LA-UR-15-25110

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

MarFS-Requirements-Design-Configuration-Admin

Kettering, Brett Michael
Grider, Gary Alan

Report

2015-07-08

VA

.
s LonLuamos

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for

the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

MarFS Requirements, Design, Configuration, and Administration

Introduction

This document will be organized into sections that are defined by the requirements for a
file system that presents a near-POSIX (Portable Operating System Interface) interface to
the user, but whose data is stored in whatever form is most efficient for the type of data
being stored. After defining the requirement the design for meeting the requirement will be
explained. Finally there will be sections on configuring and administering this file system.

More and more, data dominates the computing world. There is a “sea” of data out there in
many different formats that needs to be managed and used. “Mar” means “sea” in Spanish.
Thus, this product is dubbed MarFs§, a file system for a sea of data.

Rationale

Many may question why a new product like MarFsS is necessary. While there are products
that are developing, none provides a scalable near-POSIX interface with adequate
performance at this time.

Current object storage systems use erasure based disk systems to store the data, which is a
positive thing. RAID (Redundant Array of Independent Disks) solutions, such as RAID-6, are
not adequate data protection given the reliability and resilience required for all the
hardware needed to hold this data. Products such as Cleversafe, Scality, and EMC ViPR are
moving towards the “sea of data” concept where data can have multiple personalities
including POSIX, Object, and HDFS (Hadoop Distributed File System). Currently, these
object storage systems are immature and don’t support near-POSIX interfaces. MarFS
assumes you want a first class near-POSIX interface to your files. MarFS is trying to be the
best of both worlds, allowing data scaling like an object storage system, metadata scaling
like N POSIX name spaces, and both kinds of access to the same data, the true “sea of data”
concept. In time, it is certainly possible that they will fill MarFS’s role.

It is possible to put object storage systems under scalable file systems like GPFS (General
Parallel File System) using a block interface over the object storage system, but the block
write patterns of these PFSes (parallel file systems) are not well suited to benefit from
these object storage systems’ high performance. MarFS will be able to use any object
storage system, including potentially using cloud-based services, as a back end storage
repo.

The team has investigated existing open source projects, and there doesn’t appear to be
another one that provides the needed functionality. Ceph provides a file system on objects,
but isn’t known for scaled out metadata service. GlusterFsS is probably the closest thing to
an alternative, and indeed GlusterFS can be a global name space combining multiple file
systems into one mount point. It also hashes the file names across the file systems, which is
something MarFS is not currently designed to do. The main difference is the approach to
what GlusterFS documentation refers to as unified file and object. GlusterFS has been
integrated to be object storage for OpenStack Swift (for objects) and block storage for

7-Jul-2015 1

MarFS Requirements, Design, Configuration, and Administration

OpenStack Cinder (for blocks). Conversely, MarFS is designed to put a near-POSIX interface
over any object storage system, including OpenStack Swift.

Some may question why a HSM (hierarchical storage management) tool like HPSS (High
Performance Storage System) or DMF (Data Migration Facility) is not used. These systems
currently don’t take advantage of the enormous industry investments in object storage.
HPSS metadata performance is likely 1/10t or less of what MarFS metadata performance is
expected to be. MarFS will leverage existing tools and be a small amount of code to
combine these tools. To be fair, MarFS is not a HSM, although batch utilities could be
written to move data around under MarFS to various kinds of storage systems that would
be most appropriate for the data based on policy configurations. HSM systems, like HPSS,
are not generally highly parallel. MarFS is designed for dozens to hundreds of metadata
servers/name spaces and thousands or even tens of thousands of parallel data movement
streams. HPSS is designed for about an order of magnitude less parallelism. There are some
solutions emerging in the space of object systems back-ending DMAPI (Data Management
API), particularly for GPFS like the DDN (Data Direct Networks) DMAPI to WOS (Web
Object Scaler, http://www.ddn.com/products/object-storage-web-object-scaler-wos/)
solution. The way DMAPI works is just quite heavy in that it tries to handle every POSIX
case. MarFS has the principal of simplifying and not supporting some use cases in POSIX to
accommodate easy/friendly use of Object Stores of all kinds. Of course you could
implement a DMAPI back end that doesn’t handle all POSIX cases, but you can’t be
guaranteed you will not see these requests unless you control the access tools people use
or put a FUSE (File System in User Space) in front of GPFS to control the use cases (like
update in place). Ultimately this simpler and more limiting model in MarFS does not mate
well with DMAPI. The simpler goal for MarFS was chosen to allow for extreme flexibility for
implementers.

There are products that are optimized for WAN and HSM metadata rates. For example,
General Atomics Nirvana Storage Resource Broker, iRODS (Integrated Rule Oriented Data
Systems). There are some capabilities for putting POSIX files over objects, but these
methods are largely via NFS or other methods that try to mimic full file system semantics
including update in place. These methods are not designed for massive parallelism in a
single file, etc.

The team has looked at name space solutions. EMC’s Maginatics is in its infancy and
targeted at enterprise. An open source name space project called Camlistore appears to be
targeted and personal storage. Bridgestore is a POSIX name space over objects, but it puts
its metadata in a flat space so rename of a directory is horribly painful. Avere NFS over
objects is focused at NFS so shared file N-1 will not be high performance.

We need an open source solution to deploy in production now that enables the described

functionality. It is our hope that MarFS will set the bar high for fully integrated solutions to
replace it.

7-Jul-2015 2

MarFS Requirements, Design, Configuration, and Administration

Requirements and Design
This section defines the requirements and design elements that were crafted to meet the
requirements.

Design Overview
This design will require:

* Linux system(s) with C/C++ and FUSE support

* MPI (Message Passing Interface) for parallel communication in pftool (a parallel
data transfer tool, see https://github.com/pftool/pftool). Thus, most any MPI
library with a C interface can be used.

¢ Communications with the MPI library can utilize many communications methods
like TCP/IP, Infiniband OFED, etc.

e Ifyou plan to use MarFS only to combine multiple POSIX file systems into one mount
point, any set of POSIX file systems can be used.

* Ifyou plan on using multi-node parallelism for the FUSE daemon, pftool, or the
batch utility programs (MarFS software), all file systems, including MarFsS file
systems, must be globally mounted on all nodes running MarFS software. This
includes NFS and other global file systems.

¢ Ifyou plan to store data on an object store, that object store needs to be accessible
by all nodes running MarFS software. The MarFS metadata component must be
capable of POSIX extended attributes (xattr) and must support sparse files (files that
have a non-zero size but that occupy no space).

The planned MarFS implementation will use GPFS file systems as the metadata component
and Scality and/or ECS ViPR object stores as the data storage component. Of course, the
data storage component can be one or more POSIX file systems. The data storage
component should be selected to provide the best performance for the type of files that will
be stored on it.

The interactions with the GPFS-based metadata component are via the normal POSIX
interface. GPFS has some ILM (Information Lifecycle Management) capabilities for
managing massive amounts of metadata that helps immensely with batch processing for
management of the system.

The interactions with the Scality- and/or ECS ViPR-based data storage component are via
the most efficient object protocols, such as Amazon S3 and CDMI. MarFS can put a file per
object, pack many small files into one object, and spread a large file across many objects.
Although the design does not call for using POSIX file systems as the data storage
component, the design does not preclude it. If MarFS were configured to use a POSIX file
system as the data storage component, then any such file system would work including
PFSes (parallel file systems) like GPFS, Lustre, Panasas, etc., or non-PFSes, like NFSv3.

The GPFS file systems and object stores will be hidden from the users so that they cannot

use them directly, but the MarFS components will know about them and how to use them
efficiently.

7-Jul-2015 3

MarFS Requirements, Design, Configuration, and Administration

FUSE Daemon for Interactive Use

A FUSE daemon will provide the system mount point and interactive use component of a
MarFS file system. Of course there can be multiple MarFS file systems and consequently
multiple FUSE daemons. This daemon will know that it will use the GPFS file systems for
metadata operations and the specified object stores as the data storage component. The
FUSE daemon on the interactive FTA nodes allows users to run interactive file system
commands but the FUSE daemon has some drawbacks. It cannot pack multiple small files
into one object. A utility program must do this after the FUSE daemon writes multiple small
files. The FUSE daemon enforces writing only serially from byte zero (e.g. there is no
update-in-place). This means if you want to update a file in place you need to copy it to a
full service file system, modify it and put it back. Files can be read in any order of course
and all metadata operations should work (chown, chmod, mkdir, etc.). If the file is stored
on an object server that does not support update in place you can only truncate to zero,
meaning files have to be completely overwritten, not partially. Currently, append is not
supported, but that could be added at some point.

pftool for High Performance Parallel Data Movement

The parallel data movement utility, pftool, will likewise be modified to use the GPFS file
systems as the metadata component and the object stores as the data storage component.
pftool is a load balanced, highly parallel utility on one node or across multiple nodes. It can
walk the file system tree in parallel, move data between file systems, and move small files
in parallel or break-up big files to move them in parallel for any POSIX file system,
including MarFS. It will be possible to write data to MarFS in parallel using pftool, or by
writing one’s own parallel data movement utility using the library. In our design, pftool will
run on the batch (non-interactive) FTAs for performance and security reasons. Access to
the object store needs to be controlled such that the FUSE daemon and pftool can access it
on behalf of the users, but users cannot access it directly. pftool provides pcp (parallel
copy), pls (parallel Is), and pcmp (parallel compare).

Utility Programs to Manage MarFS

There will be some MarFS utility programs that will be run periodically to free deleted
storage space and ensure that users do not exceed their assigned quotas. Other utility
programs may be implemented in the future to manage other aspects of the file system that
can be performed on an as-needed or periodic basis; such as for packing small files into an
object of the best size for the data component.

Since our design uses GPFS as the metadata component, the GPFS ILM features will be
utilized for very fast inode shadow table scanning, threaded name merges, etc. to look
through millions of files in minutes to perform these management tasks. In the future, these
scans could gather information needed for statvfs/statfs as well as other useful histogram
information. For example, files/space, file sizes, based on dates such as files created or
modified in the last X days, file types (e.g. Multi, Uni, Packed), directories, etc.; basically any
information that the administrators find useful. One might want to exclude trash or account
for trash separately, perhaps by walking the trashdir and subtracting that space or the like.

7-Jul-2015 4

MarFS Requirements, Design, Configuration, and Administration

A way to list objects used in the object repositories might be nice. By this manner an
infrequent pass through the data repositories can be made to remove objects that are no
longer used.

Planned LANL Deployment

Following is a diagram that depicts a very rough concept of how MarFS campaign storage
would fit into LANL's Turquoise network environment. One sees all the normal services on
the top and the MarFS campaign storage on the bottom. The FTAs (File Transfer Agents)
are where the FUSE and utility programs run and where the POSIX file systems (metadata
component) are mounted, as well as all the other non-MarFsS file systems (NFS, GPFS
Archive, Scratch, etc.). The MarFS metadata component (in this case GPFS NSD) provides
very fast parallel metadata. The data component (in this case object servers) provides a
scalable data repository for MarFsS files.

Overall Architecture
(notional, it is possible to co-locate some of this)

TSM (backup of || NFS GPFS HPSS Staging | | Scratch || Scratch
Marfs Archive For PanES || LustreFS
1B/ metadata | HBDM ‘ ‘ ’
Ether T ‘ I ‘

! . 1 I M
Obj. | Obj. FTA FTA a
md/ |“g | md/ Mounted |g Mounted chize 0. e -
data ¥| data || gpfsarchive, | “g| gpfs archive, e Yo LRI F

server server || nfs, panfs, nfs, panfs, L NS0 1 g
Pftool can move IUStrel and IUStre; and A N
..................... Dual Copy Raided enterprise
between all FS’s and gpfs-mds gpfs-mds CIaps\g HDD or SSD i
MarFs ;:\tlddlen)g hidden)) Metadata (may have some
ool, obij Pftool, obi . .

_ clien tl Hsf Ioo A I(:S|l small data (object lists that are
Fuse can do simple s Cllent, too large to fit in xattrs)
things to MarFS

HSI can move data between all FS’s and HPSS

MarFs restricted to full And campaign and HPSS via fuse (or special code in HSI if needed
file overwrites

Get user/group info file systems using ILM tools
from central service Could even consider backing up object info if its not too big

A closer look the recommended MarFS deployment follows. Notice that separate interactive
and batch FTAs are recommended for security and performance reasons. Since the object
security model does not match well with the POSIX security model, it makes sense not to
allow users to have access to the keys needed to open/control the object stores. Thus, those
keys should be kept on the batch FTAs and provided only to the FUSE daemons on the
interactive FTAs using some secure method. The ability to access the object servers directly

7-Jul-2015 5

MarFS Requirements, Design, Configuration, and Administration

without going through the FUSE daemon must be controlled. Interactive FTAs would be
used for "Is", "grep", "tar", etc. These are all small/serial tools that can run by as users
gaining access to files through the FUSE daemon, which must run as a privileged user for a

variety of management and security reasons.

Simple MarFS Deployment

Interactive FTA

Mounted gpfs Batch FTA Batch FTA
archive, nfs, panfs, Mounted gpfs archive, |
lustre, and gpfs-mds nfs, panfs, lustre, and | ¥
(hidden)) gofs-mds hidden)) T f
Pftool, obj client, HSI Pftool, obj client, PSI Pftool, obj client, PSI
L
| N | l
] 1
Obj |_ Obj
md/ |Ya md/) _ GPFS 8 GPFS
data | @ data Separate interactive and Server ‘;;‘ | Server
server Sarver batch FTAs due to object (NSD) v (NSD)
security and performance |]
reasons. Dual Copy Raided enterprise

class HDD or SSD
Metadata (may have some
small data (object lists that are
too large to fit in xattrs)

MarFS files are created into a POSIX metadata file system with no special metadata. The
MarFS file metadata will be placed into one of many possible POSIX file systems that
comprise the metadata store. In this way, MarFsS is a global name space. Files are not
hashed across POSIX file systems. Rather, the total MarFS namespace is decomposed into
separate POSIX file systems by tree. All normal POSIX ownerships/permission/attributes
like dates/sizes/etc. are obeyed. One can even add user supplied xattrs to the files.

The data is written to data component, which can be a POSIX file system or object store. All
normal attributes are kept up to date in semantically reasonable ways like permissions,
dates, and even file size. The file size is updated by truncating the POSIX metadata file to
the size of the desired file even though there may be no actual data in the file itself. For this
reason the POSIX file systems used for the metadata component must support sparse files.
Further, some reserved POSIX xattrs are applied to the metadata component files to
provide information so that where the data is and how to access it are preserved. For this

7-Jul-2015 6

MarFS Requirements, Design, Configuration, and Administration

reason, the POSIX file system used for the metadata component must support POSIX xattrs,
where some xattr names are reserved and hidden from the user.

In this design all metadata operations like reading/creating directories, managing
ownership, dates, permissions, user xattrs, etc. are all just performed on the POSIX file
systems being used as the metadata component. Only operations involving space
management for files on the data component, where said component includes object
store(s), need to be handled differently from normal POSIX. In these operations, all the
POSIX permissions are adhered to and additionally object permissions are also obeyed
based on the operation. Creating, writing, and reading these files with their data in object
store(s) uses/updates the POSIX attrs and xattrs appropriately to manage the access. For
special space management operations like truncate and unlink, all references to the space
being freed are renamed (in case of an unlink) or copied (in the case of a truncate) to a
trash directory that can be used by a utility program for space reclamation from the object
server. It does require a utility program to free the objects and clean out the trash. A trash
recover utility could easily be written as well if desired.

Flexible Configuration
MarFS shall allow for use of one or more POSIX-compliant file systems as the metadata
component.

MarFS shall allow for use of one or more file system or object store as the data component.

MarFS shall allow for defining the parameters for the metadata and data component file
systems and object stores to meet the needs of a given installation.

Design to Provide Flexible Configuration

The key to a MarFS installation is to understand the configuration information. A given
MarFS instance is defined by describing the metadata component file systems and the data
component file systems and object stores in terms of how to access them and the
parameters for their use.

The subsequent figure shows the information that defines a MarFS instance. The purpose of
these parameters follows the figure.

7-Jul-2015 7

MarFS Requirements, Design, Configuration, and Administration

vountmntpone | Configuration Tables
Namespace table m‘/mntpoint/munique

name
mntpath Reserved xattrs (recorded
'‘_’_’_‘—”f'_‘_’_’ .

bperms on file)
iperms Obijid
mdpath reverse order time (for sorting)
iwrite_repo Repo table record version

: T — P mdfile create time
lwrite_chunksize —._ name S| ELE create Him

He D0 — object creation time
swrite_rep URLpreﬁX P ——— Object Packed or Not
swrite_size Updateinplace comptype,
W R thodin sEcuityee,

. correciness e

mwrite. repo epomethodinfo S — FM
mwrite_size Securitymethod e

— T
mdfileinode

|Wr|te_rep0 SeCtVD SARAAARANNARAIR

. . namespaceshardonum
lwrite_size, || compt ,

X . Obipost
Lwrite_chunksize rrecttype e

i . record version
xlwrite_repo / onoffline

. . filetype Packed/Uni/Multi/Striped
Xlwrite_chunksize="| filetvpe, /Uni/Multi/Strip

latency filespaceused (for the file)
trashmdpath objoffset (offset of file in packed obj)
fsinfopath correctness value (for the file)
numobiects (number of objects

quota_space represented in the mdfile)
guota_names, chunkinfobytes (bytes of real chunk
namespaceshardp info in the file
namespaceshardpnum Obirestart (present if pftool restartable

MarFS has a single mount point.

MAR_mnttop This is the top-level directory under which all namespaces

are placed. Specified as a path with slashes.

The FUSE daemon, pftool, and the utility programs will append MAR_mnttop on the front of
all the namespace segments to construct a namespace tree. For example:

MAR_mnttop = /redsea
MAR_namespace.mntpath = /projecta
MAR_namespace.mdpath = /md/projecta

The user references /redsea/projecta and that refers to file's metadata file system, or
namespace, in /md/projecta

MAR_namespace entries define the one or more namespaces that are supported under the
MarFS mount point.

name \ Name that refers to the namespace used in the objid that is \

7-Jul-2015 8

MarFS Requirements, Design, Configuration, and Administration

stored as the name of the object in the data component.

mntpath

Specifies the path for this namespace, which is appended to the
MAR_mnttop. It is specified as a path with slashes.

bperms

Specifies permissions for utility programs. These permissions
are above and beyond the POSIX permissions (rwx/ugo). This
is because external repositories may have special permissions
that don’t map exactly to POSIX permissions. The values are
rmwmrdwdudtd.

rm - read metadata

wm - write metadata

rd - read data

wd - write data

ud - unlink data

td - truncate data

An example of interesting use is to allow read and write in
POSIX permissions, allow metadata changes but not allow
writing of data. This value is not stored with the file, it is
interpreted real time, so this is a fast way to shut of write of
data or metadata etc. This item can change based on allowed
activity against this namespace and the data/space it
represents.

I[perms

Specifies permissions for access through the FUSE daemon.
Same as bperms above.

Mdpath

Specifies the path for the POSIX file system that is to hold the
metadata and potentially data for this namespace. If a file is to
be written to an external repository, then only metadata is
stored in this file system, but if data is to be stored into this file
system then both data and metadata are used. Controlling
whether data is written into the metadata file system is done in
the repository configuration table using the repomethodinfo
field so the repository to/from which one is writing/reading
will be DIRECT (use the metadata file system) or some other
external method like CDMI, S3, etc. This is specified using path
notation using slashes. This can change if you have moved the
metadata file system path for some reason. Though it might be
hard to change on the fly.

[write_repo

Specifies to which repository FUSE daemon accesses will write
new files and points at a name in the repository table. This can
be changed as it controls to where new files are written.

[write_chunksize

Chunksize for FUSE daemon accesses.

Swrite_repo

Specifies to which repository utility programs will write new
small files and points at a name in the repository table. This can
be changed as it controls to where new files are written.

Swrite_size

Size below which is considered a small file. This can be changed
as it controls to where new files are written.

7-Jul-2015

MarFS Requirements, Design, Configuration, and Administration

Swrite_packsize

Size of object into which to pack multiple small files. If this
value is zero then packing will not occur.

Mwrite_repo

Specifies to which repository utility programs will write new
medium files and points at a name in the repository table. This
can be changed as it controls to where new files are written.

Mwrite_size

Size below which is considered a medium file. This can be
changed as it controls to where new files are written.

Lwrite_repo

Specifies to which repository utility programs will write new
large files and points at a name in the repository table. This can
be changed as it just controls where new files are written.

Lwrite_size

Size below which is considered a large file. This can be changed
as it controls to where new files are written.

Lwrite_chunksize

Chunksize for large files.

xlwrite_repo

Specifies to which repository utility programs will write new
xlarge files and points at a name in the repository table. This
can be changed as it controls to where new files are written.

Xlwrite_chunksize

Chunk size for xlarge files.

trashmdpath

Specifies where in the namespace, information is stored on
unlink and trunc/ftrunc operations, which could provide a
trashcan function but is used by utility programs for reclaiming
space, repacking, reconciliation of space which is needed for
external repositories. All permanent deletion of data (both
unlink and trunc) is done in batch for external repositories. For
“DIRECT” repositories where the data is stored directly in the
metadata file, unlink operations go to this path, but trunc’d
space is not preserved. This is specified as a path with slashes.
[t is assumed that this is in the same metadata file system as
the metadata file system for this namespace, as rename is used
for unlink operations. This value could change but much care
would have to be taken because entries into this path can be
occurring all the time and information about reclaimable space
lives in this path.

fsinfopath

This is a path name specified with slashes to a file that contains
the values one would get in a statfs/statvfs call like how much
space is in the file system, how much space is used, etc. This file
must be updated in a lazy way via periodic batch scans of inode
space etc. Since the space for the files in a namespace may not
be in the metadata file system associated with a name space, it
is required that this info be provided in some way to be chosen
by the site. It could involve walking the metadata tree or inode
space and adding up spaced used or it could involve querying
an external repository for space etc. This value could be
changed, but care needs to be taken, as statfs/statvfs calls will
look in this file for providing information.

quota_space

Specifies the space quota for this name space. This value is

7-Jul-2015

10

MarFS Requirements, Design, Configuration, and Administration

compared to information in the fsinfopath file above about how
much space has been used which is populated via lazy batch
runs to determine and record space used. This can be changed
at any time, but will not take effect immediately as quota’s are
done in a lazy way based on batch runs to update the fsinfopath
file.

quota_name

Specifies the inode quota for this name space. This value is
compared to information in the fsinfopath file above about how
many inodes have been used which is populated via lazy batch
runs to determine and record inodes used. This can be
changed at any time, but will not take effect immediately as
quotas are done in a lazy way based on batch runs to update
the fsinfopath file.

namespaceshardp

Path to namespace shard metadata file systems

namespaceshardpnum

Max number of namespace shard metadata file systems to hash
across

MAR _datarepo defines the one or more data repositories for each namespace. There is one
of these for every repository that is referenced in the above namespace table, and for every
repository that any file stored anywhere in this MarFS instance. The only way to know if
you can get rid of a data repository in this list is to ensure no references exist in both the
configuration namespaces and in the metadata for all the name spaces. It is really
recommended that you don’t delete anything, just add another row with a new repository.
A repository is just a logical name that connects the data of files in any namespace to a
particular use of place to store the file data. It is possible for multiple repositories to point
at a single external object storage server with different characteristics like compress and
don’t compress etc. Repositories represent a method for talking to some back end store.

name Name for this repository, this name is used in the namespace
table above in the config file and it is also used stored with the
file in xattr, so this can not be changed easily. It follows the same
rules as deleting a repo in this list. This name should point at
some name of a portion of an object repository. For example
with Scality sproxyd access method, this repo name would match
to a stanza in the sproxyd file which tells the object system the
storage format for this repo name/stanza (like 30+6 or 40+8
along with other attributes).

URLprefix This is a string associated with the repository used to access the
repository. Object names will be repository
URLprefex/bucket/object name Or really,
URLprefex/namespace.repo.suffix/obj name, which is formed
and stored in the MAR _objid xattr.

updateinplace Updates in place for files in this repository are allowed. This lets
you decide if a file is in a repo that can do update in place then
the FUSE daemon and utility programs can allow update in place.

7-Jul-2015

11

MarFS Requirements, Design, Configuration, and Administration

If a repository doesn’t allow this easily then you can forbid it. It is
probably good practice to not allow this for all repositories used
in a namespace but you don’t have to do that. Update in place
means that if you open for write, you have to overwrite the entire
file from the beginning. It also means that you cannot truncate
the file to any other value than zero. It also means that you
cannot open with append and append to the file, although this
capability might be changed at a later date. The software can use
update in place for DIRECT as the repomethodinfo (which tells
the software to put the file data in the metadata file). Values are
yes/no. This can be changed, but it is not recommended.

repomethodinfo | Info about method for accessing the object repository, like S3 or
CDMI or DIRECT means (use the metadata file system for the user
data) .

securitymethod | Specifies a method for how security works on this repository
(authentication/authorization), this can change as it is not
recorded anywhere other than in this file but any backend
storage system must be kept in sync with this method.

sectype Specifies a method for encryption for data for the repository. This
CANNOT change as all files that have data in this repository are
encrypted with this type.

comptype Specifies a method for compression for data for the repository.
This CANNOT change as all files that have data in this repository
are compressed with this type.

correcttype Specifies a method for correctness for data for the repository.
This CANNOT change as all files that have data in this repository
have this correction information calculated and stored with this

type.

onoffline Specifies a method for bringing a repository online if the
repository is of the type that allows it to be offline. This value can
change as it is dynamic.

latency Specifies a time it might take to bring a repository online. This
value can change as it is dynamic.

For Uni and Packed files, the MAR_objid xattr holds the object id for these files. The
MAR _post xattr holds the type of file (Uni, Packed), space used (for the file), correctness
value (for the file), and numobjects which for Uni and Packed files will be zero.

For Multi object files, the MAR_objid xattr holds the object id for these files except the
chunknumber changes based on where you are at in the file. The MAR_post xattr holds the
type of file (Multi), space used (for the file total), correctness value (for the file total), and
numobjects which for multi files will be the number of chunks in the first part of the
metadata file that contain chunk information in them and the chunkinfobytes is the number
of bytes of chunk info in the metadata file. In the case of a Multi file, the chunk information

7-Jul-2015 12

MarFS Requirements, Design, Configuration, and Administration

is stored in the metadata file, which implies that the chunksize for a Multi file must be
larger than the space used, correctness info, and chunknumber fields.

The format for the objid info and post info in this metadata file is the chunknumber
concatenated with the space used and correctness info for that chunk. These concatenated
things with appropriate per chunk information are repeated for each object in the
multipart object in order of offset into the file. NOTE: These chunknumber/space
used/correctness values do not have to be inserted in chunknumber order, as out of order
writing is allowed, but we plan to use a fixed record size, so you can take the chunk number
and with math derive the file offset for the info for that chunk. So objects can be written to,
but they are not officially in the file until this information is added to the metadata file and
MAR _post xattr is updated appropriately. This activity records the chunks and
sizes/correctness information for each chunk into the metadata file. This information is
valuable so we know when objects are ready to be associated with a Multi file (for
restarting etc.), how much compression was achieved, and lets you keep checksums/crc
per object, etc. It may or may not be consulted during a read operation, but it is on a write.

Near-POSIX Interface
MarFS shall provide a near-POSIX interface.

MarFS shall provide a POSIX mount through which the user executes the supported file
functionality.

MarFS is not required to allow users to update files in place for data repositories where
update-in-place is not easy, like object stores.

MarFS is not required to provide an object interface to the data. This includes not being
required to provide an HDFS interface.

MarFS is not required to provide file locking.
MarFS is not required to provide hard links, but shall provide symbolic links.

MarFS is not required to provide mmap and application execution, be a PFS, or a parallel
archive.

Design to Provide Near-POSIX Interface

If you are looking for a way to provide a near-POSIX file system interface over multiple
POSIX file systems or over one or multiple Object Storage Systems as the data storage
component, MarFS might be the answer. MarFS can use one or more POSIX file systems to
hold file system metadata. The FUSE daemon provides nearly full POSIX access with a few
exceptions that are specifically discussed.

Whether using interactive Linux commands in a shell or pftool, the interface to MarFS will
be through a near-POSIX interface that targets what looks like a normal POSIX mount point.

7-Jul-2015 13

MarFS Requirements, Design, Configuration, and Administration

pftool safely allows multiple writers to write to a single file as well as multiple readers to
read a file in parallel, but it does not protect against a user using different
commands/programs from updating the same file concurrently.

All programs shall work unchanged except for programs that seek around in the file and
write, or append to the end of a file, or try to truncate a file in a place other than zero offset.
This means that reading files will work pretty much no matter what, but writing has to be
done as a complete overwrite.

MarFS could eventually provide an object interface to data, as its metadata has object
information and maps POSIX files onto Objects. With respect to a HDFS interface, MarFS is
POSIX and HDFS does have the ability to use POSIX files. Optimization to provide layout
information to an HDFS layer is possible.

MarFS provides symbolic links through its use of GPFS as the metadata component. Hard
links are not supported because the GPFS metadata component may actually be multiple
name spaces and/or GPFS file systems and hard links cannot be used across name spaces
and file systems.

MarFS is primarily intended as a file system for large data collections and not for
application execution. That said, mmap or execution might work if it behaves relatively
well. One should be able to mmap and execute off of MarFS, but mmap writing may not
work if writing is not serial. MarFS is not intended to replace a PFS, as it lacks important
features on purpose, although it might suffice as a PFS in some settings. Likewise, MarFS is
not intended to replace deep and/or parallel archives, such as HPSS, although in some
settings it might also work for this function.

Scalability

MarFS shall provide a means to scale metadata handling as more capacity and file count is
added. This scalability shall target the common use case scenarios for large HPC storage
systems where there are many clients.

MarFS shall provide a means to scale data handling as more capacity and file count is
added. This scalability shall target the common use case scenarios for large HPC storage
systems where there are many clients.

MarFS is not required to solve the scalabilty problem of very large single directories.

MarFS shall use data structures and techniques that as close to constant in execution time
as possible as the file system size and file attributes increase.

Design to Provide Scalability

MarFS currently is concentrating on providing a best-in-class scalable metadata service
over a best-in-class scale out object storage system. If you are looking for a way to scale
metadata service, but not stripe or hash metadata, MarFS might be the answer.

7-Jul-2015 14

MarFS Requirements, Design, Configuration, and Administration

As mentioned, MarFS will use GPFS as the metadata component. GPFS has many features in
its ILM component that allows GPFS to be used as an efficient and scalable MarFS metadata
server. MarFS will aggregate many metadata file systems together to create one, large
logical file systems namespace. See the subsequent figure. In this implementation there is
no scaling within a single directory. This capability will be considered as a future
enhancement and is discussed later in this section.

~ TopMarFs
Namespace 1 // Mountpoint Namespace N
GPFS Metadata | GPFS Metadata
File System . - File System

MarFS utilizes POSIX extended attributes (xattr) in its metadata component to place
information about the data repository/objects that hold the data for files. Files are created
without extended attributes and acquire them when the file is written. Xattrs will only exist
for files in which the data exists in external data repositories. Therefore, most any POSIX
file system can be used for holding metadata and data, but the requirements for storing
metadata for files in which data exists in external data repositories requires xattr and
sparse capabilities because xattrs are used to map to the external data repository and the
POSIX size field is used to store the length of the file for files where the data lives in an
external repository. GPFS's ILM capability is able to use xattrs to scalably and efficiently
find files that match a specified criterion.

Here is a high level description of the reserved MarFS xattrs:

* MAR objid is the object name (or the first object name in the case of a multi object
file). This info doesn’t change very often, basically only on a truncate. So it is set in
stone for a file unless you throw out all the space associated with the file.

* MAR postis information that can change from time to time. For example, it can be
updated while the file is growing, etc.

* MAR restartis used by restart on multi-files and thus won’t be present very often.

* MAR namespace_shard is used on directories for directory hashing number
(future).

A couple of the xattrs, MAR_objid and MAR _post are one record each with many fields
concatenated. The reasons for this are:

* These are all variables that are short enough to concatenate into one record to form
the object name to help the admin figure out things if there are issues. Having this
information in the name of the object will be handy.

* It makes the object name unique.

* Itdoesn’t add information that is too long for the name of the object, like create time
path of the metadata file.

¢ [t takes time to insert xattrs, so making this be 10ish xattrs is inefficient and doesn't
scale on a per file create or file read basis.

7-Jul-2015 15

MarFS Requirements, Design, Configuration, and Administration

The MAR_objid is the basis of the name of the object for this file. Its full name is
/bucketname/MAR_objid. The bucketname is /namespace.repo.suffix from the
configuration file. So, the fully qualified object name is /namespace.repo.suffix/MAR_objid.

The MAR _objid xattr concatenated fields are:

Bucket This is the object system bucket name or another way to
(namespace.repo.suffix) | match to some portion of a repository on the object system.
Reverseorder time This is a reverse order time stamp of some kind to make
stamp sorting easy when listing objects.

recordvervion Version number for this record.

mdfilecreatetime In the case of Uni and Multi files, this is the creation time

from the metadata file. In the case of Packed files, this is the
creation time of the first file being packed into the object.

Objcreatetime This field is used to put current time stamp, in addition to
the metadata file create time. This is used to “version”
objects. For example, on a truncate to zero, which would put
all the objects for that file into the trash, the names will be
the same as create time and inode remains unchanged. This
makes a unique name for the new objects for that file but yet
they are still related by all fields except this one.

objtype Packed if many files are being packed into the object or Not
packed if not.

comptype Compression type (future).

sectype Security type (encryption, future).

correcttype Correctness type (crc/checksum, future).

objchnksz The size of a write in all objects, but the last, for Multi file.

This value is initially populated from the repository
configuration table for the file based on namespace/path.
Chunk size is picked based on whether the file writing is
interactive or batch. For batch, it is based on the size of the
file being moved, (large, xlarge) and taken from the
configuration file.

objchnknumber If this is non-zero, this object is part of a Multi file. For Uni
and Packed files there is only one object and it will be
numbered zero. For a Multi file, the object name only
changes by chunk number, which is calculated based on
chunksize. So this is really just a placeholder value.

mdinode Inode of the metadata file. For a Packed file it is the inode of
the first file in the object.

namespaceshardpnum | Used for namespace shard number for files that are hashed
into multiple directories (future). For now this is zero.

MARpost is information written to the file's xattr after or while the object(s) are written. Its
concatenated fields are:

7-Jul-2015 16

MarFS Requirements, Design, Configuration, and Administration

recordversion Version number for this record.

objtype Records how the file data is stored in an external object
repo, there are currently 4 types:

Uni - one object stores the entire file.

Multi - a file is spread across multiple objects using chunk
sized objects, object id’s are recorded in the metadata file.
Packed - multiple files in each object that require using the
objoffset field.

Striped - a file is round robin striped across multiple objects
using chunksize from the configuration file. Object ids are
recorded in metadata file.

spaceused Space used in the object system for the entire file. May have
to sum multiple object space used for a Multi file.

objoffset Records offset into object where file data is. This is only
used for a Packed files

correctnessvalue Checksum or CRC for the entire file. May have to sum
multiple checksums or CRC'’s for a Multi file (future).

numobjects For Multi files, this records the number of objects in the

metadata file that contain chunk information. The rest of the
file is a sparse file to make the size of the metadata file equal
to the size of the file.

Chunkinfobytes Number of bytes of chunk info in the file.

MAR _restart is a xattr that is used by pftool to indicate whether or not a complete copy was
complete before pftool exited. If it was not the next invocation of pftool on this file will start
copying this file again. This is only used for a Multi file.

MAR_namespace_shard is a xattr on directories that are hashed (future).

The design uses scale out data services, via the object stores, separately. Data and data
movement can scale as N file systems or N object stores and it has features to be “friendly”
to object systems by trying to form large multi-megabyte sized objects for efficient storage
and tracking, including packing multiple small files into single objects that are sized for
efficient handling by the object stores.

System administrators need to set up buckets that are listed in the configuration files on
the object server(s) for every namespace/repository combination.

MarFS will use pftool as the workhorse to move large data collections to and from MarFS.
pftool can walk the file system tree in parallel and write as many streams of objects as you
have mover processors at your disposal, up to the limit of MPI (tens of thousands). It
dynamically balances the data movement load amongst its worker processes. It breaks up
large data elements and coalesces small data elements into larger ones to maximize

7-Jul-2015 17

MarFS Requirements, Design, Configuration, and Administration

throughput and minimize overhead. Here is a logical depiction of how pftool works to do
high-performance, parallel data movement.

Dirs Queue
Load /

)

(1+]

)

Q.

o3

—

e —
mooo

g

Reporter

Balancer s, > -
Stat a

Scheduler at Queue [——A :
Copy/Rsync/ e

Compare u

Co/R/CQueue [~ ‘g |

Currently the MarFS design does not hash or split-up single directories to address the
problem of single directories containing a large number of files. It is possible for an
implementation to use a metadata file system under MarFS that does hash or split-up single
directories to address the scalability of directories with many files. And, future MarFS
features might include hashed or split-up single directories. It is possible to hash file names
(not directory names) across several namespace shard directories that use the main
namespace directory inode number as a directory name on namespace shard file systems
for hashing files across. See the next figure. To implement this capability would require:

* Using xattr on directories and that those xattrs be cached reasonably well across
parallel client nodes.

* A Namespace Shard Directory Structure using Namespace A Directory inodes.

* Hashing files only (not directories) across namespace shards.

* Threading mkdir and metadata operations against directories, including file
renaming.

* Making listing, reclaiming, etc. parallel (like map reduce).

* Scaling within a single directory to N GPFS file system directories.

* Renaming directories continues to work.

* Notrequiring communications protocols, just using mounts.

* Pftool ability to set width of hash up to a max.

7-Jul-2015 18

MarFS Requirements, Design, Configuration, and Administration

Namespace A GPFS Metadata File System
Dir. with no namespaceshardpnum xattr

/ \

Dir with no namespaceshardp xattr Dir with namespaceshardpnum

Filel Xattr=4 (4 NS-shards)
File2 Inode=47
Dirl Dirl
\\
File3 Dir2 Etc.
T Etc

Etc.

GPFS File Systems as Namespace Shards to Namespace A
Files are hashed across directories

NS-shard1 NS-shard2 NS-shard3 NS-shard4

Namespace A 12 34 123/¢ 123¢ 1234
Inode based 5 7q 2079 2(719 2179
Directory | | | |
Structure

Filel File2 File3 File4
Inode 47 File5 File6 File7
directory

PFS-like Performance and Eventual Consistency

This requirement is related to the near-POSIX interface. Maintaining locks, collecting
released space, and enforcing quotas are things that a POSIX-compliant file system does,
but that affect performance. MarFS is not required to provide these POSIX file system
features.

MarFS§, like other PFSes, is not required to check/lock to protect against multiple non-
coordinated writers into the same file.

MarFS shall ensure that the file system’s metadata and data are eventually consistent.

7-Jul-2015 19

MarFS Requirements, Design, Configuration, and Administration

Design to Provide PFS-like Performance and Eventual Consistency

The specified operations are not necessary to be done in real-time, as they would adversely
affect MarFS performance. Utilities that can be run periodically will be provided to reclaim

deleted space and ensure that users do not severely overrun their quotas for storage space

and file count.

MarFS could provide file locking, but does not currently do so. Like many PFSes, MarFS will
entrust the responsibility to manage access to files to the application so that parallel
performance can be maintained.

In this design where MarFS uses object stores for storing data, the metadata and object
store systems require some reconciliation. All metadata, except for object-specific
metadata, is stored in the MarFS POSIX file systems that store the metadata. As mentioned,
periodic garbage collection of freed space will be done. MarFS attempts to minimize areas
where truly transactional semantics are needed, but does not make any transactional
guarantees. MarFS errs on the side of making it easy to run batch inode scans or tree walks
due to the parallelism in the batch utilities and ability to use many POSIX file systems and
metadata servers to make for easy management of the metadata/space/etc.

Variable File Collections

The nature of the large data stores is that different users have file collections with different
attributes. Some users may have many small files while others have moderate collections of
moderately sized files, and still others have a handful of very large files. MarFS shall allow
for all these cases and yield high performance.

Design to Provide Variable File Collections

MarFS supports the concepts of packed files, uni-files, and multi-object files. Furthermore,
it allows for multiple data storage solutions to be used as the MarFS data storage
component. These different data storage solutions can be designed to efficiently handle and
be high performance for files of different quantity and size attributes.

Packed files are targeted at the case where the user has many small files that are not
efficiently handled by the data storage component. The metadata component allows the
user to see these as the multiple files they logically are to the user, while the underlying
data storage component collects many of them to be stored in a single object so that the
data storage component exhibits high performance.

Here is a depiction of a Packed file in MarFS.

7-Jul-2015 20

MarFS Requirements, Design, Configuration, and Administration

Packed File (same as previous but packed object)

S3/CDMI, erasure

/MarFS top level namespace aggregation

All meta is just normal except
mtime and size which are set by
pftool/fuse on close

etc. 9P NEllR
Obj repo 1
/GPFS-MarIFS-mdl
Obj001 trashdiy —Dirt.1 =T
Philel PackedFile-1 PackedFile-2
Pfile2 \ All meta is just normal except
— mtime and size which are set by
Config file/db 20l/fuse on close
Obi repol access Additiona a: Additional meta:
ot . i = Xattr_id jrepo=1
methods info Xattr_obijid repo Aattr)
: id=0Obj001 id=0bj001
objoffs=0

chunksize=256M

obioffs=756,472 bytes
chunksize=256M

When files are overwritten (they have to be completely over written, no update in place,

repack and get space back in batch, not done interactively. Packed objects can get trash in
then as well.

Uni-files are targeted at the case where users have moderate collections of moderately
sized files. These files are large enough to be efficiently handled by the data storage
component as individual files. Consequently, there is a 1:1 mapping of the logical file
exposed to the user in the metadata component and the physical file stored in the data
storage component.

Multi-object files are targeted at the case where users have a few very large files. The files
are so large that they cannot be efficiently handled by the data storage component unless
they are physically stored as multiple objects. Thus, the metadata component exposes the
file to the user as a single file, but internally tracks all the objects that comprise it so that
the data storage component can store it as multiple objects that are sized such that they
can be efficiently managed.

Here we see MarFS diagrammed to show a GPFS POSIX metadata tree that has xattrs
pointing at external object repos for a Uni file (one object per file) and a large Multi file
(multiple objects per file). In the case of the Multi file, the list of objects that make up the
file are stored in the metadata file, which implies that the chunksize of a large file has to be
larger than an objectid, and the amount of real object id data in the metadata file is stored
in an xattr so you know how much data is in the metadata file and the rest is unallocated
space (a capability of sparse file representation in the metadata store) so that the total size
of the metadata file is equal the logical file size (amount of data stored in the data store).

7-Jul-2015 21

MarFS Requirements, Design, Configuration, and Administration

Uni Object and Multi Object File

S3/CDMI, GPFS MarFS Metadata File System(s).
erasure, etc. /MarFS top level namespace aggregation
/’\
Obj repoé /GPFS-MarFS-md1 /GPFS-MarFS-md2
. —.Lazy Tree Info I
Objoo1w \ Dir1.1 Dir2.1
- / trashdir Lazy Tree Info _ ~ _
Obj repo UniFile-1 , MultiFile-1 trashdir
All md is just normal except mtime Additional meta:
Obj0o01 ‘A and size which are set by pftool/
Obj002 fuse on close.
Additlon" 4 olitype-=Multi
Config file/db ?SQES[:_S;?J!Q, (means it’s a multi-part file and the
b repo=. obj/offset list is in the GPFS mdfile.
Obj repo]: SCEESS 'd=.0b1001 File: list of obj name space/objname/
methods info 9-b-°ff5-_=° offset/length (obj name space=2,
Obj repo2 access chunksize=256M Obj001 offs/length, Obj002 ...
methods info Xattr-restart

for reclaim in batch
Lazy Tree Info is populated by batch processes lazily (using ilm) holds total bytes stored, quota, and any other access assists

Think large objects like many Megabytes so the object metadata for the object server is manageable.

Object naming

The name of the object for a file is named URLprefix/bucketname/MAR_objid). bucketname
is /namespace.repo.suffix (from the configuration file). Thus, the fully qualified object
name is URLprefix://namespace.repo.suffix/MAR_objid.

System administrators need to set up buckets on the object server(s) for every
namespace.repo combination.

The URLprefix field for accessing the repository is in the configuration file in the repository
record. repomethodinfo (cdmi, s3, etc.) tells how to access the repository.

Recall that repository name should point at some name of a portion of an object repository.
For example with the Scality sproxyd access method, this repository name would match to
a stanza in the sproxyd file that tells the object system the storage format for this
repository, like 30+6 or 40+8 along with other attributes.

A suffix can be added to the bucket name or prefix to the object name in systems that
require periodic bucket/prefix change.

7-Jul-2015 22

MarFS Requirements, Design, Configuration, and Administration

The MAR _objid xattr portion of the object name contains:

Reverse order time stamp of some kind to make sorting of object lists easier.
Version number.

File Create time. That is the create time for the metadata file, which for a Packed file
is that of the first file in the packed object.

Object creation time. This is needed because on operations like truncate or
potentially on a restart, we may have objects that we need to “overwrite”. This
means we could have many objects with the same name (same chunk of same file
after a truncate or something), and so this makes “versions” of that object in that
file.

Packed or not.

Comptype.

Sectype (encryption).

Correcttype (crc, checksum).

Chunksize.

Chunknumber (for a Uni file, there will be only one chunk).

Mdfile inode.

namespaceshardpnum (future, zero for now, used for hashing files across
namespace shard directories).

For a Multi file the second and beyond objects that comprise it will only change in the
chunknumber attribute, which will be incremented.

Security
MarFS shall obey all POSIX security. The POSIX permissions are:

r - read
W - write
X — execute

u - user

g — group
o - other

MarFS shall support additional permissions that may be supported by other data stores.
These are in addition to the POSIX permissions .The values are rmwmrdwd:

rm - read metadata
wm - write metadata
rd - read data

wd - write data

ud - unlink data

td - truncate data

7-Jul-2015 23

MarFS Requirements, Design, Configuration, and Administration

MarFS shall protect files that are deleted by the user, but not actually removed from the
system until garbage space is collected.

Design to Provide Security

MarFS obeys all POSIX security. Additionally, special security may be added by
configuration to manage which parts of the name space allow metadata and data
update/read, and you can control these special permissions for interactive and batch
separately.

By adding the additional data store permissions it is possible, for example, to allow read
and write in POSIX permissions, allow metadata changes but not allow writing of data. This
value is not stored with the file, it is interpreted real time, so this is a fast way to shut off
write of data or metadata etc. This item can change based on allowed activity against this
namespace and the data/space it represents.

Object Security could be provided by the following methods:
¢ Vault: Where a password or a key to open a password in a file for a given user is
stashed.

FUSE runs as root or similar so it can become stgadmin, read in the secret, then it is
in the fuse daemons memory. Since it is in a different process space run by root
users can'’t see that info.

Pftool and other batch utilities would either run as stgadmin/root or use setuid
sticky bits to gain access to the secret to open up the object repo. Since this is
somewhat dangerous pftool will run batch processes on other nodes or containers.
[t will run remote of the user process where the user types a command and some
number of machines go off and get the answer or do an operation on behalf of the
user while the user does not have access to the batch machines except through a
controlled interface.

This method is easy to implement and uses a strong security method. It allows the
the password to change on the object server and in the secret files owned by the
user whenever one feels it is necessary to change the password. It's similar in nature
to a group of people who have the combination to a shared vault.

There may be more than one password, one per repo, one per namespace, one per
whatever, but not too many, it needs to be manageable.

* Per Object: Where a data store vendor, such as Scality or EMC, adds the ability to
require a secret on each object request. The secret would be stored into the POSIX
metadata for each file. This would work as well and is pretty elegant too, but it
doesn’t allow one to change something simply to re-secure compromised
information.

* Combination of Vault and Per Object: It is unclear that this is any better than Vault
by itself. It may slow down the smart hacker, but not much.

7-Jul-2015 24

MarFS Requirements, Design, Configuration, and Administration

* Encryption: One could sniff the wire and get the data. If the data is encrypted one
could not sniff the wire and get to the data as it goes across the network. This would
be more than we are doing now with mass data movement. Encryption at rest isn’t
an advantage because the data is erasure-coded on the server and that is a per
object erasure-code, so one would have to physically steal a lot of disks to make any
thing out of the data. Encryption would need to be by name space or by repo or by
object. In all cases we have to stash the encryption keys somewhere and it
essentially becomes Vault or Per Object or their combination.

Vault appears pretty elegant as you can change the secret often etc. It requires basically no
coding, just some administration for the most part. Our design will use Vault, but leave
room in our design for a per file password just in case we decide to go down that path. If at
some point we find a better way that doesn’t require setuid/sticky then we could remove
the restriction of running pftool on batch nodes only. One can still run pftool’s pcp or pls
interactively, it runs a batch program on the batch servers and connects the console to
one’s interactive session.

Unlink and truncate operations leaves pointers to files and data in the trash directory for
that namespace. It is important to protect the trash directory because it will contain trash
names and space from various users/groups. It does not have a directory structure so
maintaining control over access has to be managed since being able to find files requires
the execute permission on the directory structure above a file. The FUSE daemon and pftool
will deny all access to the trash directory. A trash utility will be created that allows users to
interrogate the trash based on file ownership, groups, and/or POSIX permissions, all of
which are preserved when files are moved to the trash directory and when files are
truncated causing space to be moved to the trash directory.

Resilience

MarFS is intended for high performance access to information that must be available for
years, possibly decades or longer. RAID6 is insufficient. Replication is too costly.

The MTTDL (mean time to data loss) shall be 100 years.

Design to Provide Resilience
The ability to recover data and be resilient to loss will be accomplished by three
mechanisms: backup, erasure coding, and encoding recovery information.

Backup

The metadata service is broken up into multiple namespaces, each of which is a POSIX file
system. Backing up the metadata will add to the system resilience. Backing up these file
systems assumes there is not a lot of real data stored in them, which will be typical for our
design.

IMPORTANT NOTE: The backup mechanism must honor space holes, so backups are not
huge.

7-Jul-2015 25

MarFS Requirements, Design, Configuration, and Administration

Metadata attrs and xattrs, and file data, which might contain object ids, must be preserved.

The MAR _post xattr numobijects field indicates if there is chunk information in the
metadata file, and chunkinfobytes indicates how much real data is in the metadata file.
Even if the contents of the metadata file that contains chunk information is lost, it can be
recovered because the xattr MARobjid contains the name of the first object and the chunk
size. The file size attr has the total file size. Thus you can know where all the objects are
because the only thing that changes in the object names that are a Multi file is the chunk
number, which can be calculated. If the metadata file content is lost, the only things really
lost are the actual space used by the chunk and attributes that are not absolutely necessary
to read the data from the data store. The data store will contain the information from which
you can reconstruct the metadata file content.

Frequent backup of the metadata is wise and so keeping all user data out of the metadata
file systems helps keep the cost of backing up the metadata low.

Erasure Coding

The data store systems are erasure coding based. Erasure coding can be setup to easily
provide a MTTDL of 100 years. That said, it is important to configure these systems to
provide adequate MTTDL while minimizing the overhead of storage devices that are used
to provide that MTTDL and not provide actual data storage capacity. The data stores cannot
be backed-up, as they will be very large in capacity.

Encoding Recovery Information

There has been an attempt in MarFS to encode as much of the metadata into the data
objects as possible while not costing too much performance. This really means that because
of the way objects work, at object create time, objects have fully re-creatable file
information embedded in the object or its name.

Encoded in the object name is the xattr MARobjid, the contents of which are described in
the Object Naming section. It is possible to use this information to help you figure out how
to piece together metadata information on the metadata file system. It is much harder for a
Packed file, as this object name just represents the first file in its object. Additionally there
is even more recovery information embedded in the object data itself. Fileinfo is a record
that has information mostly from stat() of the metadata file in human readable form.
Remember this is recovery information captured at create time only, it is not updated upon
metadata changes like chmod or chown or rename etc. It includes:

e Size of record.
e Version of record.

* inode.
* mode.
* uid.

e gid.

* mtime.

e ctimeand.

7-Jul-2015 26

MarFS Requirements, Design, Configuration, and Administration

e full path of the file.

For objects used in Uni and Multi files the layout of the object is:
Data.

* Fileinfo record.

* The contents of Mar_post.

* Number of files (used in packed).

* Offset in this object where recovery info begins.

For packed files, the recovery is similar. pftool (or in the future a post-processing utility
program) is the only way to create a Packed file, so it is possible to batch the recovery
information for efficient writing at the end of the object. In this case, the packed object
looks like this:

e DataFilel

* DataFileN.
* Length of Fileinfol+Mar_postl, Fileinfol record, Mar_post1.

* Length of FileinfoN+Mar_postN, FileinfoN record, Mar_postN.
e Number of files.
e Offset in this object where recovery info begins.

So normal reading of the object won't ever get to the recovery information held in the
object data. The reason to put this in the data itself is the size might be large given full path
is included. To recover (remember this is a create time only recover), you list objects and
find the ones you are interested in (via bucket name, namespace.repo.suffix, and time
stamp/etc.), get the header of the object which tells you the length of the object, read the
last 2 words of the object (number of files and location of recovery info), use the location of
the recovery information to read the recovery information and then recover the metadata
(create time metadata) for the file.

This does not help you with metadata only changes like chmod, rename, chown, etc. If you
want to protect yourself from loss of this info, frequent backup of the metadata is the
answer. Potentially one might log metadata only updates at some point but there is no plan
to do that now.

Lastly, if there is an easy way to dump a list of the objects in the buckets, the object names
themselves occasionally, this would be both a good way to do reconciliation between
MarFS metadata systems and object storage systems, but it also might be useful in an
emergency recovery scenario of some kind.

7-Jul-2015 27

MarFS Requirements, Design, Configuration, and Administration

Future Features
Of course, MarFS can be much more than its current design. Some envisioned future
features are:

» File versioning. We have the ability to version the data behind files since unlink and
truncate put the old file “space” in the trash.

* Telescoping/indexing/namespace with directories marked by directory xattr using
indexfs or other directory pickling, both at single level directories and eventually
multi level directories (telescoping index/namespace).

* Dual copy, probably implemented by a repository that does dual copy.

* Metadata update logging.

* Compression. The hard part is how to read compressed files/chunks in fuse.

* Encryption. The hard part is how to read encrypted chunks in fuse.

» Offline optimizations/sorting/indexing of attrs and user xattrs etc.

* Maybe append or sparse support, need to consider carefully, hard to do because of
book keeping and because we chose to use formulaic striping instead of extent lists
with sizes for multi files, we could use the multi mechanism that holds things like
actual size of the chunk perhaps.

* Other access methods than CDMI/object, HPSS, remote, etc.

* HDFS alternate access of same data, via java HDFS lib, provide chunk info and query
object store if it has info that matters (if its erasure allows locality).

* Would be nice to have restart for big files but that could be deferred.

* Packed file support could be later but would be nice to have sooner to make it easy
on object system.

* Backup of object level metadata. List all objects in a bucket because all the metadata
is in the object names.

* Would like to have V2 of erasure library sooner than later for improved bandwidth.

* Offline deep reconcile/repack, if trash is lost.

* Investigate GPFS keeping track of changes for further optimizations of utility
programs. For example, only process changed parts of the tree.

* FUSE packing on write.

* FUSE multipart write.

* May need a special way to load data from HPSS to campaign that is very large, as we
will need multi-part through FUSE or some other special way. In short term we
could force this to go to scratch first for a while. Moving it from HPSS is the hard
part. Once on scratch it would go fast to campaign, but need to figure a good way to
do this at some point.

* May want to do other optimizations to HPSS.

7-Jul-2015 28

