Report No. BNL-107824-2014

The U.S./IAEA Workshop on Software
Sustainability for Safeguards Instrumentation:

Report to the Office of Nonproliferation and International
Security (NA-241)

Susan E. Pepper’, Chris A. Pickett?, Al Queirolo®, Katherine M. Bachner,
and Louise G. Worrall®
! Brookhaven National Laboratory
? Oak Ridge National Laboratory

April 2015

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive,

paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government purposes.

Brooknrven Y OAKRIDGE NSV ICG

NATIONAL LABORATORY National Laboratory

National Nuclear Security Administration

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof or its contractors or subcontractors. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States Government or
any agency thereof.

Table of Contents

N 1 1 Yo R8Tt f oY o SRS 1
2. WOrKShop ObjeCtiVES .ioiiiiiii i 2
3. Software Sustainability Challenges and Solutions........ccccccciiiicicicccc 2
3.1 Sustainability Practicesccccciciiiic 2
3.2 IntellectUal PropertY oo 3
3.3 DEVEIOPMENT i 4
B4 LeBaCY COUB t ittt 7
R\ 1T a1 =Y o T-T o Lol TP PP PRSP PPPP PP PPPPPPP 8
3.6 Knowledge Management/Transfer/Retentionc.cccccvvveiiiiiiiiecinneeecineen e, 9
BT FUNAING ittt 10
4. Software Sustainability Workshop Recommendations ..., 10
Appendices:
Appendix 1: Standard Software ANATOMY ..., A-1
Appendix 2: List of Software Acronyms and Abbreviationscccccicirerererererererererrs. B-1
APPENAIX 3: CaSE STUIES .uuururirirerireruree..—.—..n- C-1
Case Study 1: IP and Access to SoUrce Code.....ccciviiiiiiiiiiiiiiiiiiiiiiiiiicieceeeeeeeee e C-1
Case Study 2: SUPPOIt Program ProCess....ccccciviviiiiiiiiiiiiiiiiiiicicieceeveveeeveee e e e eeeeee e C-5
Case Study 3: Joint Development Partnerships (CRISP) ...ccccivieiiiiiiiiiniinenneencenienenns c-9
Case Study 4: Vendor Supplied Codescccciviiiiiiiiiiiiiiiiiiiiiiccecicvevneeeeee e e C-13
Case Study 5: IMCA Software — Portable Nondestructive Analysis........ccccccceveeeee. C-16
Case Study 6: Development, Support, and Maintenance of INCC — Portable
NoNdestructive ANAIYSIS ...ciiiiiiiiiiiiiiiiriiircic ettt C-20
Case Study 7: Universal NDA Data Acquisition Platform and DCView Software —
Portable Nondestructive ANalysSiS....ciciciiiiiiiiiiiiiiiiiiiiiiiiicicncicicnenenenas C-24
Case Study 8: Instrumentation Software Development — Labview as a Platform for
Y T a) =T a1 T4 T i ATV 1 (= C-30
Case Study 9: Open SOUICE SOTTWAIE. ...t C-34
Appendix 4: Workshop WOrKiNg PapPer.. e e e ererererererererererererererererenemeremememerememn. D-1

Appendix 5: Report to the Workshop PartiCipants......cccccirererererererererireremrrerrrs. E-1

Introduction

US/IAEA Workshop on Software Sustainability for Safeguards Instrumentation

Report to the DOE NNSA Office of International Nuclear Safeguards (NA-241)

1. Introduction

The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next
Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA)
convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna,
Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing
environment to ensure existing instruments can continue to perform as designed, with
improved security. The approaches to the development and maintenance of instrument
software used in the past may not be the best model for the future and, therefore, the
organizers’ goal was to investigate these past approaches and to determine an optimal path
forward.

The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear
Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related
to the development and maintenance of software used in the implementation of international
nuclear safeguards. For example, this guidance can be used when determining whether to fund
the development, upgrade, or replacement of a particular software product. The report
identifies the challenges related to sustaining software, and makes recommendations for
addressing these challenges, supported by summaries and detailed notes from the workshop
discussions. In addition the authors provide a set of recommendations for institutionalizing
software sustainability practices in the safeguards community.

The term “software sustainability” was defined for this workshop as ensuring that safeguards
instrument software and algorithm functionality can be maintained efficiently throughout the
instrument lifecycle, without interruption and providing the ability to continue to improve that
software as needs arise.

A working paper was prepared by the workshop organizers as a read ahead document for the
workshop participants. The working paper is included here in Appendix 3. A report to the
workshop participants was prepared and distributed in August 2014. The report is included
here as Appendix 4 and is archived under accession number BNL-105966-2014.

1)1

Workshop Obijectives

2. Workshop Obijectives

The United States and the IAEA convened the workshop on Software Sustainability for
Safeguards Instrumentation to identify strategies for improved software development and
maintenance practices for IAEA safeguards instrumentation software. The organizers
assembled a cross-section of diverse safeguards instrumentation software stakeholders,
including users, developers, vendors, and sponsors, to identify strategies for ensuring that
critical safeguards instrumentation software products continue to be available for use by the
IAEA and the international safeguards community as required, that relevant software is
sustainable, and that software functionality does not degrade over time.

3. Software Sustainability Challenges and Solutions

During the workshop, the participants were presented with information from a variety of
experts and then divided into three facilitated breakout sessions. In the breakout sessions the
participants discussed nine case studies that were developed by the workshop organizers to
promote discussion of safeguards software challenges and to elicit suggestions for improving
practices for safeguards instrumentation software development and management. Each
breakout session had two facilitators and a note taker. The participants identified a number of
problems faced by the individuals, groups, and entities that develop, use, and maintain
safeguards instrumentation software. The major challenges and frequently proposed solutions
are discussed below. Combined results of the breakout sessions are documented in Appendix
3.

3.1 Sustainability Practices

Challenges: While sustainability culture was not specifically discussed, there were many
comments from the participants regarding the lack of standard institutional practices that are
necessary for software sustainability. Knowledge management, chain of custody, and software
stewardship practices are all examples of sustainability practices that are absent, and are all
areas in which the IAEA and other stakeholders can improve the status quo moving forward.
The lack of a software inventory, established and/or effectively distributed standards and
requirements, and lifecycle planning are all indications of weak institutional commitment?,
contributing to poor sustainability practices.

Solutions: All projects should be initiated and led by a user champion who is responsible for the
particular code. Code-focused user groups should be established to socialize the code and
share best practices. Knowledge management practices should be incorporated to ensure that

! “Institutional commitment” means that the IAEA is committed to a project as an organization and that the project
will survive a reorganization or the reassignment or departure of a staff member who is the project’s champion.

20

Sustainability Practices

no code is upgraded or significantly modified without widely disseminating the necessary
knowledge to other stakeholders. The IAEA, the vendor community, and Member State Support
Programs (MSSPs) should support each other by setting standards for software development,
sharing them with each other, and adhering to them. Professional societies can play a role in
forming groups of users or other stakeholders who are interested in sustaining software.
Software sustainability should become an institutional priority for the organizations that
depend on the software. The first step in understanding the requirements for sustaining
software for any program or community is identifying the existing software. The participants
urged the IAEA to conduct a software audit for this purpose.

3.2 Intellectual Property

Challenges: There is intellectual property (IP) associated with almost all safeguards software.
The algorithms that are used to perform data analysis via physics calculations and other
scientific functions are associated with achievements that are patented or otherwise protected
by the national laboratory or company where the method was first put into practice. In many
cases, the programming style has resulted in algorithms being embedded in software in such a
way that the software is deemed proprietary in its entirety. As a result, the software may have
licensing fees and other requirements that restrict its use and prevent the IAEA from obtaining
access to the source code.

Solutions: The workshop participants suggested modular software development that separates
the algorithms (the proprietary parts of the software) from the graphical user interface,
security, communications, and other nonproprietary components of the software. This would
make it easier for the IAEA to obtain access to elements of the software for simple bug fixes
and upgrades, and ultimately result in software that is easier to sustain.

A suggestion for working with proprietary code is the “black box,” or wrapper, approach.” A
wrapper enables a user to embed proprietary code and interact with it through an interface.
This would allow use of software with defined inputs and outputs and prevent competitors
from obtaining knowledge of the proprietary aspects of the code. These approaches require a
sophisticated set of tests to ensure the code operates as declared, but precedents exist or are
being evaluated by the arms control community (i.e., information barrier concepts). Further
investigation of this approach should be considered by the IAEA to fully understand its
potential.

The IAEA wants to have an in-house capability to make minor software modifications that do
not warrant the time and expense associated with a typical MSSP task.? As a cost and time

*This is the approach being used by Los Alamos National Laboratory in 2014-2015 in updating the INCC code.

® If the IAEA had significant in-house capability for modifying software, they would have to establish a version
control management system, assume responsibility for maintenance of their versions of the code, and assume the
risks associated with “forks.”

3|

Intellectual Property

savings measure, the MSSPs should investigate the IP contained in safeguards instrumentation
software to understand who owns it and consider ways (i.e., nondisclosure agreements) to
make source code available to the IAEA without compromising the IP. For new software, IP
issues should be addressed prior to the start of development and planning for them should
become a software sustainability practice.

There was significant discussion about the potential of open source software. Open source
software might give the IAEA access to source code, but it would introduce other challenges
such as version control, quality assurance, and security. A proof of principle open source
software development project should be conducted to demonstrate the effectiveness of this
approach for the IAEA. As part of the project, a cost benefit analysis should be conducted and
the cost of ownership of open source software should be assessed. A well-managed open
source software product could be used as a benchmark. Specific standards for open source
development would be required. The open source community could be engaged to promote
collaboration for the development and maintenance of safeguards instrumentation software.

The participants also discussed the advantages and disadvantages of using LabVIEW for
instrumentation software; while there was no strong endorsement of LabVIEW, some
participants recommended a study to assess its benefits and identify the projects for which
LabVIEW might be useful and where it may be inappropriate.

3.3 Development

Challenges: The workshop participants cited lack of standardization and poor requirements and
poor project management as concerns related to the development of safeguards
instrumentation software. Lack of IAEA standards for software development can result in the
developers not understanding or misinterpreting the IAEA’s requirements, the |IAEA receiving
software products that are written in different programing languages and that produce
incompatible data streams, and software that cannot be maintained effectively over the full
lifecycle of the software. Software that is written in obscure software languages can be difficult
to sustain. Poor project management can result in lack of lifecycle planning, miscommunication
between stakeholders, delayed delivery of or incomplete software products, cost overruns, and
products that do not meet the IAEA’s needs.

Lack of interaction and/or communication between developers and other stakeholders was also
identified as a weakness. The |AEA is often treated as a third party and their input may not be
valued. Moreover, stakeholders tend to work independently and not share their work.

One case study prompted the participants to explore the efficacy of software development by
the MSSPs (see Appendix 3, Case Study 2). When an MSSP contracts directly with the vendor, it
can be difficult for the IAEA to interact directly with the vendor and participate effectively as
the end user. The vendor may not understand the importance of working with the IAEA since its
legal obligation is to the MSSP. MSSPs sometimes consider their contribution complete upon

4|

Development

delivery of the software and do not make provisions for the software over its lifecycle. National
laboratories are research and development entities and are not for profit organizations; those
that develop software do not benefit substantially from software sales and are only incentivized
to provide technical support if a sponsor will fund their work.

Another case study highlighted the specific issues related to working with small software
developers (see Appendix 3, Case Study 7). The primary risk is the loss of the main or sole
software developer due to change in work status, illness or death. An independent developer is
also more likely to make nonstandard architectural choices. It would be difficult for another
developer to assume responsibility for or understand products resulting from such
development.

Solutions: The workshop participants recommended that the IAEA develop software standards
and advertise them widely. RAINSTORM, an IAEA standard for remote monitoring interfaces, is
a good model for standards but also demonstrates the difficulty that the IAEA has in
promulgating its needs and requirements. It was a startling discovery that the majority of U.S.
vendor participants interviewed prior to the workshop had not heard of or been made aware of
RAINSTORM. The IAEA should use formal requests to MSSPs, or SP-1s, as one means of
distributing its requirements; MSSPs should not begin a project if requirements are not
provided. Software features, such as user interfaces, can be standardized to avoid duplicative
programming effort and to reduce the need for training. Developers should be required to use
mainstream programming languages. |AEA standards and requirements should be updated
periodically to ensure they reflect the state of the art and nhew measurement approaches.

With respect to project management, there should be IAEA management approval of, an IAEA
champion for, and active IAEA involvement in all projects undertaken on its behalf, including
tasks performed by the MSSPs and projects in which the IAEA is a party to the contract. Direct
IAEA involvement is necessary to ensure that IAEA standards and requirements are addressed,
that the IAEA is involved in all related decision making, including change control, and that
changes in the |AEA’s planning are taken into consideration.

With regard to MSSP contributions, each MSSP should consider and develop a policy regarding
the development of instrumentation software. The policy should require establishing a lifecycle
plan that is reviewed and updated periodically, periodic reviews of the software to determine if
software updates are necessary, inclusion of the IAEA in the software reviews, and notifying
other MSSPs of the results of software reviews. The periodicity of reviews will vary between
codes based on the application and level of use of the code. MSSPs should agree with the IAEA
in advance of development who will be responsible for maintenance and upkeep of the code, as
well as who retains IP rights at the end of development. The policy should address the
participation of national laboratories in software development projects to help decision makers
understand the ramifications of subcontracting with a national laboratory versus a commercial

5|

Development

entity. 4

A project plan, schedule and budget should be prepared and all changes should be approved by
a change control board. There should be periodic project reviews during the software
development to review progress and to reevaluate the need for the software. Project reviews
are not intended to be excuses to change requirements or increase the scope of the
development, but they are important opportunities to review the status of the project.
Shortened development schedules will reduce the possibility of schedule slippages or changes
in the environment that would necessitate changing direction or terminating a project and for
communication between project participants. Final deliverables should undergo acceptance
testing by the IAEA. There should be an institutional commitment to software sustainability
that can survive the rotation of the sustainability champions. In addition, the establishment of
success metrics would be useful in managing future projects.

A phased approach’ to software development can help to mitigate some challenges such as
project delays or the delivery of a product that does not meet the IAEA’s needs. Good planning
is necessary to ensure that resources are available to complete the project as specified and that
the state of the art of software development and associated technical fields are mature enough
and understood sufficiently to reach the desired result. Limiting the scope of the software to
bare essentials can help to minimize the development schedule. Breaking the scope down into
manageable modules will assist in planning and enable developers to successfully complete
parts of the project that can then be implemented by users while later modules are under
development. Both approaches can increase the likelihood of success and minimize the
chances of cost overruns and schedule delays.

An important part of the overall project management is the development of a software lifecycle
plan, which is discussed below, under Maintenance. The choices made in the development
phase will have profound effects on the maintenance phase of software development.
Likewise, the effort invested in developing high quality software (such as planning and project
management) will reduce the effort required for maintenance. The lifecycle plan can help to
understand those tradeoffs at the beginning of a project.

The workshop participants identified opportunities to learn from internal and external
experience. The CRISP joint development and RAINSTORM initiatives should be documented

* For example, national laboratories may be more stable than companies, need consistent funding streams, and
can sustain software that is not commercially viable; companies own software and have an incentive to sustain it if
there is a market for it.

>A phased approach, such as the waterfall model, is a sequential process in which software is developed in phases
and one phase is completed before the next begins. The common phases are Conception, Analysis, Design,
Construction, Testing, Production/Implementation, and Maintenance. Agile programming is another model that
utilizes cross functional teams to work on the various phases concurrently and provide input to each other. Critics
of the waterfall model say that one phase cannot be fully complete before another begins because additional
information is learned throughout the process. For the purposes of this paper, the phased approach refers to the
Production/Implementation phase, which can be broken down further into manageable steps that result in
preliminary products prior to completion of the entire code.

611

Development

and monitored as they mature so that experience can be used in future projects. Participants
thought that the CRISP project is the result of a unique opportunity for two entities with similar
needs to collaborate and that it demonstrates the importance of communication with
stakeholders and related communities. The participants recommended that the IAEA develop
success metrics for CRISP, evaluate the project’s success, and document the lessons learned.
Similarly, the participants recommended documenting lessons learned from the
implementation of RAINSTORM and benchmarking the advantages and disadvantages of these
approaches.

The participants recognized that there are unigue challenges associated with small companies,
but they can be overcome with proper project management techniques, such as using software
escrows. A modular, phased approach with frequent reviews will ensure that the developer
understands the requirements and the IAEA has sufficient opportunities to provide input.
When working with small companies, it is important to practice due diligence with respect to
the contractor, for the IAEA to be involved at a technical level, and to have a contract that
outlines the responsibilities, scope, and requirements. Long term support for maintenance and
upgrades by a small company developer may be cost prohibitive, but must still be planned and
provided. The participants recommended that the IP be held by a stakeholder other than the
developer, such as in an escrow, to ensure that the code remains available to users. The IAEA
and MSSPs may consider establishing requirements for the selection of vendors for IAEA
instrumentation software projects to ensure appropriate quality standards are met and risks
are reduced and to avoid disreputable or incapable vendors.

Other scientific communities are likely to have experience dealing with software sustainability
issues from which the IAEA and the MSSPs can learn. The authors suggest that the 2016 MSSP
Coordinators’ meeting be used as an opportunity to discuss and address MSSPs’ roles in
software development.

3.4 Legacy Code

Legacy codes are codes that have been in service for an extended period of time and whose
users have difficulty finding experts who can provide support.

Challenges: Legacy codes can be difficult to maintain due to loss of institutional knowledge
that results from attrition of personnel and obsolescence of software interfaces. Output from
legacy codes may not be compatible with newer software interfaces. Outdated programming
languages, syntax, and algorithms are also major challenges that must be overcome.

Solutions: The formation of user groups, periodic workshops, and other efforts that support
socializing the codes will help to establish a larger community of knowledgeable individuals.
Incompatible output can and has in many cases been addressed by using file format converters,
but a more sustainable approach would be to establish and promulgate data file standards to
the developer community. There is no known guidance, other than this report, that informs the

7|

Legacy Code

international safeguards community on the decision making process related to sustaining,
retiring, or replacing legacy codes.

Periodically during the lifecycle of software, decisions must be made by individual stakeholders
or groups to update, overhaul, retire, and/or replace software. User groups can help to make
necessary updates or perform overhauls during the useful life of a software product. Updates
can be made to make the software compatible with newer hardware. The decision to retire
software can be made by individual users but will affect the entire community by reducing the
number of users and, by association, resources that can be applied to the legacy code.

3.5 Maintenance

For the purposes of this report, maintenance is defined to include all activity from
implementation through retirement of a software product, including upgrades.

Challenges: Safeguards instrumentation software has a long lifecycle that can span multiple
generations of hardware. The maintenance period can be 20+ years. Software that is not
properly maintained becomes a burden to its users due to incompatibility with newer
hardware, pervasive bugs, inefficient routines, and out-of-date algorithms. Software
developers and subject matter experts (SMEs) are often reassigned following implementation
and are not available for the maintenance phase. Safeguards instrumentation software usually
does not have a warranty that protects the IAEA by requiring the developer to fix coding errors
or provide technical support.

Solutions: As a preliminary step the IAEA should prepare an inventory of codes and associated
data such as its programming language, developer, primary purpose, safeguards purpose, years
in service, users and level of use, IP situation/considerations, and cognizant personnel/groups.
The inventory should be updated routinely. A system for prioritizing the codes, from the IAEA’s
perspective, would also be useful. This will enable the IAEA and MSSPs to make decisions
regarding the allocation of resources for maintenance, keeping software in use, determining
when to remove a code from service, and assessing whether a code should be rewritten or
replaced. The workshop participants stressed the importance of lifecycle planning for
successful maintenance of safeguards instrumentation software. A lifecycle plan should be
prepared for software prior to the beginning of development as a project management tool
that can be used to determine if adequate resources will be available for the lifecycle of the
software. As a minimum, the lifecycle plan should include an estimate of financial and human
resources required for development, a cost benefit analysis, an assessment of the project risks,
implementation and maintenance, user requirements, standards, configuration control,
stakeholder roles and responsibilities, intellectual property management, and code
obsolescence/retirement, as well as the long-term availability of hardware on which to run the
software. This type of practice is commonplace in commercial industry. Investigation into
industry practices for software lifecycle planning should therefore be conducted to provide
guidance to future project teams.

8|

Maintenance

A key concern regarding maintenance is the availability of software and SMEs to support the
software during its lifecycle. The workshop participants recommended the development of
standards for documentation and the formation of user groups as a means for ensuring the
availability of human resources during the software lifecycle. Good documentation will enable
a new programmer to understand the work of the original programmer and transition
responsibility for a code. User groups (including representation of all software stakeholders)
will increase the number of individuals and companies aware of safeguards software products,
help to keep software alive by promoting interaction between current and future users, and
provide a forum for discussion of software that has become difficult to maintain. Proper
software archiving, such as in an escrow, can protect the users if the developer is no longer
available.

MSSPs can assist the IAEA by considering cost effective options for the maintenance of
software. Two options suggested by the participants are factory support contracts with
vendors to provide quick response assistance and the placement of a cost free expert in the
Department of Safeguards to take responsibility for one or more codes. Both the IAEA and the
MSSPs should negotiate warranties in development contracts to cover the initial period of code
implementation.

3.6 Knowledge Management/Transfer/Retention (AKA the "bus factor")

Challenges: IAEA safeguards instrumentation software is specialized, has a small user and
developer community, and remains in service for many years. Often times, funding is not
continuous throughout the lifecycle of the software to support ongoing maintenance.
Availability of resources not only impacts sustainability from a maintenance standpoint, but
also impacts the continuity of knowledge. Effective knowledge management can be difficult
because funding gaps can cause a loss of personnel and institutional knowledge. If human
resources are not continuously funded, the experts will be reassigned and may not be available
when needed. If knowledge is not transferred to the next generation or the next responsible
individual, development and maintenance can be disrupted or become impossible. As a result,
it may be difficult to sustain the software product.

Solutions: As mentioned under Maintenance, Section 3.5, the participants endorsed the
creation of user groups to increase and support the pool of knowledgeable users and
developers, to promote the exchange of information between stakeholders, to share
information about codes, to increase knowledge of codes, and to encourage cross training,
introducing developers to software to which they haven’t yet contributed, and succession
planning. A user group can become an archive, using its members to store information as to
how the code was developed, maintained, improved, and used and how problems were solved
over the lifecycle of the software.

The software development can be kept active by ensuring continued funding. Otherwise a
dedicated community of users must take ownership of the code to sustain it. Continuing
funding over the long term is difficult and in many ways unrealistic due to competition for

9|

Knowledge Management/Transfer/Retention

funding. Extending the development time, using a phased approach at a lower annual funding
level, may be attractive due to a lower annual investment, but could discourage completion due
to sponsor fatigue. However, a phased approach has the benefit that some modules will be in
service while development continues and required updates to the early phase products can be
addressed in parallel with the development of the later phase modules, and lessons learned in
the early phases can be applied to later activities. Code that is well-structured and documented
can more easily be passed from one generation of users and developers to another. Software
and the embedded algorithms should be documented in a clear and consistent manner.
Documentation standards, such as those used by industry for software operation manuals, and
the use of technical editors were also recommended during the workshop.

3.7 Funding

Challenges: Maintenance of commercial codes is funded in part by vendors, but the extent of
their investment is constrained by the market. A vendor will not invest in software beyond its
ability to sell it. Commercial entities will not maintain IAEA software versions that do not have
commercial viability. In order to be commercially viable, the costs of sustaining a code must be
exceeded by sales. Because of the small community of safeguards practitioners and users of
associated software, safeguards software would have to be priced unreasonably high to cover
lifecycle costs. As a result, software is priced at a level that is acceptable to users and the IAEA
has to rely on internal or MSSP resources for maintenance, modifications and upgrades.
National laboratories participating in software development depend on government
sponsorship for their work.

Solutions: The workshop participants encouraged the development of sustainability plans for
critical safeguards software. Understanding that funding is limited, the code audit can inform
sponsors and vendors as to which codes have the highest priority and longevity. A software
center, such as the Radiation Safety Information Computational Center (RSICC),® can manage
licenses by leveraging contributions from multiple sponsors and by charging user fees, thus
maintaining a funding base for code maintenance.

4. Software Sustainability Workshop Recommendations

Based on the summary of challenges and potential solutions in Section 3, above, and the
compiled notes from the facilitated workshop discussions documented in Appendix 3, the
workshop organizers identified the following points as the primary recommendations of the
participants and important elements of a roadmap for software sustainability.

A. There was universal agreement from the attendees of the workshop that developing an
inventory of codes is an important first step that the IAEA should complete. This inventory
should include, but not be limited to, the following:

® For more information on RSICC, visit https://rsicc.ornl.gov.

Software Sustainability Workshop Recommendations

a. The name of the code, the version used by the |IAEA, what the code does, and an
estimate of how long it will be used

b. A list of all other versions of the code that may exist {including their specific

purpose)

The instrumentation that the code is used with

The time elapsed since the last update

System requirements for the code

Types of data generated by the code

Other software/systems that use data from the code

S @ S0 o o

Indicate if code is used to look at archived data (do older versions of the code need
to be preserved for this functionality?)

Sustainability needs (current and future updates) for the code

j. Relative priority level

k. Owner(s) of related intellectual property

B. There was consensus that the IAEA should develop lifecycle plans for all codes that must be
sustained. These lifecycle plans must be maintained and updated annually for the entire life
of each code. The plans should be detailed and inclusive of all desired and required
features such that the plans become the basis for contracting with vendors and/or MSSPs.
The IAEA should have a champion for each of these lifecycle plans. Some of the things that
should be included in each plan are: the types of hardware that should be supported, file
formats, security requirements, data structures, communication needs, data used by the
code that comes from other sources, etc. The lifecycle plan should also contain a timeline
that includes plans for full version re-writes and archiving old codes.

C. The workshop attendees agreed that sustaining pertinent codes requires investment.
Making periodic investments over the lifecycle of the software was considered the most
effective use of resources. Some options that could be considered for obtaining resource
commitments for software sustainability are:

a. Incorporate software lifecycle plans into MSSP requests (SP-1s). The requests
include a portion of the timeline detailed in the lifecycle plan. The SP-1 would
require regular communication between the IAEA and the developers (similar to the
practice that to date has worked very well with the OLEM project) and monitor
progress.

i. Program managers may want to seek ways to leverage code development
and refurbishment costs with other sponsors (domestic safeguards, other
non-proliferation, vendors, MSSPs, etc.)

b. IAEA establishes multi-year contracts with vendors and the IAEA assigns a SME to
monitor each contract.

11 |

Software Sustainability Workshop Recommendations

i. Contract should specify lifecycle element(s) to be worked and should realize
the risks associated with the future availability of the vendor.
ii. Contracts must be actively managed by the IAEA

D. Animportant theme from the workshop was the use of software that contains IP. The |AEA
and others are frustrated by the lack of access to this source code . The United States could
assist the IAEA and itself by investigating the extent to which IP hinders the IAEA in applying
and maintaining software, the added effort and cost caused by the private ownership of the
IP, and how the IP might be managed differently to the IAEA’s and international safeguards
community’s benefit.

E. User groups were identified as a solution to several of the challenges voiced by the
participants. The organizers believe that sufficient enthusiasm exists in the community for
user groups that no or minimal financial sponsorship would be necessary. The Institute for
Nuclear Materials Management (INMM) and European Safeguards Research and
Development Agency (ESARDA) have working groups that address technical safeguards
issues. Since these particular user groups are involved with measurements and
instrumentation, they represent an ideal forum for reporting bugs and developing wish lists
of desired features that could be incorporated into future code requirements. Either of
these organizations could form a working group on software sustainability or include the
topic of software sustainability in one of their existing working groups, such as the
Nondestructive Assay Working Group.

12 |

Appendix 1: Standard Software Anatomy

Appendix 1: Standard Software Anatomy

The following definitions of software components are taken from Wikipedia.

Algorithm

In mathematics and computer science, an algorithm is a step-by-step procedure for
calculations. Algorithms are used for calculation, data processing, and automated reasoning.
An algorithm is an effective method expressed as a finite list of well-defined instructions for
calculating a function. Starting from an initial state and initial input, the instruction describe a
computation that, when executed, proceeds through a finite number of well-defined successive
states, eventually producing output and terminating at a final ending state. Some algorithms,
known as randomized algorithms, incorporate random input.’

Data Acquisition

Data acquisition is the process of sampling signals that measure real world physical conditions
and converting the resulting samples into digital numeric values that can be manipulated by a
computer. Data acquisition systems (abbreviated with the acronym DAS or DAQ) typically
convert analog waveforms into digital values for processing. The components of data
acquisition systems include:

e Sensors that convert physical parameters to electrical signals

e Signal conditioning circuitry to convert sensor signals into a form that can be converted

to digital values

e Analog-to-digital converters, which convert conditioned sensor signals to digital values
Data acquisition applications are controlled by software programs developed using various
general purpose programming languages such as BASIC, C, Fortran, Java, Lisp, and Pascal.

There are also open-source software packages providing all the necessary tools to acquire data
from different hardware equipment. Those packages are usually custom fit, but more general
DAQ packages like the Maximum Integrated Data Acquisition System can be tailored.®

Data Analysis

Analysis of data is a process of inspecting, cleaning, transforming, and modeling data with the
goal of discovering useful information, suggesting conclusions, and supporting decision making.
Data analysis has multiple facets and approaches, encompassing diverse techniques under a
variety of names, in different business, science, and social science domains.

” http://en.wikipedia.org/wiki/Algorithm
® http://en.wikipedia.org/wiki/Data_acquisition

A-l |

Appendix 1: Standard Software Anatomy

Data mining is a particular data analysis technique that focuses on modeling and knowledge
discover for predictive rather than purely descriptive purposes. Business intelligence covers
data analysis that relies heavily on aggregation, focusing on business information. In statistical
applications, some experts divide data analysis into descriptive statistics, exploratory data
analysis (EDA), and confirmatory data analysis (CDA). EDA focuses on discovering new features
in the data and CDA on confirming or falsifying existing hypotheses. Predictive analytics focuses
on application of statistical or structural models for predictive forecasting or classification,

while text analytics applies statistical, linguistic, and structural techniques to extract and classify
information from textual sources, a species of unstructured data.’

Escrow, Source Code Escrow

Source code escrow is the deposit of software source code with a third party escrow agent.
Escrow is typically requested by a party licensing software (the licensee), to ensure
maintenance of the software. The software source code is released to the licensee if the
licensor files for bankruptcy or otherwise fails to maintain and update the software as promised
in the software license agreement.

As the continued operation and maintenance of custom software is critical to many
organizations, they usually desire to make sure that it continues to be sustained even if the
licensor becomes unable to sustain it, such as because of bankruptcy. Obtaining a copy of the
up-to-date source code allows a user to take responsibility for sustaining the software. The
licensor, however, will often be unwilling to provide access to the source code, as the source
code represents one of their most closely guarded trade secrets. Source code escrow can
resolve this conflict by allowing access to the source code only when the maintenance of the
software cannot otherwise be assured, as defined in contractually agree-upon conditions.™

Firmware

In electronic systems and computing, firmware is the combination of persistent memory and
program code and data stored in it. Typical examples of devices containing firmware are
embedded systems (such as traffic lights, consumer appliances, and digital watches),
computers, computer peripherals, mobile phones, and digital cameras. The firmware contained
in these devices provides the control program for the device. Firmware is held in non-volatile
memory devices such as ROM, EPROM, or flash memory. Changing the firmware of a device
may rarely or never be done during its economic lifetime; some firmware memory devices are
permanently installed and cannot be changed after manufacture. Common reasons for
updating firmware include fixing bugs or adding features to the device. This may require ROM
integrated circuits to be physically replaced, or flash memory to be reprogrammed through a
special procedure.'

® http://en.wikipedia.org/wiki/Data_analysis
1% http://en.wikipedia.org/wiki/Source_code_escrow
" http://en.wikipedia.org/wiki/Firmware

A-2 |

Appendix 1: Standard Software Anatomy

Fork

In software engineering, a project fork is a separate and distinct piece of software that is
created when developers use existing source code as a foundation upon which to begin
independent development. Forks are software branches and usually represent a split in the
developer and user communities. Free and open source software may be forked without
permission from the original developer without violating copyright law.*?

Graphical User Interface

A Graphical User Interface (GUI) is a type of interface that allows users to interact with
electronic devices through graphical icons and visual indicators such as secondary notation, as
opposed to text-based interfaces, typed command labels, or text navigation. GUIs were
introduced in reaction to the perceived steep learning curve of command-line interfaces, which
require commands to be typed on the keyboard. The actions in a GUI are usually performed
through direct manipulation of the graphical elements.™

Hardware

Computer hardware is the collection of physical elements that constitutes a computer system.
Computer hardware refers to the physical parts or components of a computer, such as the
monitor, mouse, keyboard, computer data storage, hard drive disk, system unit (graphic cards,
sound cards, memory, motherboard, and chips), all of which are physical objects that can be
touched. ™

Input/Output

In computing, input/output (I/0) is the communication between an information processing
system and the outside world. Inputs are the signals or data received by the system and
outputs are the signals or data sent from it. 1/O devices are used to communicate with a
computer. For instance, a keyboard or mouse is an input device for a computer, while monitors
and printers are output devices. Devices for communication between computers, such as
modems and network cards, typically perform both input and output operations.

Note that the desighation of a device as either input or output depends on perspective. Mice
and keyboards take physical movements that the user outputs and convert them into input
sighals that a computer can understand; the output from these devices is the computer’s input.
Similarly, printers and monitors take signals that a computer outputs as input, and they convert
these sighals into a representation that human users can understand. From the human
perspective, the process of reading or seeing these representations is receiving input; this type

'% http://en.wikipedia.org/wiki/Fork_(software_development)
' http://en.wikipedia.org/wiki/Graphical_user_interface
* http://en.wikipedia.org/wiki/Computer_hardware

A3 |

Appendix 1: Standard Software Anatomy

of interaction between computers and humans is studied in the field of human-computer
interaction.

In computer architecture, the combination of the CPU and main memory, to which the CPU can
read or write directly using individual instructions, is considered the brain of a computer. Any
transfer of information to or from the CPU/memory combo, for example by reading data from a
disk drive, is considered |/O. The CPU and its supporting circuitry may provide memory-
mapped I/0 that is used in low-level computer programming, such as in the implementation of
device drivers, or may provide access to |/O channels. An 1/0 algorithm is one designed to
exploit locality and perform efficiently when exchanging data with a secondary storage device,
such as a disk drive.”

Middleware

Middleware is computer software that provides services to software applications beyond those
available from the operating system. It can be described as “software glue.” Middleware
makes it easier for software developers to perform communication and input/output, so they
can focus on the specific purpose of their application. Middleware is the software that
connects software components or enterprise applications. Middleware is the software layer
that lies between the operating system and the applications on each side of a distributed
computer network. Typically, it supports complex, distributed business software applications.

Middleware is the infrastructure that facilitates creation of business applications, and provides
core services like concurrency, transactions, threading, messaging, and the SCA framework for
service-oriented architecture (SOA) applications. It also provides security and enables high
availability functionality to an enterprise.'®

Open Source Software

Open source software is computer software with its source code made available with a license
in which the copyright holder provides the rights to study, change, and distribute the software
to anyone and for any purpose. Open source software is often developed in a public,
collaborative manner. *’

Software

Computer software, also known as software, computer programs or code, is the non-tangible
component of computers. It represents the set of programs that govern the operation of a
computer system and provide desired functionality. Software contrasts with computer
hardware, which is the physical component of computers. Computer hardware and software

' http://en.wikipedia.org/wiki/Input/output
'® http://en.wikipedia.org/wiki/Middleware
7 http://en.wikipedia.org/wiki/Open-source_software

A-4 |

Appendix 1: Standard Software Anatomy

require each other and neither can be realistically used without the other. Software includes all
computer programs regardless of their architecture; for example, executable files, libraries and
scripts are computer software. Software consists of clearly defined instructions that upon
execution, instruct hardware to perform the tasks for which it is designed. Software is stored in
computer memory.

At the lowest level, executable code consists of machine language instructions specific to an
individual processor — typically a central processing unit. A machine language consists of
groups of binary values signifying processor instructions that change the state of the computer
from its preceding state. Instructions may change data in storage, which is not visible to the
user, or change data on the screen, which would be visible to the user. The processor carries
out the instructions in the order they are provided.

Software is usually written in high-level programming languages that are easier and more
efficient for humans to use than machine language. High-level languages are compiled or
interpreted into machine language object code. Software may also be written in a low-level
assembly language, essentially, a vaguely mnemonic representation language using a natural
language alphabet. Assembly language is converted into object code via an assembler.'®

Software (or Hardware) Specification

A software (or hardware) specification is an explicit set of requirements to be satisfied by the
software (or hardware). The specification differs from the user requirements document in that
it may dictate how the requirements are met (e.g., what software language will be used, what
data structure will be used, and what communications protocol will be used) and it should be
based on the user requirements document.

User Requirements Document

The user requirements document {(URD) is a document that specifies what the user expects the
software to be able to do (e.g., the software will be used to calculate uranium enrichment and
will be used remotely). The URD can be used as a guide to planning cost, timetables,
milestones, and testing. The explicit nature of the URD allows stakeholders to make sure that
all necessary features are included. Often a URD includes priority ranking for each
requirement.19

Wrapper

A wrapper function is a subroutine in a software library or a computer program whose main
purpose is to call a second subroutine or a system call with little or no additional computation.

'® http://en.wikipedia.org/wiki/Software
' http://en.wikipedia.org/wiki/User_requirements_document

A5 |

Appendix 1: Standard Software Anatomy

They can be used to make writing computer programs easier.’’ Wrapper libraries consist of a
thin layer of code that translates a library’s existing interface into a compatible interface to
refine a poorly designed or complicated interface, to allow incompatible code to work together,
and to enable cross language and/or runtime interoperability.”

*® http://en.wikipedia.org/wiki/Wrapper_function
*! http://en.wikipedia.org/wiki/Wrapper_library

A6 |

Appendix 2: List of Software Acronyms and Abbreviations

Appendix 2: List of Software Acronyms and Abbreviations

AA

ABACC

ACD
ACIV
ACVD
ADAM
AISOCS
ALIP
ALIS
AMSR
ANL
ANM
AQI
AWCC
BNL
BWR
CANDU
CCTV
CDM
CZT
CFE
CEMO

CHEM

Authorization Archive

Brazilian-Argentine Agency for Accounting and Control of Nuclear
Materials

Auxiliary Communication Device
Automatic Cobra Image Verifier
Advanced Cerenkov Viewing Device
Autonomous Data Acquisition Module
Advance In-Situ Object Counting System
All-in-One Portable Surveillance System
All-in-One Surveillance System
Advanced Multiplicity Shift Register
Argonne National Laboratory

Alternate Nuclear Materials

Areas of Interest

Active Well Coincidence Counter
Brookhaven National Laboratory

Boiling Water Reactor

Canadian Deuterium Uranium Reactor
Closed Circuit Television

Core Discharge Monitor

Cadmium Zinc Telluride Detector (CdZnTe)
Cost-Free Expert

Continuous Enrichment Monitor

Cascade Header Enrichment Monitor

B-1 |

Appendix 2: List of Software Acronyms and Abbreviations

CIOSP
CIR
Cobra
CoK
COLLECT
COM
C/S
CRISP
CSSP
CTBT
CTBTO
CvD

DA
DARC
DCC
DCM 14
DCVD
DDG-SG
DIS

DG
DIPS
DIQ

DIV

DLL
DLM

DMOS

Common Inspection Onsite Software Package
Computerized Inspection Report

Fiber Optic General Purpose Seal

Continuity of Knowledge

Multi Instrument Collect — data gathering computer
Component Object Modules
Containment/Surveillance

Central RADAR Inspection Support Package (now called iRAP)
Canadian Safeguards Support Program
Comprehensive Nuclear Test Ban Treaty
Comprehensive Test Ban Treaty Organization
Cerenkov Viewing Device

Destructive Analysis

Data Analysis and Review Component

Data Collection Computer

Digital Camera Module

Digital Cerenkov Viewing Device

Deputy Director General of Safeguards

Digital Imaging Surveillance

Director General

Data Input Processing System

Design Information Questionnaire

Design Information Verification

Dynamic Link Library

Dynamic Linear Modeling

Digital Multi-camera Optical Surveillance

B-2 |

Appendix 2: List of Software Acronyms and Abbreviations

DOE
DOS
DRS
DSC
DSOS
DU
DVD
DVR
DVT
EC
ECC
EMIS
EOSS
EPROM
EQUIS
ESP

Euratom

FC

FDET
FDMS
FORTRAN
FPGA
FRAM
FTIR

FY

U.S. Department of Energy

U.S. Department of State

Data Review Station

Data Storage Component

Digital Single Channel Optical Surveillance System
Depleted Uranium

Digital Video Display

Digital Video Recorder

Design Verification Test

European Community

Equipment Coordination Committee

Equipment Management Information System
Electro-Optical Sealing System
Electronically-programmable read only memory
EQuipment Utilization Information System
Electronic Sensor Platform

European Union’s nuclear regulatory and verification agency, akin to
the |IAEA for the European Union

Fission Chamber

Fork Detector (Irradiated fuel measuring system)

Fork detector measurement software

Computer programming language — obsolete

Field Programmable Gate Array

Fixed-Energy, Response Function Analysis with Multiple Efficiency
Fourier-Transform InfraRed

Fiscal Year

B-3 |

Appendix 2: List of Software Acronyms and Abbreviations

GARS General Advanced Review Software (for surveillance)
GBUV Gamma Burn Up Verifier

GDP Gaseous Diffusion Plant

GEMINI Surveillance System developed by Aquila

GENIE 2000 Spectroscopy software developed by Canberra

GIS Geographical Information System

GRAND Gamma ray and neutron detector

GUI Graphical user interface

HDIS HAWK-SG based Digital Imaging Surveillance System
HEU High Enriched Uranium

HKED Hybrid K-Edge Densitometry

HLNCC High-Level Neutron Coincidence Counter
HM-5 Hand Held Assay Probe

HMAC Hashed Message Authentication Code
HMMS Hulls Monitor and Measurement System
HPGe High purity germanium detector

HPSOP High Priority Safeguards and Other Projects
HRGS High Resolution Gamma Spectroscopy
HSGM High Sensitivity Gamma Monitor

[2SIP Standard — IAEA Integrated Safeguards Instrumentation Programme
I3S Integrated Inspector Information System
IAEA International Atomic Energy Agency

ICAS Introductory Course on Agency Safeguards
ICR Inventory Change Report

ICT Isotopic Correlation Techniques

ICVD Improved Cerenkov Viewing Device

B-4 |

Appendix 2: List of Software Acronyms and Abbreviations

IFSM
IFSS
IHVS
v
ILON
IMCA
IMCF
IMI
IMS
INCC
INFCE
INFCIRC
INMM
INVS
ION-1
IP
IPCAS
IPI
IPIV
IPSec
IRIS
iRAP
IRMP

IRP

IRS

International Spent Fuel Management Program
Inspector Field Support System

Integrated Head End Verification System
Interim Inventory Verification

Intelligent Local Operating Node

Inspector Multi channel Analyzer

Integrated Monitoring System for the Chernobyl Conditioning Facility

Instructor Manual for Instrumentation
Integrated Monitoring System

IAEA Neutron Coincidence Counting Software
International Nuclear Fuel Cycle

Information Circular IAEA Publication Nomenclature
Institute of Nuclear Material Management
Inventory Small Sample Counter

ION-1 Detector for Spent Fuel NDA
Intellectual Property; Internet Protocol
Improved Plutonium Canister Assay System
Lead Assessor

Initial Physical Inventory Verification

Internet Protocol Security

Integrated Reprocessing Information System
Integrated Review and Analysis Package
International Remote Monitoring Project

IAEA Safeguards Information System Reengineering Project (now
called MoSalc)

Integrated Review Software

B-5 |

Appendix 2: List of Software Acronyms and Abbreviations

ISEM
ISIS

ISO
ISOCS
ISO 9000

ISPO

ISPSG
ISVS
T

TV
JAEA
JNFL
JPO
JRC
JRMS
JSGO
JSR-12/14/15
KAMS
KEDG
KG

KM
KMP
LALIF
LAN

LANL

Integrated Safeguards Evaluation Methodology

IAEA Safeguards Information System (now being called MoSalc)
International Organization for Standardization

In Situ Object Counting Systems

Quality Management standards

International Safeguards Project Office, Brookhaven National
Laboratory

Information Security Policy Steering Group
Input Storage Verification System
Information Technology

International Target Values

Japan Atomic Energy Agency

Japan Nuclear Fuel Limited

Junior Professional Officer

European Community Joint Research Center
Joyo Remote Monitoring System

Japan Safeguards Office

Jomar family of Shift Registers

K Area Material Storage

K-Edge Densitometry

Knowledge Generation

Knowledge Management

Key Measurement Points

Laser Ablation-Induced Fluorescence
Local Area Network

Los Alamos National Laboratory

B-6 |

Appendix 2: List of Software Acronyms and Abbreviations

LEU
LIBS
LMMM
LNMC
LOF
LON
LWR
MARS
MCA
MCM
MCNP
MGA
MGAU
MIC
MiniGRAND
MINI-STAR
MIPS
MIVS
MMCT
MMS
MoSalc
MOU
MOX
MPC&A
MS

MS

Low Enriched Uranium

Laser-induced Breakdown Spectroscopy

List Mode Multiplicity Module

Large Neutron Multiplicity Counter

Locations Outside Facility

Local Operating Network

Light Water Reactor

Video review system designed/developed by Aquila
Multi Channel Analyzer

Management Coordination Meeting

Monte Carlo Neutron Program?

Multiple Group Analysis (Plutonium)

Multi-Group Analysis for Uranium

Multi-Instrument Collect Program

Miniature Gamma Ray and Neutron Detector

Mini Surveillance and Recording System

MIVS Image Processing System

Modular Integrated Video System (analog surveillance)
Mobil Monitoring Container Transport System (Chernobyl)
Material Monitoring System

Modernization of Safeguards Information Technology
Memorandum of Understanding

Mixed Oxide Fuel

Material protection control & Accounting

Microsoft

Mass Spectrometer (used for destructive analysis)

B-7 |

Appendix 2: List of Software Acronyms and Abbreviations

MSCS
MS-DOS
MSSP
MUF
MUF-D
MUX
Nal
NalGEM
NCC
NDA
NDAMS
NDAR
NGAM
NGSS
NI

NIM
NMAS
NNSA
NPP
NPT
NPS
NRC
NRTA
ODA
OIoS

OLEM

MOX Storage Containment and Surveillance System
Microsoft Disc Operating System

Member State Support Program

Material Unaccounted For

Material Unaccounted For — Operator-Inspector Difference
Multi-camera multiplexed closed circuit television

Nal Detector

Nal Gamma Enrichment Measurements

Neutron Coincidence Counter

Nondestructive Analysis or Assay; Nondisclosure Agreement
Nondestructive Assay Monitoring System

NDA Review

NDA electronics package developed by Bot Engineering
Next Generation Surveillance System

National Instruments

Nuclear Instrument Module

Nuclear Material Accounting System

U.S. National Nuclear Security Administration

Nuclear Power Plant

Nuclear Non-Proliferation Treaty

Neutron Pulse Simulator

U.S. Nuclear Regulatory Commission

Near Real Time Accountancy

Operator Data Authenticator

IAEA Office of Internal Oversight Services

On-Line Enrichment Monitor

B-8 |

Appendix 2: List of Software Acronyms and Abbreviations

OPD
PAC
PC
PCAS
PCSA
PDI
PIL
PIMS
PIT
PIV
PKI
PMA
PMCA
PNCL
POTAS
PPAS
PrNDA
PRST
PSMC
PTH
PTR-32
PWCC
PWR
QA
QC
QCVS

Operator Provided Declarations

IAEA Procurement Authorization Committee
Personal Computer

Plutonium Canister Assay System

Protection, Containment, Surveillance, and Authentication
Person Days of Inspection

Physical Inventory Listing

Plutonium Inventory Management System
Physical Inventory Taking

Physical Inventory Verification

Public Key Infrastructure

Portable Mini MCA

Portable Mini MCA

Passive Neutron Coincidence Collar

Program of Technical Assistance to IAEA Safeguards (USSP)
Program Performance Assessment System
Portable Nondestructive Analysis instrumentation
Portable Radiation Search Tool

Plutonium Scrap Multiplicity Counter

Protection Technology Hanford

Pulse Train Recorder

Passive Well Coincidence Counter

Pressurized Water Reactor

Quality Assurance

Quality Control

Quality Control Verification Software

B-9 |

Appendix 2: List of Software Acronyms and Abbreviations

RADAR

RadReview

RAINSTORM
RDBMS
RDC
RECOVER
REXX
RFID
RHMS
RMS
RMSA
RMT
RR
RRCA
RRF
RRP
RSICC
SAGSI
SAL
SANS
SAR
SARP
SBMF
SCuU
SDIS

Remote Acquisition of Data and Review (Euratom)

Radiation Review Software — for review of data collected using
unattended monitoring systems

SGTS standard software interface for remote monitoring.
Relational Database Management System

R&D Needs Committee

Remote Continuous Verification

Specialized command language developed by IBM
Radiofrequency Identification

Rokkasho Hulls Measurement System

Remote Monitoring System

Remotely Monitored Sealing Array

Remote Monitoring Team

Research Reactor; Radiation Review

Research Reactors and Critical Assemblies
Research Reactor Fork

Rokkasho Reprocessing Plant

Radiation Safety Information Computational Center
Standing Advisory Group on Safeguards Implementation
Safeguards Analytical Laboratory (IAEA)

Computer Security Training Institute

Synthetic Aperture Radar

Safeguards Accounting and Reports Program
Solution Blending Flow Monitoring System

System Control Units

Server Based Digital Image Surveillance

B-10 |

Appendix 2: List of Software Acronyms and Abbreviations

SElI CMM Software Engineering Institute's Capability Maturity Model
SEU Single Event Upset

SF Spent Fuel

SFAT Spent Fuel Attribute Tester

SG IAEA Department of Safeguards or safeguards

SGCP IAEA Division of Safeguards Concept and Planning
SGIM IAEA Division of Safeguards Information Management
SGIS IAEA Office of Safeguards Information Systems
SGOx IAEA Divisions of Operations (Inspectors)

SGOA Operations A (Japan, South Korea, Australia, , DPRK)
SGOB Operations B (North and South America, India, Iran)
SGOC Operations C (Europe, Russia)

SGTS IAEA Division of Scientific and Technical Services
SIAL Satellite Imagery Analysis Laboratory

SIAU Satellite Imagery Analysis Unit

SIDS Safeguards Instrumentation Documentation System
SIMS Secondary lon Mass Spectrometry

SIR Safeguards Implementation Report

SM Safeguards Manual

SME Subject Matter Expert

SMIS Safeguards Management Information System

SMMS Solution Monitoring Measurement System

SMS Safeguards Manual for Support

SNF Spent Nuclear Fuel

SNM Special Nuclear Material

SNRI Short Notice Random Inspections

B-11 |

Appendix 2: List of Software Acronyms and Abbreviations

SOH State of Health

SP-1 Support Program Form 1 — used as the official mechanisms for
requests to Member State Support Programs

SPCT Support Program Coordination Team

SPI Software Process Improvement

SPRICS Support Program Information Communication System

SQ Significant Quantity

SQL Structured Query Language

SQP Small Quantities Protocol

Sir Shift Register

SRD Shipper-Receiver Differences

SSTS Subgroup on Safeguards Technical Support (responsible for U.S.
Support Program activities)

SGTS IAEA Division of Safeguards Scientific and Technical Support

SSAC State Systems of Accounting and Control of Nuclear Material

SSEP Safeguards Software Engineering Process

STR Safeguards Technical Report

SURS Surveillance Review Subsystem

TANCS Tank level measurement software code

TARGA Plutonium Isotopic Analysis Software

TCVS Temporary Canister Verification System

TID Tamper Indicating Devices

TLDS Thermoluminescent Dosimeter

TRFS Two-Way Radio-Frequency Seal

TRO Toronto Regional Office

TSVS Temporary Storage Verification System

UFBR Universal FBR Assembly Counter

B-12 |

Appendix 2: List of Software Acronyms and Abbreviations

UDIS
UIMS
ULTG
UMS
UNAP
UNARM
UNCL
URM
URMS
U/S
USA
USB
USSB
USSP
usSvC
UwWCC
VACOSS

VCAS
VDIS
VHF
VHS
\
VIC
VIFM

VIFM Collect

Updated Digital Image Surveillance
Ultrasonically Interrogated Metal Seal
Ultrasonic Thickness Gauge
Unattended Monitoring System
Universal NDA Data Acquisition Platform
UNattended And Remote Monitoring
Uranium Neutron Coincidence Counter
Unattended Remote Monitoring
Unattended Remote Monitoring System
Ultrasonic - method of verification
United States of America

Universal Serial Bus

Ultrasonic Sealing Bolt

United States Support Program

United States Voluntary Contribution
Underwater Coincidence Counter

Variably Coding Seal System — electronic seal that was modified for
remote monitoring

Vitrification Canister Assay System
Digital Video Surveillance System
Very High Frequency

Video Home System

Virtual Instrument

Vienna International Center

VXI Irradiated Fuel Monitor

Data collection software for VIFM

B-13 |

Appendix 2: List of Software Acronyms and Abbreviations

VIFM Review
VLTM

VPN

VWCC

VXI

WCAS

WCSS

Data review software for VIFM

Volume Measurement System for Calibration Measurements
Virtual Private Network

Vitrified Waste Coincidence Counter

VMEDbus eXtensions for Instrumentation

Waste Crate Assay System (A or B)

Wall Containment System

B-14 |

Appendix 3: Case Studies

Appendix 3: Case Studies

Case Studies — Summaries of Discussions from Working Groups

Case Study 1: IP and Access to Source Code
Theme: Intellectual Property and Access to Source Codes

Problem Statement:

The IAEA has numerous software products that they have used for many years to collect and
analyze data that were obtained from safeguards inspections. Many of the analysis codes have
been in existence for more than 15 years and the code base is quite outdated. It is essential
that the Agency be able to maintain and sustain these codes, so they can continue to collect
and analyze new data and revisit data acquired from past inspections. These products are
generally proprietary, meaning the Agency has no right to see or modify the source code. The
code consists of hardware-specific calls to devices that are not always commercially available;
there is no easy path to making the codes work with newer technologies, such as operating
systems, hardware, etc., without access to the source code. Additionally, the process of
maintaining these codes with “middle-ware” solutions is not cost efficient or sustainable.
Middle-ware solutions include software and hardware options that are desighed to maintain
data formats and communications with older systems.

Summary of Breakout Group Discussions:

Most software currently in use by the IAEA was written by an outside entity that has control
over the source code. This prevents the IAEA from making any changes in house. In addition,
the codes and data file formats are not standardized. Much of the software and
instrumentation used by the IAEA was originally developed for domestic and commercial
applications in a timeframe when resources were available (via leveraging from domestic
programs and other resources) to support IAEA needs. The participants endorsed lifecycle
planning, developing an inventory of software, software escrow, regular maintenance, and the
adoption of standard requirements. To provide the IAEA some access to the source code, the
participants suggested separating the proprietary and nonproprietary parts of the code; there
should be no concern about giving the IAEA access to the nonproprietary parts and the
proprietary parts can be maintained by the IP holder.

Problems

e Qutput from older codes may not be compatible with the IAEA interface
o Noclearly defined interfaces

o No modification of legacy interfaces

C1 |

Appendix 3: Case Studies

e |tis inefficient to have numerous software packages with different file formats
e The IAEA safeguards instrumentation market is small

o Itistoo small to make demands on the industry

®* Must be a business case for commercial providers to make and support
software changes

o Compatibility issues

e |tis not always possible for the IAEA to make upgrades
Lack of access to source code

o Programmers are no longer available
o Some changes can only be implemented as patches and/or workarounds.
o Commercial vendor not able to change software — code copyrighted by a

national laboratory
e Open source and patched approaches typically result in too many competing versions of
the same code (‘forking’)

Proposed Solutions:

e Use a file format converter to provide standard data streams
e Enable IAEA to develop software internally
o This has financial and human resources implications and may require non-
disclosure agreements with instrument suppliers
e Develop and maintain an inventory and status of all software; the listing should include:
vendor, current hardware supported, users, pertinent algorithms utilized, and any
variations or modified versions of the code.
e Use standard data formats for common data (e.g., dates)
e Standardize the input and output formats such that they are platform independent
e Conduct regular preventative maintenance of software
e Form user groups and/or topical sessions at conferences that discuss current and
emerging needs for pertinent codes. This helps support sustainability planning.
e Use and develop platform independent software (expensive)
e Place software in escrow for archival purposes
e Lifecycle Planning
o Plan for obsolescence of software
o Maintenance may be required for 20+ years
o Keep development active; keep the code alive
* Plan for funding needed to maintain software

C-2 |

Appendix 3: Case Studies

e leverage support from other stakeholders/users of codes (each
pays a share)
= Develop an appropriate set of test cases to validate the code when it is
modified
* Encourage continued testing against the environment and operating
system
= Add new features as needed
* Planand analyze new work
®* Maintain understanding of code
o Minimize dependencies on developers and software
* Modular coding methods
* |mprove documentation and distribute to larger community
o Algorithms have a longer lifetime than software and can be “reused”
e Establish software requirements
o Minimum requirements for algorithms and interfaces should be documented
o Requirements should be distributed to Member State Support Programs and
other stakeholders
= SP-1s should include requirements
Requirements can be advertised on the Internet
Must keep up with hardware and the state-of-the-art
Set standards, such as RAINSTORM, U.S. Department of Homeland Security
systems
o Remain flexible
o Establish acceptance criteria for externally developed software
e Analysis codes
O Separate proprietary and non-proprietary parts and make the non-proprietary
components available for vendors to use
o Put proprietary components in a “black box” and enable use with defined
inputs/outputs. If the system continues to support those 1/0, the software will
function correctly through all upgrades.
e Middle-ware
o Minimize the need for middle-ware (on a case-by-case basis). This can be
accomplished by the |IAEA establishing and promulgating standards for data and
data file formats.
e Case Studies
o Study examples of successful instrumentation software for lessons learned and
best practices
= MCNP

C3 |

Appendix 3: Case Studies

= RAINSTORM
= CRISP

c4 |

Appendix 3: Case Studies

Case Study 2: Support Program Process
Theme: Building IAEA Self-Sufficiency & Sharing Source Code

Problem Statement:

Over the years the |IAEA has utilized many software packages supplied to them from Member
State Support Programs (MSSPs). These packages have proven to be useful and highly
beneficial to the Agency, and it has become dependent upon them to accomplish its missions.
However, the IAEA does not own the intellectual property (IP) or have access to the source
code for these programs. This makes it difficult to implement needed updates or timely
modifications (to support new commercially available operating systems, hardware, data
formats, etc.). The Agency is often dependent on the MSSPs to make needed changes to
software. The MSSP process can be slow and, therefore, inefficient for making minor software
changes.

For this case study we will analyze the U.S. Support Program (USSP) process for modifying and
updating software owned by non-lAEA entities (such as national laboratories or companies).

The USSP process is described below:

1. The IAEA generates a request describing the needed work

2. The request is transmitted to the USSP, which forwards it to a national laboratory or
contractor for bid

3. The bid is provided to and reviewed by the USSP and |AEA representatives, and if
accepted, is sent to the U.S. government for approval of funding

4. The U.S. government approves it or requests modification/discussion

5. If the funding is approved, a contract or other agreement is placed with the source code
owner

6. The work starts

7. The code modification is completed and sent to the Agency for testing

8. If the modified code does not work properly, the source code owner and/or team may
be sent to Vienna to work with the Agency to troubleshoot the problem

9. The code is eventually fixed and implemented

Additional time is required for IAEA in-house preparation, which includes review and approval
of the request before it is submitted to the USSP for consideration. In the best case scenario
for this process, funding may reach the source code owner within six months. Sometimes the
process takes much longer. The availability of money and amount of time associated with this
process significantly impacts the ability of the IAEA’s Division of Safeguards Technical and
Scientific Services to respond to its internal and external customers.

C-5 |

Appendix 3: Case Studies

Summary of Breakout Group Discussions:

The MSSPs provide valuable support to the IAEA, but the process is sometimes too slow and
bureaucratic to be fully effective. The IAEA can be left out of the communication between the
MSSP and the contractor. The participants suggested establishing a separate process for small
software projects, such as bug fixes. All software projects should include a lifecycle plan but
MSSP projects do not usually include them. The participants suggested umbrella tasks and
other options for expediting support to the IAEA. They also endorsed the formation of a
working group on software sustainability. Effective and efficient software support would be a
good topic for discussion at the 2016 MSSP Coordinators’ Meeting or the 2015 INMM Annual
Meeting in connection with establishing a working group.

Advantages of working with MSSPs:

e Provides access to national laboratory talent, expertise, and capabilities

Problems associated with the MSSP model:

e The MSSP process
o Slower than working directly with a vendor
® |nserts an unnecessary “middle man”
= Sometimes requires iteration
Complicated
Costly
Bureaucratic

o O O O

Barrier to small tasks - may be too formalized for minor software changes that
can be done quickly
o Inadequate communication
= |AEA can be left out of the communication between MSSP and contractor
= |AEA does not always clearly communicate requirements
o Contracts are not set up to address the life cycle of the software
®* Maintenance is not built into the process
= Continuity of knowledge for lifecycle support is not addressed
®* Do not address contributions from third-party
e MSSPs are more maintenance-oriented than development-oriented
e Funding budgeted for maintenance, testing, and documentation at the beginning of a
project can get redirected for other activities when cost overruns are encountered
during development

C6 |

Appendix 3: Case Studies

e Human resource may only be one deep and the right people may not be available when
needed.
e Requirements
o Requirements may change after the process has started
o |AEA does not always clearly communicate requirements, especially in SP-1s

Proposed Solutions:

e Distinguish between small and big fixes
o Establish appropriate mechanisms to address each
e Lifecycle Planning
o Development partners should understand that the maintenance can cost more
than development
o Establish a plan for lifecycle support
= QOption: MSSPs offering to assist the |AEA accept all lifecycle costs
= QOption: IAEA supports maintenance through regular budget
= QOption: MSSP sponsors a CFE to support maintenance {(could be an
onhgoing, long-term requirement)
= QOption: Look for ways to leverage support from other
programs/partnerships that use these codes and could benefit from
similar changes
o Include lifecycle planin the SP-1 request.
= Example: Use of short-term consultancy on the order of once a quarter
for 2 or 3 weeks
= SP-1 request should support periodic direct communication with end
users
= Longer SP -1 contracts should be considered to better provide timely life-
cycle support
= Sustainable programming methodologies should be required for the
development of new codes
o Include CFE/consultant support as part of the lifecycle plan in the beginning of a
project.
e Task models:
o Umbrella tasks can be used to expedite the request process
o Establish a task with pre-approved funding to respond to short notice, small
effort software maintenance needs

C-7 |

Appendix 3: Case Studies

Use RAINSTORM as an example of a software standard. (IAEA should establish software
standards and requirements for all requested instrumentation).

Maintenance Options

IAEA contracts directly with the vendor

An MSSP contracts with the vendor on behalf of the IAEA

o
o Have an umbrella task for software maintenance to expedite the request process
o Industry sets aside funding (who funds is not important) and agrees in advance

as to how the funds will be used
Identify contractors and place contracts for software maintenance in advance
Following delivery, IAEA assumes responsibility for all software maintenance and
sustainability (would require access to source code)
Form a standing working group/team to focus on particular sets of codes (i.e., codes
used for NDA, codes used for surveillance, etc. (best practice)
o Would help to resolve the issue of having qualified human resources by
encouraging cross training and succession planning.
o May include multiple support programs.
Increase awareness of the importance of software maintenance. A few separate models
for setting resources aside for maintaining SW. Use of several contractors to be
responsible for maintaining specific software. This is discretionary budget for multiple
SW packages and contingency. One model is to have a specific contract with the vendor
to maintain their SW.
Improve project management within the MSSPs
The IAEA and MSSPs should discuss the request process to see if there are changes that
can be made to increase efficiency (agenda item for the 2015 USSP Biennial Review
Meeting or the 2016 MSSP Coordinators’ Meeting or interim discussion at 2015 INMM
Annual Meeting)

C-8 |

Appendix 3: Case Studies

Case Study 3: Joint Development Partnerships (CRISP)

Theme: Building IAEA Self-Sufficiency & Sharing Source Code

Situation Analysis:

This case study explores the Central RADAR?? Inspection Support Package (CRISP) as a joint-
development partnership between the IAEA and Euratom.

The IAEA currently uses a wide variety of containment, surveillance and nondestructive assay
(NDA) equipment to monitor facilities under safeguards. These instruments were developed
over a long period of time, and each was developed largely independently of the others. The
data streams from each instrument are very similar in content, but they are stored in different
file formats, imported and displayed by various software tools, and analyzed using methods
developed by independent developers. The development, training, installation, and
maintenance costs associated with such a broad range of independent software products are
high and continue to grow. Developing and maintaining training for the inspectors is
complicated and costly. Inspecting data from a given facility may require training and
utilization of three or more software products. Given these considerations, the |AEA initiated a
project with the following goals:

e Provide a single, common interface to inspectors for data review and analysis

o Give the IAEA ownership of and access to the software source code

e Create a simple and generic interface so that future development can be specified more

clearly and easily added to the software as semi-independent software modules

Many technical alternatives were considered in coming to a conclusion about the path forward
for such review software. Existing products were analysed with respect to proprietary
disposition, maintainability, and inclusion of needed features and overall cost of development.
The conclusion of this technical comparison was that the Euratom CRISP product offered the
most viable path forward in developing an all-in-one software solution. CRISP was, therefore,
selected for a joint-development effort between the IAEA and Euratom for the following
reasons:
e Euratom began CRISP independently and has invested significant time and resources
developing the product that the IAEA can now leverage
e Euratom is amenable to sharing this code and entering into an agreement by which the
IAEA and Euratom can develop common functionality, thus reducing risk to either party
to undertake future development tasks.
e Significant cost savings can be realized through this option because the product is non-
commercial
e Intellectual property rights would be granted to the IAEA, allowing small changes in the
code to be done quickly and at little to no cost

*> Remote Acquisition of Data & Review

C9 |

Appendix 3: Case Studies

e The current product already contains much of the required functionality required by
IAEA inspectors

e Newly developed equipment that is used by both agencies will need analysis software,
and by entering in a partnership to develop this code, both agencies can save time and
money during software development and then have a common product used by
inspectorates of both agencies.

Summary of Breakout Group Discussions:

The |IAEA’s joint development of CRISP with Euratom was seen to be a good initiative. The two
organizations have a common goal and can leverage each other’s contributions to obtain the
product. The IAEA will have access to the CRISP source code and, therefore, will be able to
maintain it in house. Some participants questioned what would happen if one party abandons
the projects and whether it is reasonable that this model could be repeated in other projects.
The participants suggested that the partners use a change control board to assess all changes to
the project and its requirements and noted some best practices for successful partnerships.

Benefits of Joint Development Partnerships:

e |AEA benefits from basis developed by Euratom
e Cooperation towards a common goal though the organizations are different and have
different goals
o Mutual benefits
o Introduces new ideas
o Leverages resources
o Versatility
o Increased number of programmers familiar with the code
e Design
o Flexible with interfaces; modular approach; expandable
o Extendable functionality (& works on different platforms)
o Process based software
o Transparency with interfaces; communication is defined
e Can be considered a “win-win” for partners
e Source code is shared
e Allows for quicker bug fixes than would be supported through MSSPs or IAEA-only
development because there are two organizations using the product, more individuals
interested in the fix, and more resources as a team that can be directed to fix the bugs

C-10 |

Appendix 3: Case Studies

Problems associate with Joint Development Partnerships:

If one party walks away, the remaining party would be responsible for the entire project
o How do you manage value transfer? (who gets what and what does it cost?)
o Both are owners of “enhanced version”
o Conversely, there is pressure for the IAEA not to leave the project even if it is not
fully meeting the their needs
Partnership
o Bureaucracy increases
o Development is slower due to negotiated process
Legal considerations, e.g., it may be unclear who, IAEA or Euratom owns the code, and
this can lead to future disputes over ownership
Transitions/implementation with commercial software
Limited modularity that results in elements of the code not being compatible with other
codes or applicable for other uses in the future
Regression analysis cannot extend to modules provided by other vendors, e.g., third
party algorithms
Security concerns, e.g., who, Euratom or IAEA, has final control over code security
Because the IAEA joined an ongoing Euratom project, they did not investigate the
commercial market and take advantage of potential economies that could have been
realized
Not a viable model for commercial software or for multiple MSSPs
Not a suitable process for small tasks
Partners may not be available for future support
This case was the only example to date of a successful partnership
Slower development timeline than a commercial development
So far, this is a data set of one; the community should see if this model can be repeated.
The community needs more experience with partnerships.

This is not a viable option for commercial software.

Recommendations:

Use a change control board to evaluate all changes to the project plan (best practice)
o Avoids conflicting goals
o Addresses cost impact
o Allows customization through modularization, e.g., encryption was a higher
priority for the |AEA, so it was added as a module.

Partnership

c-11 |

Appendix 3: Case Studies

@]

@]

@]

Keep frameworks high enough level to not conflict with different goals of
organizations

Partners should apply configuration management in the same way

Partners participate in the evaluation of vendor bids for contractor selection
Resources and risk are shared

e Should continue to consider partnership relationships for mutually beneficial activities

e |dentify success criteria, evaluate success, and document lessons learned.

e Conduct a lessons learned review of the CRISP project

c-12 |

Appendix 3: Case Studies

Case Study 4: Vendor Supplied Codes

Theme: Best Practices for Sustaining Software & Ways to Implement Sustainable Practices for
New Software Developments

Problem Statement:

Over the years the |IAEA has obtained and become dependent on software developed and
supplied by vendors. The IAEA has had many positive experiences with software development
vendors. In general, vendors are very responsive to the problems and needs of the |AEA. In
these cases, vendors provide the requested software changes that address the needs of the
Agency. However, in other cases, the Agency has experienced problems with these commercial
developments that are similar to those experienced with national laboratories (see Case Study
2 on the support program process). Problems can arise with vendor-supplied software when
the vendor maintains the intellectual property and working knowledge for the firmware and/or
software and the |IAEA requires modifications. Sometimes the IAEA cannot get the service it
needs because the vendor (often a small company) is unavailable or concentrating its effort on
new developments/products or software solutions for larger customers than the IAEA. In other
cases, the IAEA’s version of the code that the vendor supplied and the IAEA previously certified
is no longer available due to a discontinuation or a new development implemented for other
customers.

Summary of Breakout Group Discussions:

One breakout group addressed this case study. The group discussed the need for and
practicality of warranties and maintenance contracts. During the lifetime of software, the
embedded algorithms may need to be updated. Sustainability required good software
practices, including documentation, and a plan for maintenance. Software developers in both
the public and private sectors get reassigned when development ends; maintenance and
periodic modifications are not sufficient for them to remain dedicated to a software project.
Placing software in escrow will protect the client from default of the contractor and can ensure
access to the code if the company goes out of business. The MSSPs’ role and responsibilities in
the software lifecycle should be better defined.

Advantages of vendor supplied codes:

e The IAEA benefits from vendor testing

e Large companies can host many skilled developers and attract the best developers

Problems associated with vendor supplied codes:

¢ Need for a warranty/maintenance contract needs negotiation
o National Laboratories do not provide warranties

C-13 |

Appendix 3: Case Studies

Vendors do provide warranties

Unknowns are not covered by warranties

Warranties have expiration dates but support requirements do not
Maintenance contracts can be expensive

Requirements creep can significantly delay the completion of a project

o O O O O O

Vendor support/development is based on business cases which may differ from
the needs of some users
e Control of Software
o Data
* The IAEA would have to accept the data structure and the size of data
sets as designed by the vendor and may find that it is not convenient to
their business.
= The size of data streams may result in problems (e.g., incompatibility,
warehousing issues) that the IAEA cannot correct internally
o Algorithms may require modification due to advances in science and engineering
* The IAEA may be dependent on the vendor to change to the code
o The IAEA version of code may no longer be available from or maintained by the
vendor
e Poorly documented software cannot be maintained or modified effectively
e |AEA needs to be more proactive with upgrades
o There should be a long term plan for software maintenance
e Human Resource (HR) issues with vendors

When Bus Factor = 1, maintenance can be delayed or impossible

o Staff members leave to do other work
o Staff members can be assighed to other work
o Many of the companies supporting the agency are relatively small and may

merge or go out of business resulting in lost capabilities or staff.
o Member State Support Programs
* When project ends, experts are reassigned to other projects
®* There is no product evolution without an active task

Proposed Solutions:

e Development contracts should include a warranty or provide for a follow on factory
support contract to assist the IAEA when problems arise
o Vendors may need incentives to agree to such provisions
e Place source code in escrow
o Protects against default

C-14 |

Appendix 3: Case Studies

o Could ensure access to code if company ceases to exist or cannot provide
support
e |f the desired code cannot be shared, consider an alternative
o Cascade Header Enrichment Monitor — success story”>
e |AEA and MSSPs should better define the support program role in terms of sustaining
technologies

= According to Peter Santi, Los Alamos National Laboratory, the Cascade Header Enrichment Monitor software
source code was given to the IAEA in 2008 or 2009. The IAEA has successfully managed the software and modified
it for use in safeguards implementation in Japan.

C-15 |

Appendix 3: Case Studies

Case Study 5: IMCA Software — Portable Nondestructive Analysis
Theme: Legacy Codes

Problem Statement:

The IAEA also has a need to sustain so-called “legacy codes.” This term refers to older codes
that may have been written in the best choice of programming language or the most up to date
coding structure at the time of development, but are not necessarily consistent with modern
software approaches and modern methods. An example of a legacy code is presented in this
case study.

The InSpector Multiple Channel Analyzer-2000 (IMCA) software represents a specialized code
for inspectors to acquire, analyze, and report measurement results obtained with the help of
the portable IMCA-2000. The software was developed by Canberra Industries (circa 1995-1998).
In the course of its extensive use by the IAEA, it has undergone numerous upgrades, which
resulted in the current version, V.2.0C+. For several reasons, the software was maintained and
upgraded cooperatively by Canberra with contributions from Agency staff. Nevertheless, over
the years, the ability to use a substantial part of its original functionality has eroded due to, in
particular, the emergence of more modern applications not available in the IMCA tool box (e.g.,
evaluation of low resolution gamma spectrometry spectra with NalGEM), and the deployment
of LaBr detectors and associated data reduction tools developed internally {LABRod, LabPel
applications). IMCA has become increasingly difficult to maintain. At present, the IMCA
software needs major redevelopment, mainly for the following reasons:

1. The software was programmed using the specialized command language, REXX, which was
developed by IBM. The REXX execution engine is not fully compatible with modern
operating systems, and therefore, it requires major modernization. In this situation, a
complete redevelopment of the IMCA software based on a modern programming language,
preferably with a built-in multi-platform compatibility, may be required.

2. Some of the methods originally implemented in the IMCA, such as the two-region method
for the U-235 enrichment determination, have become obsolete and are no longer used by
the Agency. These were replaced by more accurate methodologies, such as NalGEM,
LabRod, LabPel, LabGEM, developed both internally and externally, and implemented as
stand-alone software programs. Lack of built-in capability in the IMCA for easy
incorporation of new analysis procedures and algorithms does not allow implementation of
these programs with IMCA. Thus, a re-design of the IMCA software is required to make it
more open for the implementation of new measurement approaches and customizable and
adaptable to specific measurement needs.

C-16 |

Appendix 3: Case Studies

Summary of Breakout Group Discussions:

IMCA was presented to the breakout groups as an example of a legacy code that is written in a
nonstandard programming language and whose application has diminished over the years. IAEA
knowledge of the code has deteriorated. The participants suggested rewriting the code since
the maintenance of the existing IMCA is becoming increasingly costly and difficult. One option
is to remove the engine and put it in a wrapper; in this way the user interface can be
modernized, additional functionality can be build upon the existing code, and the code can be
integrated with other, incompatible codes. The IAEA must contribute to MSSP software
development by clearly defining their organizational needs and priorities, providing
requirements, setting standards, and actively participating. Lifecycle planning will result in
proactive decision making. The participants endorsed the use of cost benefit analysis as a
means to determine which codes should be maintained, updated, replaced, or abandoned.

Advantages of IMCA software:

e |IMCA is freely available and compatible with many other products
e The REXX code has been adaptable to Windows upgrades

e The REXX source code is available to users

Problems associated with IMCA software and other legacy software:

e |IMCA
o Written in an obsolete, specialized command language REXX
= REXX s a rarely used language with a very small market
It is not maintained adequately
There is no lifecycle plan

o O O

It no longer addresses the original application
o Many of its functionalities are no longer needed
e There is inadequate support to rewrite all legacy codes
e Scripting for data passage is tedious
o Only one person in IAEA knows how
o0 A better platform is needed (integration is problem, not function)
e REXX software is not supported by IBM
o |AEA never requested an upgrade to modern software language
o There is no ongoing support contract
e The IAEA has too many programs that do similar things and compete for maintenance
resources
e Replacing (rewriting) IMCA will result in loss of trust in a well-vetted safeguards
measurement process

C-17 |

Appendix 3: Case Studies

e Libraries of routines called by the software evolve over time and can conflict with the
original intention and subsequent usage
e Maintaining legacy codes becomes more expensive with time
o Some codes should be allowed die. Some may not be needed and the cost of re-

development may be cheaper long-term than maintaining some codes.

Proposed Solutions:

e Remove the IMCA engine and put it in a wrapper

o The function of IMCA is sound, but its algorithms should be integrated with

newer tools
e Best practices for software development

o Use a modular, plug & play structure (1/0, data acquisition, analysis)

* Modularity would allow for separate modules that could be owned by
different vendors and could be modified/maintained independently from
each other

* This would involve rewriting the code, not revising it

o The requirements should be well defined and articulated.

= |AEA and vendor(s) should conduct a joint requirement analysis; MSSP(s)
could provide funding

= Better identify the problem — problem analysis, what is needed, what are
gaps?

o Use GENIE 2000 programmable libraries

o Do not use a specialized proprietary code/scripting language for software
development

®* Choose a language that will be around forever, like C or derivative
thereof, rather than the latest modern code

®» Choose a compiler that will be around forever

= Set standards to prolong life, or set a lifetime for code (e.g., 10 years)

o Conduct joint design reviews as the project progresses

e MSSPs and IAEA should conduct Cost Benefit Analyses:

o The IAEA should provide official recognition of need, such as documentation in
the Development and Implementation Support Programme or an SP-1 or a letter
request to MSSPs, not just a recommendation from individuals

o Need should be presented in the context of a larger plan for software
maintenance

o An upgrade project should only be undertaken if it still serves a purpose for the

Agency

C-18 |

Appendix 3: Case Studies

o A cost benefit analysis should be performed to determine which legacy codes
should be rewritten and which should not
e Approach to Windows applications is different than approach to Unix programs. The End
User will drive approach.?*
e Consider alternatives
o The IAEA should work to minimize the use of equipment and instruments that
rely on commercial operating systems. Instruments and systems can be built
today that are not dependent on specific OS versions.
o The IAEA could change its procedure such that they can reduce the software and
instruments in their inventory
e Compile an NDA inventory and roadmap for the software needed by the IAEA
e Qutsourced vs. internal resources
o Obtain quotes from both (and consider lifecycle costs)
o Need a dedicated in-house team composed of 50% permanent and 50%
temporary staff
e Project Management
o |AEA needs to sit in the ‘driver seat;’ problem ownership
o Lifecycle planning
o Maintenance contracts are essential

** Windows applications tend to be self-contained and execute an entire analysis process whereas Unix
applications tend to perform a single step in a sequence of data processing steps. Regardless, developers should
avoid using features that may not be supported in the future, should use a standard language, and should know
how the data will be used next and format it in a compatible format.

C-19 |

Appendix 3: Case Studies

Case Study 6: Development, Support, and Maintenance of INCC — Portable Nondestructive
Analysis

Theme: Sustaining Legacy Software and Knowledge Management

Problem Statement:

INCC (IAEA Neutron Coincidence Counting) software is a general purpose neutron coincidence
counting program that runs on Microsoft Windows-based computers. It is used for
nondestructive passive and active neutron verification applications in unattended and attended
modes. It can interpret the pulse counts from shift register electronics connected to neutron
detectors such as the High Level Neutron Coincidence Counter (HLNC) and the Active Well
Coincidence Counter (AWCC). INCC was developed by Los Alamos National Laboratory (LANL).
The Agency has used INCC as the standard platform for neutron measurement applications for
several decades.

To support changes in hardware (i.e., counting system and electronics upgrades) and new
applications {e.g., higher counting rate applications), LANL has provided the Agency with
technical support for upgrading and maintaining the INCC program through funding from the
U.S. Support Program. Recently, a new update for INCC is underway by LANL to allow it to work
with the IAEA’s CRISP system (see Case Study 3). This effort required adding support for
operation in unattended mode and for neutron data acquisition electronics such as the JSR-15
(manufactured by Canberra), and List Mode modules [including the LANL-developed List Mode
Multiplicity Module (LMMM) and the Hungarian Institute of Isotopes’ Pulse Train Recorder
(PTR-32)] for attended applications. These new user demands, plus the elimination of bugs in
INCC, will be fulfilled through its new update.

The knowledge base for this code exists at LANL. The IAEA is very dependent upon this code;
hence the USSP is funding LANL to complete required upgrades and/or bug fixes. This current
approach for INCC maintenance, wherein the United States provides funding for piecemeal
development for multiple users, is expensive and inefficient and, in the end, is not sustainable
by the USSP.>>%°

> At the time of this report, the USSP is funding a cost-free expert and two other projects to assist with an update
of the INCC code. The first project involves the upgrade of INCC to make it compatible with the Pulse Train
Recorder and to provide enhanced functionality with the List Mode Multiplicity Module (LMMM). There are other
plans to update INCC in support of the Uranium Neutron Coincidence Counter (UNCC). The second project
involves modernizing INCC interfaces and databases to work with Microsoft SQL Server technology and the CRISP
interface specifications.

% INCCiis supported by laboratory program funding; use and distribution is limited by export control requirements.

C-20 |

Appendix 3: Case Studies

Summary of Breakout Group Discussions:

INCC was presented to the breakout groups as an example of a legacy code that is difficult and
expensive to maintain. INCC was developed by a U.S. national laboratory; this is advantageous
because the U.S. government will keep software active. But national laboratory staff can only
work on those projects for which they are funded and are reassigned when funding ends. INCC
does not have and never had a lifecycle plan. There are multiple versions of INCC that were
developed for different users with funding from multiple organizations. The IP rights are
convoluted and prevent efficient code modification. The lack of collaboration with the private
sector is detrimental. The participants suggested an audit of codes used by the IAEA for
safeguards instrumentation as a baseline for addressing software management. The
participants listed best practices for software management and advocated the creation of a
user group to encourage collaboration and knowledge sharing. Strong knowledge management
is particularly important when working with legacy codes.

Benefits of the INCC model:

e Developers feel sense of pride/ownership

e National labs sometime keep codes alive for a national interest, not for a profit since they are
not working for profit, but even at national laboratory they have to justify to Government (e.g.
US DOE)

Problems associated with the INCC model and sustaining legacy software:

e [NCC
o Needs a comprehensive review and redesign
o Has no lifecycle plan
o Does not produce data in the correct format to interface with data reporting and
analysis codes
o USSP Issues
o Itis expensive to pay a national laboratory to maintain software
e There are multiple versions of INCC (“Forks”)

It can be difficult to understand the differences between the versions

o Add-ons by other researchers as LANL improves it
o Decreases efficiency but shares burden
o Areduction in the number of codes and versions of codes (forks) could save

money that could be directed towards the reimplementation of legacy codes
that are needed.
e There is no collaboration between private vendors and national laboratories on INCC
o There is no incentive to share bug fixes
o Stakeholders work independently

c-21 |

Appendix 3: Case Studies

o Version control is difficult with one developer; with multiple developers it

requires a coordinator

The intellectual property is distributed among stakeholders

Software needs a champion as there is no economy of scale (The IAEA did not

agree with this point)

= Champions are needed both for research and development. The

champion for the research and development could be the national lab
and company, respectively (related to the modularity issue). A technical
champion is one who has technical authority. A user champion sets
priorities. Funding and leadership champions may also be useful.

Lessons Learned/Best Practices:

Management of IAEA codes
o Perform an audit of codes used by the IAEA
o |AEA, as user/customer, should set priorities
= Reevaluate priorities every year in consultation with stakeholders (similar
to Environmental Sampling working groups)
o Make sustainability part of the culture
= Develop roadmap
= Develop lifecycle plans
o Develop sustainability plans for critical codes
Options and best practices for software development:
Build upon the experience of CRISP
Use open source software
Establish software escrow
Share codes under license agreements
Backward compatibility is important

o O O O O

Fully document codes and algorithms and adhere to recognized programming
standards to enable universal use of the code
o Segregate the physics package (algorithms) from acquisition other portions of
the code and assign responsibilities accordingly
o Consider transferring the development and maintenance to a vendor
= Vendors do not have access to nuclear facilities and material that are
necessary to test codes during development and maintenance
o Replace INCC with a customized version of Canberra’s NDA2000
®* Must compare NDA2000 and INCC to determine what functionality is
missing in NDA2000

c-22 |

Appendix 3: Case Studies

¢ Knowledge management
o Document and share information about codes with others to increase knowledge
of code and to support new users/maintainers
Assign responsibility for knowledge management
Make use of knowledge retained in by commercial entities, whose KM is more
mature
e Increase collaboration between the users and developers
o Create user groups
= Benchmark what others do to maintain code (learn from the others’
experience)
o Combine the Canberra and LANL libraries
= Coordinate development with Canberra (and other relevant vendors)
o Use a repository such as GitHub?’
= User community is involved
® Elect lead and steering committee
e Determine the ownership of codes used for safeguards instruments, and investigate the
legitimacy of copyright claims and intellectual property ownership (should be part of
software audit).
e Options for increased efficiency
O Separate expert knowledge from other knowledge
o Understand what maintenance is really required and what role the MSSP must
play.
o Likewise for upgrades. Establish who will use the produce and at what cost.
Perhaps distribute though RSICC (or other way) to collect fee? Establish
maintenance contracts for codes associated with MSSP to improve efficiency

%’ GitHub is a web-based Git repository hosting service, which offers all of the distributed revision control and
source code management functionality of Git as well as adding its own features. Unlike Git, which is strictly a
command-line tool, GitHub provides a web-based graphical interface and desktop as well as mobile integration. It
also provides access control and several collaboration features such as wikis, task management, and bug tracking
and feature requests for every project. (http://en.wikipedia.org/wiki/GitHub)

c-23 |

Appendix 3: Case Studies

Case Study 7: Universal NDA Data Acquisition Platform and DCView Software — Portable
Nondestructive Analysis

Theme: Knowledge Management with a Limited Developer Community

Here, we presented two case studies that capture issues pertaining to software development
projects in the unique environment of safeguards. Issues include ensuring sustained support for
software provided by small companies, sustaining and capturing knowledge of legacy codes,
and ensuring ongoing support for legacy codes themselves. The first case study is based on the
UNAP, a recently completed development project, and the second case study addresses the
DCView software, which has been developed over a long period of time and has been in use by
the Agency.

Situation Analysis 1:

The UNAP development was completed in February 2014, following a lengthy development and
extensive hardware and software testing by the |AEA. The original software developer was
selected based on years of experience and knowledge developing software for international
safeguards. However, the developer retired before the project was completed, and
responsibility for the software was transferred to a one-employee, affiliated company. The
affiliate completed the software, responded to test failures, and agreed to provide a one-year
warranty on the software following the completion of testing.

The affiliate has acted with professionalism and commitment and assumed all responsibilities
from the original developer. However, following the completion of the software development,
the affiliate’s employee found other work at a large software house and his availability to
support the product is limited.

Many of the companies and consultants who engage in software development for the |IAEA are
small and have limited resources for supporting IAEA needs. In addition, the IAEA typically has
very specific and unique requirements for their products that others in the commercial nuclear
industry do not need; as a result the IAEA must rely on a very limited and many times small
developer and vendor community.

Situation Analysis 2:

The development of the Digital Cherenkov Viewing Device (DCVD) has been supported by both
the Swedish and Canadian support programs. The DCVD is commercially available through
Channel System Inc., which also provides the associated DCView software to the IAEA. DCView
was developed over a ten year period under the auspices of the Swedish Support Program (SWE
SP). DCView is how maintained by a small company while SWE SP owns the intellectual
property.

C-24 |

Appendix 3: Case Studies

The DCView software requires reengineering for the following reasons:

1. Features have been progressively added over a long period of time and the software
structure is not maintainable and upgradable to ensure long term sustainability.

2. The addition of new features has become increasingly difficult

3. DCView should be further developed to support off-line data evaluation features and
other advanced visualization features that are not worth it to be developed under the
current architecture.

Summary of Breakout Group Discussions:

The software for the UNAP and DCVD instruments discussed in the case study were developed
by small companies. The participants acknowledged that there are benefits and disadvantages
associated with software development by small companies. The IAEA cannot avoid working
with small companies because small companies are not discouraged by the size of the
international safeguards market, are more agile to respond to the IAEA’s needs, and enable the
IAEA to work directly with the technical staff. The unique risks associated with small companies
are that they are more likely to be unavailable to maintain and upgrade software and they may
be less likely to use standard software practices. These risks can be avoided through adherence
to recognized software best practices,’® good project planning and management, due diligence
during contractor selection, standardization, establishing a clear understanding of stakeholders’
expectations, and strong contracts.

Similarities between the two case studies:

e Both the UNAP and DCVD software were developed by a small company with one
employee

e The intellectual property for the components of the UNAP and DCVD systems are owned
by multiple parties

e The UNAP and DCVD software were each developed by one individual

e The use of a small company to develop the software for the UNAP and DCVD was a
conscious decision and was considered the only logical choice

Difference between the two case studies

e The company that developed UNAP was set up for that purpose while the company that
developed the software for the DCVD was an existing company identified by the
Swedish Support Program and it has other clients and projects

* The UK Software Sustainability Institute is a good source of information regarding best practices for software
development. See http://www.software.ac.uk/software-evaluation-guide.

C-25|Page

Appendix 3: Case Studies

Advantages of the UNAP and DCVD models:

e Small developers can offer advantages such as greater enthusiasm, lower costs and
overhead, greater IAEA leverage in the relationship, better customer service, prompt
response time, and greater willingness to provide source code.

e Small companies encourage more personal interaction between the client and the
technical staff (with larger companies the client works more closely with sales and
marketing staff)

e Small companies are not discouraged by the small market associated with international
safeguards

Problems associated with the UNAP and DCVD models:

e Problems encountered in the UNAP and/or the DCVD projects

The contract for the development was complex and complicated

The MSSP decided to retain the intellectual property

There were separate contractors for the hardware and software development
The user requirements were incomplete or nonexistent

O O O O

The development champion desighed the instrument to replace many other
instruments and to perform many functions. It was too ambitious and the
software had to be too complicated

o There were too many development partners and the partnerships were poorly
structured. It was difficult to determine who was responsible.

o There was no lifecycle planning

e Risks associated with small companies

o Small developers can offer advantages (see above)

o The primary risk is potential loss of developer due to change in work status,
iliness, or death.

o Inaddition, a small developer may make nonstandard architectural choices that
lead to a source code product that is difficult for another developer to
understand.

e Development projects that are split up and separated between multiple contractors face
higher risks of failure and higher costs for project coordination

e Forlegacy codes that were supplied by small developers, incremental improvements
may no longer be sustainable or appropriate, and reengineering may be necessary.

C-26 |

Appendix 3: Case Studies

Additional Factors/Outstanding Questions:

e The Agency cannot avoid using software developed by small companies

e A good relationship with a commercial company matters a great deal

e Who should assume lifecycle risks? Can {or should) these be passed to the MSSP?
e Who assumes the lifecycle costs of software and why?

e Fractional outsourcing can be resource intensive and place the burden for integration on
the IAEA

o Project Management can be contracted to another entity

Lessons Learned /Recommendations:

e There are unique risks associated with doing business with small companies (see above),
but they can be overcome with proper project management techniques, such as using
software escrows (e.g., Iron Mountain)

e Development approaches
®* Modular, phased approach
= Reduces risk and avoids rework

Subdivide the work between multiple companies

Have one lead developer responsible for coordinating and integrating all work

Use short development cycles

Ensure strong project management

0O O O O O

Leverage COTS software and hardware whenever possible
o Avoid customization where possible
e [Intellectual Property (IP)
o Consider all IP options
o Allow the IAEA to hold the IP of the project results
o Include IP provisions/plans in contracts
o If the IAEA is contracting with a small company, obtain the source code/IP
®» Thisis only useful if provisions are made for another entity to assume
responsibility
e Project planning
o Identify risks and mitigation strategies at the beginning of the project
o Define the deliverables that should be in the contract with the developer (see
legal remedies, below)
o Practice due diligence with the contractor with respect to long term availability
for maintenance

c-27 |

Appendix 3: Case Studies

o Reduce risk by asking the right questions, performing a risk analysis, and rolling
out the software in phases
o Plan for the lifecycle of the software
e Project Management
o With small companies, that may not have expertise in all subjects associated
with the project or an overall depth of knowledge, the IAEA has to be more
involved to mentor the technical staff. There must be dedicated IAEA project
support at the technical level
o Dedicated IAEA involvement is important to all projects
e Projects Sponsored by Member State Support Programs (MSSPs)
o Ensure a mutual understanding between the IAEA and MSSP(s) of the desired
project outcome and development process
o Research and learn from other organizations that are the beneficiaries of
contributions and are not direct parties to contracts that provide the
contributions
o Ensure a mutual understanding of the project by the IAEA and MSSP(s) (or other
benefactor)
e Establish a set of standards for software development
o e.g., RAINSTORM may mitigate many of these risks (via standardization of
requirements)
o This will help to avoid “quirky architectural choices” by the developer
o Requirements and/or specifications should be routinely included in SP-1s
o Avoid over-specification
e Contracting issues
o |AEA should specify the scope of the contract and the expected deliverables the
IAEA will get at the end of the project
o MSSP could transfer money to the IAEA with conditions attached (e.g. the IAEA
may only contract with a select set of companies)
o Write contracts that include long-term support
® This can be difficult - either impractical or cost prohibitive
o Determine what proper terms and conditions should apply to the contract and
ensure they are included
e Lifecycle Planning
o The total lifecycle costs need to be considered and understood from the
beginning of the project
Could consider maintenance, life span, knowledge management and transfer
Should include risk considerations and any associated cost implications (these
need to be taken into account somehow)

C-28 |

Appendix 3: Case Studies

e |dentify core capabilities in the code and determine whether those can be pulled out,

preserved, and/or maintained separately

e Contractor Selection

@]

Establish requirements for selecting vendors for IAEA instrumentation software
projects

Consider company staffing profile and capabilities

The risks associated with small companies (e.g., bus factor, imminent retirement,
competing projects) must be recoghized and mitigated

Use a larger software house that is less likely to have such problems

Request that a small, one-person company contract through a larger company
that could alleviate some of the risk (this would increase cost)

c-29 |

Appendix 3: Case Studies

Case Study 8: Instrumentation Software Development — LabVIEW as a platform for
maintaining systems

Theme: Best Practices for Sustaining Software & Ways to Implement Sustainable Practices for
New Software Developments

Problem Statement:

Historically, the software development approach for instrumentation software/firmware has
been almost entirely left to the discretion of the developer. This includes the selection of the
programming language, the design of the hardware supported by the code, the implementation
of embedded algorithms, and the display and format of acquired data. The IAEA Division of
Safeguards Technical and Scientific Services (SGTS) is increasingly assuming responsibility for
the maintenance of these codes and is interested in exploring this part of the software
development process.

The development of dedicated hardware for data acquisition has seen dramatic increases in the
cost of development and difficulties in long-term maintenance. In many cases, instrumentation
is nearly commercially obsolete by the time it is deployed and maintaining the requisite skills
and knowledge base to service these instruments is a significant drain on Agency resources.
More significantly, the need to maintain unique, single-use instrumentation reduces flexibility
and is an impediment to enhancing the efficiency and effectiveness of safeguards
instrumentation. For this case study we will explore the advantages and disadvantages of
using LabVIEW (virtual instruments) as software replacement for data acquisition
instrumentation.

Summary of Breakout Group Discussions:

One breakout group was in universal agreement that there were no advantages of LabVIEW for
safeguards instrument applications, but the other two groups were able to identify advantages.
LabVIEW is intended for use in laboratories for experimental software. Use by the |IAEA for
safeguards instrumentation would require the development and support of new modules, and
a LabVIEW capability within the Department of Safeguards would have to be established and
maintained. LabVIEW is not be the answer to every programming need and will present some
licensing challenges. LabVIEW provides no sustainability benefits. Conventional codes can do
everything that LabVIEW can do, but with more effort.

Advantages of LabVIEW:

e LabVIEW is a potential option for standardization
o Follows standards
o LabVIEW is not application specific

C-30 |

Appendix 3: Case Studies

o LabVIEW is hardware independent

LabVIEW is already used by inspectors for in-field review
o A strategy is needed for continued, systematic use

LabVIEW has a large, established community of users
o Knowledge already exists and could be leveraged
o The use of LabVIEW in processing industries suggests a level of reliability/utility

LabVIEW can do everything conventional codes can do

Ease of Use

o LabVIEW field programmable gate arrays (FPGAs) can simplify the development
process for certain instrumentation
= Another group said LabVIEW should not be used to create firmware
o LabVIEW simplifies the creation of graphical user interfaces
* LabVIEW promotes standardization of user interfaces for a variety of
different instruments
o LabVIEW simplifies coding because it comes with many built in drivers,
standardization interfaces, etc.
o Allows for codes to be written in C
o Maintainability
o Virtual instruments are sustained; bugs addressed by National Instruments?
e LabVIEW is flexible (also a problem — could compromise data)
e Reduced cost for potential applications
e National Instruments
o has a suite of supported instruments in multiple of categories
o provides instrument simulations
e LabVIEW obviates the need for software architecture
e LabVIEW can serve as a prototype and testing environment

e LabVIEW could be used to develop simple instruments

Problems associated with LabVIEW:

e Name “LabVIEW” may be a nonstarter for some
o Negative reputation
o Name implies different use
e General
o The LabVIEW compiler function is more complex than other compilers
o LabVIEW provides too many options

** Can we rely on National Instruments to address bugs?

C-31 |

Appendix 3: Case Studies

o LabVIEW is probably too complicated
o LabVIEW results are not reproducible
o LabVIEW is not the answer to all software development needs
e |AEA’s one experience with LabVIEW was not very successful
e LabVIEW is not a particularly reliable way to put systems in the field
e Budget considerations
o LabVIEW requires a user license
o Reliance on LabVIEW will require periodic training to keep current with the
software, the retention of trained staff, and/or excellent KM
e Updates
o National Instruments cannot be expected to update software for each individual
instrument
o Frequent updates create problems for maintainability in remote monitoring
scenarios
e [tisinefficient to add new modules
e Forthe IAEA to use LabVIEW for instrumentation software, new applications would have
to be developed and supported
e Compatibility with Safeguards mission
o Use of LabVIEW by the IAEA would be challenging because the IAEA’s needs are
highly specialized
®* The Virtual Instruments provided through LabVIEW are not specific
enough for Safeguards applications
LabVIEW was built for laboratory experiments
LabVIEW was written for non-programmers; the actual code writing is poor
LabVIEW is an exploratory tool
LabVIEW does not effectively support data analysis applications

o O O O O

To access a module (e.g., a small driver), National Instruments’ protocol
necessitates the download of an entire library

o The IAEA would need to obtain documentation of the LabVIEW components that

are needed

e Sustainability

o There is no sustainability benefit from LabVIEW

o LabVIEW code is not maintainable in the long term

= System hardware is not maintained

e LabVIEW itself may have a limited lifetime

e LabVIEW development times are too long

c-32 |

Appendix 3: Case Studies

Solutions/Recommendations:

e Conduct a study to identify those projects for which LabVIEW would be useful
o LabVIEW may be useful in specific cases
* |n-field attended gamma measurements where the integration actually
helps
= Asatest platform to compare different approaches
= LabVIEW plug ins could be used for research scenarios

o Consider the costs and benefits of a software development project using
LabVIEW

o Use Build VI (Build Virtual Instrument) driver for existing systems as an example
to compare software developed through a traditional approach to software that
can be developed using LabVIEW

= Compare project schedule, project complexity, savings

o Conduct a study to determine where LabVIEW is used, where it is not used, the
experience users have, etc.

o Use results of study as benchmark for IAEA software strategy, guidelines and
policy, and develop a Department-wide policy for the use of LabVIEW for
safeguards.

e Alternatives to LabVIEW

o CRISP is a model for alternatives to LabVIEW in that it demonstrates another
software development approach

o Software architecture should support future changes

e Do not consider LabVIEW to be a cure-all solution; do not require the use of LabVIEW

for all IAEA instrumentation software as proposed in the case study

C-33 |

Appendix 3: Case Studies

Case Study 9: Open Source Software

Theme: Best Practices for Sustaining Software & Ways to Implement Sustainable Practices for
New Software Developments

Situation Analysis:

One of the proposed solutions for IAEA software development and implementation is the use of
open source software. The obvious benefit is that the IAEA has access to the source code with
all the many benefits this entails (e.g., a potentially cost-free developer community,*® the ability
to fix bugs and/or add features without being locked to a certain vendor, the ability to make
modifications in-house, and easier vulnerability assessment (VA) via access to the source code
and the ability to compile the source code).

Despite the benefits, open source may not be a panacea. The “guardian(s)” of open source code
may not accept new features developed by/for the IAEA or, in some cases, may hot even accept
bug fixes. This can happen for many reasons. For example, the “guardian(s)” may not want the
new features, may not recognize the IAEA as a legitimate user/developer, may not like the
coding style, may not agree that something is a bug, and/or may just not care that changes
were made. In this case the |IAEA can either pay for an entirely new product to be developed or
create a “fork” of the open-source software.

A project fork happens when developers take a copy of source code from one software
package and start independent development on it, creating a distinct new piece of
software.

Forking has the advantage that the IAEA can be the “guardian” of the fork. In this way all of the
aforementioned disadvantages go away. Additionally, it may be easier to VA a fork because the
IAEA can control how often a new version of the fork is released. However, forking requires the
IAEA or its stakeholders to maintain the fork, which includes carefully attempting to integrate
pertinent changes from the source of the fork.

Summary of Breakout Group Discussions:

The use of open source software will solve some problems (e.g., it provides greater accessibility
to the code and increases the number of cognizant developers) but will introduce other
problems {(e.g., it will require careful oversight to ensure quality standards are met). Open
source software is not necessarily cost free and can have some licensing requirements.
Algorithms used in safeguards applications are the intellectual property of their inventors and
may not be available for inclusion in open source software. The development and/or use of
open source software could include contributions from individuals and national laboratories but

*% As a result of the workshop and ensuing discussions, the authors learned that some assumptions about open
source software in this case study are not realistic.

C-34 |

Appendix 3: Case Studies

would likely discourage the private sector from participating due to the noncommercial nature
of the products. Configuration control of open source software can be problematic and a
guardian would be needed. Many of the advantages and disadvantages discussed in the break
out groups were not specific to open source software.

Discussion Points:

Open Source is one mechanism to allow the IAEA access to source code
o may be particularly palatable for US national laboratories, since they have

experience with it

The use of open source requires a cost-benefit analysis
e Open source vs. |IAEA possession of source code
o Who should have/needs access?

National Laboratory issues
o National labs can do open source developments; IAEA would just have to ask or
require that approach
o A U.S. national laboratory developer may not have control over whether a
development ends up as open source software
* Lab may seek to make it proprietary
= Sponsor (e.g., DOE) can determine with it will be open source or
proprietary
o National laboratories have experience with open source developments for
various end-users (e.g., security applications)
= Used often to facilitate collaboration among researchers

Need for trust in the product remains

Turn-over within the IAEA increases the need to identify a sustainable maintenance plan

Examples of proprietary software that could become open source:

o IMCA: if everyone had access, changes could be made and the functionality of
the code would improve. Right now, this is not happening. Requires a gate-
keeper, however.

o INCC: if INCC became open source, the IAEA would be able to modify the code
internally without assistance from the USSP.

o Provide crypto-middleware for token: had to cope with evolving requirements
and minimal communication was a serious problem; influenced decision-making

e Member States trust the IAEA to handle confidential information in certain
circumstances; why would the member states not trust the IAEA to handle software
obtained through a license agreement responsibly?

e MSSPs can contribute to sustainability of open source software by ensuring that there

continue to be subject matter experts {(human capital development)

C-35 |

Appendix 3: Case Studies

e Could open-source software be compatible with MSSP developments? A study could be
performed to compare the requirements of open-source software development with
the practices and constraints of MSSP software development to support.

Advantages of open source software:

o Allows greater accessibility to the code
o The IAEA can view the software and compile it themselves
o Having this access closes a security gap because the |IAEA can read the code to
see if any malware is embedded
o The quality of the code can be examined
e Facilitates sustainability if funding is not required for maintenance
e Allows for collaborative environments (e.g., GitHub)
e Facilitates modifications because the IAEA can either do the modifications in house or
contract out for support
e Less likely than proprietary code to disappear
e Often more successful for development
e Bug fixes can be done more easily and quickly
e Bug reports can be provided with more detail and quality
e Development and maintenance is not a burden on any one entity
e Gets more scrutiny from a wider pool of developers and users
e Documentation may be completed in a more timely manner
e Could be immune to staff turnover in the IAEA if it is supported by an external
community of users
e Eliminates or reduces bureaucratic barriers
e |Pissues can be resolved through licensing
e Open source contributors can supplement IAEA human resources
o Talent can be identified through open source collaboration
¢ |Independent development towards objective is possible; can pursue work in parallel
paths
e There is a great deal of available open-source software related to image
detection/surveillance
e Open Source Culture
o abandoning less useful branches of programs often results in better quality tools
o Stimulates creation and consideration of new ideas from different sources
= Cost-free nature of the software facilitates this behavior

C-36 |

Appendix 3: Case Studies

Problems associated with open source software:

e Open source does not always mean accessible to everyone; it sometimes is
implemented where only a desighated community of individuals have the ability to view
and/or modify the code

e Open source options would require the IAEA to have a robust software QA program

e Resource impact

o Open Source does not mean cost free
= |icenses are still needed in most cases
e some requirements may be difficult for the IAEA to adhere to due
to national laws, etc.
* What does “free” mean in this case? May be cost free but not free of
restrictions
o Maintaining source code at the IAEA can be expensive
= The IAEA would create and have to maintain forks
o Open source development does not reduce resource requirements or
administrative burden — it just shifts them elsewhere
* From lab/support program to IAEA staff or a developer
* From developer to ‘gate-keeper’
o Oversight/guardianship requires time and financial resources (guardian needed
in both closed and open source environments?)
e There is no standard quality control process for open source codes
e Software guardians
o Open source developments require an engaged, reliable gate-keeper (can
contract this out, change gate-keepers, etc.)
A single guardian is similar to a bus factor of 1 with respect to developers
Guardian must look after quality control
® the larger the community, the less quality control

e Open-source products can be difficult to combine or integrate (either logistically or due
to IP issues)

e Open source codes are continually changing and version control for open source
software can be problematic unless the IAEA can maintain its own fork and ensure that
all changes within that fork are tested and evaluated for vulnerabilities and
performance.

e Open source development may cause reliance on skills of IAEA staff subject to rotation

e Algorithms do not exist as open source code and are not expected to become open
source soon

C-37 |

Appendix 3: Case Studies

e The limited community for safeguards specific applications reduces the incentives to
open source developers who would be willing to fix bugs or otherwise contribute
o It would be difficult to maintain documentation with smaller, less dedicated
communities
e While having access to the source code can give the IAEA confidence that there is no
malware embedded, security issues arise due to the number of people who have access
to the code and the difficulty of reviewing software that may have tens of thousands of
lines of code
e lLegal complexity may increase, e.g., if the base code is owned by one entity and the
IAEA develops a fork based on the base code, there may be disagreements over who
owns the fork.
e Open source developments may require:
o particular attention to knowledge management and version control.
O an active user base (not necessarily large) to make this work; often challenging in
the field of international safeguards.

Proposed Solutions/Recommendations

e Conduct a proof of principle open source software development to demonstrate
effectiveness
e Develop standards for IAEA open source development
o Include them in SP-1s or requirements for software development projects
o Advertise them on the |IAEA website
o Include documentation requirements
®* Documentation should be completed by programmer
e Analysis
o Open source options should be evaluated by the IAEA on a case-by-case basis to
determine if the cost of ownership can be supported and if it represents a
sustainable approach.
o Perform a cost benefit analysis to determine whether open source development
would save resources for particular cases or categories of software.
* |n some cases, it may just shift the resource burden elsewhere
o |AEA could categorize software according to certain criteria (e.g., security
requirements, mission requirements, usage, and user base) and decide whether
certain categories of software might benefit from an open-source approach
e |dentify well-managed and well run open source projects to use as models
e Plan for the lifecycle of software

e |nvestigate licensing options/requirements for open source software

C-38 |

Appendix 3: Case Studies

o Determine what is possible
o Write an ‘ideal’ license and see if developers will accept it (IAEA)

e Establish an open source community to stimulate collaboration for safeguards
instrumentation software

o Establish guardians/change control board (CCB)
®* The guardian is usually is the organization that develops the software

Establish Quality Assurance/Quality Control requirements (reviewed by
CCB)

Establish responsibilities (e.g., development, documentation,
maintenance)

C-39 |

Appendix 4: Workshop Working Paper

Appendix 4: Workshop Working Paper
U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

May 6-8, 2014

Working Paperst

Susan Pepper, Brookhaven National Laboratory
Louise Worrall, Oak Ridge National Laboratory

Workshop Objective:

The United States and the IAEA are convening a workshop on “Software Sustainability for
Safeguards Instrumentation” to identify strategies for improved software development and
maintenance practices for IAEA safeguards instrumentation software.

For the purpose of this workshop, “software sustainability” is defined as ensuring that
safeguards instrument software and algorithm functionality can be maintained efficiently
throughout the instrument lifecycle, without interruption, and providing the ability to continue
to improve that software as needs arise.

The Challenge of Software Sustainability:

Today’s international safeguards instruments are sophisticated tools that require numerous,
complex software applications for instrument control and for acquisition, storage, transfer, and
analysis of data. The TAEA’s vast and diverse inventory of instruments and the associated
software provides a means for the IAEA to apply scientific principles to inspection
measurements and, at the same time, meet international safeguards requirements. These
instrument software applications run on a variety of platforms, are built from unique source
code by developers at multiple public and private organizations, and require development
practices and training of users and stewards that are unique to specific subject matter expertise.

Sustaining IAEA instrumentation software is complicated by the many stakeholders and the
unique environment of international safeguards; software development for international
safeguards is achieved using codes owned by the IAEA, its member states and their national

*! This working paper is adapted from talking points compiled by the International Safeguards Project
Office, Brookhaven National Laboratory (2012) and a follow-on white paper entitled, “Developing a
Technical Needs Analysis for Software Sustainability to Mitigate Long-Term Software Maintenance
Issues & Costs,” by Louise Evans Worrall, Stephen Croft, James R. Younkin, Nathan C. Rowe, and Chris A.
Pickett of the Safeguards & Security Technology Group, Oak Ridge National Laboratory (2012).

D-1 |

Appendix 4: Workshop Working Paper

laboratories, commercial vendors, and individuals. Before new software can be adopted by the
TAEA, it must be certified through testing. New hardware for safeguards instruments is often
accompanied by new embedded software. Embedded software must be compatible with software
used by the IAEA for data analysis. If compatibility was not preplanned, the IAEA will depend
on the equipment developer to modify the embedded software for its use or middleware must be
developed. Due to the nature of safeguards, the TAEA often has unique software requirements
that are not needed by other users. The situation is compounded by the relatively small size of
the international safeguards software community of users and developers. Technical knowledge
on software operation is often limited to the developers or small communities of expert users.
Further, the relatively small user community does not command the attention of large software
houses and does not have the luxury of widespread or extensive beta testing for pre-service bug
identification. IAEA staff members often find themselves serving as beta testers of new software
products, indirectly increasing the overall resource cost of development.

One example of how IAEA instrument software is developed is through United States Support
Program (USSP) funding for national laboratories, private companies, or consultants to develop
particular instrument hardware and software for IAEA safeguards implementation. In this
example, the USSP has typically assumed the cost of modifying and maintaining software
throughout its lifecycle including extending the software beyond the end of its planned lifecycle,
expanding the capabilities of the software in response to IAEA requests, updating the software
to a new platform when the original software platform becomes obsolete or unsupported, and
fixing bugs as they are identified or become unmanageable. However, given constrained budget
environments and competing demands for limited resources, the USSP may not be able to
continue to assume these costs in the future. This workshop is intended to identify effective,
efficient, and creative solutions to sustaining IAEA instrument software.

Workshop Format:

In light of challenges described above, the U.S. Next Generation Safeguards Initiative (NGSI)
and the IAEA Department of Safeguards are convening a workshop on “Software Sustainability
for Safeguards Instrumentation” to be held May 6-8, 2014, at the Vienna International Centre in
Vienna, Austria. This workshop will assemble international safeguards instrumentation software
stakeholders for informative and constructive discussion of the issues related to software
development and maintenance from a sustainability perspective. The objective of the meeting is
to obtain feedback from software and instrumentation experts and users to guide the U.S. and
other Member State Support Programs to a more effective and efficient process for developing,
modifying, maintaining, and sustaining instrumentation software for the IAEA Department of
Safeguards. Invited workshop participants include representatives from the IAEA, member state
governments and national laboratories, companies, and think tanks. The workshop is designed
with presentations in the mornings to provide background information on the issues that face
software development for the international safeguards community, and with breakout sessions
in the afternoons where case studies of specific situations will be discussed and analyzed for the
identification of improved pathways for technical support. Themes have been defined for each
day based on information obtained through interviews with IAEA staff and company

D-2 |

Appendix 4: Workshop Working Paper

representatives. During the concluding session, time will be reserved to allow the participants
to talk about the overall results of the workshop and to provide input as to the most pertinent
ideas that were discussed and how they might be implemented.

The theme for the first day of the workshop is “Building IAEA Self-Sufficiency and Sharing
Source Code and Intellectual Property.” This theme arises from the IAEA’s desire to increase
their self-sufficiency and their desire to have control of the source code related to their
instrumentation. There is a corresponding need to make the entire process (software delivery
through field implementation) more efficient for all stakeholders. The workshop participants
will be asked to consider the obstacles to the IAEA’s self-sufficiency, the advantages and
disadvantages of giving the IAEA access to source code, and the challenges presented by
intellectual property.

The theme for the second day is “Knowledge Management and Sustaining Legacy Software.”
This theme arises from the reality that the safeguards software user community is relatively
small, that the supporting companies tend to be small, and that the aging of the industry is
causing a shortage of subject matter experts and software developers with this specialization.
Participants will be asked to provide input as to how the community can better support the
TAEA by ensuring the transfer and avoiding the loss of institutional knowledge. We will also
discuss how to ensure that legacy software will be available to support IAEA safeguards until
replacement software is available.

The final theme for the workshop is “Best Practices for Sustaining Software and Ways to
Implement Sustainable Practices for New Software Developments.” Based on the first- and
second-day reviews of the current state of software management and the management of legacy
codes, the participants will explore options and identify sustainable practices for new software
developments and short, medium, and long-term sustainability planning.

At the conclusion of the workshop the facilitators and participants will review the findings of the
breakout sessions and prioritize them. Following the workshop, the organizers will review the
findings, along with the prioritization, in more detail to create an action plan. The action plan
will be presented to the Next Generation Safeguards Initiative and the IAEA as a recommended
roadmap for future work.

D-3 |

Appendix 4: Workshop Working Paper

Appendix 1: Technical Considerations for Software Sustainability:

IAEA end-user requirements:

e Application-specific requirements

e Requirements for unattended vs. attended vs. remote monitoring equipment
e Usability requirements

e Quality assurance requirements and guidelines

Technical Challenges:

e Software and data authentication

e Verification

e The user is part of the checking process for attended use

e Control inputs/outputs for unattended and remote use

e Quality assurance

e Common language, e.g., C/C++/C#, FORTRAN

e Defining a standard, e.g., documentation, readability, coding conventions
e Performing vulnerability assessments (less expensive at the design phase)
e Qualification

e Data interface, i.e., inputs and outputs

Administrative Challenges:

¢ Documentation

e Intellectual Property

e Version control

e Control of software modifications
e Access control

e User privileges

e Open source modifications

e Software quality assurance

e Training

D-4 |

Appendix 5: Report to the Workshop Participants

Appendix 5: Report to the Workshop Participants
Report No. BNL-105966-2014

The U.S./IAEA Workshop on Software
Sustainability for Safeguards Instrumentation

Louise G. Worrall, Chris A. Pickett, Oak Ridge National Laboratory
Susan E. Pepper, Katherine M. Bachner, Al Queirolo, Brookhaven National Laboratory

August 2014

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive,

paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government purposes.

BROOKHZEAVEN #,OAK RIDGE //%AV N\ u)

NATIONAL LABORATORY - National Laboratory
National Nuclear Security Administration

E-1|Page

Appendix 5: Report to the Workshop Participants

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof or its contractors or subcontractors. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States Government or
any agency thereof.

E-2 |

Appendix 5: Report to the Workshop Participants

The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

Louise G. Worrall, Chris A. Pickett, Oak Ridge National Laboratory
Susan E. Pepper, Katherine M. Bachner, Al Queirolo, Brookhaven National Laboratory

Workshop Objectives
The United States and the International Atomic Energy Agency (IAEA) convened a workshop on Software

Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. The primary objective of
the workshop was to assemble a cross-section of all safeguards instrumentation software stakeholders
(i.e., users, developers, vendors, and sponsors) to identify strategies for ensuring that critical safeguards
instrumentation software products continue to be available for use by the IAEA as required and that
software functionality does not degrade over time. Safeguards instrumentation software must be
sustained in a changing environment with increasing requirements and limited resources. The
approaches taken in the past may not be the best model for the future and, therefore, the organizers
wanted to evaluate these past approaches.

Workshop Highlights
Neil Chue Hong, Founding Director of the United Kingdom Software Sustainability Institute, presented

the keynote talk on Scientific Software: Sustainability, Skills and Sociology. His presentation highlighted
the fact that scientific software has a lifetime that is considerably longer than the lifetime of the
associated computing hardware. Therefore, lifecycle planning models for software must anticipate
changes in hardware approximately every 2-5 years. Software requires a significant overhaul
approximately every 10 years. In his words, software “rots” over time, and therefore, simply doing
nothing is not a viable approach for sustainability. For example, one common misconception is that the
correct way to preserve source code is to keep it in a repository, but Mr. Chue Hong noted that evenin a
repository the software has to be maintained. Further, whether called the “bus factor” (Chue Hong) or
“lottery factor” (Alexey Anichenko, IAEA), the number of software developers devoted to the
sustainment of a key software product should always be greater than one. The points made in this
keynote talk were revisited throughout the breakout sessions, and Mr. Chue Hong was quoted
throughout the workshop.

The workshop provided the opportunity for external software developers to meet with IAEA staff
developers and other external developers. For some external developers, this was the first time that
they had met other external developers working on software for safeguards instrumentation. The
workshop also provided the IAEA with the opportunity to promote their RAINSTORM project®” and its
benefits. One of the stated goals of the RAINSTORM project is to standardize remote data retrieval and
data security for all future IAEA Safeguards Technical and Scientific Services (SGTS) equipment. This is
an important goal that will lead to more uniform and shareable analysis software. Discussion of the On-

*2 RAINSTORM is the IAEA’s user requirements for implementing a remote monitoring interface in new safeguards
instrumentation designs.

E-3 |

Appendix 5: Report to the Workshop Participants

Line Enrichment Monitor (OLEM) and associated software development highlighted the importance of
early and iterative collaboration among stakeholders. The development of the Central RADAR®®
Inspection Support Package (CRISP) jointly by Euratom/DG-ENER and the IAEA was also highlighted by
the IAEA as an exemplary model for sharing development effort and resources, and the resulting source
code. The CRISP software package offers the promise of providing a way to integrate divergent data
sources into a common format, which will enhance the ability of the IAEA to develop data analysis
software that is more readily shareable.

Figure 1 is a graph prepared and presented at the workshop by Alain Lebrun, IAEA, to illustrate the
status of the IAEA safeguards software that is used for portable non-destructive assay (NDA)
instrumentation. The graph characterizes software according to whether the software is safeguards-
specific (indicates there may be other user communities) and whether the software is owned by the
IAEA or another party (indicates the level of access and/or responsibility the IAEA may have to the code
for use and maintenance). The codes that are owned by the IAEA and are safeguards-specific are the
codes for which the IAEA can take responsibility. The codes that are safeguards specific but are
proprietary are of concern to the IAEA because the IAEA does not have the required access to the source
code to perform reviews to ensure the software operates as intended or to make necessary
modifications. This graph gave workshop participants a very useful framework for identifying critical
safeguards software and could also be an important aid for future software sustainability planning.

Summary of Recommendations from the Workshop Breakout Sessions

The workshop was formatted with the delivery of informative presentations each morning and breakout
sessions each afternoon. The workshop breakout sessions were structured around multiple relevant
scenarios and case studies prepared with input from the IAEA, and time for expert discussions was
provided. The resulting discussions among the participants led to numerous recommendations from the
participants for improving the management of safeguards instrumentation software. A summary of the
significant recommendations from the workshop is provided below.

It is important to the IAEA to have the in-house capability to address software sustainability issues. In
particular, the IAEA wants the independence to be able to make minor modifications to software that do
not warrant the time and expense associated with a typical member state support program (MSSP) task.
In addition, the IAEA would like the flexibility to apply resources, including those available through the
MSSPs, as appropriate. For example, in some cases hiring a cost free expert or a junior professional
officer is more appropriate than contracting with a vendor, but not in others.

** Remote Acquisition of Data and Review

E-4 |

Appendix 5: Report to the Workshop Participants

IAEA owned

A
COMPUCEA
[NEW] IMCA
Z
o CBVB @)
= T P | —
= L(,(,\ %)
(¢b] s [FIELD ISOCS = Ut GENIE G)
% - - - - MAESTRO m
o MCA 1\ G2 COMMERCIAL 2
2] 7 1 A, MG 0.
|9 | f ek MGA, MGAU P, | S
/ hilai FRAM o |
CHEM
Concern ——
DCVIEW NALGL]
2ol Problem
INCC i o Z0ne

Proprietary (e. g. MSSP, individuals)

Figure 1: Characterization of the IAEA portable NDA software based on application and ownership

It is widely recognized that the mission to sustain software is a broad and ongoing challenge that
encompasses legacy codes and codes that are not yet written, multiple uses and applications, and
multiple stakeholders; therefore, there is no single “one size fits all” solution. A key finding of the
workshop was the need to develop lifecycle plans for critical safeguards software. For lifecycle planning,
the IAEA must create an inventory of current safeguards instrumentation software. Workshop
participants recognized that sustainability does not just mean keeping software in use, but it also means
knowing when to take certain software out of service or when it is best to re-write or replace the code
(e.g., in the case of legacy software). This recognition led to the recommendation that a code audit be
conducted to identify the software packages required by the IAEA to support safeguards
instrumentation, their relative prioritization, the users and level of use of these codes (including the user
community external to safeguards), the maintenance requirements and who is responsible for
maintenance, the current cost of maintenance (i.e., capture the cost data), the availability of developers
to work on these codes, who owns these codes, and what needs to be done to sustain them. This code
audit should also take into account and capture dependencies between MSSPs. This inventory will
promote efficient investment in safeguards software by identifying critical software packages and
maintenance needs. It will facilitate a gap analysis and will become the basis for software management
and lifecycle planning. It is widely recognized that sustainability will require funding, but allocations
should be targeted to those codes that are both in demand and of high priority to the IAEA. A

E5|Page

Appendix 5: Report to the Workshop Participants

consolidation and prioritized assessment of the portfolio of codes requiring ongoing support and
maintenance resulting from the code audit and periodic assessment of new options could also increase
the ability of all stakeholders to sustain them. Proper software archiving methods were also discussed
by the keynote speaker and should be considered during the audit.

Human resources are a key consideration of software sustainability and sustainability planning.
Stakeholders need to be committed and involved in order to successfully tackle the software
sustainability challenge. In simple terms, people must be motivated to sustain safeguards
instrumentation software and have good reasons or incentives to do so. Software sustainability and
maintenance culture must be an integral part of institutional culture and become a routine way of doing
business. It was recommended that a “user champion” initiate, lead, and become the proponent for the
code audit and sustaining critical software. Code-focused user groups or working groups were also
recommended to “socialize” the code, share best practices, and improve knowledge management.
Establishment of these groups is a best practice because the groups increase knowledge and
understanding of codes, engage next generation professionals, and thereby enlarge the user
community. A user or working group need not be expensive or require government or extra budgetary
funding. The workshop demonstrated that significant interest and motivation exist among the
stakeholders and that a user or working group(s) for safeguards instrumentation software could be
formed with minimal encouragement by the USSP or other sponsor.

When codes are in use and there is no immediate plan for upgrades, the subject matter experts (SMEs)
and programmers may be reassigned to other tasks and may not be available to address even minor
unplanned modifications. It is necessary for stakeholders to devise a plan for ensuring that these
experts are available when needed. Applying software development best practices reduces the risks
associated with a “bus factor” of one, i.e., a sole developer, and protects users against the unavailability
of the SMEs and programmers. A well-structured and documented computer code with a sole
developer could, if necessary, be assumed by a competent programmer immediately. There are a
number of widely-used, open-source codes that are good examples of this principle.

The participants encouraged investment in sustaining critical safeguards software and supporting
associated training. Funding could come from a single “resource champion” or a number of “resource
champions.” Options for software sustainability will vary depending on the owner of the codes, but may
include planning and providing for a maintenance budget over the lifetime of the software, using
umbrella tasks® for maintenance, and negotiating technical support contract arrangements with
vendors. Another model is the Radiation Safety Information Computational Center (RSICC) system
(https://rsicc.ornl.gov), which provides and manages licenses and leverages multiple programmatic

support vehicles along with limited user fees to cover the costs associated with software sustainability.
Each of these options would ensure that funds are available to support maintenance activities in the
timely manner desired by the IAEA. Improved lifecycle planning and a proactive approach to project
management would help to ensure maintenance support over the entire software lifecycle. Lifecycle

** Umbrella tasks are MSSP activities that consolidate a number of small, related activities.

E6|Pa

o
[¢]

Appendix 5: Report to the Workshop Participants

planning should, therefore, take into account the “total cost of ownership” for each software product
akin to how vendors support key software products.

Timeliness of support from MSSPs was identified as an area for improvement. Recognizing that the IAEA
and MSSP processes ensure efficient and effective use of limited financial resources, the approval
processes within both the IAEA and the MSSPs can result in delayed access to technical support from the
MSSPs.

Discussions regarding intellectual property (IP) led to a recommendation to assess licensing possibilities.
The stakeholders need to understand who owns the IP for each of the safeguards software packages and
whether the packages can be shared. While some software codes may not be made available to the
IAEA, there may be ways to creatively license the software to meet the needs of the IAEA while
addressing the concerns of all stakeholders, including those who own the various pieces of IP. Some IP
issues could also be mitigated by determining at the start of development who will hold the software IP
at the end of development. Again, this dialogue should happen early in the development process and
should become a routine part of any development project.

The IAEA believes the noncommercial nature and the small market impact of IAEA activities obviate or
lessen the need for IP protection, and the need for IP protection on safeguards-specific software is not
justified (see Figure 1). IAEA representatives proposed the concepts of non-exclusive licenses for
noncommercial use and partial IP sharing, which would protect proprietary algorithms while open-
sourcing architecture and interfaces.

A software escrow can simplify IP issues when agreed to in the planning phase of a software
development project. A software escrow is a legal contract which gives the client access to the software
developer’s source code and other proprietary materials if the developer becomes incapable of
supporting the software. A neutral third party serves as the escrow agent and provides such services as
checking that deposited assets are readable and virus free, confirming that decryption keys for
encrypted files are on deposit, providing a complete audit and inventory of your deposit, validating that
the development environment can be recreated, testing the functionality of the compiled deposit
materials, and confirming functionality of released software.

A phased approach to software development could mitigate some of the challenges, such as lengthy
development times (interim software products could be implemented earlier) or a product that does not
match the IAEA needs (there would be chances to review the project and make corrections at midpoints
in the development). Active participation by the IAEA in software development projects should also be
part of the phased approach. Software requirements and applicable standards should be defined at the
beginning of the project to avoid changes in scope.

The IAEA, as the end-user, must be an active participant in the software development process. It is not
acceptable for the IAEA to contract with a developer and remain uninvolved during development. The
IAEA must also be actively involved in developments where the contract is between an MSSP and the

E-7 |

Appendix 5: Report to the Workshop Participants

developer. Similarly, there should be IAEA champions to promote sustainability of the different
instrumentation software programs. This is a challenge due to the IAEA’s “rotation policy,” which results
in many professional staff members leaving the IAEA after seven years. Thus, there should be an
institutional commitment to software to ensure that software sustainability can span the rotation of the
sustainability champions.

Other recommendations encouraged better software documentation and more complete
documentation of software algorithms, which would address a variety of problems, including knowledge
management and the ability for software to survive unavailability of the software developer. It was
recommended that teams of SMEs and software developers consult with technical writers to produce
high quality documentation. In particular, the IAEA could prepare software requirements to document
the required functionality for vendors to use in preparing software. The requirements can be updated
as new measurement approaches emerge. This approach addresses both the “rot” problem and the
IAEA’s desire to have source code and allows the IAEA to define the requirements for the software
without having to own it. A system that does not meet the requirements would not be saleable to the
IAEA.

Innovative and promising approaches, such as the CRISP joint development and the OLEM
instrumentation project, should be benchmarked. It was recommended that more experience should be
gleaned from development partnerships or the use of RAINSTORM. Furthermore, success indicators or
metrics of future software development projects should be clearly defined for future projects. The
safeguards community should learn from other scientific communities that have previously faced and
addressed the software sustainability issue.

Specific technical recommendations include the use or improved implementation of modular
programming methods, which was regarded by the participants as an essential component of
programming. Modules of safeguards software would include data acquisition, data management, and
data analysis. This would keep the functional elements, which may be proprietary, separate from the
interfaces, which may be customized for the IAEA’s use, and facilitate desired access to the code for the
IAEA. Standardization of software features, such as basic modules and input/output formats, was also
recommended for the future.

Workshop participants agreed that the IAEA should seek feedback on RAINSTORM. The IAEA has
implemented RAINSTORM in several systems including the Universal NDA Data Acquisition Platform
(UNAP), the Laser Mapping System for Containment Verification (LMCV), the Next Generation
Autonomous Data Acquisition Module (NGAM), OLEM, and other instruments and sees it as a standard
for the future. However, because workshop participants were not widely familiar with RAINSTORM prior
to the workshop and were only familiar with it through its application in OLEM, they recommended
more review. This recommendation supports the establishment of a user group that includes people
who are knowledgeable in all aspects of developing and sustaining software. While RAINSTORM is not
yet a standard, the workshop participants applauded the IAEA’s initiative in developing this product

E-8 |

Appendix 5: Report to the Workshop Participants

which will one day serve that role and encouraged the community to develop other such standards and
associated requirements.

Acknowledgements

This project was funded by the National Nuclear Security Administration’s Next Generation Safeguards
Initiative’s Safeguards Technology subelement. The Department of State’s High Priority Safeguards
Program provided funding to cover the expenses of many of the private sector attendees. The
workshop team would like to give special acknowledgement and thanks to Jim Regula (IAEA) who
worked closely with the workshop team to plan for, develop, and make arrangements for the workshop,
Emil Farkas (IAEA) and Chris Orton (NNSA) for facilitating workshop breakout sessions, David Peranteau
(IAEA) and Hilary Lane (NNSA) for taking notes in the breakout sessions, Inna Cherkasskaya (IAEA) for
taking care of many of the logistical aspects in Vienna, Barbara Hoffheins and Ben Deering (U.S. Mission
to International Organizations in Vienna) for providing on-site assistance in Vienna, and Laura
MacArthur and Michele Rabatin (BNL) for providing administrative assistance to the workshop team.
Finally, the workshop team appreciates the participation and contributions of the many software,
hardware, and international safeguards experts who attended the workshop.

E-9 |

