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Abstract

We describe the development and implementation of an efficient spectral element code for
multimillion gridpoint simulations of incompressible flows in general two- and three-dimensional
domains. We review basic and recently developed algorithmic underpinnings that have resulted
in good parallel and vector performance on a broad range of architectures, including the terascale
computing systems now coming on line at the DOE labs. Sustained performance of 219 GFLOPS
has been recently achieved on 2048 nodes of the Intel ASCI-Red machine at Sandia.
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Introduction

One of the primary motivations driving computational science is to augment experiments as a means
of scientific investigation. To this end, we are currently working with several collaborators on the
development and use of a spectral element code for comparative numerical and experimental studies
on challenging problems in fluid mechanics and heat transfer. As illustrated in Fig. 1, these problems
include the generation of hairpin vortices resulting from the interaction of a flat-plate boundary layer
with a hemispherical roughness element; forced convection heat transfer in grooved and grooved-
flat channels; modeling the Geophysical Fluid Flow Cell (GFFC) space laboratory experiment of
buoyant convection in a rotating hemispherical shell; and study of Rayleigh-Taylor instability.

For performance benchmarking, we consider numerical simulation of the interaction of a flat-plate
boundary layer with an isolated hemispherical roughness element at Reynolds number Res = 1600.
This problem has been studied experimentally by Acalar and Smith [1] and, more recently, by
Klebanoff, Cleveland, and Tidstrom [10]. Of principal interest in these studies is the creation of
hairpin vortices that form an interlacing pattern in the wake of the hemisphere, lift away from
the wall, and are stretched by the shearing action of the boundary layer, since the tails remain
in the low-speed (near-wall) region of the flow while their heads are entrained in the high-speed
region. Hairpin vortices are of interest because they are frequently observed in whole or in part in
transitional and turbulent boundary layers and are believed to play an important role turbulence
production. [18, 19].

This paper presents a brief overview of the critical algorithmic and implementation features that
have led to efficient simulation of incompressible flows on terascale architectures.

Spectral Element Discretization

The spectral element method is a high-order weighted residual technique developed by Patera and
coworkers in the ’80s that couples the tensor-product efficiency of global spectral methods with the
geometric flexibility of finite elements [12, 15]. Locally, the mesh is structured, with the solution,
data, and geometry expressed as sums of Nth-order tensor-product Lagrange polynomials, based on
the Gauss or Gauss-Lobatto (GL) quadrature points. Globally, the mesh is an unstructured array
of K deformed hexahedral elements and can include geometrically nonconforming elements. The
discretization is illustrated in Fig. 2, which shows a three-element mesh in IR* with the GL grid for
the case N = 4. Also shown is the reference (7, s) coordinate system used for all function evaluations.
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Figure 1: Recent spectral element simulations. Clockwise from top: hairpin vortex generation in
wake of hemispherical roughness element (Res = 700); two-dimensional Rayleigh-Taylor instability;
temporal-spatial evolution of convective instability in heat-transfer augmentation simulations; spher-
ical convection simulation of the geophysical fluid flow cell (GFFC) at Ra = 110K, T'a = 1, 440K.

For problems having smooth solutions, such as the incompressible Navier-Stokes equations, ex-
ponential convergence is obtained with increasing N, despite the fact only G° continuity is enforced
across elemental interfaces. This is demonstrated in Table 1, which shows the computed growth rates
when a small-amplitude Tollmien-Schlichting wave is superimposed on plane Poiseuille channel flow
at Re = 7500, following [7, 14]. The amplitude of the perturbation is 10~%, so that the Navier-Stokes
results can be compared directly with linear theory. Three error measures are computed: error;
and errory are the relative amplitude errors at the end of the first and second periods, respectively,
and errory is the error in the growth rate at a convective time of 50. From Table 1, it is clear that
doubling the number of points in each spatial direction yields several orders of magnitude reduction
in error, implying that just a small increase in resolution is required for very good accuracy. The
significance of this is underscored by the fact that, in three dimensions, the effect on the number of
gridpoints scales as the cube of the relative savings in resolution.

Operator Evaluation

The computational efficiency of spectral element methods derives from the use of tensor-product
forms. To illustrate, we express the stiffiness matrix for an undeformed element & in IR? as a sum of




Table 1: Spatial convergence, O-S problem: K = 15, At = .003125

N E(t1) errory E(t2) errors errory

7 1.11498657 0.003963 1.21465285 0.037396 0.313602
9 1.11519192 0.003758 1.24838788 0.003661 0.001820
11 1.11910382 0.000153 1.25303597 0.000986 0.004407
13 1.11896714 0.000016 1.25205855 0.000009 0.000097
15 1.11895646 0.000006 1.25206398 0.000014 0.000041

tensor products of one-dimensional operators,
Ak=§y®2x+2y®-§z; (1)

where A and B are the one-dimensional stiffness and mass matrices associated with the respective
spatial dimensions. If u* = ufj is the matrix of nodal values on element k, then a typical matrix-
vector product required of an iterative solver takes the form

N N
(A d¥),, = ZZ(By,mjAz,zi!?j + Ay,ijz,lig?j)
i=0 j=0

= A\zﬁkﬁg + Ez"_l'.kgg’

The latter form illustrates how the tensor-product basis leads to matrix-vector products (Au) being
recast as matriz-matriz products, a feature central to the efficiency of spectral element methods.
Similar forms result for other operators and for complex geometries. For example, evaluation of the
discrete Laplacian for a deformed hexahedral element in IR? takes the form

Dr T Grr Gra Grt Dr
Ak.“_"k = Da Grs Gss Gst Ds y-k ’ (2)
Dt Grt Gat Gtt Dt

where D, = (I ® I ® D), and so forth, and the G;;’s are diagonal matrices of order (N + 1)° that
combine the quadrature weights with the Jacobian and metrics associated with the transformation
from the physical to computational domain. The total work per element is 12N* + 15N3, and the
required number of memory references is 7N3. Note that A* in (2) is full, implying that the work
and storage would be O(NV®) if it was explicitly computed and stored.

The matrix-vector product (2) requires six matrix-matrix products of form (N x N) x (N x N2),
and so forth, associated with the derivative operators, D. These typically account for roughly 90%
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Figure 2: Example of spectral element discretization in IR? showing GLL nodal lines for (K,N) =
(3,4).
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Figure 3: ASCI-Red-333 pGeEMM() perfor- Figure 4: ASCI-Red-200 solve times for a
mance on uncached data. 16129 d.o.f. coarse grid problem.

of the work and are usually implemented via calls to DGEMM, unless hand-unrolled F77 loops prove
faster on a given platform. For ASCI-Red, we considered two versions of DGEMM, the standard one
obtained with the —1kmath link option, and the “myblas.a” version developed by Greg Henry at
Intel. Timings for noncached, N x N matrix-matrix products are plotted in Fig. 3 and show an
expected upper bound on performance of 20 to 110 MFLOPS per processor for the range of N =
5-16 typically encountered in practice. The myblas.a library is significantly faster than the standard
DGEMM and is used in all the single-processor-per-node tests presented below. However, it was not
stable for the dual-processor timings, so we used the standard library in those tests. Note that, while
the work in (2) scales as O(N?), we can expect the time to scale more slowly because of DGEMM
performance gains with increasing N.

The message-passing-based parallel implementation follows the standard SPMD model in which
contiguous groups of elements are distributed to processors. Since iterative solvers are used, the
principal communication kernel is the gather-scatter operation required for the residual vector as-
sembly procedure. Because data is always stored on an element-by-element basis, the gather-scatter
procedure required for residual evaluation is combined into a single communication phase wherein
shared nodal values are exchanged and summed. This is a single local-to-local transformation, rather
than separate gather and scatter phases common to many finite element implementations. Com-
munication overhead is further reduced through use of a recursive spectral bisection based element
partitioning scheme to minimize the number of vertices shared amongst processors [16].

The gather-scatter operation is implemented by using a stand-alone MPI/NX-based message-
passing utility that supports a vector mode for problems having multiple degrees-of-freedom per
vertex as well as a general set of commutative/associative operations [19]. The easy-to-use interface
requires only two calls:

handle=gs-init(global-node-numbers,n) and ierr=gs-op(u,op,handle),
where global-node-numbers() associates the n local values contained in the vector u() with their
global counterparts, and op denotes the reduction operation performed on shared elements of u().

On ASCI-Red, additional parallelism has been obtained by exploiting the second processor for a

few compute-intensive matrix-vector product evaluations (particularly the pressure operator).

Time Advancement

The Navier-Stokes time-stepping is based on the second-order operator splitting methods developed
in [2, 13]. The convective term is expressed as a material derivative, and the resultant form is




discretized via a stable second-order BDF scheme:

— 481 4 3u”
2A8

where S(u”) is the linear symmetric Stokes problem to be solved implicitly, and &"~? is the velocity
field at time step n — ¢ computed as the explicit solution to a pure convection problem. The sub-
integration of the convection term permits values of At corresponding to convective CFL numbers
of 2-5, thus significantly reducing the number of (expensive) Stokes solves.

The Stokes problem is of the form

|2 %] (F)=(2°)

and is also treated by second-order splitting, resulting in subproblems of the form:

=5u"),

Hul = f.,
for the each velocity component (i =1,...,3), and
Ep* = 4.

Here, H is a diagonally dominant Helmholtz operator representing the parabolic component of the
momentum equations and is readily treated via Jacobi-preconditioned conjugate gradients; E :=
DB-!DT is the Stokes Schur complement governing the pressure, and B is the (diagonal) mass
matrix in the velocity space. F is a consistent Poisson operator and is effectively preconditioned by
using the overlapping additive Schwarz procedure of Dryja and Widlund (3, 7, 8].

Solvers

The pressure solve is the most computationally intensive step in the time advancement scheme. In
addition to preconditioning, the solution time is further reduced by first projecting the solution
at time level n onto the space of L previous solutions (L ~ 25, typ.) and solving only for the
perturbation from this solution. The magnitude of the perturbation is O(AtF) + O(e), where € is
the iteration tolerance. Under normal production tolerances the projection step yields a two- to
four-fold reduction in work [5].

The overlapping Schwarz preconditioner requires a local solve for each (overlapping) subdomain,
plus a global coarse grid solve based upon the spectral element vertex mesh. The local subdomain
solves are based upon the fast diagonalization method [11], in which the inverse of A* (1) is expressed
as

A = (Sy®S)I®A: + Ay@II7Y(S] ®57),

where S is the matrix of eigenvectors and A the diagonal matrix of eigenvalues solving the generalized
eigenvalue problem Az = ABz The tensor-product forms involving S can be applied via fast matrix-
matrix products as described above, and the storage is minimal. The method is not exact when the
subdomain is deformed, but suffices as a preconditioner [8].

The coarse grid problem, z, = A;!b, is a well-known source of difficulty on large distributed-
memory architectures [4, 9]. The problem arises because the solution and data are distributed
vectors, and A;! is completely full, implying the need for an all-to-all communication. Moreover,
because there is very little work on the coarse grid (typ. O(1) d.of. per processor), the problem
is communication intensive. We have recently developed a fast coarse grid solution algorithm that
readily extends to thousands of processors [6, 17]. It is based upon construction of sparse factors
XYT = A7!. The solution is thus cast a pair of fully concurrent matrix-vector products. More-
over, it can be shown that, for n-point grid problems having compact stencils in IR3, the required
communication volume on a P-processor machine is bounded by 3n2/3log, P, a clear gain over the
O(n) or nlog, P cost incurred by most competing approaches. The performance of the method on
ASCI-Red is illustrated in Fig. 4 for a (127 x 127) point Poisson problem (n = 16129) discretized by
astandard 5-point stencil. Shown also are the times for the commonly used approaches of redundant
LU solves and row-distributed A;*.
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Figure 5: P = 2048 ASCI-Red-333 performance results for the first 25 time steps for (K, N) =
(8168, 15) corresponding to 27 M velocity points and 24 M pressure points: solution time-per-step
(left) and number of pressure and Helmholtz iterations per-step (right).

Performance Results

We have run our spectral element code on a number of distributed-memory platforms, including the
Paragon at Caltech, the T3E-600 at NASA Goddard, the Origin 2000 and SP at Argonne, ASCI-Blue
at Los Alamos, and ASCI-Red at Sandia. For this paper we concentrate on recent timing results
for the hairpin vortex problem of Fig. 1 that were obtained on ASCI-Red using up to 2048 nodes in
single- and dual-processor mode.

Each node on ASCI-Red consist of two Zeon 333 MHz Pentium II processors which can be run in
a message-passing (internode) / SMP (intranode) mode. Currently, only the matrix-vector product
routine for the pressure operator, E, has been cast into dual-processor mode. The fact that we
employ nonoverlapping storage for elements and have loops over the blocks exhibiting little or no
data dependence implies that we should be able to exploit the second processor for additional work.
Preliminary experiments indicate that a factor of 1.5 over the single-processor performance should
be achievable on 2048 nodes.

The timing results presented are for the time stepping portion of the runs only. During production
runs, usually 14 to 24 hours in length, our setup and I/O costs are typically in the range of 2-5%. To
determine operation count we access the hardware operation counters via calls to the perfmon library.
In addition, we have instrumented the code to provide various performance metrics, including per
processor flop count. The two methods yield results within 2% of each other. Finally, all floating-
point calculations were done in 64-bit precision.

Figure 5 shows time per step for the first 25 time steps (left) and the pressure and (z-component)
Helmbholtz iteration counts (right). The significant reduction in pressure iteration count is due to
the difficulty of computing the initial transients and the benefits gained from the pressure projection
procedure.

Table 3 presents results for a K = 8168 element case, of order N = 15 (28 M grid points for
velocity, 22 M for pressure). The mesh was obtained via an oct-refine of the production mesh used
for the transitional boundary layer/hemisphere calculation of Fig. 1. We note that the coarse grid
for this problem has 10,142 distributed degrees-of-freedom and accounts for only 3.5% of the total
solution time in the worst-case scenario of 2048 nodes in dual-processor mode.




Table 3: ASCI-Red-333: average time-per-step and GFLOPS, N = 15

K =8168, N =15
single dual

P | time(s) GFLOPS | time(s) GFLOPS

512 247.1 45.9 191.7 59.2
1024 | 124.6 91.0 96.3 118.0
2048 64.1 176.9 51.8 219.0

Conclusion

We have developed a highly accurate spectral element code based on scalable solver technology that
exhibits excellent parallel efficiency and sustains high MFLOPSs. It attains exponential convergence,
allows a convective CFL of 2-5, and has efficient multilevel elliptic solvers including a coarse grid
solver that is communication minimal. The code currently runs on thousands of processors and is
clearly ready to run on machines with tens of thousands of processors.
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