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Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their em-
ployees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.
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1 Abstract

Motivation: The ability to collect key system level information is critical to the safe, efficient and
reliable operation of advanced power systems. Recent advances in sensor technology have en-
abled some level of decision making directly at the sensor level. However, coordinating large
numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as
predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coor-
dination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a
large number of heterogenous system components do not interfere with one another and lead to
undesirable behavior.

Objectives and Contributions: The long-term objective of this work is to provide sensor deploy-
ment, coordination and networking algorithms for large numbers of sensors to ensure the safe,
reliable, and robust operation of advanced energy systems. Our two specific objectives are to:

1. Derive sensor performance metrics for heterogeneous sensor networks.

2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor net-
work in advanced power systems.

The key technical contribution of this work is to push the coordination step to the design of the
objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled.
By ensuring that the control and coordination is not specific to particular sensor hardware, this
approach enables the design and operation of large heterogeneous sensor networks. In addition
to the coordination coordination mechanism, this approach allows the system to be reconfigured
in response to changing needs (e.g., sudden external events requiring new responses) or changing
sensor network characteristics (e.g., sudden changes to plant condition).

Impact: The impact of this work extends to a large class of problems relevant to the National
Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination,
and sensor network control in advanced power systems. Each application has specific needs, but
they all share the one crucial underlying problem: how to ensure that the interactions of a large
number of heterogenous agents lead to coordinated system behavior. This proposal describes a
new paradigm that addresses that very issue in a systematic way.

Key Results and Findings: All milestones have been completed. Our results demonstrate that by
properly shaping agent objective functions, we can develop large (up to 10,000 devices) hetero-
geneous sensor networks with key desirable properties. The first milestone shows that properly
choosing agent-specific objective functions increases system performance by up to 99.9% com-
pared to global evaluations. The second milestone shows evolutionary algorithms learn excel-
lent sensor network coordination policies prior to network deployment, and these policies can
be refined online once the network is deployed. The third milestone shows the resulting sensor
networks networks are extremely robust to sensor noise, where networks with up to 25% sensor
noise are capable of providing measurements with errors on the order of 10−3. The fourth mile-
stone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the
sensors in the system failing resulting in no significant performance losses after system reconfig-
uration.
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2 Technical Background

The following sections provide relevant background material, including the Defect Combination
Problem, the Rankine Cycle Defect Combination Problem, cooperative coevolutionary algorithms,
muliagent reinforcement learning, and difference evaluation functions.

2.1 The Defect Combination Problem (DCP)

Many real world sensing applications require large sets of disparate sensing devices to coordinate
their actions in order to collectively optimize their network attenuation, coverage areas, and sens-
ing schedules [10, 14, 17]. In this work, a set of up to 10,000 sensing devices must coordinate their
sensing schedules in order to optimize their aggregated attenuation within a sensor networkr.
This wok focuses on the Defect Combination Problem (DCP) domain introduced in [2]. This prob-
lem assumes that there exists a set of imperfect sensors X which have constant attenuations due
to manufacturing defects or imperfections. Each of the sensors xi has an associated attenuation
ai (which can be positive or negative) in its reading, such that if it is taking a measurement of
A (actual value) it measures A + ai where ai is the device’s individual error. The problem then
becomes how to best choose a subset of the X sensors that minimizes the aggregated attenuation
of the combined readings:

G =

∣∣∣∣∣
N∑
i=1

niai

∣∣∣∣∣
N∑
i=1

ni

(1)

where G is the aggregated attenuation of the combined sensor readings, ai is the attenuation of a
particular sensor i, N is the number of sensors, and ni ∈ {0, 1} based upon whether the sensor
chooses to be “on” or “off”.

This is an NP-complete optimization problem [2, 16] and simply choosing the single sensor
with the best attenuation is an inadequate solution, as is choosing the bestK sensors (1 ≤ K ≤ N ).
To illustrate this, consider the case where there are 6 sensing devices whose attenuations are
a1 = −0.19, a2 = 0.54, a3 = 0.1, a4 = −0.14, a5 = −0.05, and a6 = 0.21. Choosing only the
best sensor a5 would yield an aggregated attenuation of |0.05|, while choosing sensors a3, a4, and
a5 will yield an aggregated attenuation of |0.03|, which is better than the single best sensing de-
vice a5 alone. This is still not the optimal solution in this 6 sensor case however, as combining
sensors a1 and a6 results in an aggregated attenuation of |0.01|. In this problem, individual sen-
sors acting independently without coordinating their actions can drastically decrease the system
performance. Consider the case where sensors a1 and a6 are turned on in conjunction with sen-
sor a2, the aggregated attenuation jumps to from |0.01| to |0.18|. Finding good solutions requires
a great deal of coordination between sensors, as any one sensor can heavily impact the system
performance.

2.2 Heterogeneous Sensor Network

We develop a sensor network in a well known power generation system: a vapor power Rankine
cycle [6, 12]. The Rankine cycle is one of the simplest thermodynamic power-producing cycles,
and serves as a testbed to demonstrate the effectiveness of our approach. It is important to note
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Figure 1: A vapor power Rankine cycle. The working fluid travels through a boiler, turbine,
condenser, and pump in succession. The work output of the turbine is used to generate electricity.

that although the Rankine cycle is not complex enough to demonstrate effectiveness of control al-
gorithms, it is adequate to demonstrate the effectiveness of our sensor network training algorithm.
Further, the Rankine cycle represents a hardware-based power plant simulation, as we deal with
all the typical components (e.g. boiler, turbine, condenser, pump) that we see in steam cycle power
plants. In our approach, the model is treated as a black box, and only the output of the model is
used to train sensors operating within that model. In a Rankine cycle, the working fluid passes
through a boiler and becomes saturated vapor. Next, the fluid goes through the turbine, which
results in an energy output which is used to produce electricity. The fluid then passes through a
condenser and becomes a saturated liquid. Finally, the fluid passes through a pump and returns
to the boiler, completing the cycle. The Rankine cycle is shown in Figure 1. For the purposes of
this analysis, we make the following assumptions:

A1. Each component of the cycle is considered to be a control volume.
A2. All processes of the working fluid are internally reversible.
A3. The turbine and pump operate adiabatically.
A4. Kinetic and potential energy effects are negligible.
A5. Saturated vapor enters the turbine. Condensate exits the condenser as a saturated liquid.
A6. The working fluid is water.

As seen in Figure 1, there are four distinct states in the Rankine cycle, each of which lies between
two of the components. At each state, the working fluid has an enthalpy h, which is a thermody-
namic value indicating the energy stored in the working fluid. The enthalpy of a fluid is a function
of temperature and pressure. The system performance is related to the enthalpy hs at each plant
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state s by the following relations:

Ẇt

ṁ
= h1 − h2 (2)

Q̇out
ṁ

= h2 − h3 (3)

Ẇp

ṁ
= h4 − h3 (4)

Q̇in
ṁ

= h1 − h4 (5)

where ṁ is the mass flow rate of the working fluid, Ẇt is the work output of the turbine, Q̇out
is the heat output of the condenser, Ẇp is the work input to the pump, and Q̇in is the heat input
to the boiler. In order to evaluate these relations, the enthalpy of the working fluid at each state
must be determined by measuring the temperature and pressure at each state; this requires the
development of a sensing policy.

We apply a modified version of the DCP to a Rankine cycle power plant. There is a set of
motes Xs at each of the four plant states, where s ∈ {1, 2, 3, 4} is the state of the power plant
(see Figure 1). Each mote xs,i ∈ Xs has sensors capable of measuring temperature and pressure,
the two parameters needed to determine the enthalpy of the working fluid. The sensors in mote
xs,i have a mean temperature attenuation ts,i, and a mean pressure attenuation ps,i. Further, each
sensor has an associated measurement noise defined by the Gaussian distribution, where σt and
σp are the standard deviations for temperature and pressure attenuations respectively. Thus, the
temperature and pressure attenuations of the sensors on each mote are given by the following
normal distributions:

eT,s,i = N(σt, ts,i) (6)
eP,s,i = N(σp, ps,i) (7)

Each mote is considered to be an agent. First, an agent decides whether to be “on” or “off.”
If an agent decides to be “on,” then it must decide if it will measure temperature, pressure, or
both temperature and pressure. The goal of the agents is to collectively take actions which will
minimize the aggregate error in temperature and pressure readings. The aggregate attenuation
for temperature at a state s is defined as:

gT,s =

∑Ns
i=1 ns,ieT,s,i∑Ns

i=1 ns,i
(8)

where Ns is the number of motes in state s, and ns,i ∈ {0, 1} denotes whether mote xs,i is mea-
suring temperature or not. Similarly, the aggregate attenuation for pressure at state s is defined
as:

gP,s =

∑Ns
i=1 ns,ieP,s,i∑Ns

i=1 ns,i
(9)

where ns,i ∈ {0, 1} denotes whether mote xs,i is measuring pressure or not. From Equations 8 and
9, the measured values of temperature and pressure at state s are:

Ts,sensed = Ts + gT,s (10)
Ps,sensed = Ps + gP,s (11)
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where Ts and Ps are the true temperature and pressure at state s, respectively. Equations 8 and 9
can not be used to provide feedback to learning agents, because they can not be calculated directly
in real-world applications, because the attenuation of each sensor is not known. However, using
the system model and knowledge of the control inputs, the enthalpy at each state may be analyti-
cally determined. Thus, the enthalpy found from the sensor readings may be compared with the
true enthalpy (found with system model) to determine the accuracy of the sensor network.

The enthalpy of the working fluid is a thermodynamic property which quantifies the level
of energy in the fluid. Enthalpy change in a fluid corresponds to the fluid either absorbing or
expelling energy, and is used to determine power levels in a power cycle. In the Rankine cycle
power plant, the control inputs are Q̇out, Ẇp, Q̇in, and ṁ, and are known values. Thus, using
Equations 2 through 5 in addition to the assumptions made about the Rankine cycle, the enthalpy
values h1 through h4 may be directly determined. The enthalpy at each state is also estimated by
the sensor network, where the estimation of enthalpy is defined by:

hs,sensed = f(Ts,sensed, Ps,sensed) (12)

where f(T, S) is the enthalpy equation based on thermodynamic empirical data, and Ts,sensed and
Ps,sensed are the sensed temperature and pressure values, as defined in Equations 10 and 11. The
error in the enthalpy reading at a given state is thus:

hs,error = |hs − hs,sensed| (13)

where hs is the true enthalpy of state s, found using the Rankine cycle model. The error in en-
thalpy gives an indication of the effectiveness of the sensors measuring temperature and pressure.
The objective of the entire sensor network is to minimize the total attenuation of enthalpy mea-
surements at each state, which is equivalent to maximizing:

G(z) = −
4∑
s=1

hs,error (14)

The key difference between this approach and the DCP is the fact that the objective function
given by Equation 14 uses data which is readily available in order to judge sensor efficacy. Recall
that the DCP objective function (Equation 1) includes individual sensor attenuations, which are
extremely impractical to obtain, especially as the size of the sensor network grows. Thus, the
modification we have made to the DCP allows for implementation in real-world applications.

2.3 Multi-Target Time-Extended DCP

We create an abstract model of a heterogeneous distributed sensor network known as the Multi-
Target Time-Extended Defect Combination Problem (MTTEDCP), shown in Figure 2. The MT-
TEDCP consists of ns sensors and nt targets to be sensed. Each sensor and target has a location
p = (x, y), and each sensor i has a sensing radius r and a measurement error ai. If a target j has
a value of Aj and location pj and is within a sensor i’s measurement radius, the measurement
returned by the sensor is:

mi,j = Aj + ai + δ|pi − pj | (15)

where δ is a noise factor, and |pi − pj | is the Cartesian distance from the sensor to the target. Thus,
in addition to sensor error, a measurement becomes more inaccurate the farther away the sensor
is from the target. The error of a sensor is given by the term:
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Figure 2: Visualization of the multi-target time-extended defect combination problem. Targets
and sensors are distributed in a 2D environment, and each sensor has a limited observation radius
(denoted by dashed circles).

ei,j = ai + δ|pi − pj | (16)

In the MTTEDCP, each sensor chooses what time-steps it will be active (measuring). When a
sensor is inactive, it measures nothing (power conservation mode). When a sensor is active, it is
measuring all sources within its observation radius. There are two objectives in the MTTEDCP.
First, each source must be measured for every time step; this ensures that the system remains
fully monitored continuously. Second, the average measurement error of each source is to be min-
imized. This minimization involves finding subsets of sensors to be activated such that their ag-
gregate measurement errors is minimized. Thus, the MTTEDCP is a time-extended combinatorial
optimization problem subject to a soft constraint of full source coverage. The system evaluation
function of the MTTEDCP is given by:

G(z) =

τmax∑
τ=1

ns∑
i=1

nt∑
j=1

ei,j
fi,τ

(17)

where τ is the time-step, τmax is the max number of time-steps, i is the sensor index, j is the source
index, and fi,τ is an indicator function which is either 0 or 1 if sensor i is “off” or “on” at time-step
τ . Solving the MTTEDCP involves choosing which sensors are on at which timesteps in order to
minimize average measurement error. Multiple sensors measuring a target not only can improve
measurement accuracy, but it increases the robustness of the system due to sensor redundancy. If
only one sensor is measuring a target, failure of that sensor results in complete loss of potentially
critical data. If multiple sensors are measuring a target, failure of a sensor results in only a change
in accuracy of the target measurement, but no complete loss of data. Sensors each have different
capabilities (heterogeneous sensors), as they each have different baseline measurement errors and
noise levels, corresponding to varying qualities of sensors in the network.

9



2.4 Cooperative Coevolutionary Algorithms

Evolutionary algorithms (EAs) are a class of stochastic search algorithms which are inspired by bi-
ological evolution and contain three basic operators: solution generation, mutation, and selection
[11]. These mechanisms are used on an initial set of candidate solutions (a population) to generate
new solutions and retain solutions that show improvement. For multiagent settings, EAs are ex-
tended to cooperative coevolutionary algorithms, where multiple EAs operate in parallel and the
fitness of each agent is a function of how a team of collaborating agents performs. A cooperative
coevolutionary algorithm is shown in Algorithm 1.

Algorithm 1: Standard CCEA

1 Initialize N populations of k solutions ;
2 foreach Generation do
3 foreach Population do
4 produce k successor solutions ;
5 mutate successor solutions
6 end
7 for i = 1→ 2k do
8 randomly select one agent from each population ;
9 add agents to team Ti ;

10 simulate Ti in domain ;
11 assign fitness to each agent in Ti
12 end
13 foreach Population do
14 select k solutions using ε-greedy
15 end
16 end

As agent fitness is a function of how a team of collaborating agents performs, fitness assign-
ment is often context dependent and subjective. In order to provide optimal learning performance,
fitness functions must be shaped; each agent must have a private objective to maximize which is
aligned with the system objective and easy for the agent to change through its actions. Difference
evaluation functions have these properties, and are discussed in Section 2.7.

2.5 Reinforcement Learning

Reinforcement learning involves learning how to map states to actions in order to maximize a
numerical reward signal [15]. The learning agent is not told which actions to take in any given
situation, but must discover optimal actions by testing different actions and finding which action
yields the highest reward. In tasks requiring multiple time steps, the learning agent must consider
future actions and rewards as well. For example, an action which yields a high immediate reward
may lead to states with low rewards; in this case, the agent should select another action which
leads to states having better rewards in the future. Q-learning allows for agents to learn actions
which optimize the future sum of rewards, allowing for optimal policies to be learned. An agent
learning with Q-learning keeps a value table (the Q-table) with values corresponding to each state
action pair. When an agent takes an action in a particular state and receives a reward, the Q-table
is updated according to:
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Q(st, at)← Q(st, at) + α [rt+1 + γmaxaQ(st+1, a)−Q(st, at)] (18)

where Q(s, a) is the Q-value corresponding to the state action pair (s, a), α is the learning rate, γ
is the discount factor, and rt+1 is the reward received for taking action at in state st. Note that
the value Q(st+1, a) is the maximum expected value of the state the agent reaches upon taking
the action at while in state st. This allows for the agent to optimize action selection to maximize
the sum of future rewards, rather than simply maximizing immediate rewards. Given enough
learning trials, Q-learning is theoretically guaranteed to find the optimal policy to maximize a
system evaluation function [15].

2.6 Multiagent Reinforcement Learning

In the case of multiple agents simultaneously learning, each agent maintains a local Q-table and
performs Q-learning independently. At each time step, each agent selects an action to execute. The
joint action (set of actions executed by all agents) then determines system performance. The gen-
eral multiagent reinforcement learning algorithm is shown in Algorithm 2. Ideally, agents learn to
select actions which result in system wide coordination between agents, in order to optimize the
system performance in a distributed manner.

Similar to CCEAs, it is critical that agent feedback in multiagent reinforcement learning be
shaped to provide valuable information to learning agents. Agent rewards structures must ensure
that agents learning to optimize their private reward functions are also improving overall system
performance. One option is to provide each agent the overall system performance as a reward.
In this case, each agent is learning to optimize the system reward. However, in large systems
(many agents), agents have difficulties separating their impact on the system performance, as
many agents are simultaneously affecting this value. Difference Evaluation Functions (Described
in Section 2.7) may be used as reward functions in multiagent learning settings. These Difference
Rewards have two key beneficial properties for multiagent systems. First, they are aligned with
the system performance; this means agents maximizing their difference rewards will also improve
overall system performance. Second, they are sensitive to agent actions; this means agents receive
rewards with a favorable signal-to-noise ratio, and are able to easily determine the effectiveness
of their actions.

2.7 Difference Evaluation Functions

In multiagent learning systems, it is critical that agents receive proper feedback regarding the
effectiveness of their actions. A set of autonomous agents coordinating to achieve a system level
objective results in difficulties in determining the impact of an individual agent on the system.
For example, an agent may perform poorly, but the set of agents as a whole may perform well,
resulting in high system performance. In this case, it is difficult to determine that the agent’s
actions were detrimental to the system.

In order to provide accurate agent specific feedback, we implement the Difference Evaluation
Function, defined as [1, 3, 4]:

Di(z) = G(z)−G(z−i + ci) (19)

where G(z) is the system evaluation function, and G(z−i + ci) is the system evaluation function
without the effects of agent i. The difference evaluation function approximates agent i’s contri-
bution to the system performance. Note that the second term in Di(z) is independent of agent i.

11



Algorithm 2: Standard Multiagent RL

1 Initialize value table for each agent ;
2 foreach Learning Episode do
3 foreach Agent do
4 Select action with ε-greedy selection ;
5 end
6 Determine system performance G(z) based on agents’ actions ;
7 foreach Agent do
8 if Reward = G(z) then
9 Qi(at)← (1− α)Qi(at) +G(z)

10 end
11 if Reward = Di(z) then
12 Qi(at)← (1− α)Qi(at) +Di(z)
13 end
14 end
15 end

Thus, the difference evaluation function is aligned with the system evaluation function. An agent
maximizing the value of Di(z) will also maximize the value of G(z). Further, note that the dif-
ference evaluation function removes all portions of G(z) which are independent of agent i. Thus,
the signal-to-noise ratio of Di(z) is very favorable compared to that of G(z), allowing for learning
agents to more easily discern the impact of their actions on system performance. In addition to
the theoretical properties of alignment and sensitivity, it has been theoretically demonstrated that
difference evaluations improve the probability of agents selecting optimal actions in cases where
the optimal joint action is deceptive [8].

3 Milestone and Cost Report

3.1 Cost Summary

Table 1: Cost Status

Quarter Actual Expense Projected Expense
(in $) (in $)

Sep 13 - Dec 31 2013 38,789 61,000
Jan 1 - Mar 31 2014 67,511 45,000
Apr 1 - Jun 30 2014 57,040 46,000
Jul 1 - Sep 30 2014 48,647 50,000
Oct 1 - Dec 31 2014 45,705 54,000
Jan 1 - Mar 31 2014 42,299 43,992
Total 299,991 299,992
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3.2 Milestone Completion

This research led to 6 publications [3, 4, 5, 8, 9, 13]. All milestones have been met. In this section,
we provide a summary of each milestone. In the following four sections, we provide details on
results supporting each of the milestones.

Milestone 1 (December 2013): Improve effectiveness of heterogeneous sensor networks by at
least 10% using new objective functions and evolutionary algorithms for sensor networks ranging
from 100 to 1000 devices
Status: This milestone is complete, and is supported by publications [3, 8, 9, 13]. See Section 4 for
results.

Milestone 2 (June 2014): Improve effectiveness of heterogeneous sensor networks by at least
10% using new objective functions and using reinforcement learning for sensor networks ranging
from 100 to 1000 devices
Status: This milestone is complete, and is supported by publications [4, 9]. See Section 5 for
results.

Milestone 3 (December 2014): Improve system efficiency by at least 10% and scalability by at
least 100% in advanced power system simulation, for sensor networks ranging from 100 to 1000
devices.
Status: This milestone is complete, and is supported by publications [5, 9]. See Section 6 for
results.

Milestone 4 (March 2015): Improve system reconfigurability by at least 10% and scalability by
at least 100% in advanced power system simulation for networks with up to 2000 devices. Recon-
figurations will be tested with 10%, 25%, and 50% failures/changes in system conditions.
Status: This milestone is complete, and is supported by publications [5, 9]. See Section 7 for re-
sults.

4 Improving Sensor Network Efficiency with Evolutionary Algorithms
(Milestone 1)

The first milestone of this work is to improve the effectiveness of heterogeneous sensor networks
by at least 10% using new objective functions and evolutionary algorithms, in networks ranging
from 100 to 1000 devices [7]. We conducted experiments with varying network sizes in the Rankine
Cycle Defect Combination Problem, using the cooperative coevolutionary algorithm detailed in
Section 2.4. We tested both the global and difference evaluation functions to assign fitness. The
global evaluation function is the standard CCEA implementation, used for a baseline comparison.
The difference evaluation function is analyzed to determine the performance improvements it can
attain over global evaluation functions.

Three experiments involving training heterogenous sensor networks were conducted, with
100, 500, and 1000 sensing devices. The performance of the networks as a function of evolutionary
time are shown in Figures 3-5.

As seen in Figures 3-5, the use of difference evaluation functions significantly reduces mea-
surement error in the sensor network. In the 100 agent network, accuracy was improved by an
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Figure 3: Heterogeneous sensor network performance with 100 agents. Use of the difference eval-
uation function results in 90.9% improvement in network accuracy.

Figure 4: Heterogeneous sensor network performance with 500 agents. Use of the difference eval-
uation function results in 98.8% improvement in network accuracy.

average of 90.0%. In the 500 agent network, accuracy was improved by an average of 98.8%. In
the 1000 agent network, accuracy was improved by an average of 99.9%. There are two interesting
conclusions that may be drawn from this information. First, the use of new objective functions
(difference evaluations) and evolutionary algorithms can significantly improve network accuracy
by up to two orders of magnitude. Second, as the network grows in size and complexity, the ben-
efits of using our algorithm increase; in other words, the more complex the network, the more
beneficial learning with difference evaluations becomes. This can be attributed to the fact that
agent-specific feedback becomes more valuable in larger systems, where any particular agent has
a relatively smaller effect on system performance as a whole.
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Figure 5: Heterogeneous sensor network performance with 1000 agents. Use of the difference
evaluation function results in 99.9% improvement in network accuracy.

5 Improving Sensor Network Efficiency with Reinforcement Learning
(Milestone 2)

The second milestone involves improving the effectiveness of a heterogeneous sensor network
using new objective functions and reinforcement learning, in varying network sizes. Although
the experiments in Section 4 demonstrate that evolutionary algorithms can improve system per-
formance, this approach is limited to offline optimization; in other words, optimizing network
performance with evolutionary algorithms requires optimizing the network prior to deployment
(or during network downtime). However, reinforcement learning methods can be used to opti-
mize a network which is currently in operation, as a small number of sensors can change their
policies online and the effects of these changes can be used to determine if the agents should alter
their individual policies.

We now analyze training a heterogeneous sensor network in the Rankine Cycle Defect Combi-
nation Problem using multiagent reinforcement learning. The following sections detail reinforce-
ment learning, multiagent reinforcement learning, the algorithm used for training the heteroge-
neous sensor network, and the empirical results for heterogeneous sensor networks ranging from
100 to 1000 devices.

5.1 Heterogeneous Sensor Network Reinforcement Learning Algorithm

We implement multiagent reinforcement learning in a heterogeneous sensor network in the Rank-
ine Cycle Defect Combination Problem. This domain is stateless, so the agents use an action-value
update (simplified form of Q-learning when no state transitions are present), defined as:

Q(at)← (1− α)Q(at) + αrt (20)

where rt is the reward received for taking action at, Q(at) is the recorded value of taking action
at, and α ∈ [0, 1] is the learning rate. Note that higher values of α lead agents to placing more
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emphasis on the most recent rewards. The multiagent learning algorithm is detailed in Algorithm
2. Agent actions are selected using ε-greedy selection; this means that agents select the best known
actions with probability 1− ε, and select a random action with probability ε.

5.2 Performance of Trained Network

We trained heterogenous sensor networks ranging from 100 to 1000 agents using the learning
algorithm detailed in Algorithm 2. For each experiment, action-value tables were initialized by
drawing values from a Gaussian distribution with zero mean and unit variance. εwas set to 0.1 for
action selection. The learning rate αwas set to 0.1. Both the system reward and difference rewards
were tested as reward signals. Each experiment was conducted for 1000 runs to ensure statistical
significance. The results for these experiments are shown in Figures 6-8. Error bars show error in
the mean (σ/N ), where N = 1000 is the number of statistical trials. Note that error bars are often
obscured by plot markers and cannot be seen.

Figure 6: Heterogeneous sensor network performance with 100 agents. Use of the difference eval-
uation function results in 87% improvement in network accuracy.

Figure 7: Heterogeneous sensor network performance with 500 agents. Use of the difference eval-
uation function results in 94% improvement in network accuracy.

As seen in Figures 6-8, use of difference rewards improve system performance by at least
87% over using the system reward to provide feedback. Measurement error is always below
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Figure 8: Heterogeneous sensor network performance with 1000 agents. Use of the difference
evaluation function results in 92% improvement in network accuracy.

10−4 kJ/kg, regardless of sensor network size. This error is extremely small, and allows for plant
controllers to have accurate state information in order to make informed control decisions.

5.3 Performance of Network in MTTEDCP

The first experiment in the MTTEDCP involves a sensor network of 500 devices is tested to mon-
itor 50 sources over 25 timesteps, where each sensor must choose 5 timesteps to be active for.
The sensors and sources are all assigned positions randomly in a 250 by 250 unit world, using a
uniform random distribution. Each sensor has a sensing radius of 5-15 units (randomly assigned
from uniform random distribution), and measurement error increases in magnitude by 0.1 for
every distance unit away from a source a sensor is, with the sign (positive or negative) of the
error being randomly assigned with equal probability. In this experiment, sensors have no base-
line measurement error; all measurement error comes from proximity to the sources. Although
unrealistic, these experiments give us an ideal performance baseline to test against for the other
experiments.
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Figure 9: Standard sensor network results. Sensor network average source error as a function
of learning episode (left), and source coverage percentage as a function of learning episode
(right). Difference rewards result in lower converged measurement error (0.102 vs. 0.301) and
higher source coverage (100% vs. 88%) compared to global rewards.

17



Figure 9 shows the results for this experiment. Difference rewards result in lower converged
sensor error than global rewards (0.102 vs. 0.301). More significantly, difference rewards result
in full source coverage over all time-steps, whereas global rewards only result in 88% coverage of
sources. This means that if using global rewards to develop control policies, there exist sources
which are not measured continuously, which is often unacceptable in a sensor network, partic-
ularly if source monitoring is a critical task. Difference rewards provide superior performance
because they allow learning agents to determine their specific impact on the system, and adjust
their actions accordingly to minimize measurement error and maximize source coverage.

6 Efficiency and Scalability of Sensor Networks (Milestone 3)

The third milestone of this work involves improving system efficiency and scalability for sensor
networks ranging from 100 to 1000 devices. Scalability of the sensor network is critical for two
key reasons. First, adding more sensors to the sensor network results in increased robustness,
as the failure of a single sensor will have a smaller impact on the system. Second, larger sets of
sensors create the possibility of increasing the accuracy of the sensor network, as a larger number
of sensor subsets allows for the existence of more accurate subsets. However, increasing the size
of the network also increases the coordination complexity; it is critical that algorithms used to
develop sensor-specific control policies are robust to system scaling.

The following sections detail new objective functions which improve the scalability and effi-
ciency of the distributed sensor network, as well as showing scalability results corresponding to
milestone 3.

6.1 Expected and Average Difference Evaluation Functions

In order to improve scalability of the distributed sensor network, we introduce the expected dif-
ference evaluation and the average difference evaluation, which are modifications of the standard
difference evaluation function. Recall that difference evaluations are defined as:

Di(z) = G(z)−G(z−i + ci) (21)

For the expected and average difference evaluations, the counterfactual term in the difference
evaluation function is computed as an expected or average value for the agent (rather than replac-
ing the agent with a single default agent). We define the expected difference evaluation as:

EDi(z) = G(z)−
∑
k∈K

PkG(z−i + ck) (22)

where:

• K is the set of all actions an agent may take

• Pk is the probability that the agent selects action k

• G(z−i + ck) is the system reward if agent i took action k
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The average difference evaluation function is equivalent to the expected difference evaluation
function, assuming a uniform probability distribution for action selection. The average difference
evaluation function is defined as:

ADi(z) = G(z)− 1

K

∑
k∈K

G(z−i + ck) (23)

As the number of agents in the system grows, the average and expected difference evaluations
can help improve system performance, because they provide more specific feedback about an
agent’s entire policy, rather than a single action selection. This feedback is incorporated into the
expectation of the agent across all actions, as this value gives the overall effectiveness of the agent’s
entire learned policy.

6.2 Results

We incorporate both the average and expected difference evaluation functions into the Rankine
Cycle DCP, varying the size of the system from 50 to 1000 agents. These experiments demonstrate
the effectiveness and scalability of the sensor network. Figures 10, 11, and 12 show the learned
performance for 50, 500, and 1000 agent sensor networks, respectively.
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Figure 10: Sensor network performance with 50 agents. The expected and average difference
evaluations provide an ever greater boost to system performance than the standard difference
evaluation.

As seen in Figures 10-12, difference evaluations result in over an order of magnitude more
accurate sensor measurements. Expected and average difference evaluations result in even more
accurate measurements. Figure 13 shows the converged network measurement error as a function
of the number of agents in the system. Regardless of network size, average and expected differ-
ence evaluations result in accuracy over an order of magnitude better than the global evaluation
function.
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Figure 11: Sensor network performance with 500 agents. The expected and average difference
evaluations provide an ever greater boost to system performance than the standard difference
evaluation.

6.3 MTTEDCP Results

The next experiment involves a sensor network with noise and failures while varying the num-
ber of sensors from 100 to 10,000 in the MTTEDCP, in order to test the extreme scalability of the
proposed algorithm. If there are N sensors, then there are N/10 sources and N/20 time-steps in
each simulation. Each system size is tested for 500 statistical trials, and average data is reported in
the results plots. The values reported are converged performance (after network experiences 10%
failure and retrains) for each system size tested.

Figure 14 shows the results for this experiment. As the system size increases, both difference
and global rewards result in lower average measurement error as well as improved coverage. This
is because in the MTTEDCP, a larger system results in a greater number of sensor subsets which
can be chosen from, allowing for superior solutions to be found. As the size of the system grows,
difference rewards have increasingly better performance compared to global rewards; this is due
to the increased coordination complexity in larger systems, which requires more advanced coor-
dination techniques. When increasing system size from 500 to 10,000 agents, global rewards result
in a 10.4% reduction in measurement error, while difference rewards result in a 55.8% reduction
in measurement error. This is due to the fact that difference rewards are sensitive to the actions of
an individual agent, and have a favorable signal to noise ratio.

Figures 10-14 demonstrate the effectiveness and scalability of the distributed sensor network
when using expected and average difference evaluation functions, satisfying Milestone 3.
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Figure 12: Sensor network performance with 1000 agents. The expected and average difference
evaluations provide an ever greater boost to system performance than the standard difference
evaluation.

2,0001,6001,2008004000

Figure 13: Sensor network performance: scaling between 50 and 2000 agents. Regardless of sen-
sor network size, the expected and average difference evaluations result in the highest network
performance.
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Figure 14: Sensor network with noise and failure results: scaling. As the system size increases,
both global and difference rewards result in improved measurement accuracy and source cover-
age. As the size of the system grows and coordination complexity increases, difference rewards
perform increasingly better compared to global rewards.
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7 Sensor Network Reconfigurability (Milestone 4)

The fourth and final milestone of this work involves improving system reconfigurability and scala-
bility in advanced power systems for networks with up to 10000 devices. In a sensor network with
many (over 1000) devices operating in a harsh environment, device failure is inevitable. Thus, it is
critical that sensor network control policies are develop which can quickly reconfigure to chang-
ing system conditions, to ensure that changes in system conditions do not lead to catastrophic
failures.

7.1 Rankine Cycle DCP Results

For the sensor failure experiments, agents are trained as described in Section 2. After 1000 episodes,
a portion of the sensors in the system fail (they are deactivated), and the remaining sensors must
alter their policies to account for the changing system conditions. Figure 15 shows results for the
case with 500 agents and 10% device failure.

2,0001,6001,2008004000

Figure 15: Sensor network performance: 500 agents, with 10% of the agents failing after 1000
episodes. Agents using average difference evaluations quickly recover from the failure, and main-
tain low error levels.

As seen in Figure 15, after 10% of the devices fail, agents using average difference evaluations
quickly recover and learn a policy which still provides extremely low error levels, on the order
of 10−4kJ/kg. Agents using expected difference evaluations recover slowly. This is because the
learned probability distributions used for calculating expected difference evaluations are inaccu-
rate after the failures in the system, and incorrectly bias agent rewards. Thus, although we con-
cluded that average and expected difference evaluations provide similar converged performance,
we find that average difference evaluations are more robust to device failure. Figure 16 shows
results for the case with 2000 agents, 25% sensor noise, and 25% device failure.

As seen in Figure 16, the algorithm scales well even to 2000 agents. In contrast to the results
in Figure 15, agents using expected difference evaluations do not see a large drop in performance
compared to average difference evaluations after device failure. This is because the addition of
sensor noise results in higher variance in the probability distribution used to compute the expected
difference evaluation, improving performance after device failure. After 25% of the devices in the
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Figure 16: Sensor network performance: 2000 agents, with 25% sensor noise and 25% of the agents
failing after 1000 episodes. Agents using average difference evaluations quickly recover from the
failure, and maintain low error levels.

system fail and the system reconfigures, agents using any variant of difference evaluations regain
almost all lost performance. However, agents using global evaluation functions have a permanent
loss in performance, that is not regained after retraining. This experiment demonstrates that (i)
difference evaluations can scale to extremely large network sizes, and (ii) difference evaluations
result in highly reconfigurable networks in the fact of changing system conditions.

7.2 MTTEDCP Results

The next experiment involves developing control policies for the MTTEDCP which are robust to
sensor failures. In this case, sensors have a constant measurement error, drawn from a normal dis-
tribution with zero mean and a standard deviation of 0.01 to 0.1 (randomly drawn from uniform
random distribution, to allow for different sensor capabilities/accuracy). Further, every time a
sensor takes a measurement, noise drawn from a normal distribution with zero mean and a stan-
dard deviation of 0.025 is added to the constant measurement error. The distance-based error from
the first experiment (measurement error magnitude increases by 0.1 for every distance unit away
from the source the sensor is) is retained in this experiment.

After 1000 learning episodes, 10% of the sensors in the network are chosen at random and
deactivated in order to simulate device failure. The remaining sensors are allowed to learn new
policies for 1000 more learning episodes, in order to determine how well the agents can learn
to recover from device failure. This experiment aims to determine how robust the multiagent
system is to device failure, as well as determining how reconfigurable the system is under rapidly
changing system conditions.

Figure 17 shows results for this experiment. As expected, difference rewards provide superior
converged system performance compared to global rewards. After 10% network failure, differ-
ence rewards recover 94% of lost performance, while global rewards recover only 78% of lost
performance. Further, after network reconfiguration, difference rewards still provide 100% source
coverage, while global rewards source coverage drops from 83% to 80%. This experiment demon-
strates that agents trained with difference rewards are more robust to agent failure, and are more
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Figure 17: Sensor network with noise and failures results. Sensor network average source error
as a function of learning episode (left), and source coverage percentage as a function of learning
episode (right). Difference rewards result in lower converged measurement error (0.232 vs.
0.487) and higher source coverage (100% vs. 80%) compared to global rewards. Difference
rewards also recover more lost performance after failures than global rewards (94% vs 78%).

reconfigurable in light of changing system conditions.

8 Conclusion

Reliably and accurately collecting system level information is critical for safe and reliable opera-
tion of advanced power systems. Recent technological advances allow for some level of decision
making directly at the sensor levels. However, individual sensor control policies must allow co-
ordinator behavior at the sensor level, so that the actions of all sensors lead to desirable system
performance.

In this project, we ensure coordination of sensors in a large heterogeneous sensor network by
addressing our two key objectives. First, we derive sensor performance metrics for heterogeneous
sensor networks, such that individual sensors optimizing their specific feedback signals act to
improve overall system performance. Second, using these performance metrics, we train hetero-
geneous sensor networks to be highly accurate, scalable, robust to sensor noise and failures, and
highly reconfigurable when system conditions change dramatically.

Our results demonstrate that by properly shaping agent objective functions, we can develop
large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first
milestone shows that properly choosing agent-specific objective functions increases system perfor-
mance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary
algorithms learn excellent sensor network coordination policies prior to network deployment, and
these policies can be refined online once the network is deployed. The third milestone shows the
resulting sensor networks networks are extremely robust to sensor noise, where networks with
up to 25% sensor noise are capable of providing measurements with errors on the order of 10−3.
The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure,
with 25% of the sensors in the system failing resulting in no significant performance losses after
system reconfiguration. Because of the massive scale of the coordination it allows, the impact of
this research goes beyond sensing in a power plants. Indeed it is also applicable to a host of energy
problems from power distribution, to managing smart grids, to designing micro-grids.
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