the fastest growing mode in (b) have
been overlaid in red (scatter) for comparison.

notable consequence for the analysis of the finite grid instability is the interaction of the
!
t0

mode with the alias modes, and the stability of the alias modes.
Recall that the !

t0

mode corresponds to ! ⇡ 0. From Eq. (40), we see that ! = 0
is an exact solution to Eq. (43) if and only if J̃ = 0. In 1-D, the Fourier transformed
numerical continuity equation is

sin (k�x/2)

(�x/2)
J̃ � sin (!�t/2)

(�t/2)
⇢̃ = 0. (60)

We see that this is satisfied, exactly, for non trivial k and ⇢̃ (i.e., a non zero, propa-
gating, perturbation), when ! = 0 and J̃ = 0 simultaneously. That is, an exact solution
of ! = 0 to Eq. (43) coincides with exact charge conservation. If we do not require Eq.
(60) to be true for our model, then we cannot expect such a model to support an ! = 0
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Figure 8: Simulation results for a 1-D drifting cold plasma for the same parameters as
Figure 4. Panel (a) shows the dispersion plot for the electric field parallel to the plasma
drift from time steps 50 to 200. Panel (b) shows the growth rate over the same time
interval as in (a) for spatial Fourier modes in the vicinity of where !

t0

intersects the
q = �1 and q = 3 aliases. The simulation results are the solid green line, and analytic
solutions for !

i

�t from Eq. (53) have been overlaid in red and blue (scatter), for the
q = �1 and q = 3 aliases, respectively, for comparison.

aliases in that reference’s Eq. (13), one obtains a formula for ~̃J very close to our Eq.
(35).

The 1-D cold plasma dispersion tensor elements in Eqs. (40) and (41) of this paper
are the expressions analogous to those in Eq. (19) of Reference [14]. The expressions for
✏
a

agree, but the expressions for ✏
b

di↵er. The factor of eik�x/2 in the first part of the
sum in our Eq. (41), arising from

 !
O

B

, is not present in Reference [14]. The authors of
Reference [14] do note the presence of the cos (!�t/2) and (�1)q factors not explicitly
written in their expression for ✏

b

.
Related work was also presented in Reference [13]. Here, however, the Esirkepov

charge conserving current deposit scheme [17] is assumed. If the procedure in Section 4
is followed to obtain the current, one arrives at an expression that is identical in form to
Eq. (35). The di↵erence is that instead of being given by ~v = ~p/�, the charge conserving
Esirkepov “velocity” is now
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which is consistent with Eq. (7) from Reference [13]. The expression for the charge
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Direct 
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Charge-
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simulation 
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The first factor in Eq. (57) has a solution of !
t0

, which is detached completely from
the aliases. Instead, the aliases are unstable all by themselves. Numerical solutions to
Eq. (57) with the same parameters as Figure 4 and q = �2 to 2 are shown in Figure 9
(a) and (b), and simulation results showing the dispersion plot and growth rates are in
(c) and (d).

Figure 9: Numerical solutions to Eq. (57) for the same parameters as in Figure 4 and
q = �2 to 2, and the simulation results that verify them. Panels (a) and (b) are the
numerical solutions for the real and imaginary parts of !

t

�t. Panel (c) is the dispersion
plot from time steps 350 to 500, and the numerical solutions from (a) have been overlaid
for comparison. Panel (d) shows the growth rate over the same time interval as in (c) for
spatial Fourier modes in the vicinity of the fastest growing mode. The simulation results
are the solid green line, and numerical solutions for the fastest growing mode in (b) have
been overlaid in red (scatter).

This simulation was initialized with the same particle parameters, box size, boundary
conditions, and initial field amplitude as in the run presented in Section 6. The only
di↵erence is that here the perturbing wave number was set to k = 3.6, which is near
where the numerical solutions predict the most unstable mode should be. The simulation
dispersion plot and growth rates were obtained from time steps 350 to 500. The growth
rates were obtained using the same method as in Section 6.

28

Figure 8: Simulation results for a 1-D drifting cold plasma for the same parameters as
Figure 4. Panel (a) shows the dispersion plot for the electric field parallel to the plasma
drift from time steps 50 to 200. Analytic solutions from Figure 7 (with the same color
labeling) have been overlaid for comparison. Panel (b) shows the growth rate over the
same time interval as in (a) for spatial Fourier modes in the vicinity of where !

t0

intersects
the q = �1 and q = 3 aliases. The simulation results are the solid green line, and analytic
solutions from Figure 7 have been overlaid in red and blue (scatter), for the q = �1 and
q = 3 aliases, respectively.

to Eq. (10) of Reference [13]. Another widely used charge conserving current deposit
scheme is that from Reference [16], for which the charge conserving Villasenor-Buneman
“velocity” is given by
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In the 1-D case, ~v
E

and ~v
VB

are identical. Then, the dispersion relation on the Yee
mesh is
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This is consistent with the result one obtains using Eqs. (7), (9), and (10), the inter-
polation functions, and Fourier space finite di↵erence operators from Reference [13] to
construct the current.
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Summary 
§  The PIC algorithm operates in a discrete time variable and there is no temporal 

aliasing. 
§  Only sampling causes aliasing, and there is no temporal sampling 
§  There is spatial sampling and each Brillouin zone in Fourier space contributes 

to the zeroth zone. 
§  The correct forms of the finite difference operators in the current are critical to 

obtaining correct dispersion relations. 
§  The numerical solutions will depend on these operators. 
§  The location of the alias mode also depend on the form of the pole 

§  Finite Grid Instability is investigated for both E.S. and E.M. PIC in the 1D case 
§  In the E.S. code and charge-conserving E.M. code, alias mode itself is 

unstable 
§  Intersection of alias modes and 𝜔=0 mode is a major source of FGI in non 

charge-conserving E.M. PIC for large drift velocity  
§  Preliminary work indicates that phase distortion in the charge/current deposition is 

the root cause of numerical instabilities 
§  Phase distortion can corrected, spectral accuracy and discrete continuity can 

be preserved 
§  Simulation is stable even with NGP shape 


