
LA-UR-15-25110
Approved for public release; distribution is unlimited.

Title: MarFS-Requirements-Design-Configuration-Admin

Author(s): Kettering, Brett Michael
Grider, Gary Alan

Intended for: Report

Issued: 2015-07-08

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 1	

Introduction	

This	
 document	
 will	
 be	
 organized	
 into	
 sections	
 that	
 are	
 defined	
 by	
 the	
 requirements	
 for	
 a	

file	
 system	
 that	
 presents	
 a	
 near-­‐POSIX	
 (Portable	
 Operating	
 System	
 Interface)	
 interface	
 to	

the	
 user,	
 but	
 whose	
 data	
 is	
 stored	
 in	
 whatever	
 form	
 is	
 most	
 efficient	
 for	
 the	
 type	
 of	
 data	

being	
 stored.	
 After	
 defining	
 the	
 requirement	
 the	
 design	
 for	
 meeting	
 the	
 requirement	
 will	
 be	

explained.	
 Finally	
 there	
 will	
 be	
 sections	
 on	
 configuring	
 and	
 administering	
 this	
 file	
 system.	

	

More	
 and	
 more,	
 data	
 dominates	
 the	
 computing	
 world.	
 There	
 is	
 a	
 “sea”	
 of	
 data	
 out	
 there	
 in	

many	
 different	
 formats	
 that	
 needs	
 to	
 be	
 managed	
 and	
 used.	
 “Mar”	
 means	
 “sea”	
 in	
 Spanish.	

Thus,	
 this	
 product	
 is	
 dubbed	
 MarFS,	
 a	
 file	
 system	
 for	
 a	
 sea	
 of	
 data.	

Rationale	

Many	
 may	
 question	
 why	
 a	
 new	
 product	
 like	
 MarFS	
 is	
 necessary.	
 While	
 there	
 are	
 products	

that	
 are	
 developing,	
 none	
 provides	
 a	
 scalable	
 near-­‐POSIX	
 interface	
 with	
 adequate	

performance	
 at	
 this	
 time.	

	

Current	
 object	
 storage	
 systems	
 use	
 erasure	
 based	
 disk	
 systems	
 to	
 store	
 the	
 data,	
 which	
 is	
 a	

positive	
 thing.	
 RAID	
 (Redundant	
 Array	
 of	
 Independent	
 Disks)	
 solutions,	
 such	
 as	
 RAID-­‐6,	
 are	

not	
 adequate	
 data	
 protection	
 given	
 the	
 reliability	
 and	
 resilience	
 required	
 for	
 all	
 the	

hardware	
 needed	
 to	
 hold	
 this	
 data.	
 Products	
 such	
 as	
 Cleversafe,	
 Scality,	
 and	
 EMC	
 ViPR	
 are	

moving	
 towards	
 the	
 “sea	
 of	
 data”	
 concept	
 where	
 data	
 can	
 have	
 multiple	
 personalities	

including	
 POSIX,	
 Object,	
 and	
 HDFS	
 (Hadoop	
 Distributed	
 File	
 System).	
 Currently,	
 these	

object	
 storage	
 systems	
 are	
 immature	
 and	
 don’t	
 support	
 near-­‐POSIX	
 interfaces.	
 MarFS	

assumes	
 you	
 want	
 a	
 first	
 class	
 near-­‐POSIX	
 interface	
 to	
 your	
 files.	
 MarFS	
 is	
 trying	
 to	
 be	
 the	

best	
 of	
 both	
 worlds,	
 allowing	
 data	
 scaling	
 like	
 an	
 object	
 storage	
 system,	
 metadata	
 scaling	

like	
 N	
 POSIX	
 name	
 spaces,	
 and	
 both	
 kinds	
 of	
 access	
 to	
 the	
 same	
 data,	
 the	
 true	
 “sea	
 of	
 data”	

concept.	
 In	
 time,	
 it	
 is	
 certainly	
 possible	
 that	
 they	
 will	
 fill	
 MarFS’s	
 role.	

	

It	
 is	
 possible	
 to	
 put	
 object	
 storage	
 systems	
 under	
 scalable	
 file	
 systems	
 like	
 GPFS	
 (General	

Parallel	
 File	
 System)	
 using	
 a	
 block	
 interface	
 over	
 the	
 object	
 storage	
 system,	
 but	
 the	
 block	

write	
 patterns	
 of	
 these	
 PFSes	
 (parallel	
 file	
 systems)	
 are	
 not	
 well	
 suited	
 to	
 benefit	
 from	

these	
 object	
 storage	
 systems’	
 high	
 performance.	
 MarFS	
 will	
 be	
 able	
 to	
 use	
 any	
 object	

storage	
 system,	
 including	
 potentially	
 using	
 cloud-­‐based	
 services,	
 as	
 a	
 back	
 end	
 storage	

repo.	

	

The	
 team	
 has	
 investigated	
 existing	
 open	
 source	
 projects,	
 and	
 there	
 doesn’t	
 appear	
 to	
 be	

another	
 one	
 that	
 provides	
 the	
 needed	
 functionality.	
 Ceph	
 provides	
 a	
 file	
 system	
 on	
 objects,	

but	
 isn’t	
 known	
 for	
 scaled	
 out	
 metadata	
 service.	
 GlusterFS	
 is	
 probably	
 the	
 closest	
 thing	
 to	

an	
 alternative,	
 and	
 indeed	
 GlusterFS	
 can	
 be	
 a	
 global	
 name	
 space	
 combining	
 multiple	
 file	

systems	
 into	
 one	
 mount	
 point.	
 It	
 also	
 hashes	
 the	
 file	
 names	
 across	
 the	
 file	
 systems,	
 which	
 is	

something	
 MarFS	
 is	
 not	
 currently	
 designed	
 to	
 do.	
 The	
 main	
 difference	
 is	
 the	
 approach	
 to	

what	
 GlusterFS	
 documentation	
 refers	
 to	
 as	
 unified	
 file	
 and	
 object.	
 GlusterFS	
 has	
 been	

integrated	
 to	
 be	
 object	
 storage	
 for	
 OpenStack	
 Swift	
 (for	
 objects)	
 and	
 block	
 storage	
 for	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 2	

OpenStack	
 Cinder	
 (for	
 blocks).	
 Conversely,	
 MarFS	
 is	
 designed	
 to	
 put	
 a	
 near-­‐POSIX	
 interface	

over	
 any	
 object	
 storage	
 system,	
 including	
 OpenStack	
 Swift.	

	

Some	
 may	
 question	
 why	
 a	
 HSM	
 (hierarchical	
 storage	
 management)	
 tool	
 like	
 HPSS	
 (High	

Performance	
 Storage	
 System)	
 or	
 DMF	
 (Data	
 Migration	
 Facility)	
 is	
 not	
 used.	
 These	
 systems	

currently	
 don’t	
 take	
 advantage	
 of	
 the	
 enormous	
 industry	
 investments	
 in	
 object	
 storage.	

HPSS	
 metadata	
 performance	
 is	
 likely	
 1/10th	
 or	
 less	
 of	
 what	
 MarFS	
 metadata	
 performance	
 is	

expected	
 to	
 be.	
 MarFS	
 will	
 leverage	
 existing	
 tools	
 and	
 be	
 a	
 small	
 amount	
 of	
 code	
 to	

combine	
 these	
 tools.	
 To	
 be	
 fair,	
 MarFS	
 is	
 not	
 a	
 HSM,	
 although	
 batch	
 utilities	
 could	
 be	

written	
 to	
 move	
 data	
 around	
 under	
 MarFS	
 to	
 various	
 kinds	
 of	
 storage	
 systems	
 that	
 would	

be	
 most	
 appropriate	
 for	
 the	
 data	
 based	
 on	
 policy	
 configurations.	
 HSM	
 systems,	
 like	
 HPSS,	

are	
 not	
 generally	
 highly	
 parallel.	
 MarFS	
 is	
 designed	
 for	
 dozens	
 to	
 hundreds	
 of	
 metadata	

servers/name	
 spaces	
 and	
 thousands	
 or	
 even	
 tens	
 of	
 thousands	
 of	
 parallel	
 data	
 movement	

streams.	
 HPSS	
 is	
 designed	
 for	
 about	
 an	
 order	
 of	
 magnitude	
 less	
 parallelism.	
 There	
 are	
 some	

solutions	
 emerging	
 in	
 the	
 space	
 of	
 object	
 systems	
 back-­‐ending	
 DMAPI	
 (Data	
 Management	

API),	
 particularly	
 for	
 GPFS	
 like	
 the	
 DDN	
 (Data	
 Direct	
 Networks)	
 DMAPI	
 to	
 WOS	
 (Web	

Object	
 Scaler,	
 http://www.ddn.com/products/object-­‐storage-­‐web-­‐object-­‐scaler-­‐wos/)	

solution.	
 The	
 way	
 DMAPI	
 works	
 is	
 just	
 quite	
 heavy	
 in	
 that	
 it	
 tries	
 to	
 handle	
 every	
 POSIX	

case.	
 MarFS	
 has	
 the	
 principal	
 of	
 simplifying	
 and	
 not	
 supporting	
 some	
 use	
 cases	
 in	
 POSIX	
 to	

accommodate	
 easy/friendly	
 use	
 of	
 Object	
 Stores	
 of	
 all	
 kinds.	
 Of	
 course	
 you	
 could	

implement	
 a	
 DMAPI	
 back	
 end	
 that	
 doesn’t	
 handle	
 all	
 POSIX	
 cases,	
 but	
 you	
 can’t	
 be	

guaranteed	
 you	
 will	
 not	
 see	
 these	
 requests	
 unless	
 you	
 control	
 the	
 access	
 tools	
 people	
 use	

or	
 put	
 a	
 FUSE	
 (File	
 System	
 in	
 User	
 Space)	
 in	
 front	
 of	
 GPFS	
 to	
 control	
 the	
 use	
 cases	
 (like	

update	
 in	
 place).	
 Ultimately	
 this	
 simpler	
 and	
 more	
 limiting	
 model	
 in	
 MarFS	
 does	
 not	
 mate	

well	
 with	
 DMAPI.	
 The	
 simpler	
 goal	
 for	
 MarFS	
 was	
 chosen	
 to	
 allow	
 for	
 extreme	
 flexibility	
 for	

implementers.	

	

There	
 are	
 products	
 that	
 are	
 optimized	
 for	
 WAN	
 and	
 HSM	
 metadata	
 rates.	
 For	
 example,	

General	
 Atomics	
 Nirvana	
 Storage	
 Resource	
 Broker,	
 iRODS	
 (Integrated	
 Rule	
 Oriented	
 Data	

Systems).	
 There	
 are	
 some	
 capabilities	
 for	
 putting	
 POSIX	
 files	
 over	
 objects,	
 but	
 these	

methods	
 are	
 largely	
 via	
 NFS	
 or	
 other	
 methods	
 that	
 try	
 to	
 mimic	
 full	
 file	
 system	
 semantics	

including	
 update	
 in	
 place.	
 These	
 methods	
 are	
 not	
 designed	
 for	
 massive	
 parallelism	
 in	
 a	

single	
 file,	
 etc.	

	

The	
 team	
 has	
 looked	
 at	
 name	
 space	
 solutions.	
 EMC’s	
 Maginatics	
 is	
 in	
 its	
 infancy	
 and	

targeted	
 at	
 enterprise.	
 An	
 open	
 source	
 name	
 space	
 project	
 called	
 Camlistore	
 appears	
 to	
 be	

targeted	
 and	
 personal	
 storage.	
 Bridgestore	
 is	
 a	
 POSIX	
 name	
 space	
 over	
 objects,	
 but	
 it	
 puts	

its	
 metadata	
 in	
 a	
 flat	
 space	
 so	
 rename	
 of	
 a	
 directory	
 is	
 horribly	
 painful.	
 Avere	
 NFS	
 over	

objects	
 is	
 focused	
 at	
 NFS	
 so	
 shared	
 file	
 N-­‐1	
 will	
 not	
 be	
 high	
 performance.	

	

We	
 need	
 an	
 open	
 source	
 solution	
 to	
 deploy	
 in	
 production	
 now	
 that	
 enables	
 the	
 described	

functionality.	
 It	
 is	
 our	
 hope	
 that	
 MarFS	
 will	
 set	
 the	
 bar	
 high	
 for	
 fully	
 integrated	
 solutions	
 to	

replace	
 it.	
 	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 3	

Requirements	
 and	
 Design	

This	
 section	
 defines	
 the	
 requirements	
 and	
 design	
 elements	
 that	
 were	
 crafted	
 to	
 meet	
 the	

requirements.	

Design	
 Overview	

This	
 design	
 will	
 require:	

• Linux	
 system(s)	
 with	
 C/C++	
 and	
 FUSE	
 support	

• MPI	
 (Message	
 Passing	
 Interface)	
 for	
 parallel	
 communication	
 in	
 pftool	
 (a	
 parallel	

data	
 transfer	
 tool,	
 see	
 https://github.com/pftool/pftool).	
 Thus,	
 most	
 any	
 MPI	

library	
 with	
 a	
 C	
 interface	
 can	
 be	
 used.	

• Communications	
 with	
 the	
 MPI	
 library	
 can	
 utilize	
 many	
 communications	
 methods	

like	
 TCP/IP,	
 Infiniband	
 OFED,	
 etc.	

• If	
 you	
 plan	
 to	
 use	
 MarFS	
 only	
 to	
 combine	
 multiple	
 POSIX	
 file	
 systems	
 into	
 one	
 mount	

point,	
 any	
 set	
 of	
 POSIX	
 file	
 systems	
 can	
 be	
 used.	
 	

• If	
 you	
 plan	
 on	
 using	
 multi-­‐node	
 parallelism	
 for	
 the	
 FUSE	
 daemon,	
 pftool,	
 or	
 the	

batch	
 utility	
 programs	
 (MarFS	
 software),	
 all	
 file	
 systems,	
 including	
 MarFS	
 file	

systems,	
 must	
 be	
 globally	
 mounted	
 on	
 all	
 nodes	
 running	
 MarFS	
 software.	
 This	

includes	
 NFS	
 and	
 other	
 global	
 file	
 systems.	

• If	
 you	
 plan	
 to	
 store	
 data	
 on	
 an	
 object	
 store,	
 that	
 object	
 store	
 needs	
 to	
 be	
 accessible	

by	
 all	
 nodes	
 running	
 MarFS	
 software.	
 The	
 MarFS	
 metadata	
 component	
 must	
 be	

capable	
 of	
 POSIX	
 extended	
 attributes	
 (xattr)	
 and	
 must	
 support	
 sparse	
 files	
 (files	
 that	

have	
 a	
 non-­‐zero	
 size	
 but	
 that	
 occupy	
 no	
 space).	

	

The	
 planned	
 MarFS	
 implementation	
 will	
 use	
 GPFS	
 file	
 systems	
 as	
 the	
 metadata	
 component	

and	
 Scality	
 and/or	
 ECS	
 ViPR	
 object	
 stores	
 as	
 the	
 data	
 storage	
 component.	
 Of	
 course,	
 the	

data	
 storage	
 component	
 can	
 be	
 one	
 or	
 more	
 POSIX	
 file	
 systems.	
 The	
 data	
 storage	

component	
 should	
 be	
 selected	
 to	
 provide	
 the	
 best	
 performance	
 for	
 the	
 type	
 of	
 files	
 that	
 will	

be	
 stored	
 on	
 it.	

	

The	
 interactions	
 with	
 the	
 GPFS-­‐based	
 metadata	
 component	
 are	
 via	
 the	
 normal	
 POSIX	

interface.	
 GPFS	
 has	
 some	
 ILM	
 (Information	
 Lifecycle	
 Management)	
 capabilities	
 for	

managing	
 massive	
 amounts	
 of	
 metadata	
 that	
 helps	
 immensely	
 with	
 batch	
 processing	
 for	

management	
 of	
 the	
 system.	

	

The	
 interactions	
 with	
 the	
 Scality-­‐	
 and/or	
 ECS	
 ViPR-­‐based	
 data	
 storage	
 component	
 are	
 via	

the	
 most	
 efficient	
 object	
 protocols,	
 such	
 as	
 Amazon	
 S3	
 and	
 CDMI.	
 MarFS	
 can	
 put	
 a	
 file	
 per	

object,	
 pack	
 many	
 small	
 files	
 into	
 one	
 object,	
 and	
 spread	
 a	
 large	
 file	
 across	
 many	
 objects.	

Although	
 the	
 design	
 does	
 not	
 call	
 for	
 using	
 POSIX	
 file	
 systems	
 as	
 the	
 data	
 storage	

component,	
 the	
 design	
 does	
 not	
 preclude	
 it.	
 If	
 MarFS	
 were	
 configured	
 to	
 use	
 a	
 POSIX	
 file	

system	
 as	
 the	
 data	
 storage	
 component,	
 then	
 any	
 such	
 file	
 system	
 would	
 work	
 including	

PFSes	
 (parallel	
 file	
 systems)	
 like	
 GPFS,	
 Lustre,	
 Panasas,	
 etc.,	
 or	
 non-­‐PFSes,	
 like	
 NFSv3.	

	

The	
 GPFS	
 file	
 systems	
 and	
 object	
 stores	
 will	
 be	
 hidden	
 from	
 the	
 users	
 so	
 that	
 they	
 cannot	

use	
 them	
 directly,	
 but	
 the	
 MarFS	
 components	
 will	
 know	
 about	
 them	
 and	
 how	
 to	
 use	
 them	

efficiently.	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 4	

FUSE	
 Daemon	
 for	
 Interactive	
 Use	

A	
 FUSE	
 daemon	
 will	
 provide	
 the	
 system	
 mount	
 point	
 and	
 interactive	
 use	
 component	
 of	
 a	

MarFS	
 file	
 system.	
 Of	
 course	
 there	
 can	
 be	
 multiple	
 MarFS	
 file	
 systems	
 and	
 consequently	

multiple	
 FUSE	
 daemons.	
 This	
 daemon	
 will	
 know	
 that	
 it	
 will	
 use	
 the	
 GPFS	
 file	
 systems	
 for	

metadata	
 operations	
 and	
 the	
 specified	
 object	
 stores	
 as	
 the	
 data	
 storage	
 component.	
 The	

FUSE	
 daemon	
 on	
 the	
 interactive	
 FTA	
 nodes	
 allows	
 users	
 to	
 run	
 interactive	
 file	
 system	

commands	
 but	
 the	
 FUSE	
 daemon	
 has	
 some	
 drawbacks.	
 It	
 cannot	
 pack	
 multiple	
 small	
 files	

into	
 one	
 object.	
 A	
 utility	
 program	
 must	
 do	
 this	
 after	
 the	
 FUSE	
 daemon	
 writes	
 multiple	
 small	

files.	
 The	
 FUSE	
 daemon	
 enforces	
 writing	
 only	
 serially	
 from	
 byte	
 zero	
 (e.g.	
 there	
 is	
 no	

update-­‐in-­‐place).	
 This	
 means	
 if	
 you	
 want	
 to	
 update	
 a	
 file	
 in	
 place	
 you	
 need	
 to	
 copy	
 it	
 to	
 a	

full	
 service	
 file	
 system,	
 modify	
 it	
 and	
 put	
 it	
 back.	
 Files	
 can	
 be	
 read	
 in	
 any	
 order	
 of	
 course	

and	
 all	
 metadata	
 operations	
 should	
 work	
 (chown,	
 chmod,	
 mkdir,	
 etc.).	
 If	
 the	
 file	
 is	
 stored	

on	
 an	
 object	
 server	
 that	
 does	
 not	
 support	
 update	
 in	
 place	
 you	
 can	
 only	
 truncate	
 to	
 zero,	

meaning	
 files	
 have	
 to	
 be	
 completely	
 overwritten,	
 not	
 partially.	
 Currently,	
 append	
 is	
 not	

supported,	
 but	
 that	
 could	
 be	
 added	
 at	
 some	
 point.

pftool	
 for	
 High	
 Performance	
 Parallel	
 Data	
 Movement	

The	
 parallel	
 data	
 movement	
 utility,	
 pftool,	
 will	
 likewise	
 be	
 modified	
 to	
 use	
 the	
 GPFS	
 file	

systems	
 as	
 the	
 metadata	
 component	
 and	
 the	
 object	
 stores	
 as	
 the	
 data	
 storage	
 component.	

pftool	
 is	
 a	
 load	
 balanced,	
 highly	
 parallel	
 utility	
 on	
 one	
 node	
 or	
 across	
 multiple	
 nodes.	
 It	
 can	

walk	
 the	
 file	
 system	
 tree	
 in	
 parallel,	
 move	
 data	
 between	
 file	
 systems,	
 and	
 move	
 small	
 files	

in	
 parallel	
 or	
 break-­‐up	
 big	
 files	
 to	
 move	
 them	
 in	
 parallel	
 for	
 any	
 POSIX	
 file	
 system,	

including	
 MarFS.	
 It	
 will	
 be	
 possible	
 to	
 write	
 data	
 to	
 MarFS	
 in	
 parallel	
 using	
 pftool,	
 or	
 by	

writing	
 one’s	
 own	
 parallel	
 data	
 movement	
 utility	
 using	
 the	
 library. In	
 our	
 design,	
 pftool	
 will	

run	
 on	
 the	
 batch	
 (non-­‐interactive)	
 FTAs	
 for	
 performance	
 and	
 security	
 reasons.	
 Access	
 to	

the	
 object	
 store	
 needs	
 to	
 be	
 controlled	
 such	
 that	
 the	
 FUSE	
 daemon	
 and	
 pftool	
 can	
 access	
 it	

on	
 behalf	
 of	
 the	
 users,	
 but	
 users	
 cannot	
 access	
 it	
 directly.	
 pftool	
 provides	
 pcp	
 (parallel	

copy),	
 pls	
 (parallel	
 ls),	
 and	
 pcmp	
 (parallel	
 compare).

Utility	
 Programs	
 to	
 Manage	
 MarFS	

There	
 will	
 be	
 some	
 MarFS	
 utility	
 programs	
 that	
 will	
 be	
 run	
 periodically	
 to	
 free	
 deleted	

storage	
 space	
 and	
 ensure	
 that	
 users	
 do	
 not	
 exceed	
 their	
 assigned	
 quotas.	
 Other	
 utility	

programs	
 may	
 be	
 implemented	
 in	
 the	
 future	
 to	
 manage	
 other	
 aspects	
 of	
 the	
 file	
 system	
 that	

can	
 be	
 performed	
 on	
 an	
 as-­‐needed	
 or	
 periodic	
 basis;	
 such	
 as	
 for	
 packing	
 small	
 files	
 into	
 an	

object	
 of	
 the	
 best	
 size	
 for	
 the	
 data	
 component.	

	

Since	
 our	
 design	
 uses	
 GPFS	
 as	
 the	
 metadata	
 component,	
 the	
 GPFS	
 ILM	
 features	
 will	
 be	

utilized	
 for	
 very	
 fast	
 inode	
 shadow	
 table	
 scanning,	
 threaded	
 name	
 merges,	
 etc.	
 to	
 look	

through	
 millions	
 of	
 files	
 in	
 minutes	
 to	
 perform	
 these	
 management	
 tasks.	
 In	
 the	
 future,	
 these	

scans	
 could	
 gather	
 information	
 needed	
 for	
 statvfs/statfs	
 as	
 well	
 as	
 other	
 useful	
 histogram	

information.	
 For	
 example,	
 files/space,	
 file	
 sizes,	
 based	
 on	
 dates	
 such	
 as	
 files	
 created	
 or	

modified	
 in	
 the	
 last	
 X	
 days,	
 file	
 types	
 (e.g.	
 Multi,	
 Uni,	
 Packed),	
 directories,	
 etc.;	
 basically	
 any	

information	
 that	
 the	
 administrators	
 find	
 useful.	
 One	
 might	
 want	
 to	
 exclude	
 trash	
 or	
 account	

for	
 trash	
 separately,	
 perhaps	
 by	
 walking	
 the	
 trashdir	
 and	
 subtracting	
 that	
 space	
 or	
 the	
 like.	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 5	

A	
 way	
 to	
 list	
 objects	
 used	
 in	
 the	
 object	
 repositories	
 might	
 be	
 nice.	
 By	
 this	
 manner	
 an	

infrequent	
 pass	
 through	
 the	
 data	
 repositories	
 can	
 be	
 made	
 to	
 remove	
 objects	
 that	
 are	
 no	

longer	
 used.	

Planned	
 LANL	
 Deployment	

Following	
 is	
 a	
 diagram	
 that	
 depicts	
 a	
 very	
 rough	
 concept	
 of	
 how	
 MarFS	
 campaign	
 storage	

would	
 fit	
 into	
 LANL's	
 Turquoise	
 network	
 environment.	
 One	
 sees	
 all	
 the	
 normal	
 services	
 on	

the	
 top	
 and	
 the	
 MarFS	
 campaign	
 storage	
 on	
 the	
 bottom.	
 The	
 FTAs	
 (File	
 Transfer	
 Agents)	

are	
 where	
 the	
 FUSE	
 and	
 utility	
 programs	
 run	
 and	
 where	
 the	
 POSIX	
 file	
 systems	
 (metadata	

component)	
 are	
 mounted,	
 as	
 well	
 as	
 all	
 the	
 other	
 non-­‐MarFS	
 file	
 systems	
 (NFS,	
 GPFS	

Archive,	
 Scratch,	
 etc.).	
 The	
 MarFS	
 metadata	
 component	
 (in	
 this	
 case	
 GPFS	
 NSD)	
 provides	

very	
 fast	
 parallel	
 metadata.	
 The	
 data	
 component	
 (in	
 this	
 case	
 object	
 servers)	
 provides	
 a	

scalable	
 data	
 repository	
 for	
 MarFS	
 files.	

A	
 closer	
 look	
 the	
 recommended	
 MarFS	
 deployment	
 follows.	
 Notice	
 that	
 separate	
 interactive	

and	
 batch	
 FTAs	
 are	
 recommended	
 for	
 security	
 and	
 performance	
 reasons.	
 Since	
 the	
 object	

security	
 model	
 does	
 not	
 match	
 well	
 with	
 the	
 POSIX	
 security	
 model,	
 it	
 makes	
 sense	
 not	
 to	

allow	
 users	
 to	
 have	
 access	
 to	
 the	
 keys	
 needed	
 to	
 open/control	
 the	
 object	
 stores.	
 Thus,	
 those	

keys	
 should	
 be	
 kept	
 on	
 the	
 batch	
 FTAs	
 and	
 provided	
 only	
 to	
 the	
 FUSE	
 daemons	
 on	
 the	

interactive	
 FTAs	
 using	
 some	
 secure	
 method.	
 The	
 ability	
 to	
 access	
 the	
 object	
 servers	
 directly	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 6	

without	
 going	
 through	
 the	
 FUSE	
 daemon	
 must	
 be	
 controlled.	
 Interactive	
 FTAs	
 would	
 be	

used	
 for	
 "ls",	
 "grep",	
 "tar",	
 etc.	
 These	
 are	
 all	
 small/serial	
 tools	
 that	
 can	
 run	
 by	
 as	
 users	

gaining	
 access	
 to	
 files	
 through	
 the	
 FUSE	
 daemon,	
 which	
 must	
 run	
 as	
 a	
 privileged	
 user	
 for	
 a	

variety	
 of	
 management	
 and	
 security	
 reasons.	

	

	

	

MarFS	
 files	
 are	
 created	
 into	
 a	
 POSIX	
 metadata	
 file	
 system	
 with	
 no	
 special	
 metadata.	
 The	

MarFS	
 file	
 metadata	
 will	
 be	
 placed	
 into	
 one	
 of	
 many	
 possible	
 POSIX	
 file	
 systems	
 that	

comprise	
 the	
 metadata	
 store.	
 In	
 this	
 way,	
 MarFS	
 is	
 a	
 global	
 name	
 space.	
 Files	
 are	
 not	

hashed	
 across	
 POSIX	
 file	
 systems.	
 Rather,	
 the	
 total	
 MarFS	
 namespace	
 is	
 decomposed	
 into	

separate	
 POSIX	
 file	
 systems	
 by	
 tree.	
 All	
 normal	
 POSIX	
 ownerships/permission/attributes	

like	
 dates/sizes/etc.	
 are	
 obeyed.	
 One	
 can	
 even	
 add	
 user	
 supplied	
 xattrs	
 to	
 the	
 files.	

The	
 data	
 is	
 written	
 to	
 data	
 component,	
 which	
 can	
 be	
 a	
 POSIX	
 file	
 system	
 or	
 object	
 store.	
 All	

normal	
 attributes	
 are	
 kept	
 up	
 to	
 date	
 in	
 semantically	
 reasonable	
 ways	
 like	
 permissions,	

dates,	
 and	
 even	
 file	
 size.	
 The	
 file	
 size	
 is	
 updated	
 by	
 truncating	
 the	
 POSIX	
 metadata	
 file	
 to	

the	
 size	
 of	
 the	
 desired	
 file	
 even	
 though	
 there	
 may	
 be	
 no	
 actual	
 data	
 in	
 the	
 file	
 itself.	
 For	
 this	

reason	
 the	
 POSIX	
 file	
 systems	
 used	
 for	
 the	
 metadata	
 component	
 must	
 support	
 sparse	
 files.	

Further,	
 some	
 reserved	
 POSIX	
 xattrs	
 are	
 applied	
 to	
 the	
 metadata	
 component	
 files	
 to	

provide	
 information	
 so	
 that	
 where	
 the	
 data	
 is	
 and	
 how	
 to	
 access	
 it	
 are	
 preserved.	
 For	
 this	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 7	

reason,	
 the	
 POSIX	
 file	
 system	
 used	
 for	
 the	
 metadata	
 component	
 must	
 support	
 POSIX	
 xattrs,	

where	
 some	
 xattr	
 names	
 are	
 reserved	
 and	
 hidden	
 from	
 the	
 user.	

In	
 this	
 design	
 all	
 metadata	
 operations	
 like	
 reading/creating	
 directories,	
 managing	

ownership,	
 dates,	
 permissions,	
 user	
 xattrs,	
 etc.	
 are	
 all	
 just	
 performed	
 on	
 the	
 POSIX	
 file	

systems	
 being	
 used	
 as	
 the	
 metadata	
 component.	
 Only	
 operations	
 involving	
 space	

management	
 for	
 files	
 on	
 the	
 data	
 component,	
 where	
 said	
 component	
 includes	
 object	

store(s),	
 need	
 to	
 be	
 handled	
 differently	
 from	
 normal	
 POSIX.	
 In	
 these	
 operations,	
 all	
 the	

POSIX	
 permissions	
 are	
 adhered	
 to	
 and	
 additionally	
 object	
 permissions	
 are	
 also	
 obeyed	

based	
 on	
 the	
 operation.	
 Creating,	
 writing,	
 and	
 reading	
 these	
 files	
 with	
 their	
 data	
 in	
 object	

store(s)	
 uses/updates	
 the	
 POSIX	
 attrs	
 and	
 xattrs	
 appropriately	
 to	
 manage	
 the	
 access.	
 For	

special	
 space	
 management	
 operations	
 like	
 truncate	
 and	
 unlink,	
 all	
 references	
 to	
 the	
 space	

being	
 freed	
 are	
 renamed	
 (in	
 case	
 of	
 an	
 unlink)	
 or	
 copied	
 (in	
 the	
 case	
 of	
 a	
 truncate)	
 to	
 a	

trash	
 directory	
 that	
 can	
 be	
 used	
 by	
 a	
 utility	
 program	
 for	
 space	
 reclamation	
 from	
 the	
 object	

server.	
 It	
 does	
 require	
 a	
 utility	
 program	
 to	
 free	
 the	
 objects	
 and	
 clean	
 out	
 the	
 trash.	
 A	
 trash	

recover	
 utility	
 could	
 easily	
 be	
 written	
 as	
 well	
 if	
 desired.	

Flexible	
 Configuration	

MarFS	
 shall	
 allow	
 for	
 use	
 of	
 one	
 or	
 more	
 POSIX-­‐compliant	
 file	
 systems	
 as	
 the	
 metadata	

component.	

	

MarFS	
 shall	
 allow	
 for	
 use	
 of	
 one	
 or	
 more	
 file	
 system	
 or	
 object	
 store	
 as	
 the	
 data	
 component.	

	

MarFS	
 shall	
 allow	
 for	
 defining	
 the	
 parameters	
 for	
 the	
 metadata	
 and	
 data	
 component	
 file	

systems	
 and	
 object	
 stores	
 to	
 meet	
 the	
 needs	
 of	
 a	
 given	
 installation.	

Design	
 to	
 Provide	
 Flexible	
 Configuration	

The	
 key	
 to	
 a	
 MarFS	
 installation	
 is	
 to	
 understand	
 the	
 configuration	
 information.	
 A	
 given	

MarFS	
 instance	
 is	
 defined	
 by	
 describing	
 the	
 metadata	
 component	
 file	
 systems	
 and	
 the	
 data	

component	
 file	
 systems	
 and	
 object	
 stores	
 in	
 terms	
 of	
 how	
 to	
 access	
 them	
 and	
 the	

parameters	
 for	
 their	
 use.	

	

The	
 subsequent	
 figure	
 shows	
 the	
 information	
 that	
 defines	
 a	
 MarFS	
 instance.	
 The	
 purpose	
 of	

these	
 parameters	
 follows	
 the	
 figure.	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 8	

	

	

	

MarFS	
 has	
 a	
 single	
 mount	
 point.	

	

MAR_mnttop	
 This	
 is	
 the	
 top-­‐level	
 directory	
 under	
 which	
 all	
 namespaces	

are	
 placed.	
 Specified	
 as	
 a	
 path	
 with	
 slashes.	

	

The	
 FUSE	
 daemon,	
 pftool,	
 and	
 the	
 utility	
 programs	
 will	
 append	
 MAR_mnttop	
 on	
 the	
 front	
 of	

all	
 the	
 namespace	
 segments	
 to	
 construct	
 a	
 namespace	
 tree.	
 For	
 example:	

	

MAR_mnttop	
 =	
 /redsea	

MAR_namespace.mntpath	
 =	
 /projecta	

MAR_namespace.mdpath	
 =	
 /md/projecta	

	

The	
 user	
 references	
 /redsea/projecta	
 and	
 that	
 refers	
 to	
 file's	
 metadata	
 file	
 system,	
 or	

namespace,	
 in	
 /md/projecta	

	

MAR_namespace	
 entries	
 define	
 the	
 one	
 or	
 more	
 namespaces	
 that	
 are	
 supported	
 under	
 the	

MarFS	
 mount	
 point.	

	

name	
 Name	
 that	
 refers	
 to	
 the	
 namespace	
 used	
 in	
 the	
 objid	
 that	
 is	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 9	

stored	
 as	
 the	
 name	
 of	
 the	
 object	
 in	
 the	
 data	
 component.	

mntpath	
 Specifies	
 the	
 path	
 for	
 this	
 namespace,	
 which	
 is	
 appended	
 to	
 the	

MAR_mnttop.	
 It	
 is	
 specified	
 as	
 a	
 path	
 with	
 slashes.	

bperms	
 Specifies	
 permissions	
 for	
 utility	
 programs.	
 These	
 permissions	

are	
 above	
 and	
 beyond	
 the	
 POSIX	
 permissions	
 (rwx/ugo).	
 This	

is	
 because	
 external	
 repositories	
 may	
 have	
 special	
 permissions	

that	
 don’t	
 map	
 exactly	
 to	
 POSIX	
 permissions.	
 The	
 values	
 are	

rmwmrdwdudtd.	

rm	
 –	
 read	
 metadata	

wm	
 –	
 write	
 metadata	

rd	
 –	
 read	
 data	

wd	
 –	
 write	
 data	

ud	
 –	
 unlink	
 data	

td	
 –	
 truncate	
 data	

An	
 example	
 of	
 interesting	
 use	
 is	
 to	
 allow	
 read	
 and	
 write	
 in	

POSIX	
 permissions,	
 allow	
 metadata	
 changes	
 but	
 not	
 allow	

writing	
 of	
 data.	
 This	
 value	
 is	
 not	
 stored	
 with	
 the	
 file,	
 it	
 is	

interpreted	
 real	
 time,	
 so	
 this	
 is	
 a	
 fast	
 way	
 to	
 shut	
 of	
 write	
 of	

data	
 or	
 metadata	
 etc.	
 This	
 item	
 can	
 change	
 based	
 on	
 allowed	

activity	
 against	
 this	
 namespace	
 and	
 the	
 data/space	
 it	

represents.	

Iperms	
 Specifies	
 permissions	
 for	
 access	
 through	
 the	
 FUSE	
 daemon.	

Same	
 as	
 bperms	
 above.	

Mdpath	
 Specifies	
 the	
 path	
 for	
 the	
 POSIX	
 file	
 system	
 that	
 is	
 to	
 hold	
 the	

metadata	
 and	
 potentially	
 data	
 for	
 this	
 namespace.	
 If	
 a	
 file	
 is	
 to	

be	
 written	
 to	
 an	
 external	
 repository,	
 then	
 only	
 metadata	
 is	

stored	
 in	
 this	
 file	
 system,	
 but	
 if	
 data	
 is	
 to	
 be	
 stored	
 into	
 this	
 file	

system	
 then	
 both	
 data	
 and	
 metadata	
 are	
 used.	
 Controlling	

whether	
 data	
 is	
 written	
 into	
 the	
 metadata	
 file	
 system	
 is	
 done	
 in	

the	
 repository	
 configuration	
 table	
 using	
 the	
 repomethodinfo	

field	
 so	
 the	
 repository	
 to/from	
 which	
 one	
 is	
 writing/reading	

will	
 be	
 DIRECT	
 (use	
 the	
 metadata	
 file	
 system)	
 or	
 some	
 other	

external	
 method	
 like	
 CDMI,	
 S3,	
 etc.	
 This	
 is	
 specified	
 using	
 path	

notation	
 using	
 slashes.	
 This	
 can	
 change	
 if	
 you	
 have	
 moved	
 the	

metadata	
 file	
 system	
 path	
 for	
 some	
 reason.	
 Though	
 it	
 might	
 be	

hard	
 to	
 change	
 on	
 the	
 fly.	

Iwrite_repo	
 Specifies	
 to	
 which	
 repository	
 FUSE	
 daemon	
 accesses	
 will	
 write	

new	
 files	
 and	
 points	
 at	
 a	
 name	
 in	
 the	
 repository	
 table.	
 This	
 can	

be	
 changed	
 as	
 it	
 controls	
 to	
 where	
 new	
 files	
 are	
 written.	

Iwrite_chunksize	
 Chunksize	
 for	
 FUSE	
 daemon	
 accesses.	

Swrite_repo	
 Specifies	
 to	
 which	
 repository	
 utility	
 programs	
 will	
 write	
 new	

small	
 files	
 and	
 points	
 at	
 a	
 name	
 in	
 the	
 repository	
 table.	
 This	
 can	

be	
 changed	
 as	
 it	
 controls	
 to	
 where	
 new	
 files	
 are	
 written.	

Swrite_size	
 Size	
 below	
 which	
 is	
 considered	
 a	
 small	
 file.	
 This	
 can	
 be	
 changed	

as	
 it	
 controls	
 to	
 where	
 new	
 files	
 are	
 written.	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 10	

Swrite_packsize	
 Size	
 of	
 object	
 into	
 which	
 to	
 pack	
 multiple	
 small	
 files.	
 If	
 this	

value	
 is	
 zero	
 then	
 packing	
 will	
 not	
 occur.	

Mwrite_repo	
 Specifies	
 to	
 which	
 repository	
 utility	
 programs	
 will	
 write	
 new	

medium	
 files	
 and	
 points	
 at	
 a	
 name	
 in	
 the	
 repository	
 table.	
 This	

can	
 be	
 changed	
 as	
 it	
 controls	
 to	
 where	
 new	
 files	
 are	
 written.	

Mwrite_size	
 Size	
 below	
 which	
 is	
 considered	
 a	
 medium	
 file.	
 This	
 can	
 be	

changed	
 as	
 it	
 controls	
 to	
 where	
 new	
 files	
 are	
 written.	

Lwrite_repo	
 Specifies	
 to	
 which	
 repository	
 utility	
 programs	
 will	
 write	
 new	

large	
 files	
 and	
 points	
 at	
 a	
 name	
 in	
 the	
 repository	
 table.	
 This	
 can	

be	
 changed	
 as	
 it	
 just	
 controls	
 where	
 new	
 files	
 are	
 written.	

Lwrite_size	
 Size	
 below	
 which	
 is	
 considered	
 a	
 large	
 file.	
 This	
 can	
 be	
 changed	

as	
 it	
 controls	
 to	
 where	
 new	
 files	
 are	
 written.	

Lwrite_chunksize	
 Chunksize	
 for	
 large	
 files.	

xlwrite_repo	
 Specifies	
 to	
 which	
 repository	
 utility	
 programs	
 will	
 write	
 new	

xlarge	
 files	
 and	
 points	
 at	
 a	
 name	
 in	
 the	
 repository	
 table.	
 This	

can	
 be	
 changed	
 as	
 it	
 controls	
 to	
 where	
 new	
 files	
 are	
 written.	

Xlwrite_chunksize	
 Chunk	
 size	
 for	
 xlarge	
 files.	

trashmdpath	
 Specifies	
 where	
 in	
 the	
 namespace,	
 information	
 is	
 stored	
 on	

unlink	
 and	
 trunc/ftrunc	
 operations,	
 which	
 could	
 provide	
 a	

trashcan	
 function	
 but	
 is	
 used	
 by	
 utility	
 programs	
 for	
 reclaiming	

space,	
 repacking,	
 reconciliation	
 of	
 space	
 which	
 is	
 needed	
 for	

external	
 repositories.	
 All	
 permanent	
 deletion	
 of	
 data	
 (both	

unlink	
 and	
 trunc)	
 is	
 done	
 in	
 batch	
 for	
 external	
 repositories.	
 For	

“DIRECT”	
 repositories	
 where	
 the	
 data	
 is	
 stored	
 directly	
 in	
 the	

metadata	
 file,	
 unlink	
 operations	
 go	
 to	
 this	
 path,	
 but	
 trunc’d	

space	
 is	
 not	
 preserved.	
 This	
 is	
 specified	
 as	
 a	
 path	
 with	
 slashes.	

It	
 is	
 assumed	
 that	
 this	
 is	
 in	
 the	
 same	
 metadata	
 file	
 system	
 as	

the	
 metadata	
 file	
 system	
 for	
 this	
 namespace,	
 as	
 rename	
 is	
 used	

for	
 unlink	
 operations.	
 This	
 value	
 could	
 change	
 but	
 much	
 care	

would	
 have	
 to	
 be	
 taken	
 because	
 entries	
 into	
 this	
 path	
 can	
 be	

occurring	
 all	
 the	
 time	
 and	
 information	
 about	
 reclaimable	
 space	

lives	
 in	
 this	
 path.	

fsinfopath	
 This	
 is	
 a	
 path	
 name	
 specified	
 with	
 slashes	
 to	
 a	
 file	
 that	
 contains	

the	
 values	
 one	
 would	
 get	
 in	
 a	
 statfs/statvfs	
 call	
 like	
 how	
 much	

space	
 is	
 in	
 the	
 file	
 system,	
 how	
 much	
 space	
 is	
 used,	
 etc.	
 This	
 file	

must	
 be	
 updated	
 in	
 a	
 lazy	
 way	
 via	
 periodic	
 batch	
 scans	
 of	
 inode	

space	
 etc.	
 Since	
 the	
 space	
 for	
 the	
 files	
 in	
 a	
 namespace	
 may	
 not	

be	
 in	
 the	
 metadata	
 file	
 system	
 associated	
 with	
 a	
 name	
 space,	
 it	

is	
 required	
 that	
 this	
 info	
 be	
 provided	
 in	
 some	
 way	
 to	
 be	
 chosen	

by	
 the	
 site.	
 	
 It	
 could	
 involve	
 walking	
 the	
 metadata	
 tree	
 or	
 inode	

space	
 and	
 adding	
 up	
 spaced	
 used	
 or	
 it	
 could	
 involve	
 querying	

an	
 external	
 repository	
 for	
 space	
 etc.	
 This	
 value	
 could	
 be	

changed,	
 but	
 care	
 needs	
 to	
 be	
 taken,	
 as	
 statfs/statvfs	
 calls	
 will	

look	
 in	
 this	
 file	
 for	
 providing	
 information.	

quota_space	
 Specifies	
 the	
 space	
 quota	
 for	
 this	
 name	
 space.	
 This	
 value	
 is	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 11	

compared	
 to	
 information	
 in	
 the	
 fsinfopath	
 file	
 above	
 about	
 how	

much	
 space	
 has	
 been	
 used	
 which	
 is	
 populated	
 via	
 lazy	
 batch	

runs	
 to	
 determine	
 and	
 record	
 space	
 used.	
 This	
 can	
 be	
 changed	

at	
 any	
 time,	
 but	
 will	
 not	
 take	
 effect	
 immediately	
 as	
 quota’s	
 are	

done	
 in	
 a	
 lazy	
 way	
 based	
 on	
 batch	
 runs	
 to	
 update	
 the	
 fsinfopath	

file.	

quota_name	
 Specifies	
 the	
 inode	
 quota	
 for	
 this	
 name	
 space.	
 This	
 value	
 is	

compared	
 to	
 information	
 in	
 the	
 fsinfopath	
 file	
 above	
 about	
 how	

many	
 inodes	
 have	
 been	
 used	
 which	
 is	
 populated	
 via	
 lazy	
 batch	

runs	
 to	
 determine	
 and	
 record	
 inodes	
 used.	
 	
 This	
 can	
 be	

changed	
 at	
 any	
 time,	
 but	
 will	
 not	
 take	
 effect	
 immediately	
 as	

quotas	
 are	
 done	
 in	
 a	
 lazy	
 way	
 based	
 on	
 batch	
 runs	
 to	
 update	

the	
 fsinfopath	
 file.	

namespaceshardp	
 Path	
 to	
 namespace	
 shard	
 metadata	
 file	
 systems	

namespaceshardpnum	
 Max	
 number	
 of	
 namespace	
 shard	
 metadata	
 file	
 systems	
 to	
 hash	

across	

	

MAR_datarepo	
 defines	
 the	
 one	
 or	
 more	
 data	
 repositories	
 for	
 each	
 namespace.	
 There	
 is	
 one	

of	
 these	
 for	
 every	
 repository	
 that	
 is	
 referenced	
 in	
 the	
 above	
 namespace	
 table,	
 and	
 for	
 every	

repository	
 that	
 any	
 file	
 stored	
 anywhere	
 in	
 this	
 MarFS	
 instance.	
 The	
 only	
 way	
 to	
 know	
 if	

you	
 can	
 get	
 rid	
 of	
 a	
 data	
 repository	
 in	
 this	
 list	
 is	
 to	
 ensure	
 no	
 references	
 exist	
 in	
 both	
 the	

configuration	
 namespaces	
 and	
 in	
 the	
 metadata	
 for	
 all	
 the	
 name	
 spaces.	
 It	
 is	
 really	

recommended	
 that	
 you	
 don’t	
 delete	
 anything,	
 just	
 add	
 another	
 row	
 with	
 a	
 new	
 repository.	

A	
 repository	
 is	
 just	
 a	
 logical	
 name	
 that	
 connects	
 the	
 data	
 of	
 files	
 in	
 any	
 namespace	
 to	
 a	

particular	
 use	
 of	
 place	
 to	
 store	
 the	
 file	
 data.	
 It	
 is	
 possible	
 for	
 multiple	
 repositories	
 to	
 point	

at	
 a	
 single	
 external	
 object	
 storage	
 server	
 with	
 different	
 characteristics	
 like	
 compress	
 and	

don’t	
 compress	
 etc.	
 Repositories	
 represent	
 a	
 method	
 for	
 talking	
 to	
 some	
 back	
 end	
 store.	

	

name	
 Name	
 for	
 this	
 repository,	
 this	
 name	
 is	
 used	
 in	
 the	
 namespace	

table	
 above	
 in	
 the	
 config	
 file	
 and	
 it	
 is	
 also	
 used	
 stored	
 with	
 the	

file	
 in	
 xattr,	
 so	
 this	
 can	
 not	
 be	
 changed	
 easily.	
 	
 It	
 follows	
 the	
 same	

rules	
 as	
 deleting	
 a	
 repo	
 in	
 this	
 list.	
 This	
 name	
 should	
 point	
 at	

some	
 name	
 of	
 a	
 portion	
 of	
 an	
 object	
 repository.	
 	
 For	
 example	

with	
 Scality	
 sproxyd	
 access	
 method,	
 this	
 repo	
 name	
 would	
 match	

to	
 a	
 stanza	
 in	
 the	
 sproxyd	
 file	
 which	
 tells	
 the	
 object	
 system	
 the	

storage	
 format	
 for	
 this	
 repo	
 name/stanza	
 (like	
 30+6	
 or	
 40+8	

along	
 with	
 other	
 attributes).	

URLprefix	
 This	
 is	
 a	
 string	
 associated	
 with	
 the	
 repository	
 used	
 to	
 access	
 the	

repository.	
 Object	
 names	
 will	
 be	
 repository	

URLprefex/bucket/object	
 name	
 Or	
 really,	

URLprefex/namespace.repo.suffix/obj	
 name,	
 which	
 is	
 formed	

and	
 stored	
 in	
 the	
 MAR_objid	
 xattr.	

updateinplace	
 Updates	
 in	
 place	
 for	
 files	
 in	
 this	
 repository	
 are	
 allowed.	
 This	
 lets	

you	
 decide	
 if	
 a	
 file	
 is	
 in	
 a	
 repo	
 that	
 can	
 do	
 update	
 in	
 place	
 then	

the	
 FUSE	
 daemon	
 and	
 utility	
 programs	
 can	
 allow	
 update	
 in	
 place.	
 	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 12	

If	
 a	
 repository	
 doesn’t	
 allow	
 this	
 easily	
 then	
 you	
 can	
 forbid	
 it.	
 It	
 is	

probably	
 good	
 practice	
 to	
 not	
 allow	
 this	
 for	
 all	
 repositories	
 used	

in	
 a	
 namespace	
 but	
 you	
 don’t	
 have	
 to	
 do	
 that.	
 Update	
 in	
 place	

means	
 that	
 if	
 you	
 open	
 for	
 write,	
 you	
 have	
 to	
 overwrite	
 the	
 entire	

file	
 from	
 the	
 beginning.	
 It	
 also	
 means	
 that	
 you	
 cannot	
 truncate	

the	
 file	
 to	
 any	
 other	
 value	
 than	
 zero.	
 It	
 also	
 means	
 that	
 you	

cannot	
 open	
 with	
 append	
 and	
 append	
 to	
 the	
 file,	
 although	
 this	

capability	
 might	
 be	
 changed	
 at	
 a	
 later	
 date.	
 The	
 software	
 can	
 use	

update	
 in	
 place	
 for	
 DIRECT	
 as	
 the	
 repomethodinfo	
 (which	
 tells	

the	
 software	
 to	
 put	
 the	
 file	
 data	
 in	
 the	
 metadata	
 file).	
 Values	
 are	

yes/no.	
 This	
 can	
 be	
 changed,	
 but	
 it	
 is	
 not	
 recommended.	

repomethodinfo	
 Info	
 about	
 method	
 for	
 accessing	
 the	
 object	
 repository,	
 like	
 S3	
 or	

CDMI	
 or	
 DIRECT	
 means	
 (use	
 the	
 metadata	
 file	
 system	
 for	
 the	
 user	

data)	
 .	

securitymethod	
 Specifies	
 a	
 method	
 for	
 how	
 security	
 works	
 on	
 this	
 repository	

(authentication/authorization),	
 this	
 can	
 change	
 as	
 it	
 is	
 not	

recorded	
 anywhere	
 other	
 than	
 in	
 this	
 file	
 but	
 any	
 backend	

storage	
 system	
 must	
 be	
 kept	
 in	
 sync	
 with	
 this	
 method.	

sectype	
 Specifies	
 a	
 method	
 for	
 encryption	
 for	
 data	
 for	
 the	
 repository.	
 This	

CANNOT	
 change	
 as	
 all	
 files	
 that	
 have	
 data	
 in	
 this	
 repository	
 are	

encrypted	
 with	
 this	
 type.	

comptype	
 Specifies	
 a	
 method	
 for	
 compression	
 for	
 data	
 for	
 the	
 repository.	

This	
 CANNOT	
 change	
 as	
 all	
 files	
 that	
 have	
 data	
 in	
 this	
 repository	

are	
 compressed	
 with	
 this	
 type.	

correcttype	
 Specifies	
 a	
 method	
 for	
 correctness	
 for	
 data	
 for	
 the	
 repository.	

This	
 CANNOT	
 change	
 as	
 all	
 files	
 that	
 have	
 data	
 in	
 this	
 repository	

have	
 this	
 correction	
 information	
 calculated	
 and	
 stored	
 with	
 this	

type.	

onoffline	
 Specifies	
 a	
 method	
 for	
 bringing	
 a	
 repository	
 online	
 if	
 the	

repository	
 is	
 of	
 the	
 type	
 that	
 allows	
 it	
 to	
 be	
 offline.	
 This	
 value	
 can	

change	
 as	
 it	
 is	
 dynamic.	

latency	
 Specifies	
 a	
 time	
 it	
 might	
 take	
 to	
 bring	
 a	
 repository	
 online.	
 This	

value	
 can	
 change	
 as	
 it	
 is	
 dynamic.	

	

For	
 Uni	
 and	
 Packed	
 files,	
 the	
 MAR_objid	
 xattr	
 holds	
 the	
 object	
 id	
 for	
 these	
 files.	
 The	

MAR_post	
 xattr	
 holds	
 the	
 type	
 of	
 file	
 (Uni,	
 Packed),	
 space	
 used	
 (for	
 the	
 file),	
 correctness	

value	
 (for	
 the	
 file),	
 and	
 numobjects	
 which	
 for	
 Uni	
 and	
 Packed	
 files	
 will	
 be	
 zero.	

	

For	
 Multi	
 object	
 files,	
 the	
 MAR_objid	
 xattr	
 holds	
 the	
 object	
 id	
 for	
 these	
 files	
 except	
 the	

chunknumber	
 changes	
 based	
 on	
 where	
 you	
 are	
 at	
 in	
 the	
 file.	
 The	
 MAR_post	
 xattr	
 holds	
 the	

type	
 of	
 file	
 (Multi),	
 space	
 used	
 (for	
 the	
 file	
 total),	
 correctness	
 value	
 (for	
 the	
 file	
 total),	
 and	

numobjects	
 which	
 for	
 multi	
 files	
 will	
 be	
 the	
 number	
 of	
 chunks	
 in	
 the	
 first	
 part	
 of	
 the	

metadata	
 file	
 that	
 contain	
 chunk	
 information	
 in	
 them	
 and	
 the	
 chunkinfobytes	
 is	
 the	
 number	

of	
 bytes	
 of	
 chunk	
 info	
 in	
 the	
 metadata	
 file.	
 	
 In	
 the	
 case	
 of	
 a	
 Multi	
 file,	
 the	
 chunk	
 information	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 13	

is	
 stored	
 in	
 the	
 metadata	
 file,	
 which	
 implies	
 that	
 the	
 chunksize	
 for	
 a	
 Multi	
 file	
 must	
 be	

larger	
 than	
 the	
 space	
 used,	
 correctness	
 info,	
 and	
 chunknumber	
 fields.	

	

The	
 format	
 for	
 the	
 objid	
 info	
 and	
 post	
 info	
 in	
 this	
 metadata	
 file	
 is	
 the	
 chunknumber	

concatenated	
 with	
 the	
 space	
 used	
 and	
 correctness	
 info	
 for	
 that	
 chunk.	
 These	
 concatenated	

things	
 with	
 appropriate	
 per	
 chunk	
 information	
 are	
 repeated	
 for	
 each	
 object	
 in	
 the	

multipart	
 object	
 in	
 order	
 of	
 offset	
 into	
 the	
 file.	
 NOTE:	
 These	
 chunknumber/space	

used/correctness	
 values	
 do	
 not	
 have	
 to	
 be	
 inserted	
 in	
 chunknumber	
 order,	
 as	
 out	
 of	
 order	

writing	
 is	
 allowed,	
 but	
 we	
 plan	
 to	
 use	
 a	
 fixed	
 record	
 size,	
 so	
 you	
 can	
 take	
 the	
 chunk	
 number	

and	
 with	
 math	
 derive	
 the	
 file	
 offset	
 for	
 the	
 info	
 for	
 that	
 chunk.	
 So	
 objects	
 can	
 be	
 written	
 to,	

but	
 they	
 are	
 not	
 officially	
 in	
 the	
 file	
 until	
 this	
 information	
 is	
 added	
 to	
 the	
 metadata	
 file	
 and	

MAR_post	
 xattr	
 is	
 updated	
 appropriately.	
 This	
 activity	
 records	
 the	
 chunks	
 and	

sizes/correctness	
 information	
 for	
 each	
 chunk	
 into	
 the	
 metadata	
 file.	
 This	
 information	
 is	

valuable	
 so	
 we	
 know	
 when	
 objects	
 are	
 ready	
 to	
 be	
 associated	
 with	
 a	
 Multi	
 file	
 (for	

restarting	
 etc.),	
 how	
 much	
 compression	
 was	
 achieved,	
 and	
 lets	
 you	
 keep	
 checksums/crc	

per	
 object,	
 etc.	
 It	
 may	
 or	
 may	
 not	
 be	
 consulted	
 during	
 a	
 read	
 operation,	
 but	
 it	
 is	
 on	
 a	
 write.	

Near-­‐POSIX	
 Interface	

MarFS	
 shall	
 provide	
 a	
 near-­‐POSIX	
 interface.	

	

MarFS	
 shall	
 provide	
 a	
 POSIX	
 mount	
 through	
 which	
 the	
 user	
 executes	
 the	
 supported	
 file	

functionality.	

	

MarFS	
 is	
 not	
 required	
 to	
 allow	
 users	
 to	
 update	
 files	
 in	
 place	
 for	
 data	
 repositories	
 where	

update-­‐in-­‐place	
 is	
 not	
 easy,	
 like	
 object	
 stores.	

	

MarFS	
 is	
 not	
 required	
 to	
 provide	
 an	
 object	
 interface	
 to	
 the	
 data.	
 This	
 includes	
 not	
 being	

required	
 to	
 provide	
 an	
 HDFS	
 interface.	

	

MarFS	
 is	
 not	
 required	
 to	
 provide	
 file	
 locking.	

	

MarFS	
 is	
 not	
 required	
 to	
 provide	
 hard	
 links,	
 but	
 shall	
 provide	
 symbolic	
 links.	

	

MarFS	
 is	
 not	
 required	
 to	
 provide	
 mmap	
 and	
 application	
 execution,	
 be	
 a	
 PFS,	
 or	
 a	
 parallel	

archive.	

Design	
 to	
 Provide	
 Near-­‐POSIX	
 Interface	

If	
 you	
 are	
 looking	
 for	
 a	
 way	
 to	
 provide	
 a	
 near-­‐POSIX	
 file	
 system	
 interface	
 over	
 multiple	

POSIX	
 file	
 systems	
 or	
 over	
 one	
 or	
 multiple	
 Object	
 Storage	
 Systems	
 as	
 the	
 data	
 storage	

component,	
 MarFS	
 might	
 be	
 the	
 answer.	
 MarFS	
 can	
 use	
 one	
 or	
 more	
 POSIX	
 file	
 systems	
 to	

hold	
 file	
 system	
 metadata.	
 The	
 FUSE	
 daemon	
 provides	
 nearly	
 full	
 POSIX	
 access	
 with	
 a	
 few	

exceptions	
 that	
 are	
 specifically	
 discussed.	

	

Whether	
 using	
 interactive	
 Linux	
 commands	
 in	
 a	
 shell	
 or	
 pftool,	
 the	
 interface	
 to	
 MarFS	
 will	

be	
 through	
 a	
 near-­‐POSIX	
 interface	
 that	
 targets	
 what	
 looks	
 like	
 a	
 normal	
 POSIX	
 mount	
 point.	
 	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 14	

pftool	
 safely	
 allows	
 multiple	
 writers	
 to	
 write	
 to	
 a	
 single	
 file	
 as	
 well	
 as	
 multiple	
 readers	
 to	

read	
 a	
 file	
 in	
 parallel,	
 but	
 it	
 does	
 not	
 protect	
 against	
 a	
 user	
 using	
 different	

commands/programs	
 from	
 updating	
 the	
 same	
 file	
 concurrently.	

	

All	
 programs	
 shall	
 work	
 unchanged	
 except	
 for	
 programs	
 that	
 seek	
 around	
 in	
 the	
 file	
 and	

write,	
 or	
 append	
 to	
 the	
 end	
 of	
 a	
 file,	
 or	
 try	
 to	
 truncate	
 a	
 file	
 in	
 a	
 place	
 other	
 than	
 zero	
 offset.	

This	
 means	
 that	
 reading	
 files	
 will	
 work	
 pretty	
 much	
 no	
 matter	
 what,	
 but	
 writing	
 has	
 to	
 be	

done	
 as	
 a	
 complete	
 overwrite.	

	

MarFS	
 could	
 eventually	
 provide	
 an	
 object	
 interface	
 to	
 data,	
 as	
 its	
 metadata	
 has	
 object	

information	
 and	
 maps	
 POSIX	
 files	
 onto	
 Objects.	
 With	
 respect	
 to	
 a	
 HDFS	
 interface,	
 MarFS	
 is	

POSIX	
 and	
 HDFS	
 does	
 have	
 the	
 ability	
 to	
 use	
 POSIX	
 files.	
 Optimization	
 to	
 provide	
 layout	

information	
 to	
 an	
 HDFS	
 layer	
 is	
 possible.	

	

MarFS	
 provides	
 symbolic	
 links	
 through	
 its	
 use	
 of	
 GPFS	
 as	
 the	
 metadata	
 component.	
 Hard	

links	
 are	
 not	
 supported	
 because	
 the	
 GPFS	
 metadata	
 component	
 may	
 actually	
 be	
 multiple	

name	
 spaces	
 and/or	
 GPFS	
 file	
 systems	
 and	
 hard	
 links	
 cannot	
 be	
 used	
 across	
 name	
 spaces	

and	
 file	
 systems.	

	

MarFS	
 is	
 primarily	
 intended	
 as	
 a	
 file	
 system	
 for	
 large	
 data	
 collections	
 and	
 not	
 for	

application	
 execution.	
 That	
 said,	
 mmap	
 or	
 execution	
 might	
 work	
 if	
 it	
 behaves	
 relatively	

well.	
 One	
 should	
 be	
 able	
 to	
 mmap	
 and	
 execute	
 off	
 of	
 MarFS,	
 but	
 mmap	
 writing	
 may	
 not	

work	
 if	
 writing	
 is	
 not	
 serial.	
 MarFS	
 is	
 not	
 intended	
 to	
 replace	
 a	
 PFS,	
 as	
 it	
 lacks	
 important	

features	
 on	
 purpose,	
 although	
 it	
 might	
 suffice	
 as	
 a	
 PFS	
 in	
 some	
 settings.	
 Likewise,	
 MarFS	
 is	

not	
 intended	
 to	
 replace	
 deep	
 and/or	
 parallel	
 archives,	
 such	
 as	
 HPSS,	
 although	
 in	
 some	

settings	
 it	
 might	
 also	
 work	
 for	
 this	
 function.	

Scalability	

MarFS	
 shall	
 provide	
 a	
 means	
 to	
 scale	
 metadata	
 handling	
 as	
 more	
 capacity	
 and	
 file	
 count	
 is	

added.	
 This	
 scalability	
 shall	
 target	
 the	
 common	
 use	
 case	
 scenarios	
 for	
 large	
 HPC	
 storage	

systems	
 where	
 there	
 are	
 many	
 clients.	

	

MarFS	
 shall	
 provide	
 a	
 means	
 to	
 scale	
 data	
 handling	
 as	
 more	
 capacity	
 and	
 file	
 count	
 is	

added.	
 This	
 scalability	
 shall	
 target	
 the	
 common	
 use	
 case	
 scenarios	
 for	
 large	
 HPC	
 storage	

systems	
 where	
 there	
 are	
 many	
 clients.	

	

MarFS	
 is	
 not	
 required	
 to	
 solve	
 the	
 scalabilty	
 problem	
 of	
 very	
 large	
 single	
 directories.	

	

MarFS	
 shall	
 use	
 data	
 structures	
 and	
 techniques	
 that	
 as	
 close	
 to	
 constant	
 in	
 execution	
 time	

as	
 possible	
 as	
 the	
 file	
 system	
 size	
 and	
 file	
 attributes	
 increase.	

Design	
 to	
 Provide	
 Scalability	

MarFS	
 currently	
 is	
 concentrating	
 on	
 providing	
 a	
 best-­‐in-­‐class	
 scalable	
 metadata	
 service	

over	
 a	
 best-­‐in-­‐class	
 scale	
 out	
 object	
 storage	
 system.	
 If	
 you	
 are	
 looking	
 for	
 a	
 way	
 to	
 scale	

metadata	
 service,	
 but	
 not	
 stripe	
 or	
 hash	
 metadata,	
 MarFS	
 might	
 be	
 the	
 answer.	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 15	

As	
 mentioned,	
 MarFS	
 will	
 use	
 GPFS	
 as	
 the	
 metadata	
 component.	
 GPFS	
 has	
 many	
 features	
 in	

its	
 ILM	
 component	
 that	
 allows	
 GPFS	
 to	
 be	
 used	
 as	
 an	
 efficient	
 and	
 scalable	
 MarFS	
 metadata	

server.	
 MarFS	
 will	
 aggregate	
 many	
 metadata	
 file	
 systems	
 together	
 to	
 create	
 one,	
 large	

logical	
 file	
 systems	
 namespace.	
 See	
 the	
 subsequent	
 figure.	
 In	
 this	
 implementation	
 there	
 is	

no	
 scaling	
 within	
 a	
 single	
 directory.	
 This	
 capability	
 will	
 be	
 considered	
 as	
 a	
 future	

enhancement	
 and	
 is	
 discussed	
 later	
 in	
 this	
 section.	
 	

	

	

	

MarFS	
 utilizes	
 POSIX	
 extended	
 attributes	
 (xattr)	
 in	
 its	
 metadata	
 component	
 to	
 place	

information	
 about	
 the	
 data	
 repository/objects	
 that	
 hold	
 the	
 data	
 for	
 files.	
 Files	
 are	
 created	

without	
 extended	
 attributes	
 and	
 acquire	
 them	
 when	
 the	
 file	
 is	
 written.	
 Xattrs	
 will	
 only	
 exist	

for	
 files	
 in	
 which	
 the	
 data	
 exists	
 in	
 external	
 data	
 repositories.	
 Therefore,	
 most	
 any	
 POSIX	

file	
 system	
 can	
 be	
 used	
 for	
 holding	
 metadata	
 and	
 data,	
 but	
 the	
 requirements	
 for	
 storing	

metadata	
 for	
 files	
 in	
 which	
 data	
 exists	
 in	
 external	
 data	
 repositories	
 requires	
 xattr	
 and	

sparse	
 capabilities	
 because	
 xattrs	
 are	
 used	
 to	
 map	
 to	
 the	
 external	
 data	
 repository	
 and	
 the	

POSIX	
 size	
 field	
 is	
 used	
 to	
 store	
 the	
 length	
 of	
 the	
 file	
 for	
 files	
 where	
 the	
 data	
 lives	
 in	
 an	

external	
 repository.	
 GPFS's	
 ILM	
 capability	
 is	
 able	
 to	
 use	
 xattrs	
 to	
 scalably	
 and	
 efficiently	

find	
 files	
 that	
 match	
 a	
 specified	
 criterion.	

	

Here	
 is	
 a	
 high	
 level	
 description	
 of	
 the	
 reserved	
 MarFS	
 xattrs:	

• MAR_objid	
 is	
 the	
 object	
 name	
 (or	
 the	
 first	
 object	
 name	
 in	
 the	
 case	
 of	
 a	
 multi	
 object	

file).	
 This	
 info	
 doesn’t	
 change	
 very	
 often,	
 basically	
 only	
 on	
 a	
 truncate.	
 So	
 it	
 is	
 set	
 in	

stone	
 for	
 a	
 file	
 unless	
 you	
 throw	
 out	
 all	
 the	
 space	
 associated	
 with	
 the	
 file.	

• MAR_post	
 is	
 information	
 that	
 can	
 change	
 from	
 time	
 to	
 time.	
 For	
 example,	
 it	
 can	
 be	

updated	
 while	
 the	
 file	
 is	
 growing,	
 etc.	

• MAR_restart	
 is	
 used	
 by	
 restart	
 on	
 multi-­‐files	
 and	
 thus	
 won’t	
 be	
 present	
 very	
 often.	

• MAR_namespace_shard	
 is	
 used	
 on	
 directories	
 for	
 directory	
 hashing	
 number	

(future).	

	

A	
 couple	
 of	
 the	
 xattrs,	
 MAR_objid	
 and	
 MAR_post	
 are	
 one	
 record	
 each	
 with	
 many	
 fields	

concatenated.	
 The	
 reasons	
 for	
 this	
 are:	

• These	
 are	
 all	
 variables	
 that	
 are	
 short	
 enough	
 to	
 concatenate	
 into	
 one	
 record	
 to	
 form	

the	
 object	
 name	
 to	
 help	
 the	
 admin	
 figure	
 out	
 things	
 if	
 there	
 are	
 issues.	
 Having	
 this	

information	
 in	
 the	
 name	
 of	
 the	
 object	
 will	
 be	
 handy.	

• It	
 makes	
 the	
 object	
 name	
 unique.	

• It	
 doesn’t	
 add	
 information	
 that	
 is	
 too	
 long	
 for	
 the	
 name	
 of	
 the	
 object,	
 like	
 create	
 time	

path	
 of	
 the	
 metadata	
 file.	

• It	
 takes	
 time	
 to	
 insert	
 xattrs,	
 so	
 making	
 this	
 be	
 10ish	
 xattrs	
 is	
 inefficient	
 and	
 doesn't	

scale	
 on	
 a	
 per	
 file	
 create	
 or	
 file	
 read	
 basis.	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 16	

The	
 MAR_objid	
 is	
 the	
 basis	
 of	
 the	
 name	
 of	
 the	
 object	
 for	
 this	
 file.	
 Its	
 full	
 name	
 is	

/bucketname/MAR_objid.	
 The	
 bucketname	
 is	
 /namespace.repo.suffix	
 from	
 the	

configuration	
 file.	
 So,	
 the	
 fully	
 qualified	
 object	
 name	
 is	
 /namespace.repo.suffix/MAR_objid.	

	

The	
 MAR_objid	
 xattr	
 concatenated	
 fields	
 are:	

	

Bucket	

(namespace.repo.suffix)	

This	
 is	
 the	
 object	
 system	
 bucket	
 name	
 or	
 another	
 way	
 to	

match	
 to	
 some	
 portion	
 of	
 a	
 repository	
 on	
 the	
 object	
 system.	

Reverseorder	
 time	

stamp	

This	
 is	
 a	
 reverse	
 order	
 time	
 stamp	
 of	
 some	
 kind	
 to	
 make	

sorting	
 easy	
 when	
 listing	
 objects.	

recordvervion	
 Version	
 number	
 for	
 this	
 record.	

mdfilecreatetime	
 In	
 the	
 case	
 of	
 Uni	
 and	
 Multi	
 files,	
 this	
 is	
 the	
 creation	
 time	

from	
 the	
 metadata	
 file.	
 In	
 the	
 case	
 of	
 Packed	
 files,	
 this	
 is	
 the	

creation	
 time	
 of	
 the	
 first	
 file	
 being	
 packed	
 into	
 the	
 object.	

Objcreatetime	
 This	
 field	
 is	
 used	
 to	
 put	
 current	
 time	
 stamp,	
 in	
 addition	
 to	

the	
 metadata	
 file	
 create	
 time.	
 This	
 is	
 used	
 to	
 “version”	

objects.	
 For	
 example,	
 on	
 a	
 truncate	
 to	
 zero,	
 which	
 would	
 put	

all	
 the	
 objects	
 for	
 that	
 file	
 into	
 the	
 trash,	
 the	
 names	
 will	
 be	

the	
 same	
 as	
 create	
 time	
 and	
 inode	
 remains	
 unchanged.	
 This	

makes	
 a	
 unique	
 name	
 for	
 the	
 new	
 objects	
 for	
 that	
 file	
 but	
 yet	

they	
 are	
 still	
 related	
 by	
 all	
 fields	
 except	
 this	
 one.	

objtype	
 Packed	
 if	
 many	
 files	
 are	
 being	
 packed	
 into	
 the	
 object	
 or	
 Not	

packed	
 if	
 not.	

comptype	
 Compression	
 type	
 (future).	

sectype	
 Security	
 type	
 (encryption,	
 future).	

correcttype	
 Correctness	
 type	
 (crc/checksum,	
 future).	

objchnksz	
 The	
 size	
 of	
 a	
 write	
 in	
 all	
 objects,	
 but	
 the	
 last,	
 for	
 Multi	
 file.	

This	
 value	
 is	
 initially	
 populated	
 from	
 the	
 repository	

configuration	
 table	
 for	
 the	
 file	
 based	
 on	
 namespace/path.	

Chunk	
 size	
 is	
 picked	
 based	
 on	
 whether	
 the	
 file	
 writing	
 is	

interactive	
 or	
 batch.	
 For	
 batch,	
 it	
 is	
 based	
 on	
 the	
 size	
 of	
 the	

file	
 being	
 moved,	
 (large,	
 xlarge)	
 and	
 taken	
 from	
 the	

configuration	
 file.	

objchnknumber	
 If	
 this	
 is	
 non-­‐zero,	
 this	
 object	
 is	
 part	
 of	
 a	
 Multi	
 file.	
 For	
 Uni	

and	
 Packed	
 files	
 there	
 is	
 only	
 one	
 object	
 and	
 it	
 will	
 be	

numbered	
 zero.	
 For	
 a	
 Multi	
 file,	
 the	
 object	
 name	
 only	

changes	
 by	
 chunk	
 number,	
 which	
 is	
 calculated	
 based	
 on	

chunksize.	
 So	
 this	
 is	
 really	
 just	
 a	
 placeholder	
 value.	

mdinode	
 Inode	
 of	
 the	
 metadata	
 file.	
 For	
 a	
 Packed	
 file	
 it	
 is	
 the	
 inode	
 of	

the	
 first	
 file	
 in	
 the	
 object.	

namespaceshardpnum	
 Used	
 for	
 namespace	
 shard	
 number	
 for	
 files	
 that	
 are	
 hashed	

into	
 multiple	
 directories	
 (future).	
 For	
 now	
 this	
 is	
 zero.	

MARpost	
 is	
 information	
 written	
 to	
 the	
 file's	
 xattr	
 after	
 or	
 while	
 the	
 object(s)	
 are	
 written.	
 Its	

concatenated	
 fields	
 are:	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 17	

	

recordversion	
 Version	
 number	
 for	
 this	
 record.	

objtype	
 Records	
 how	
 the	
 file	
 data	
 is	
 stored	
 in	
 an	
 external	
 object	

repo,	
 there	
 are	
 currently	
 4	
 types:	

	

Uni	
 –	
 one	
 object	
 stores	
 the	
 entire	
 file.	

Multi	
 –	
 a	
 file	
 is	
 spread	
 across	
 multiple	
 objects	
 using	
 chunk	

sized	
 objects,	
 object	
 id’s	
 are	
 recorded	
 in	
 the	
 metadata	
 file.	

Packed	
 –	
 multiple	
 files	
 in	
 each	
 object	
 that	
 require	
 using	
 the	

objoffset	
 field.	

Striped	
 –	
 a	
 file	
 is	
 round	
 robin	
 striped	
 across	
 multiple	
 objects	

using	
 chunksize	
 from	
 the	
 configuration	
 file.	
 Object	
 ids	
 are	

recorded	
 in	
 metadata	
 file.	

spaceused	
 Space	
 used	
 in	
 the	
 object	
 system	
 for	
 the	
 entire	
 file.	
 May	
 have	

to	
 sum	
 multiple	
 object	
 space	
 used	
 for	
 a	
 Multi	
 file.	

objoffset	
 Records	
 offset	
 into	
 object	
 where	
 file	
 data	
 is.	
 This	
 is	
 only	

used	
 for	
 a	
 Packed	
 files	

correctnessvalue	
 Checksum	
 or	
 CRC	
 for	
 the	
 entire	
 file.	
 May	
 have	
 to	
 sum	

multiple	
 checksums	
 or	
 CRC’s	
 for	
 a	
 Multi	
 file	
 (future).	

numobjects	
 For	
 Multi	
 files,	
 this	
 records	
 the	
 number	
 of	
 objects	
 in	
 the	

metadata	
 file	
 that	
 contain	
 chunk	
 information.	
 The	
 rest	
 of	
 the	

file	
 is	
 a	
 sparse	
 file	
 to	
 make	
 the	
 size	
 of	
 the	
 metadata	
 file	
 equal	

to	
 the	
 size	
 of	
 the	
 file.	

Chunkinfobytes	
 Number	
 of	
 bytes	
 of	
 chunk	
 info	
 in	
 the	
 file.	

	

MAR_restart	
 is	
 a	
 xattr	
 that	
 is	
 used	
 by	
 pftool	
 to	
 indicate	
 whether	
 or	
 not	
 a	
 complete	
 copy	
 was	

complete	
 before	
 pftool	
 exited.	
 If	
 it	
 was	
 not	
 the	
 next	
 invocation	
 of	
 pftool	
 on	
 this	
 file	
 will	
 start	

copying	
 this	
 file	
 again.	
 This	
 is	
 only	
 used	
 for	
 a	
 Multi	
 file.	

	

MAR_namespace_shard	
 is	
 a	
 xattr	
 on	
 directories	
 that	
 are	
 hashed	
 (future).	

	

The	
 design	
 uses	
 scale	
 out	
 data	
 services,	
 via	
 the	
 object	
 stores,	
 separately.	
 Data	
 and	
 data	

movement	
 can	
 scale	
 as	
 N	
 file	
 systems	
 or	
 N	
 object	
 stores	
 and	
 it	
 has	
 features	
 to	
 be	
 “friendly”	

to	
 object	
 systems	
 by	
 trying	
 to	
 form	
 large	
 multi-­‐megabyte	
 sized	
 objects	
 for	
 efficient	
 storage	

and	
 tracking,	
 including	
 packing	
 multiple	
 small	
 files	
 into	
 single	
 objects	
 that	
 are	
 sized	
 for	

efficient	
 handling	
 by	
 the	
 object	
 stores.	

	

System	
 administrators	
 need	
 to	
 set	
 up	
 buckets	
 that	
 are	
 listed	
 in	
 the	
 configuration	
 files	
 on	

the	
 object	
 server(s)	
 for	
 every	
 namespace/repository	
 combination.	

	

MarFS	
 will	
 use	
 pftool	
 as	
 the	
 workhorse	
 to	
 move	
 large	
 data	
 collections	
 to	
 and	
 from	
 MarFS.	

pftool	
 can	
 walk	
 the	
 file	
 system	
 tree	
 in	
 parallel	
 and	
 write	
 as	
 many	
 streams	
 of	
 objects	
 as	
 you	

have	
 mover	
 processors	
 at	
 your	
 disposal,	
 up	
 to	
 the	
 limit	
 of	
 MPI	
 (tens	
 of	
 thousands).	
 It	

dynamically	
 balances	
 the	
 data	
 movement	
 load	
 amongst	
 its	
 worker	
 processes.	
 It	
 breaks	
 up	

large	
 data	
 elements	
 and	
 coalesces	
 small	
 data	
 elements	
 into	
 larger	
 ones	
 to	
 maximize	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 18	

throughput	
 and	
 minimize	
 overhead.	
 Here	
 is	
 a	
 logical	
 depiction	
 of	
 how	
 pftool	
 works	
 to	
 do	

high-­‐performance,	
 parallel	
 data	
 movement.	

	

	

	

Currently	
 the	
 MarFS	
 design	
 does	
 not	
 hash	
 or	
 split-­‐up	
 single	
 directories	
 to	
 address	
 the	

problem	
 of	
 single	
 directories	
 containing	
 a	
 large	
 number	
 of	
 files.	
 It	
 is	
 possible	
 for	
 an	

implementation	
 to	
 use	
 a	
 metadata	
 file	
 system	
 under	
 MarFS	
 that	
 does	
 hash	
 or	
 split-­‐up	
 single	

directories	
 to	
 address	
 the	
 scalability	
 of	
 directories	
 with	
 many	
 files.	
 And,	
 future	
 MarFS	

features	
 might	
 include	
 hashed	
 or	
 split-­‐up	
 single	
 directories.	
 It	
 is	
 possible	
 to	
 hash	
 file	
 names	

(not	
 directory	
 names)	
 across	
 several	
 namespace	
 shard	
 directories	
 that	
 use	
 the	
 main	

namespace	
 directory	
 inode	
 number	
 as	
 a	
 directory	
 name	
 on	
 namespace	
 shard	
 file	
 systems	

for	
 hashing	
 files	
 across.	
 See	
 the	
 next	
 figure.	
 To	
 implement	
 this	
 capability	
 would	
 require:	

	

• Using	
 xattr	
 on	
 directories	
 and	
 that	
 those	
 xattrs	
 be	
 cached	
 reasonably	
 well	
 across	

parallel	
 client	
 nodes.	

• A	
 Namespace	
 Shard	
 Directory	
 Structure	
 using	
 Namespace	
 A	
 Directory	
 inodes.	

• Hashing	
 files	
 only	
 (not	
 directories)	
 across	
 namespace	
 shards.	

• Threading	
 mkdir	
 and	
 metadata	
 operations	
 against	
 directories,	
 including	
 file	

renaming.	

• Making	
 listing,	
 reclaiming,	
 etc.	
 parallel	
 (like	
 map	
 reduce).	

• Scaling	
 within	
 a	
 single	
 directory	
 to	
 N	
 GPFS	
 file	
 system	
 directories.	

• Renaming	
 directories	
 continues	
 to	
 work.	

• Not	
 requiring	
 communications	
 protocols,	
 just	
 using	
 mounts.	

• Pftool	
 ability	
 to	
 set	
 width	
 of	
 hash	
 up	
 to	
 a	
 max.	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 19	

	

	

PFS-­‐like	
 Performance	
 and	
 Eventual	
 Consistency	

This	
 requirement	
 is	
 related	
 to	
 the	
 near-­‐POSIX	
 interface.	
 Maintaining	
 locks,	
 collecting	

released	
 space,	
 and	
 enforcing	
 quotas	
 are	
 things	
 that	
 a	
 POSIX-­‐compliant	
 file	
 system	
 does,	

but	
 that	
 affect	
 performance.	
 MarFS	
 is	
 not	
 required	
 to	
 provide	
 these	
 POSIX	
 file	
 system	

features.	

	

MarFS,	
 like	
 other	
 PFSes,	
 is	
 not	
 required	
 to	
 check/lock	
 to	
 protect	
 against	
 multiple	
 non-­‐
coordinated	
 writers	
 into	
 the	
 same	
 file.	

	

MarFS	
 shall	
 ensure	
 that	
 the	
 file	
 system’s	
 metadata	
 and	
 data	
 are	
 eventually	
 consistent.	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 20	

Design	
 to	
 Provide	
 PFS-­‐like	
 Performance	
 and	
 Eventual	
 Consistency	

The	
 specified	
 operations	
 are	
 not	
 necessary	
 to	
 be	
 done	
 in	
 real-­‐time,	
 as	
 they	
 would	
 adversely	

affect	
 MarFS	
 performance.	
 Utilities	
 that	
 can	
 be	
 run	
 periodically	
 will	
 be	
 provided	
 to	
 reclaim	

deleted	
 space	
 and	
 ensure	
 that	
 users	
 do	
 not	
 severely	
 overrun	
 their	
 quotas	
 for	
 storage	
 space	

and	
 file	
 count.	

	

MarFS	
 could	
 provide	
 file	
 locking,	
 but	
 does	
 not	
 currently	
 do	
 so.	
 Like	
 many	
 PFSes,	
 MarFS	
 will	

entrust	
 the	
 responsibility	
 to	
 manage	
 access	
 to	
 files	
 to	
 the	
 application	
 so	
 that	
 parallel	

performance	
 can	
 be	
 maintained.	

	

In	
 this	
 design	
 where	
 MarFS	
 uses	
 object	
 stores	
 for	
 storing	
 data,	
 the	
 metadata	
 and	
 object	

store	
 systems	
 require	
 some	
 reconciliation.	
 All	
 metadata,	
 except	
 for	
 object-­‐specific	

metadata,	
 is	
 stored	
 in	
 the	
 MarFS	
 POSIX	
 file	
 systems	
 that	
 store	
 the	
 metadata.	
 As	
 mentioned,	

periodic	
 garbage	
 collection	
 of	
 freed	
 space	
 will	
 be	
 done.	
 MarFS	
 attempts	
 to	
 minimize	
 areas	

where	
 truly	
 transactional	
 semantics	
 are	
 needed,	
 but	
 does	
 not	
 make	
 any	
 transactional	

guarantees.	
 MarFS	
 errs	
 on	
 the	
 side	
 of	
 making	
 it	
 easy	
 to	
 run	
 batch	
 inode	
 scans	
 or	
 tree	
 walks	

due	
 to	
 the	
 parallelism	
 in	
 the	
 batch	
 utilities	
 and	
 ability	
 to	
 use	
 many	
 POSIX	
 file	
 systems	
 and	

metadata	
 servers	
 to	
 make	
 for	
 easy	
 management	
 of	
 the	
 metadata/space/etc.	

Variable	
 File	
 Collections	

The	
 nature	
 of	
 the	
 large	
 data	
 stores	
 is	
 that	
 different	
 users	
 have	
 file	
 collections	
 with	
 different	

attributes.	
 Some	
 users	
 may	
 have	
 many	
 small	
 files	
 while	
 others	
 have	
 moderate	
 collections	
 of	

moderately	
 sized	
 files,	
 and	
 still	
 others	
 have	
 a	
 handful	
 of	
 very	
 large	
 files.	
 MarFS	
 shall	
 allow	

for	
 all	
 these	
 cases	
 and	
 yield	
 high	
 performance.	

Design	
 to	
 Provide	
 Variable	
 File	
 Collections	

MarFS	
 supports	
 the	
 concepts	
 of	
 packed	
 files,	
 uni-­‐files,	
 and	
 multi-­‐object	
 files.	
 Furthermore,	

it	
 allows	
 for	
 multiple	
 data	
 storage	
 solutions	
 to	
 be	
 used	
 as	
 the	
 MarFS	
 data	
 storage	

component.	
 These	
 different	
 data	
 storage	
 solutions	
 can	
 be	
 designed	
 to	
 efficiently	
 handle	
 and	

be	
 high	
 performance	
 for	
 files	
 of	
 different	
 quantity	
 and	
 size	
 attributes.	

	

Packed	
 files	
 are	
 targeted	
 at	
 the	
 case	
 where	
 the	
 user	
 has	
 many	
 small	
 files	
 that	
 are	
 not	

efficiently	
 handled	
 by	
 the	
 data	
 storage	
 component.	
 The	
 metadata	
 component	
 allows	
 the	

user	
 to	
 see	
 these	
 as	
 the	
 multiple	
 files	
 they	
 logically	
 are	
 to	
 the	
 user,	
 while	
 the	
 underlying	

data	
 storage	
 component	
 collects	
 many	
 of	
 them	
 to	
 be	
 stored	
 in	
 a	
 single	
 object	
 so	
 that	
 the	

data	
 storage	
 component	
 exhibits	
 high	
 performance.	

	

Here	
 is	
 a	
 depiction	
 of	
 a	
 Packed	
 file	
 in	
 MarFS.	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 21	

	

	

Uni-­‐files	
 are	
 targeted	
 at	
 the	
 case	
 where	
 users	
 have	
 moderate	
 collections	
 of	
 moderately	

sized	
 files.	
 These	
 files	
 are	
 large	
 enough	
 to	
 be	
 efficiently	
 handled	
 by	
 the	
 data	
 storage	

component	
 as	
 individual	
 files.	
 Consequently,	
 there	
 is	
 a	
 1:1	
 mapping	
 of	
 the	
 logical	
 file	

exposed	
 to	
 the	
 user	
 in	
 the	
 metadata	
 component	
 and	
 the	
 physical	
 file	
 stored	
 in	
 the	
 data	

storage	
 component.	

	

Multi-­‐object	
 files	
 are	
 targeted	
 at	
 the	
 case	
 where	
 users	
 have	
 a	
 few	
 very	
 large	
 files.	
 The	
 files	

are	
 so	
 large	
 that	
 they	
 cannot	
 be	
 efficiently	
 handled	
 by	
 the	
 data	
 storage	
 component	
 unless	

they	
 are	
 physically	
 stored	
 as	
 multiple	
 objects.	
 Thus,	
 the	
 metadata	
 component	
 exposes	
 the	

file	
 to	
 the	
 user	
 as	
 a	
 single	
 file,	
 but	
 internally	
 tracks	
 all	
 the	
 objects	
 that	
 comprise	
 it	
 so	
 that	

the	
 data	
 storage	
 component	
 can	
 store	
 it	
 as	
 multiple	
 objects	
 that	
 are	
 sized	
 such	
 that	
 they	

can	
 be	
 efficiently	
 managed.	

Here	
 we	
 see	
 MarFS	
 diagrammed	
 to	
 show	
 a	
 GPFS	
 POSIX	
 metadata	
 tree	
 that	
 has	
 xattrs	

pointing	
 at	
 external	
 object	
 repos	
 for	
 a	
 Uni	
 file	
 (one	
 object	
 per	
 file)	
 and	
 a	
 large	
 Multi	
 file	

(multiple	
 objects	
 per	
 file).	
 In	
 the	
 case	
 of	
 the	
 Multi	
 file,	
 the	
 list	
 of	
 objects	
 that	
 make	
 up	
 the	

file	
 are	
 stored	
 in	
 the	
 metadata	
 file,	
 which	
 implies	
 that	
 the	
 chunksize	
 of	
 a	
 large	
 file	
 has	
 to	
 be	

larger	
 than	
 an	
 objectid,	
 and	
 the	
 amount	
 of	
 real	
 object	
 id	
 data	
 in	
 the	
 metadata	
 file	
 is	
 stored	

in	
 an	
 xattr	
 so	
 you	
 know	
 how	
 much	
 data	
 is	
 in	
 the	
 metadata	
 file	
 and	
 the	
 rest	
 is	
 unallocated	

space	
 (a	
 capability	
 of	
 sparse	
 file	
 representation	
 in	
 the	
 metadata	
 store)	
 so	
 that	
 the	
 total	
 size	

of	
 the	
 metadata	
 file	
 is	
 equal	
 the	
 logical	
 file	
 size	
 (amount	
 of	
 data	
 stored	
 in	
 the	
 data	
 store).	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 22	

	

	

Object	
 naming	

The	
 name	
 of	
 the	
 object	
 for	
 a	
 file	
 is	
 named	
 URLprefix/bucketname/MAR_objid).	
 bucketname	

is	
 /namespace.repo.suffix	
 (from	
 the	
 configuration	
 file).	
 Thus,	
 the	
 fully	
 qualified	
 object	

name	
 is	
 URLprefix://namespace.repo.suffix/MAR_objid.	

	

System	
 administrators	
 need	
 to	
 set	
 up	
 buckets	
 on	
 the	
 object	
 server(s)	
 for	
 every	

namespace.repo	
 combination.	

	

The	
 URLprefix	
 field	
 for	
 accessing	
 the	
 repository	
 is	
 in	
 the	
 configuration	
 file	
 in	
 the	
 repository	

record.	
 repomethodinfo	
 (cdmi,	
 s3,	
 etc.)	
 tells	
 how	
 to	
 access	
 the	
 repository.	

	

Recall	
 that	
 repository	
 name	
 should	
 point	
 at	
 some	
 name	
 of	
 a	
 portion	
 of	
 an	
 object	
 repository.	

For	
 example	
 with	
 the	
 Scality	
 sproxyd	
 access	
 method,	
 this	
 repository	
 name	
 would	
 match	
 to	

a	
 stanza	
 in	
 the	
 sproxyd	
 file	
 that	
 tells	
 the	
 object	
 system	
 the	
 storage	
 format	
 for	
 this	

repository,	
 like	
 30+6	
 or	
 40+8	
 along	
 with	
 other	
 attributes.	

	

A	
 suffix	
 can	
 be	
 added	
 to	
 the	
 bucket	
 name	
 or	
 prefix	
 to	
 the	
 object	
 name	
 in	
 systems	
 that	

require	
 periodic	
 bucket/prefix	
 change.	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 23	

	

The	
 MAR_objid	
 xattr	
 portion	
 of	
 the	
 object	
 name	
 contains:	

• Reverse	
 order	
 time	
 stamp	
 of	
 some	
 kind	
 to	
 make	
 sorting	
 of	
 object	
 lists	
 easier.	

• Version	
 number.	

• File	
 Create	
 time.	
 That	
 is	
 the	
 create	
 time	
 for	
 the	
 metadata	
 file,	
 which	
 for	
 a	
 Packed	
 file	

is	
 that	
 of	
 the	
 first	
 file	
 in	
 the	
 packed	
 object.	

• Object	
 creation	
 time.	
 This	
 is	
 needed	
 because	
 on	
 operations	
 like	
 truncate	
 or	

potentially	
 on	
 a	
 restart,	
 we	
 may	
 have	
 objects	
 that	
 we	
 need	
 to	
 “overwrite”.	
 This	

means	
 we	
 could	
 have	
 many	
 objects	
 with	
 the	
 same	
 name	
 (same	
 chunk	
 of	
 same	
 file	

after	
 a	
 truncate	
 or	
 something),	
 and	
 so	
 this	
 makes	
 “versions”	
 of	
 that	
 object	
 in	
 that	

file.	

• Packed	
 or	
 not.	

• Comptype.	

• Sectype	
 (encryption).	

• Correcttype	
 (crc,	
 checksum).	

• Chunksize.	

• Chunknumber	
 (for	
 a	
 Uni	
 file,	
 there	
 will	
 be	
 only	
 one	
 chunk).	

• Mdfile	
 inode.	

• namespaceshardpnum	
 (future,	
 zero	
 for	
 now,	
 used	
 for	
 hashing	
 files	
 across	

namespace	
 shard	
 directories).	

	

For	
 a	
 Multi	
 file	
 the	
 second	
 and	
 beyond	
 objects	
 that	
 comprise	
 it	
 will	
 only	
 change	
 in	
 the	

chunknumber	
 attribute,	
 which	
 will	
 be	
 incremented.	

Security	
 	

MarFS	
 shall	
 obey	
 all	
 POSIX	
 security.	
 The	
 POSIX	
 permissions	
 are:	

• r	
 –	
 read	

• w	
 –	
 write	

• x	
 –	
 execute	

for:	

• u	
 –	
 user	

• g	
 –	
 group	

• o	
 –	
 other	

	

MarFS	
 shall	
 support	
 additional	
 permissions	
 that	
 may	
 be	
 supported	
 by	
 other	
 data	
 stores.	

These	
 are	
 in	
 addition	
 to	
 the	
 POSIX	
 permissions	
 .The	
 values	
 are	
 rmwmrdwd:	

• rm	
 –	
 read	
 metadata	

• wm	
 –	
 write	
 metadata	

• rd	
 –	
 read	
 data	

• wd	
 –	
 write	
 data	

• ud	
 –	
 unlink	
 data	

• td	
 –	
 truncate	
 data	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 24	

MarFS	
 shall	
 protect	
 files	
 that	
 are	
 deleted	
 by	
 the	
 user,	
 but	
 not	
 actually	
 removed	
 from	
 the	

system	
 until	
 garbage	
 space	
 is	
 collected.	

Design	
 to	
 Provide	
 Security	

MarFS	
 obeys	
 all	
 POSIX	
 security.	
 Additionally,	
 special	
 security	
 may	
 be	
 added	
 by	

configuration	
 to	
 manage	
 which	
 parts	
 of	
 the	
 name	
 space	
 allow	
 metadata	
 and	
 data	

update/read,	
 and	
 you	
 can	
 control	
 these	
 special	
 permissions	
 for	
 interactive	
 and	
 batch	

separately.	

	

By	
 adding	
 the	
 additional	
 data	
 store	
 permissions	
 it	
 is	
 possible,	
 for	
 example,	
 to	
 allow	
 read	

and	
 write	
 in	
 POSIX	
 permissions,	
 allow	
 metadata	
 changes	
 but	
 not	
 allow	
 writing	
 of	
 data.	
 This	

value	
 is	
 not	
 stored	
 with	
 the	
 file,	
 it	
 is	
 interpreted	
 real	
 time,	
 so	
 this	
 is	
 a	
 fast	
 way	
 to	
 shut	
 off	

write	
 of	
 data	
 or	
 metadata	
 etc.	
 This	
 item	
 can	
 change	
 based	
 on	
 allowed	
 activity	
 against	
 this	

namespace	
 and	
 the	
 data/space	
 it	
 represents.	

	

Object	
 Security	
 could	
 be	
 provided	
 by	
 the	
 following	
 methods:	

• Vault:	
 Where	
 a	
 password	
 or	
 a	
 key	
 to	
 open	
 a	
 password	
 in	
 a	
 file	
 for	
 a	
 given	
 user	
 is	

stashed.	

	

FUSE	
 runs	
 as	
 root	
 or	
 similar	
 so	
 it	
 can	
 become	
 stgadmin,	
 read	
 in	
 the	
 secret,	
 then	
 it	
 is	

in	
 the	
 fuse	
 daemons	
 memory.	
 Since	
 it	
 is	
 in	
 a	
 different	
 process	
 space	
 run	
 by	
 root	

users	
 can’t	
 see	
 that	
 info.	

	

Pftool	
 and	
 other	
 batch	
 utilities	
 would	
 either	
 run	
 as	
 stgadmin/root	
 or	
 use	
 setuid	

sticky	
 bits	
 to	
 gain	
 access	
 to	
 the	
 secret	
 to	
 open	
 up	
 the	
 object	
 repo.	
 Since	
 this	
 is	

somewhat	
 dangerous	
 pftool	
 will	
 run	
 batch	
 processes	
 on	
 other	
 nodes	
 or	
 containers.	

It	
 will	
 run	
 remote	
 of	
 the	
 user	
 process	
 where	
 the	
 user	
 types	
 a	
 command	
 and	
 some	

number	
 of	
 machines	
 go	
 off	
 and	
 get	
 the	
 answer	
 or	
 do	
 an	
 operation	
 on	
 behalf	
 of	
 the	

user	
 while	
 the	
 user	
 does	
 not	
 have	
 access	
 to	
 the	
 batch	
 machines	
 except	
 through	
 a	

controlled	
 interface.	

	

This	
 method	
 is	
 easy	
 to	
 implement	
 and	
 uses	
 a	
 strong	
 security	
 method.	
 It	
 allows	
 the	

the	
 password	
 to	
 change	
 on	
 the	
 object	
 server	
 and	
 in	
 the	
 secret	
 files	
 owned	
 by	
 the	

user	
 whenever	
 one	
 feels	
 it	
 is	
 necessary	
 to	
 change	
 the	
 password.	
 It’s	
 similar	
 in	
 nature	

to	
 a	
 group	
 of	
 people	
 who	
 have	
 the	
 combination	
 to	
 a	
 shared	
 vault.	

	

There	
 may	
 be	
 more	
 than	
 one	
 password,	
 one	
 per	
 repo,	
 one	
 per	
 namespace,	
 one	
 per	

whatever,	
 but	
 not	
 too	
 many,	
 it	
 needs	
 to	
 be	
 manageable.	

• Per	
 Object:	
 Where	
 a	
 data	
 store	
 vendor,	
 such	
 as	
 Scality	
 or	
 EMC,	
 adds	
 the	
 ability	
 to	

require	
 a	
 secret	
 on	
 each	
 object	
 request.	
 The	
 secret	
 would	
 be	
 stored	
 into	
 the	
 POSIX	

metadata	
 for	
 each	
 file.	
 This	
 would	
 work	
 as	
 well	
 and	
 is	
 pretty	
 elegant	
 too,	
 but	
 it	

doesn’t	
 allow	
 one	
 to	
 change	
 something	
 simply	
 to	
 re-­‐secure	
 compromised	

information.	

• Combination	
 of	
 Vault	
 and	
 Per	
 Object:	
 It	
 is	
 unclear	
 that	
 this	
 is	
 any	
 better	
 than	
 Vault	

by	
 itself.	
 It	
 may	
 slow	
 down	
 the	
 smart	
 hacker,	
 but	
 not	
 much.	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 25	

• Encryption:	
 One	
 could	
 sniff	
 the	
 wire	
 and	
 get	
 the	
 data.	
 If	
 the	
 data	
 is	
 encrypted	
 one	

could	
 not	
 sniff	
 the	
 wire	
 and	
 get	
 to	
 the	
 data	
 as	
 it	
 goes	
 across	
 the	
 network.	
 This	
 would	

be	
 more	
 than	
 we	
 are	
 doing	
 now	
 with	
 mass	
 data	
 movement.	
 Encryption	
 at	
 rest	
 isn’t	

an	
 advantage	
 because	
 the	
 data	
 is	
 erasure-­‐coded	
 on	
 the	
 server	
 and	
 that	
 is	
 a	
 per	

object	
 erasure-­‐code,	
 so	
 one	
 would	
 have	
 to	
 physically	
 steal	
 a	
 lot	
 of	
 disks	
 to	
 make	
 any	

thing	
 out	
 of	
 the	
 data.	
 Encryption	
 would	
 need	
 to	
 be	
 by	
 name	
 space	
 or	
 by	
 repo	
 or	
 by	

object.	
 In	
 all	
 cases	
 we	
 have	
 to	
 stash	
 the	
 encryption	
 keys	
 somewhere	
 and	
 it	

essentially	
 becomes	
 Vault	
 or	
 Per	
 Object	
 or	
 their	
 combination.	

	

Vault	
 appears	
 pretty	
 elegant	
 as	
 you	
 can	
 change	
 the	
 secret	
 often	
 etc.	
 It	
 requires	
 basically	
 no	

coding,	
 just	
 some	
 administration	
 for	
 the	
 most	
 part.	
 Our	
 design	
 will	
 use	
 Vault,	
 but	
 leave	

room	
 in	
 our	
 design	
 for	
 a	
 per	
 file	
 password	
 just	
 in	
 case	
 we	
 decide	
 to	
 go	
 down	
 that	
 path.	
 If	
 at	

some	
 point	
 we	
 find	
 a	
 better	
 way	
 that	
 doesn’t	
 require	
 setuid/sticky	
 then	
 we	
 could	
 remove	

the	
 restriction	
 of	
 running	
 pftool	
 on	
 batch	
 nodes	
 only.	
 One	
 can	
 still	
 run	
 pftool’s	
 pcp	
 or	
 pls	

interactively,	
 it	
 runs	
 a	
 batch	
 program	
 on	
 the	
 batch	
 servers	
 and	
 connects	
 the	
 console	
 to	

one’s	
 interactive	
 session.	

	

Unlink	
 and	
 truncate	
 operations	
 leaves	
 pointers	
 to	
 files	
 and	
 data	
 in	
 the	
 trash	
 directory	
 for	

that	
 namespace.	
 It	
 is	
 important	
 to	
 protect	
 the	
 trash	
 directory	
 because	
 it	
 will	
 contain	
 trash	

names	
 and	
 space	
 from	
 various	
 users/groups.	
 It	
 does	
 not	
 have	
 a	
 directory	
 structure	
 so	

maintaining	
 control	
 over	
 access	
 has	
 to	
 be	
 managed	
 since	
 being	
 able	
 to	
 find	
 files	
 requires	

the	
 execute	
 permission	
 on	
 the	
 directory	
 structure	
 above	
 a	
 file.	
 The	
 FUSE	
 daemon	
 and	
 pftool	

will	
 deny	
 all	
 access	
 to	
 the	
 trash	
 directory.	
 A	
 trash	
 utility	
 will	
 be	
 created	
 that	
 allows	
 users	
 to	

interrogate	
 the	
 trash	
 based	
 on	
 file	
 ownership,	
 groups,	
 and/or	
 POSIX	
 permissions,	
 all	
 of	

which	
 are	
 preserved	
 when	
 files	
 are	
 moved	
 to	
 the	
 trash	
 directory	
 and	
 when	
 files	
 are	

truncated	
 causing	
 space	
 to	
 be	
 moved	
 to	
 the	
 trash	
 directory.	

Resilience	

MarFS	
 is	
 intended	
 for	
 high	
 performance	
 access	
 to	
 information	
 that	
 must	
 be	
 available	
 for	

years,	
 possibly	
 decades	
 or	
 longer.	
 RAID6	
 is	
 insufficient.	
 Replication	
 is	
 too	
 costly.	

	

The	
 MTTDL	
 (mean	
 time	
 to	
 data	
 loss)	
 shall	
 be	
 100	
 years.	

Design	
 to	
 Provide	
 Resilience	

The	
 ability	
 to	
 recover	
 data	
 and	
 be	
 resilient	
 to	
 loss	
 will	
 be	
 accomplished	
 by	
 three	

mechanisms:	
 backup,	
 erasure	
 coding,	
 and	
 encoding	
 recovery	
 information.	

Backup	

The	
 metadata	
 service	
 is	
 broken	
 up	
 into	
 multiple	
 namespaces,	
 each	
 of	
 which	
 is	
 a	
 POSIX	
 file	

system.	
 Backing	
 up	
 the	
 metadata	
 will	
 add	
 to	
 the	
 system	
 resilience.	
 Backing	
 up	
 these	
 file	

systems	
 assumes	
 there	
 is	
 not	
 a	
 lot	
 of	
 real	
 data	
 stored	
 in	
 them,	
 which	
 will	
 be	
 typical	
 for	
 our	

design.	

	

IMPORTANT	
 NOTE:	
 The	
 backup	
 mechanism	
 must	
 honor	
 space	
 holes,	
 so	
 backups	
 are	
 not	

huge.	

	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 26	

Metadata	
 attrs	
 and	
 xattrs,	
 and	
 file	
 data,	
 which	
 might	
 contain	
 object	
 ids,	
 must	
 be	
 preserved.	

	

The	
 MAR_post	
 xattr	
 numobjects	
 field	
 indicates	
 if	
 there	
 is	
 chunk	
 information	
 in	
 the	

metadata	
 file,	
 and	
 chunkinfobytes	
 indicates	
 how	
 much	
 real	
 data	
 is	
 in	
 the	
 metadata	
 file.	

Even	
 if	
 the	
 contents	
 of	
 the	
 metadata	
 file	
 that	
 contains	
 chunk	
 information	
 is	
 lost,	
 it	
 can	
 be	

recovered	
 because	
 the	
 xattr	
 MARobjid	
 contains	
 the	
 name	
 of	
 the	
 first	
 object	
 and	
 the	
 chunk	

size.	
 The	
 file	
 size	
 attr	
 has	
 the	
 total	
 file	
 size.	
 Thus	
 you	
 can	
 know	
 where	
 all	
 the	
 objects	
 are	

because	
 the	
 only	
 thing	
 that	
 changes	
 in	
 the	
 object	
 names	
 that	
 are	
 a	
 Multi	
 file	
 is	
 the	
 chunk	

number,	
 which	
 can	
 be	
 calculated.	
 If	
 the	
 metadata	
 file	
 content	
 is	
 lost,	
 the	
 only	
 things	
 really	

lost	
 are	
 the	
 actual	
 space	
 used	
 by	
 the	
 chunk	
 and	
 attributes	
 that	
 are	
 not	
 absolutely	
 necessary	

to	
 read	
 the	
 data	
 from	
 the	
 data	
 store.	
 The	
 data	
 store	
 will	
 contain	
 the	
 information	
 from	
 which	

you	
 can	
 reconstruct	
 the	
 metadata	
 file	
 content.	

	

Frequent	
 backup	
 of	
 the	
 metadata	
 is	
 wise	
 and	
 so	
 keeping	
 all	
 user	
 data	
 out	
 of	
 the	
 metadata	

file	
 systems	
 helps	
 keep	
 the	
 cost	
 of	
 backing	
 up	
 the	
 metadata	
 low.	

Erasure	
 Coding	

The	
 data	
 store	
 systems	
 are	
 erasure	
 coding	
 based.	
 Erasure	
 coding	
 can	
 be	
 setup	
 to	
 easily	

provide	
 a	
 MTTDL	
 of	
 100	
 years.	
 That	
 said,	
 it	
 is	
 important	
 to	
 configure	
 these	
 systems	
 to	

provide	
 adequate	
 MTTDL	
 while	
 minimizing	
 the	
 overhead	
 of	
 storage	
 devices	
 that	
 are	
 used	

to	
 provide	
 that	
 MTTDL	
 and	
 not	
 provide	
 actual	
 data	
 storage	
 capacity.	
 The	
 data	
 stores	
 cannot	

be	
 backed-­‐up,	
 as	
 they	
 will	
 be	
 very	
 large	
 in	
 capacity.	

Encoding	
 Recovery	
 Information	

There	
 has	
 been	
 an	
 attempt	
 in	
 MarFS	
 to	
 encode	
 as	
 much	
 of	
 the	
 metadata	
 into	
 the	
 data	

objects	
 as	
 possible	
 while	
 not	
 costing	
 too	
 much	
 performance.	
 This	
 really	
 means	
 that	
 because	

of	
 the	
 way	
 objects	
 work,	
 at	
 object	
 create	
 time,	
 objects	
 have	
 fully	
 re-­‐creatable	
 file	

information	
 embedded	
 in	
 the	
 object	
 or	
 its	
 name.	
 	
 	

	

Encoded	
 in	
 the	
 object	
 name	
 is	
 the	
 xattr	
 MARobjid,	
 the	
 contents	
 of	
 which	
 are	
 described	
 in	

the	
 Object	
 Naming	
 section.	
 It	
 is	
 possible	
 to	
 use	
 this	
 information	
 to	
 help	
 you	
 figure	
 out	
 how	

to	
 piece	
 together	
 metadata	
 information	
 on	
 the	
 metadata	
 file	
 system.	
 It	
 is	
 much	
 harder	
 for	
 a	

Packed	
 file,	
 as	
 this	
 object	
 name	
 just	
 represents	
 the	
 first	
 file	
 in	
 its	
 object.	
 Additionally	
 there	

is	
 even	
 more	
 recovery	
 information	
 embedded	
 in	
 the	
 object	
 data	
 itself.	
 Fileinfo	
 is	
 a	
 record	

that	
 has	
 information	
 mostly	
 from	
 stat()	
 of	
 the	
 metadata	
 file	
 in	
 human	
 readable	
 form.	

Remember	
 this	
 is	
 recovery	
 information	
 captured	
 at	
 create	
 time	
 only,	
 it	
 is	
 not	
 updated	
 upon	

metadata	
 changes	
 like	
 chmod	
 or	
 chown	
 or	
 rename	
 etc.	
 It	
 includes:	

	

• Size	
 of	
 record.	

• Version	
 of	
 record.	

• inode.	

• mode.	

• uid.	

• gid.	

• mtime.	

• ctimeand.	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 27	

• full	
 path	
 of	
 the	
 file.	
 	

	

For	
 objects	
 used	
 in	
 Uni	
 and	
 Multi	
 files	
 the	
 layout	
 of	
 the	
 object	
 is:	

Data.	

• Fileinfo	
 record.	

• The	
 contents	
 of	
 Mar_post.	

• Number	
 of	
 files	
 (used	
 in	
 packed).	

• Offset	
 in	
 this	
 object	
 where	
 recovery	
 info	
 begins.	

	

For	
 packed	
 files,	
 the	
 recovery	
 is	
 similar.	
 pftool	
 (or	
 in	
 the	
 future	
 a	
 post-­‐processing	
 utility	

program)	
 is	
 the	
 only	
 way	
 to	
 create	
 a	
 Packed	
 file,	
 so	
 it	
 is	
 possible	
 to	
 batch	
 the	
 recovery	

information	
 for	
 efficient	
 writing	
 at	
 the	
 end	
 of	
 the	
 object.	
 In	
 this	
 case,	
 the	
 packed	
 object	

looks	
 like	
 this:	

	

• DataFile1	

• ...	

• DataFileN.	

• Length	
 of	
 Fileinfo1+Mar_post1,	
 Fileinfo1	
 record,	
 Mar_post1.	

• …	

• Length	
 of	
 FileinfoN+Mar_postN,	
 FileinfoN	
 record,	
 Mar_postN.	

• Number	
 of	
 files.	

• Offset	
 in	
 this	
 object	
 where	
 recovery	
 info	
 begins.	

	

So	
 normal	
 reading	
 of	
 the	
 object	
 won't	
 ever	
 get	
 to	
 the	
 recovery	
 information	
 held	
 in	
 the	

object	
 data.	
 The	
 reason	
 to	
 put	
 this	
 in	
 the	
 data	
 itself	
 is	
 the	
 size	
 might	
 be	
 large	
 given	
 full	
 path	

is	
 included.	
 To	
 recover	
 (remember	
 this	
 is	
 a	
 create	
 time	
 only	
 recover),	
 you	
 list	
 objects	
 and	

find	
 the	
 ones	
 you	
 are	
 interested	
 in	
 (via	
 bucket	
 name,	
 namespace.repo.suffix,	
 and	
 time	

stamp/etc.),	
 get	
 the	
 header	
 of	
 the	
 object	
 which	
 tells	
 you	
 the	
 length	
 of	
 the	
 object,	
 read	
 the	

last	
 2	
 words	
 of	
 the	
 object	
 (number	
 of	
 files	
 and	
 location	
 of	
 recovery	
 info),	
 use	
 the	
 location	
 of	

the	
 recovery	
 information	
 to	
 read	
 the	
 recovery	
 information	
 and	
 then	
 recover	
 the	
 metadata	

(create	
 time	
 metadata)	
 for	
 the	
 file.	

	

This	
 does	
 not	
 help	
 you	
 with	
 metadata	
 only	
 changes	
 like	
 chmod,	
 rename,	
 chown,	
 etc.	
 If	
 you	

want	
 to	
 protect	
 yourself	
 from	
 loss	
 of	
 this	
 info,	
 frequent	
 backup	
 of	
 the	
 metadata	
 is	
 the	

answer.	
 Potentially	
 one	
 might	
 log	
 metadata	
 only	
 updates	
 at	
 some	
 point	
 but	
 there	
 is	
 no	
 plan	

to	
 do	
 that	
 now.	

	

Lastly,	
 if	
 there	
 is	
 an	
 easy	
 way	
 to	
 dump	
 a	
 list	
 of	
 the	
 objects	
 in	
 the	
 buckets,	
 the	
 object	
 names	

themselves	
 occasionally,	
 this	
 would	
 be	
 both	
 a	
 good	
 way	
 to	
 do	
 reconciliation	
 between	

MarFS	
 metadata	
 systems	
 and	
 object	
 storage	
 systems,	
 but	
 it	
 also	
 might	
 be	
 useful	
 in	
 an	

emergency	
 recovery	
 scenario	
 of	
 some	
 kind.	

	
 MarFS	
 Requirements,	
 Design,	
 Configuration,	
 and	
 Administration	

7-­‐Jul-­‐2015	
 	
 28	

Future	
 Features	

Of	
 course,	
 MarFS	
 can	
 be	
 much	
 more	
 than	
 its	
 current	
 design.	
 Some	
 envisioned	
 future	

features	
 are:	

	

• File	
 versioning.	
 We	
 have	
 the	
 ability	
 to	
 version	
 the	
 data	
 behind	
 files	
 since	
 unlink	
 and	

truncate	
 put	
 the	
 old	
 file	
 “space”	
 in	
 the	
 trash.	

• Telescoping/indexing/namespace	
 with	
 directories	
 marked	
 by	
 directory	
 xattr	
 using	

indexfs	
 or	
 other	
 directory	
 pickling,	
 both	
 at	
 single	
 level	
 directories	
 and	
 eventually	

multi	
 level	
 directories	
 	
 (telescoping	
 index/namespace).	

• Dual	
 copy,	
 probably	
 implemented	
 by	
 a	
 repository	
 that	
 does	
 dual	
 copy.	

• Metadata	
 update	
 logging.	

• Compression.	
 The	
 hard	
 part	
 is	
 how	
 to	
 read	
 compressed	
 files/chunks	
 in	
 fuse.	

• Encryption.	
 The	
 hard	
 part	
 is	
 how	
 to	
 read	
 encrypted	
 chunks	
 in	
 fuse.	

• Offline	
 optimizations/sorting/indexing	
 of	
 attrs	
 and	
 user	
 xattrs	
 etc.	

• Maybe	
 append	
 or	
 sparse	
 support,	
 need	
 to	
 consider	
 carefully,	
 hard	
 to	
 do	
 because	
 of	

book	
 keeping	
 and	
 because	
 we	
 chose	
 to	
 use	
 formulaic	
 striping	
 instead	
 of	
 extent	
 lists	

with	
 sizes	
 for	
 multi	
 files,	
 we	
 could	
 use	
 the	
 multi	
 mechanism	
 that	
 holds	
 things	
 like	

actual	
 size	
 of	
 the	
 chunk	
 perhaps.	

• Other	
 access	
 methods	
 than	
 CDMI/object,	
 HPSS,	
 remote,	
 etc.	

• HDFS	
 alternate	
 access	
 of	
 same	
 data,	
 via	
 java	
 HDFS	
 lib,	
 provide	
 chunk	
 info	
 and	
 query	

object	
 store	
 if	
 it	
 has	
 info	
 that	
 matters	
 (if	
 its	
 erasure	
 allows	
 locality).	

• Would	
 be	
 nice	
 to	
 have	
 restart	
 for	
 big	
 files	
 but	
 that	
 could	
 be	
 deferred.	

• Packed	
 file	
 support	
 could	
 be	
 later	
 but	
 would	
 be	
 nice	
 to	
 have	
 sooner	
 to	
 make	
 it	
 easy	

on	
 object	
 system.	

• Backup	
 of	
 object	
 level	
 metadata.	
 List	
 all	
 objects	
 in	
 a	
 bucket	
 because	
 all	
 the	
 metadata	

is	
 in	
 the	
 object	
 names.	

• Would	
 like	
 to	
 have	
 V2	
 of	
 erasure	
 library	
 sooner	
 than	
 later	
 for	
 improved	
 bandwidth.	

• Offline	
 deep	
 reconcile/repack,	
 if	
 trash	
 is	
 lost.	

• Investigate	
 GPFS	
 keeping	
 track	
 of	
 changes	
 for	
 further	
 optimizations	
 of	
 utility	

programs.	
 For	
 example,	
 only	
 process	
 changed	
 parts	
 of	
 the	
 tree.	

• FUSE	
 packing	
 on	
 write.	

• FUSE	
 multipart	
 write.	

• May	
 need	
 a	
 special	
 way	
 to	
 load	
 data	
 from	
 HPSS	
 to	
 campaign	
 that	
 is	
 very	
 large,	
 as	
 we	

will	
 need	
 multi-­‐part	
 through	
 FUSE	
 or	
 some	
 other	
 special	
 way.	
 In	
 short	
 term	
 we	

could	
 force	
 this	
 to	
 go	
 to	
 scratch	
 first	
 for	
 a	
 while.	
 Moving	
 it	
 from	
 HPSS	
 is	
 the	
 hard	

part.	
 Once	
 on	
 scratch	
 it	
 would	
 go	
 fast	
 to	
 campaign,	
 but	
 need	
 to	
 figure	
 a	
 good	
 way	
 to	

do	
 this	
 at	
 some	
 point.	

• May	
 want	
 to	
 do	
 other	
 optimizations	
 to	
 HPSS.	

	

