
 
DOE Award Number: DE-SC0000957 

 
 

Recipient: University of Michigan, Ann Arbor 
 
 

Recovery Act –EFRC: Solar Energy Conversion in Complex Materials (SECCM) 
 
 

Project Director: Peter F. Green 
Department of Materials Science and Engineering 

2800 Plymouth Road, NCRC Bldg. 10; Room A179 
Telephone: 743-764-8161; e-mail: pfgreen@umich.edu 

 
 

Unlimited Distribution 
 
 
	
  
	
  
	
  

Executive	
  Summary	
  
	
  

Researchers	
   at	
   the	
   University	
   of	
   Michigan	
   designed	
   and	
   synthesized	
   new	
  
materials	
   for	
   high	
   efficiency	
   photovoltaic	
   (PV)	
   and	
   thermoelectric	
   (TE)	
   devices,	
  
predicated	
   on	
   new	
   fundamental	
   insights	
   into	
   equilibrium	
   and	
   non-­‐equilibrium	
  
processes,	
   including	
   quantum	
   phenomena,	
   that	
   occur	
   in	
   materials	
   over	
   various	
  
spatial	
  and	
  temporal	
  scales.	
  	
  	
  

They	
   developed	
   fundamentally	
   new	
   insights	
   into	
   relationships	
   between	
  
synthesis,	
   structures,	
   and	
   properties	
   of	
   inorganic	
   thin	
   films	
   and	
   low-­‐dimensional	
  
structures,	
   for	
   thermoelectric	
   and	
   photovoltaic	
   applications.	
   This	
   understanding	
  
enabled	
   us	
   to	
   exploit	
   trade-­‐offs	
   between	
   absorption	
   and	
   transport	
   processes	
   in	
  
nanostructured	
  materials.	
  Our	
  research	
  enabled,	
  for	
  the	
  first	
  time,	
  the	
  elucidation	
  of	
  
fundamental	
   limits	
   &	
   opportunities	
   for	
   solar	
   energy	
   conversion	
   in	
   quantum	
   dots	
  
and	
  highly	
  mismatched	
  alloys	
  (HMA)s.	
   	
  The	
  impact	
  of	
  this	
  work	
  is	
  that	
   it	
  provided	
  
guidance	
  in	
  the	
  fabrication	
  of	
  advanced	
  PV	
  and	
  TE	
  devices.	
  Moreover,	
   it	
   facilitated	
  
the	
  selection	
  and	
  design	
  of	
  materials	
  for	
  the	
  special	
  class	
  of	
  intermediate	
  band	
  &	
  hot	
  
carrier	
  solar	
  cells.	
  

In	
   another	
   area,	
   the	
   researchers	
   made	
   significant	
   advances	
   into	
   the	
  
computational	
   and	
   experimental	
   design	
   of	
   materials	
   for	
   thermoelectric	
   energy	
  
conversion.	
   	
  Specifically,	
   through	
  a	
  combination	
  of	
  materials	
  synthesis/processing,	
  
often	
   guided	
   by	
   theoretical/computational	
   efforts,	
   they	
   defined	
   fundamental	
  
interactions	
   that	
   determine	
   thermoelectric	
   energy	
   conversion	
   efficiency	
   in	
   the	
  
following	
   material	
   systems:	
   doped	
   organic	
   semiconductors,	
   single	
   molecules,	
  
nanowires,	
   nanostructured	
   bulk	
   thermoelectric	
   (TE)	
   materials	
   and	
   highly	
  



mismatched	
   alloys	
   (HMAs).	
   	
   These	
   accomplishments	
   enabled	
   the	
   identification	
   of	
  
new	
  pathways	
   toward	
  new	
  materials	
  design	
  and	
  morphological	
   control	
   for	
  higher	
  
ZT.	
  New	
  and	
  deep	
  insights	
  into	
  quantum	
  energy	
  transport	
  at	
  the	
  molecular	
  level	
  for	
  
existing	
  and	
  new	
  technologies	
  were	
  gained.	
  

The	
   third	
   major	
   area	
   of	
   accomplishment	
   includes	
   the	
   development	
   of	
   a	
  
fundamental	
   understanding	
   of	
   the	
   links	
   between	
   nanostructural	
   morphology,	
  
chemical	
   design	
   and	
   charge	
   recombination	
   in	
   organic	
   and	
   hybrid	
  materials.	
   	
   This	
  
was	
  enabled	
  through	
  the	
  use	
  of	
  computational	
  tools,	
  chemical	
  design	
  and	
  synthesis,	
  
and	
   processing	
   strategies,	
   to	
   create	
   new	
   organic	
   and	
   hybrid	
  materials	
   possessing	
  
specific	
   morphologies	
   for	
   energy	
   conversion.	
   An	
   important	
   accomplishment	
   also	
  
included	
  the	
  development	
  of	
  the	
  ideal	
  diode	
  equation	
  for	
  excitonic	
  materials.	
   	
  This	
  
model	
  not	
  only	
  predicted,	
  for	
  the	
  first	
  time,	
  the	
  thermodynamic	
  limits	
  of	
  OPVs,	
  but	
  it	
  
also	
  provided	
  guidance	
  in	
  the	
  molecular	
  (chemical)	
  structural	
  design,	
  morphological	
  
design	
  and	
  control	
  of	
  OPVs.	
  

It	
   is	
  noteworthy	
   that	
  some	
  of	
  our	
  accomplishments	
  were	
  predicated	
  on	
   the	
  
development	
   and	
   uses	
   of	
   ultrafast	
   spectroscopic	
   and	
   scanning	
   probe	
   tools	
   for	
  
investigating	
  the	
  spatial	
  and	
  temporal	
  behavior	
  of	
  the	
  organic,	
  inorganic	
  and	
  hybrid	
  
materials.	
  Consequently	
  we	
  were	
  able	
  to	
  elucidate	
  mechanisms	
  of	
  energy	
  (electron,	
  
phonon,	
  photon	
   interactions)	
   transport	
   and	
  charge	
   transfer	
  at	
   the	
   sub-­‐picosecond	
  
scales	
  and	
  nanometer	
  scales,	
  improving	
  materials	
  selection	
  and	
  design	
  for	
  efficient	
  
energy	
  conversion.	
  	
  

These	
   research	
  accomplishments	
  provided	
  new	
   insights	
  and	
  understanding	
  
of	
   three	
   important	
  grand	
  scientific	
  challenges	
  posed	
  by	
  the	
  Department	
  of	
  Energy.	
  
The	
   first	
   of	
   these	
   is	
   “How	
   do	
   we	
   control	
   materials	
   processes	
   at	
   the	
   level	
   of	
  
electrons?”	
  Our	
  work,	
  for	
  example,	
  led	
  to	
  the	
  understanding	
  of	
  the	
  relation	
  between	
  
the	
  electronic	
  structure	
  of	
  molecules	
  and	
  their	
  heat	
  dissipation	
  properties.	
  	
  A	
  second	
  
grand	
  challenge	
  is:	
  “How	
  can	
  we	
  master	
  energy	
  and	
  information	
  on	
  the	
  nanoscale	
  to	
  
create	
   new	
   technologies	
   with	
   capabilities	
   rivaling	
   those	
   of	
   living	
   things?”	
   	
   The	
  
researchers	
  demonstrated	
  the	
  growth	
  of	
  organic	
  thin	
  films	
  with	
  novel	
  crystalline	
  yet	
  
smooth	
   morphologies	
   previously	
   found	
   only	
   in	
   nature	
   (e.g.	
   sea	
   organisms).	
  
Additionally,	
   they	
   developed	
   a	
   model	
   for	
   multi-­‐phase,	
   multi-­‐scale	
   molecular	
  
transport	
  that	
  can	
  predict	
  nano-­‐morphology	
  from	
  molecular	
  properties	
  and	
  process	
  
conditions.	
   	
   A	
   third	
   Grand	
   Challenge	
   is	
   “How	
  do	
   remarkable	
   properties	
   of	
  matter	
  
emerge	
  from	
  the	
  complex	
  correlations	
  of	
  atomic	
  or	
  electronic	
  constituents	
  and	
  how	
  
can	
   we	
   control	
   these	
   properties?”	
   The	
   researchers	
   developed	
   first-­‐principles	
  
physics	
   models	
   of	
   exciton	
   and	
   charge	
   recombination	
   at	
   organic	
   interfaces.	
   	
   This	
  
guided	
  the	
  molecular	
  and	
  structural	
  design	
  of	
  materials,	
  leading	
  to	
  higher	
  efficiency	
  
solar	
  cells.	
  As	
  a	
  second	
  example,	
  the	
  researchers	
  developed	
  ab	
  initio	
  phase	
  diagram	
  
of	
   thermoelectric	
   materials	
   (substituted	
   and	
   filled	
   skutterudites)	
   that	
   were	
  
experimentally	
   synthesized.	
   Experiments,	
   for	
   the	
   first	
   time,	
   confirmed	
   the	
   model	
  
predictions.	
  	
  

Finally,	
   these	
   accomplishments	
   are	
   documented	
   in	
   over	
   250	
   refereed	
  
archival	
   publications	
   in	
   high	
   impact	
   factor	
   journals,	
   and	
   22	
   patent	
   applications.	
  
Moreover,	
   110	
   graduate	
   students	
   and	
   Post	
   docs,	
   employed	
   in	
   US	
   industry	
   and	
  
academia.	
  
	
  



	
  
	
  
	
  
Goals/Objectives	
  and	
  Accomplishments	
  
	
  
The	
   goal	
   of	
   the	
   Center	
   was	
   to	
   design	
   and	
   to	
   synthesize	
   new	
   materials	
   for	
   high	
  
efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new 
fundamental insights into equilibrium and non-equilibrium processes, including quantum 
phenomena, that occur in materials over various spatial and temporal scales.  
 
Our work was organized in three different thrusts below. 
Thrust 1: Photovoltaic Applications of Inorganic Thin Films and Low-Dimensional 
Structures. We developed a fundamental understanding of relationships between 
synthesis, structures, and properties of inorganic thin films and low-dimensional 
structures. 
 
Thrust 2: Thermoelectric Energy Conversion.  We defined fundamental interactions that 
determine thermoelectric energy conversion efficiency in: doped organic semiconductors, 
single molecule systems, nanowires, nanostructured bulk thermoelectric (TE ) materials, 
highly mismatched alloys (HMAs). This included the theoretical/computational design 
and experimental synthesis of materials for TE conversion. 
 
Thrust 3: Energy Transport In Organic And Hybrid Systems. We developed a 
fundamental understanding of the links between nanostructural morphology, chemical 
design and charge recombination in organic and organic based systems. 
 

The objectives and details of the accomplishments are now described for each of the 
thrusts. 
 
 
	
  
I.	
  Thrust	
  1:	
  Inorganic	
  Thin	
  Films	
  and	
  Low-­‐Dimensional	
  Structures:	
  
Photovoltaic	
  Applications  
 

Objectives: 

A. Develop in-situ structural-optical-electrical characterization of semiconductor PV devices 
ranging from thin films to branched nanowires. 

B. Calculate the confinement-induced electronic bandgaps of wurtzite InGaN nanowires 
C. 3D phase-field simulations of the influence of buffer layer morphology on single and multi-

layer QD growth 
D. Examine the influence of QD aspect ratio on carrier lifetimes and photovoltaic properties 

under a range of solar concentrations. 
E. Examine the nature of the IB states (extended vs. localized) and carrier lifetimes in highly 

mismatched alloy systems. 
F. Use density functional and many-body perturbation theory in the GW approximation to 

calculate the electronic states and optoelectronic properties of highly mismatched alloys. 



G. Examine alternative barrier layers to control carrier dynamics in staggered type II band 
offset QD heterostructures 

H. Examine ultrafast laser induced nanostructuring of ZnSe and its impact on the wavelength 
and angular dependence of absorption. 

Accomplishments: 

•  Mechanisms of Quantum Dot Formation during Annealing of Metallic Islands  
Provides new insights into the mechanisms of quantum dot formation which are likely to be 
applicable to a wide range of semiconductors.  Semiconductor quantum dots have been proposed 
for a wide variety of solid state devices, including solar cells and light-emitting diodes. During 
annealing of In islands, crystalline InAs quantum dots form via either droplet epitaxy or solid 
phase epitaxy.  For surfaces with metastable Ga-As dimers, one-to-one conversion from In island 
to InAs quantum dot occurs by droplet epitaxy. For surfaces with amorphous As cap, quantum 
dots nucleate by solid phase epitaxy, leading to more quantum dots than In islands. (Goldman, 
Pan) 

•	
  	
  What is the Band Alignment of GaSb/GaAs Quantum Dots?  
This investigation reveals the surface termination-independence of effective bandgaps and band 
offsets at GaSb/GaAs QD interfaces.  Capped GaSb/GaAs QDs were grown by MBE on both Sb- 
and As- terminated surfaces. TEM reveals both coherent and semi-coherent clusters, as well as 
misfit dislocations, independent of surface termination. X-STM and STS reveal clustered QDs 
with “nested” type I band offsets at the GaSb/GaAs interfaces, consistent with those expected for 
unstrained GaSb/GaAs systems. (Goldman, Millunchick) 

•	
    InGaN Nanostructures for Hot Carrier Solar Cells  
The energy band width of nanostructures grown using selective area epitaxy has been much 
broader than expected, reducing device efficiency in applications such as hot carrier solar cells. 
This work explains the origin of this energy state broadening.  InGaN active layers were 
embedded in GaN nanopyramids grown by selective area epitaxy.  A phase-field model was 
developed to simulate growth.  The photoluminescence (PL) spectrum calculated from simulation 
showed good agreement with the measured PL spectrum. (Ku, Thornton)   
•	
    Quantum-Confined InN for Visible-Wavelength Optoelectronics  
InN nanostructures may be used to fabricate solar cells, light-emitting diodes, and lasers that 
convert visible light to electricity and vice versa more efficiently.  Atomistic first-principles 
calculations used to predict the electronic and optical properties of 1nm-wide InN nanowires.  
Quantum confinement in the nanowires substantially increases the band gap and the exciton 
binding energy compared to bulk InN, leading to efficient optical emission and absorption in the 
visible range.  Quantum-confined InN nanostructures are a promising alternative to InGaN alloys 
for optoelectronic applications at green/cyan wavelengths, where efficient light emitting devices 
are currently unavailable.  (Kioupakis) 
 

 

 

II.	
  Thermoelectric	
  Energy	
  Conversion  
Objectives:  

A. Use MBE to grow (Bi1-xSbx)2Te3 thin films and study their carrier and lattice dynamics by  
transport studies and by ultra-fast optical measurements. 



B. Carry out simulation studies on the new energy conversion mechanism incorporating 
potential barriers and hot carrier transport, and attempt to grow and explore relevant 
semiconducting structures. 

C. Explore contributions to the temperature-independent lattice conductivity of Cu2Se and 
B13C2 from the short and long-range acoustic phonon transport. 

D. Explore the influence of embedded indium nanocrystals on thermoelectric properties of 
GaAs. 

E. Explore a possibility of shifting the position of the peak of the thermoelectric phonon-drag 
effect by the strength of the film-substrate interaction. 

F. Continue experiments on single molecular junctions with different molecules and their 
various terminations to elucidate heat dissipation and Peltier cooling. 

G. Pursue further improvements in the Seebeck coefficient of organic semiconductors. 

Accomplishments 

•  Influence of Embedded Metallic Nanocrystals on Thermoelectric Properties of 
Semiconductors: This approach provides a possible path toward improvements in the 
thermoelectric properties of compound semiconductors. Low-dimensional structures, including 
embedded metallic NCs are predicted to enhance the thermoelectric figure of merit. Using In+ ion 
implantation into GaAs with various annealing temperatures, we have identified conditions 
necessary for the formation of In NCs. We show these NCs act as electron donors, while the 
Seebeck coefficient is enhanced and grain boundary scattering reduces the thermal conductivity. 
Application of this approach to more heavily doped GaAs will likely lead to further increases in 
the Seebeck coefficient. (Goldman, Uher, Clarke) 

•  Understanding Heat-Dissipation in Atomic-Scale Junctions 
This work establishes the formalism necessary for understanding heat dissipation in several 
mesoscopic systems where transport is predominantly elastic. Such systems include 
semiconductor nanowires, two-dimensional electron gases, semiconductor heterostructures, 
carbon nanotubes, and graphene, among others. Heat dissipation and transport nanoscale devices 
remain poorly characterized due to experimental challenges. In this study, using custom-
fabricated scanning probes with integrated nanoscale thermocouples, it is shown that heat 
dissipation in the electrodes of molecular junctions, whose transmission characteristics are 
strongly dependent on energy, is asymmetric, i.e. unequal and dependent on both the bias polarity 
and the thermoelectric properties of atomic-scale junctions. In contrast, atomic junctions whose 
transmission characteristics show weak energy dependence do not exhibit appreciable 
asymmetry. These results unambiguously relate the electronic transmission characteristics of 
atomic-scale junctions to their heat dissipation properties. (Reddy) 

•  Thermoelectric Properties of High Mismatched Alloys – Case of ZnTe:N  
Highly mismatched alloys (HMAs) have been predicted to exhibit enhanced TE properties. By 
changing the nitrogen concentration, a measurable improvement of the TE performance was 
demonstrated in the HMA system ZnTe:N. Thin films of ZnTe:N materials were grown on GaAs 
substrates layer by layer. TE properties were measured over a large range of temperatures 5 – 300 
K. A greatly enhanced Seebeck coefficient at low temperatures was observed, which 
corresponded with a plateau in electrical resistivity. (Uher, Phillips) 

•  “Adding” Electrons in Bismuth Telluride through Thallium Doping  
The presence of thallium atoms has been proved to be a more elegant and much easier way of 
controlling the electrical properties of bismuth telluride. The right number of thallium atoms can 
help making advanced electronic materials.  Single crystals of Bi2-xTlxTe3 have been grown with x 
= 0 − 0.30.  Microscopy and spectroscopy techniques have been used to analyze the structure and 



chemical composition.  Electrical and thermal properties have been characterized at different 
temperatures. Experimental data have been examined by theoretical model. (Uher) 

•  Phonon Drag in Thin Films Tuned by the Choice of Substrate  
Our experiments provide a way to study the nature of the phonon spectrum in thin films, which is 
rarely probed but clearly important for a complete understanding of thin film properties and the 
interplay of the substrate and films. Bi2Te3 films were grown on BaF2 and sapphire, substrates 
with vastly different physical properties. The magnitude of the phonon-drag peak strongly 
depends on the film thickness while the temperature where the peak occurs is thickness 
independent. (Uher) 

•  Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance  
Provides novel design principle for enhancing thermoelectric figure-of-merit (ZT) which could 
help achieve ZT>1 for organic semiconductors. Low thermal boundary conductance (Gb) between 
organic semiconductor copper phthalocyanine (CuPc) and silver (Ag) proved to be beneficial to 
thermoelectric material design. Measurements showed thermal conductivity decreases initially as 
silver nanoparticle (NP) concentration (xAg%) rises while electrical conductivity continues to 
grow, resulting in optimization in ZT at specific concentrations. Finite Element Modeling 
indicates that ZT values of organic-inorganic nanocomposites can be potentially enhanced 10-
fold around the optimized filler concentrations (xf%) with interfacial engineering and particle size 
(radius r) control. (Shtein, Pipe) 

•  A General Strategy to Enhance Thermoelectric Efficiency in Organic Semiconductors  
Since reducing dopant volume leads to a substantial increase in carrier mobility, this strategy can 
be applied to improve the performance of organic optoelectronic or electronic devices in which 
highly conductive OSCs are required. Removing excess poly(styrenesulphonate) (PSS) dopant 
from poly(3,4-ethylenedioxythiophene) (PEDOT) was shown to simultaneously increase both the 
Seebeck coefficient (S) and electrical conductivity (s), leading to a significant increase in S2s. 
Thermal conductivity (k) was also decreased by removing PSS.  As a result, all parameters 
constituting ZT (= S2s/k) vary so that ZT increases, leading to ZT = 0.42 at room temperature. 
(Pipe) 
 

 

 

III. Thrust 3: Energy Transport In Organic And Hybrid Systems 

Objectives:  

A. Design, fabricate, and characterize optical microcavity OPVs utilizing high luminescence 
quantum yield molecules – a new design principle for OPVs.  

B. Demonstrate algorithms and simulation procedures for the prediction of electron and hole 
transport properties in disordered structures, including interfaces. 

C. Achieve highly oriented morphologies (and tunable energy levels) of polymer-based solar 
cells (spherulites etc.) and correlate with carrier transport processes and device 
performance.  

D. Confirm and elucidate templating effects of deposition order & conditions.  
E. Show high efficiency OPV structures incorporating exciton dissociation layer (EDL) at the 

acceptor/cathode interface, and OPVs with two EDLs in addition to the donor/acceptor 
heterojunction already present.  

F. Develop complementary fully quantum-mechanical methodology for calculating exciton 
transfer rates within the donor and acceptor layers.  



G. Develop molecular design criteria (e.g. controlled HOMO-LUMO levels and gap sizes, 
long-range ordered morphologies with high electron and hole mobilities) in small-, macro-
molecular, and organic-inorganic systems. 

H. Develop hybrid structures involving silsesquioxanes functionalized with brominated phenyl 
groups, with the goal to create 3-D conductive networks with tailored HOMO-LUMO gaps, 
and hence, exhibiting target light absorption properties. 

 

Accomplishments 
•  A predictive approach for calculating electron charge transfer within molecules 
Provides a rigorous scheme to obtain the electron transfer rate constant in OPV systems by taking 
into account nuclear tunneling effect. Charge transfer and transport rates determine photovoltaic 
cell efficiencies.  Our computational scheme obtains charge transfer (CT) rate constants within 
the framework of Fermi’s golden rule (FGR), with no empirical parameterization invoked.  CT 
rate constants were calculated for two benchmark donor-acceptor systems: phenylacetylene-
bridged carbazole-naphthalimide and C60-aniline (N,N-dimethylaniline).  The results 
demonstrate the validity of FGR approach for calculating CT rate constants in solid-state organic 
photovoltaic materials where intramolecular degrees of freedom would dominate the CT process.  
(Dunietz, Geva) 

•  Silicon Caged Macromolecules for Solar Applications at Reduced Cost  
Organic/hybrid photovoltaic cells offer multiple opportunities to improve PV flexibility, 
tunability, and cost.  The creation of new silica based synthetic materials offers the opportunity to 
exploit advantages found in carbon based systems but with more control of size, molecular 
structure, optical properties and ultimately cost to manufacture.  Photophysical properties were 
characterized using single photon absorption, two-photon absorption, fluorescence emission and 
fluorescence lifetime kinetics. Fluorescence efficiency decreases in going to larger cages, 
unexpected for an increasing number of chromophores. 10 stilbenevinylSQ offers up to a 10-fold 
increase in two-photon absorption cross-section per chromophore over a free chromophore, 
signifying an increased ability to separate charges in the absorption process.  (Laine, Goodson) 

•  Stretchable Nanoparticle Conductors with Self-Organized Conductive Pathways   
Stretchable conductors from self-organized nanoparticles show great potential for bio-implantable 
devices, photovoltaics, and flexible electronics with electro-tunable mechanical properties.  Well-
established conduction pathways are an essential requirement for good stretchable conductors.  
Stretchable conductors from spherical nanoparticles, despite their minimal aspect ratio showed 
excellent properties: 5xLBL had conductivity of 11,000 S cm-1 and 2,400 S cm-1 at 0% and 110% 
strain, while 5xVAF revealed record conductivity of 35 S cm-1 at 480% strain. Solid composites 
with electro-tunable mechanical properties could enable a new generation of implantable devices 
or soft robotics.  (Uher, Kotov) 

•  Improved measurements of ultrafast pulses of light  
Ultrafast pulse measurements are important for obtaining high time resolution measurements of 
energy and charge transfer in photovoltaics. The method will also find applications in nonlinear 
microscopy and other types of spectroscopic measurements.  It is possible to measure the time-
duration of a fs pulse by making two copies of the pulse with a controllable relative time-delay, 
and measuring the second-harmonic spectrum of the pulse-pair as a function of the relative time-
delay.  The above method takes a long time because you need to remove several interfering 
signals from the desired signal.  If you add a controllable phase to one of the pulse-copies, then 
you can remove the interfering signals using much less data.  (Ogilvie) 

•  Recovering lost excitons in organic photovoltaics using a transparent dissociation layer  



Photocurrent generation in organic solar cells requires the diffusion of excitons to a 
heterojunction (HJ) for dissociation. If excitons recombine before reaching a HJ, their energy is 
lost and they don’t contribute to photocurrent. In this work, the EDL creates a second HJ so that 
excitons don’t have to travel as far to dissociate. The increase in photocurrent could lead to 
significant improvements in power efficiency for future devices.  EQE is the efficiency of 
converting absorbed photons to collected free electrons.  We show that MoO3 (a common anode 
buffer layer) parasitically quenches excitons.  The EDL converts the anode/donor interface from 
quenching to exciton-dissociating.  Photocurrent from both heterojunctions are perfectly additive 
when no electrical bias is applied.  (Shtein, Kim, Green) 

•  Reduction of open circuit voltage loss in a polymer photovoltaic cell via interfacial 
molecular design  
May aid in the design of materials which overcome charge recombination loss to the open circuit 
voltage leading to inexpensive, high efficiency organic photovoltaic cells.  Multiple monolayer 
spacers are placed at the donor-acceptor junction in a planar polymer solar cell.  Open circuit 
voltage rises from 0.43 to 0.9 V, while fill factor and current density fall. Diode current and 
temperature dependent measurements suggest that the interfacial spacer suppresses deleterious 
charge recombination. (Kim, Green, Shtein) 

•  Improved ultrafast two-dimensional electronic spectroscopy  
Advanced ultrafast spectroscopies like 2DES offer high time resolution measurements of energy 
and charge transfer in photovoltaics, and can additionally reveal coupling between states and the 
impact of “hot states” on charge transfer. The present method makes 2DES measurements on 
photovoltaics feasible. In 2DES, there are two pump pulses with a variable time delay and a probe 
pulse. Generating the two pump pulses with a pulse-shaper allows for efficient removal of 
interfering signals. The traditional way to perform 2DES with a pulse shaper uses “pump-probe” 
geometry where the two pumps are collinear and the signal is emitted in the same direction as the 
probe. By adding a diffractive optic element to split the pump pulses into two beams, the signal 
can be emitted in a “background-free” direction enabling a large increase in S/N while 
maintaining the advantages of pulse-shaped 2DES. (Ogilvie) 

•  Confining light to metal’s surface greatly enhances absorption in organic photovoltaics 
(OPVs)  
Using surface plasmons (SPPs), oscillations of charges on a metal surface, can enhance 
absorption and efficiency in thin OPVs and enable improved light detection for integrated, 
nanoscale optics.  Wavelength and angle-resolved photocurrents are measured for different light 
polarizations to compare SPP and normal excitation schemes across the visible spectrum.  
Computational simulations of optics and current generation in devices confirm that performance 
improvements in experiments are a result of up to a 9x enhancement in light absorption. (Shtein, 
Green) 

•  Role of Domain Size and Phase Purity on Carrier Transport in Organic Solar Cells  
Provides morphological design principles that enable the fabrication of the active material 
morphologies of that would maximize  OPV device efficiency.  Used a combination of thermal 
energy, organic solvent and super critical carbon dioxide (sc-CO2) processing strategies to create 
morphologies of PHT/PCB61M with different domain sizes and average phase purities.  scCO2 
processing improves phase purities without coarsening domains, leading to: (1) 40% increase in 
initial charge carrier density (n0); (2) increased carrier by a factor of 2; (3) decreased mobility (μ) 
and recombination coefficient (α); (4) short circuit currents (JSC) and power conversion 
efficiencies (PCE) of devices are enhanced by a factor of 3, compared to solvent-cast devices.  
Thermal annealing increases domain size phase purity, as well as : (1) smaller n0 and α; (2) 1400% 
increase in μ, JSC and fill factor. 

 



 
•  Surprisingly high electron conductivity and efficient exciton blocking  
Working with the group of Prof. Green, we investigated our novel  exciton filtering buffer layers 
developed under CSTEC sponsorship, and comprised of mixtures of C60 with the wide energy 
gap, small molecular weight semiconductor bathophenanthroline (BPhen). These mixtures exhibit 
a combination of surprisingly high electron conductivity and efficient exciton blocking when 
employed as buffer layers in organic photovoltaic cells. Photoluminescence quenching 
measurements show that a 1:1 BPhen/C60 mixed layer has an exciton blocking efficiency of 84 ± 
5% compared to that of 100% for a neat BPhen layer. This high blocking efficiency is 
accompanied by a 100-fold increase in electron conductivity compared with neat BPhen. 
Transient photocurrent measurements show that charge transport through a neat BPhen buffer is 
dispersive, in contrast to nondispersive transport in the compound buffer. Interestingly, although 
the conductivity is high, there is no clearly defined insulating-toconducting phase transition with 
increased insulating BPhen fraction. Thus, we infer that C60 undergoes nanoscale (<10 nm 
domain size) phase segregation even at very high (>80%) BPhen fractions.  
 
•  Critical Domain Sizes for Efficient Exciton Transport and Dissociation in Small-
Molecular Organic Solar Cells 
 
Although bulk heterojunction (BHJ) organic solar cells devices often exhibit enhanced 
performance over planar devices, the volumetric distribution of materials in BHJs makes it 
difficult to characterize active layer morphology and separate the individual steps of the 
photoconversion process. Thus, while the impact of nanostructure on charge and exciton 
management remains critical to improving OPV performance, it is poorly understood. We used a 
two-dimensionally distributed mixed layer inserted at the heterojunction of planar-mixed 
heterojunction small-molecule OPVs. By constraining the nanostructure to two-dimensions, we 
were able to directly quantify the dependence of morphology on composition and determine the 
critical domain sizes necessary for efficient exciton diffusion and dissociation. These results 
provide a much-needed framework for optimizing morphology with respect to exciton transport 
and dissociation in the design and processing of future small molecular OPVs. 
 
 
•  Role of Interlayer Förster Resonant Energy Transfer in Single- and Multi-Junction OPVs  
 
Interlayer Fo�rster resonant energy transfer (FRET) can occur over larger distances than the 
typical exciton diffusion length (LD), OPV structures supporting FRET has been considered to 
improving exciton diffusion efficiency (ηDiff). Prior work assumed 100% harvesting of excitons 
undergoing FRET, whereas we show those assumptions to be inaccurate in many common OPV 
material combinations. We showed how the diffusion efficiency of the Fo�rster acceptor (FA) 
layer determines the overall diffusion efficiency of the device. We used modeling and 
experiments of the FRET process in single- and multi-junction devices to properly design layer 
structures and material selection based on known material properties to achieve higher efficiency 
devices.  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



Summary of Project Activities and Overall Accomplishments 
 
University of Michigan researchers made revolutionary advances toward the design and 
synthesis of functional materials for low cost, high efficiency photovoltaic (PV) and 
thermoelectric (TE) devices. New fundamental insights into equilibrium and non-
equilibrium charge transport and generation processes that occur in materials over 
various spatial and temporal scales (website http://cstec.engin.umich.edu) were 
developed.  
 
Specifically, they accomplished the following: (1) developed a fundamental 
understanding of charge and exciton dynamics in organic heterojunctions, (2) developed 
new insights into quantum dot material physics in inorganic structures, and (3) developed 
an understanding of thermal transport in single molecules in thermoelectric materials.  A 
summary of the accomplishments follows. 
 
 

a. Fundamental origins of thermoelectric energy conversion in: i) doped organic 
semiconductors, ii) single molecule systems, iii) nanowires, iv) nanostructured 
bulk thermoelectric (TE ) materials and v) highly mismatched alloys (HMAs). 

b.  Elucidated the fundamental limits & opportunities for energy conversion in 
quantum dot nanostructures and HMAs via intermediate band & hot carrier solar 
cells. 

c. Developed new means of circumventing the trade-off between absorption and 
transport processes in nanostructured energy conversion systems. 

d. Developed and used ultrafast spectroscopic and scanning probe tools to elucidate 
mechanisms of energy transport and charge transfer at the nanometer and sub-
picosecond scales. 

e. Developed computational tools, chemical synthesis, and processing strategies to 
create new organic and hybrid materials for energy conversion. 

f. Developed the ideal diode equation for excitonic materials to understand the 
fundamental energy conversion processes in OPVs and guide molecular design. 

g. Demonstrated thermal and photon energy conversion in HMA systems. 
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