

LA-UR-15-24599

Approved for public release; distribution is unlimited.

Title: Fully Autonomous Multiplet Event Detection: Application to Local-Distance Monitoring of Blood Falls Seismicity

Author(s): Carmichael, Joshua Daniel
Carr, Christina
Pettit, Erin C.

Intended for: Report

Issued: 2015-06-18

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **Title**

2 Fully Autonomous Multiplet Event Detection: Application to Local-Distance Monitoring
3 of Blood Falls Seismicity.

5 **Authors**

6 Joshua D Carmichael¹, Christina Carr², Erin C. Pettit²

8 **Abstract**

9 We apply a fully autonomous icequake detection methodology to a single day of high-
10 sample rate (200 Hz) seismic network data recorded from the terminus of Taylor Glacier,
11 ANT that temporally coincided with a brine release episode near Blood Falls (May 13,
12 2014). We demonstrate a statistically validated procedure to assemble waveforms
13 triggered by icequakes into populations of clusters linked by intra-event waveform
14 similarity. Our processing methodology implements a noise-adaptive power detector
15 coupled with a complete-linkage clustering algorithm and noise-adaptive correlation
16 detector. This detector-chain reveals a population of 20 multiplet sequences that includes
17 ~150 icequakes and produces zero false alarms on the concurrent, diurnally variable
18 noise. Our results are very promising for identifying changes in background seismicity
19 associated with the presence or absence of brine release episodes. We thereby suggest
20 that our methodology could be applied to longer time periods to establish a brine-release
21 monitoring program for Blood Falls that is based on icequake detections.

22 **1. Introduction**

23 Blood Falls is a release of hypersaline, subglacial brine at the surface of the Taylor
24 Glacier in the McMurdo Dry Valleys that provides an accessible portal into an Antarctic
25 subglacial ecosystem. Taylor Glacier is a cold-based glacier that overlies sedimentary
26 bedrock and a preglacial marine deposit providing the ultimate source for a basal brine
27 system. Little is known about the origin of this brine, the amount of time it has been
28 sealed below Taylor Glacier, or the extent to which the brine is altered as it makes its way
29 to the surface at Blood Falls or what triggers its episodic release exclusively at Blood
30 Falls. Recent geomicrobiological analysis of the outflow has revealed a unique
31 community of marine organisms that persist by cycling iron and sulfur compounds for
32 growth. Little is known about the hydrology of the glacier, the physical structure of the
33 subglacial habitat, or the mechanism of brine release to the surface.

34 There are several motivating questions relating the seismicity of Taylor Glacier to
35 englacial or subglacial fluid flow. Previous geophysical work on Taylor Glacier has
36 related surficial melt input to a crack near Blood Falls, at a time when no brine release
37 was observed. Immediate, further work on Taylor Glacier seismicity seeks to answer the
38 following two questions: (1) “What is the seismic expression of brine outflow events
39 from Blood Falls?” and (2) “How does seasonal seismicity related to summer melt
40 events compare with seismicity associated with brine outflow?”

¹ Ground Based Nuclear Detonation Detection Group, Los Alamos National Laboratory,
Los Alamos, NM, 87544

² Geophysical Institute, University of Alaska Fairbanks, Fairbanks AK 99775

43

44 **Mission**

45 To address our first objective, we determine if brine release episodes from Taylor
46 Glacier, ANT (Figure 1) have detectable seismic signatures. A positive identification of
47 such signatures requires that icequakes attributed to a documented brine release is
48 distinguishable from any expected background seismicity in timing and/or location. To
49 determine if such signatures exist, we first searched for repeatable icequakes indicative of
50 active collocated events on days that include known discharge events (e.g., Figure 2). We
51 propose to then search for these same, repetitive icequakes (multiplets) on days with no
52 known discharge events. We will accept the hypothesis that icequakes spatiotemporally
53 located with brine release episodes are strong indicators for brine seep unrest if these
54 icequakes are not observed during relative quiescence. We will reject this hypothesis if
55 such release points are associated with spatially coincident active seismicity, without any
56 observable surface expression.

57

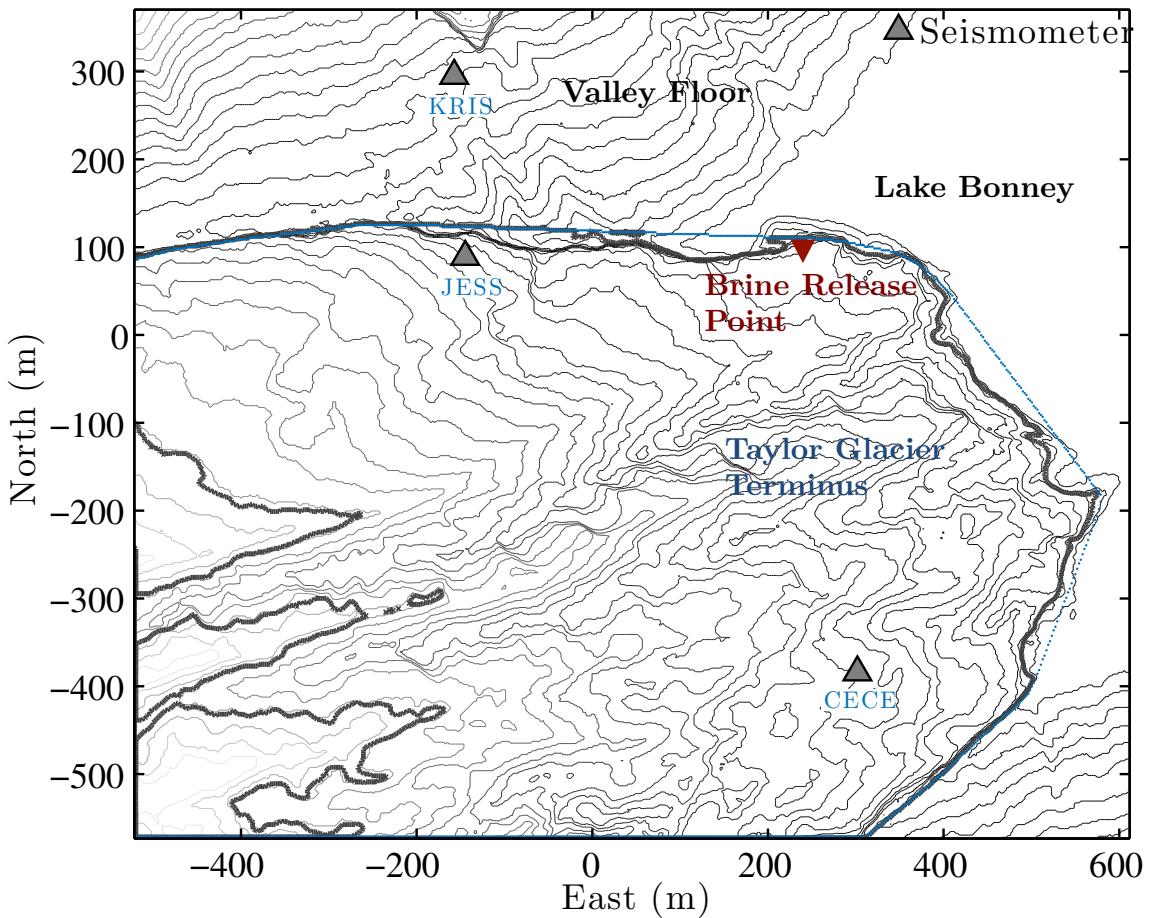
58 Here, we demonstrate an autonomous multiplet detector using a single day of seismic
59 network data recorded on day of year (DOY) 133, 2014. Our immediate goal is to
60 demonstrate a capability to evaluate repeating seismicity from Blood Falls rapidly and
61 thereby enable more focused analyses on the icequake locations and source magnitudes in
62 the presence and absence of coincident, brine discharge events. Future work will then be
63 devoted to a fully addressing the competing hypotheses (stated above).

64

65 **2. Data**

66 Geophysical data were collected from Taylor Glacier (-77.721, +162.266) during 2013-
67 2015 and included GPS, seismic, ground penetrating radar, time-lapse imagery, and
68 interferometric datasets. The near-terminus region, in particular, was instrumented with
69 three triaxial geophones (L-22 geophones) during the local summer of 2013 (Figure 1).
70 One of the three sensors (JESS) was installed within ~1 m deep ice pit, oriented to
71 geographical North and then backfilled with ice chips. The other receivers (CECE and
72 KRIS) was installed within ~0.5 m deep pits in the rocky ground, oriented to
73 geographical North, and then covered with rocky dirt. All instruments continuously
74 sampled ground velocity at 200 Hz using a Quanterra digitizer and logged data to a solid
75 state hard-drive. The data were retrieved the local summer of 2015.

76



77

78

Figure 1 A 900m by 1100m overhead contour map of Taylor Glacier instrumented with 3 over-winter geophones. The glacier is interior to the blue curve; other geographical features are located.

79

80

May 13

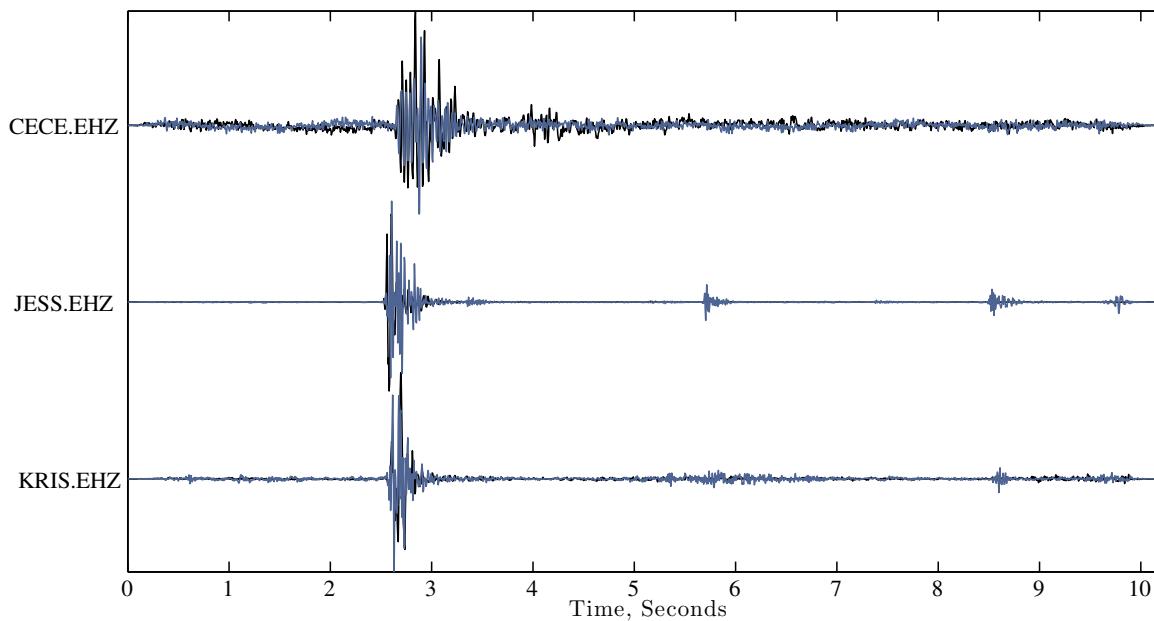
81
8283 *Figure 2 Brine released from Taylor Glacier on May 13, 2014 (UTC).*

84

85 **3. Methods**

86

87 To identify repeating collocated seismic sources (e.g., Figure 4), we processed our
88 geophone data using a fully autonomous detection procedure. This procedure was
89 implemented sequentially in the four following steps.

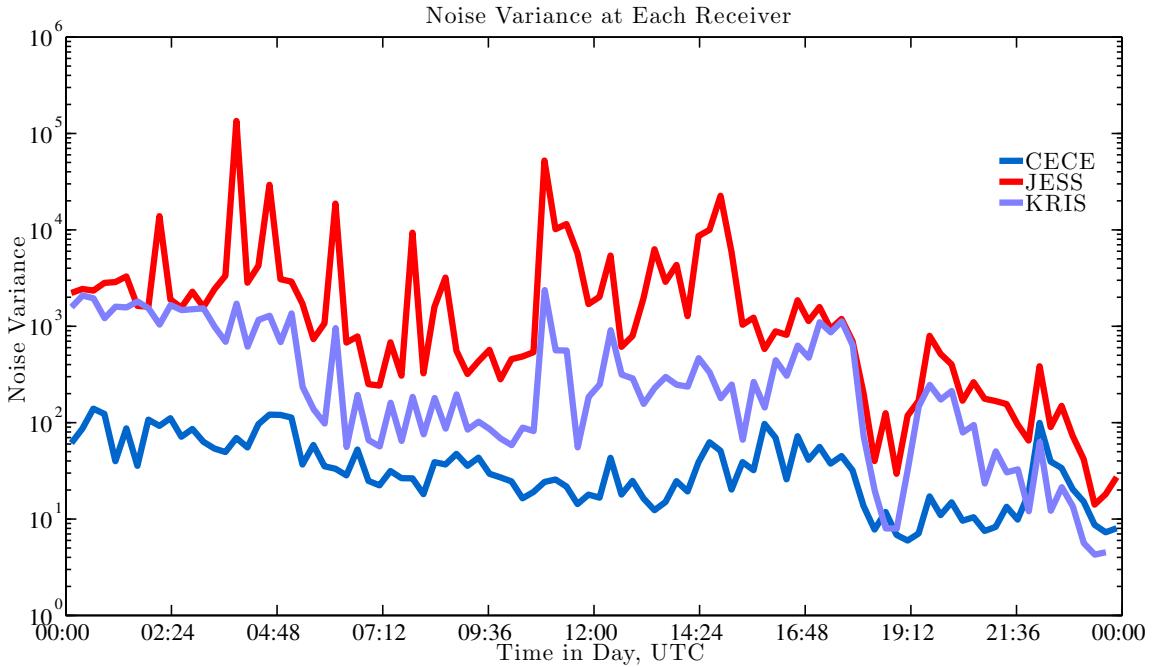


90
91 **Figure 4** A pair of vertical channel multichannel seismic waveforms measuring ground
92 velocity recorded on DOY 133, 2014 during a brine release event. The waveforms were
93 recorded about 11 hours apart and show similar intra-event arrival times of equivalent
94 waveform features and highly correlated waveform shapes. These attributes suggest that
95 the waveforms originate from the same location and are triggered by similar focal
96 mechanisms.

98 3.1 Seismic Event Identification

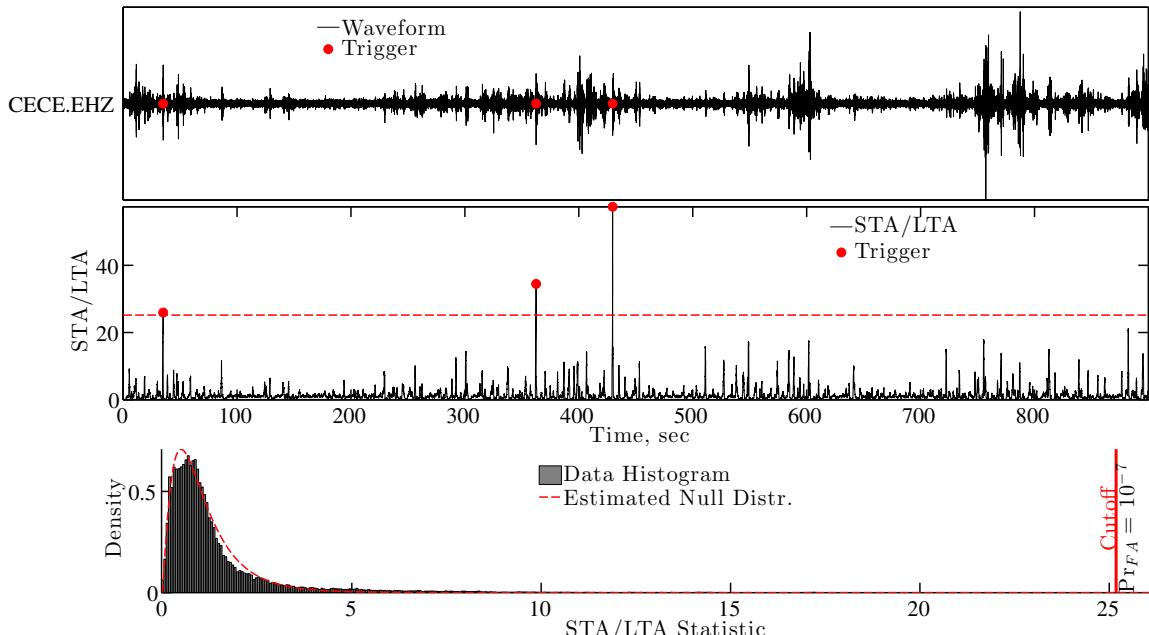
99 First, we identified individual seismic events by processing data from the vertical-channel
100 of each geophone using a noise-adaptive, digital power detector. This detector computes
101 a data statistic at each point in a geophone data stream by dividing an estimate of the
102 sample variance within a leading data window by an estimate of the sample variance
103 within a longer, following window i.e., the STA/LTA [Blandford, 1974]. To account for
104 statistically correlated background noise that is common to glaciogenic environments
105 (Figure 3),

106



107
 108 **Figure 3** Noise variance estimates for each station in the network, computed in parallel
 109 with the power detector, after removing event detections. Note the vertical axis log scale.
 110 The noisiest station JESS is installed near the cliff face, where a substantial amount of
 111 melt and cliff face flexure occurs; KRIS is installed near the cliff face of the Rhone
 112 glacier; the quietest station (CECE) is installed farthest in-ice and away from any
 113 vertical ice surface.

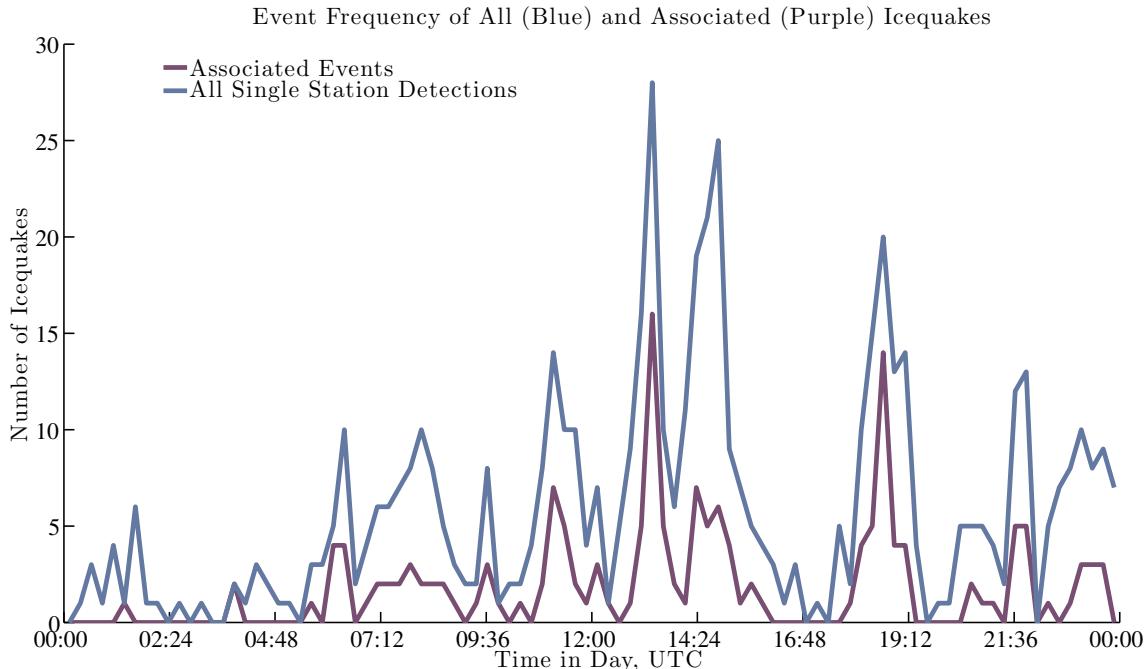
114
 115 we computed robust estimates for the degree-of-freedom parameters of the data statistic's
 116 F -distribution within each detection window (see Appendix A). These updated
 117 parameters enabled us to dynamically adjust the detector's event declaration threshold
 118 within each window and maintain a constant, acceptably low false-detection probability.
 119 We set this probability to 10^{-7} using the Neyman-Pearson decision rule [Kay, 1998;
 120 Chapter 7], so that waveforms with an SNR of ~ 10 dB had a 95% probability of being
 121 detected on a single geophone in average noise conditions. We document the
 122 computational form of the detection statistic, the decision rule threshold, and the density
 123 function's shaping parameters in Appendix A (see also [Carmichael *et al.*, 2015 a]).
 124 Results for a single, 15-minute recording period are illustrated in Figure 5.
 125



126
127 **Figure 5** Power detector (STA/LTA) results as applied to 15 minutes of seismic data
128 recorded at Taylor station CECE after local noon on DOY 133, which resulted in three,
129 vertical channel detections. **Top:** Vertical channel seismic data bandpass filtered
130 between 2.5 and 35 Hz. The red markers correspond to waveform detections and where
131 the STA/LTA statistic exceeded the event declaration value; the other waveforms visually
132 apparent in this panel are too emergent to trigger our detector. **Middle:** The STA/LTA
133 statistic computed from the waveform data using a 0.65 sec (130 sample) short-term
134 window and a 2.65 second (530 sample) long-term window; the red horizontal line shows
135 the declaration threshold for a 10^7 false alarm rate (η). **Bottom:** The histogram (gray) of
136 the STA/LTA statistic, superimposed with the hypothesized null distribution (red, dashed
137 curve). The shaping parameters for the predicted curve were estimated from N_1 and N_2
138 (the distribution's degrees of freedom) and the red vertical line indicates the threshold
139 η from the middle panel; both estimates were made using the data shown here.
140

141 3.2 Icequake Waveform Association

142 Next, waveforms detected on different geophones within a time interval less than the
143 expected transit time of a shear wave across the network were identified as the same
144 icequake (i.e., we performed waveform association). From these detections, we counted
145 events that were large enough to be associated on all three geophones, and binned this
146 count each hour to measure icequake seismicity (Figure 6). To quantify our confidence in
147 this estimate, we identified time-windows where the predicted null (signal-absent) F -
148 distributional curve for the STA/LTA statistic matched the data statistic's histogram with
149 $\leq 20\%$ root-means-square error. These signals provided our best hourly estimate of the
150 seismicity as well as a measure of confidence in our estimates (see also [Carmichael *et
151 al.*, 2012; Carmichael *et al.*, 2015a]).



153
154 **Figure 6** Power detector (STA/LTA) results for DOY 133, 2014. Seismic event frequency
155 (seismicity) binned and counted into 15-minute intervals. The blue curve shows the total
156 number of events that were detectable at one or more geophones. The purple curve shows
157 seismicity for events large enough to register detections on all three receivers. These
158 curves temporally correlate, and thereby suggest that strong events occur with weaker
159 events.

161 3.3 Seismic Waveform Clustering

162 Third, we applied a hierarchical, complete-linkage clustering algorithm to all associated
163 waveforms following Carmichael *et al.* [2012]. To perform this clustering, we first
164 computed the correlation coefficient ρ between all possible pairs of associated
165 multichannel waveforms, which were cut five seconds before their power-detected pick
166 times and five seconds thereafter. A multichannel seismogram produced by a seismic
167 source, sampled at interval Δt , is represented by a data matrix as follows:
168

$$169 \mathbf{W}(t) = [\mathbf{w}_1(t), \dots, \mathbf{w}_k(t), \dots, \mathbf{w}_N(t)], \text{ for } t = t_0, t_0 + \Delta t, \dots, t_0 + N\Delta t. \quad (1)$$

170 In Equation (1), matrix column $\mathbf{w}_k(t)$ is an N -sample seismogram from geophone k ,
171 recorded over T -seconds (10 sec here) from absolute reference time t_0 so that $\mathbf{w}_k(t_0 +$
172 $n\Delta t)$ refers to sample n from geophone k . The correlation coefficient $\rho_{1,2}$ that quantifies
173 the similarity between two different multi-channel signals $\mathbf{W}^{(1)}(t)$ and $\mathbf{W}^{(2)}(t)$, recorded
174 from two different events, is derived from a maximum likelihood estimate [e.g., Harris,
175 1991; Carmichael *et al.*, 2015 b] given by:

$$176 \rho_{1,2} = \max_{\Delta t} \left\{ \frac{\text{tr}(\mathbf{W}^{(1)}(t + \Delta t)^T \mathbf{W}^{(2)}(t))}{\|\mathbf{W}^{(1)}(t)\|_F \|\mathbf{W}^{(2)}(t)\|_F} \right\}, \quad (6)$$

176 where $\|\mathbf{W}^{(k)}(t)\|_F$ is the matrix Frobenius norm and $\text{tr}(\mathbf{W}^{(k)}(t))$ is the matrix trace of
 177 $\mathbf{W}^{(k)}(t)$ ($k = 1, 2$). If a group of N multichannel waveforms correlated pair-wise above a
 178 threshold of $\rho_0 = \frac{1}{2}$ so that every waveform correlated well with every other waveform in
 179 that group, we placed the waveforms into a cluster. We further constrained waveforms to
 180 be excluded from membership between clusters, e.g., no waveform could belong to more
 181 than one cluster. After our set assignment, waveforms within each cluster were then
 182 stacked (coherently averaged) to form a template waveform for a multichannel
 183 correlation detector. This process produced 20 distinct clusters for DOY 133, 2014 that
 184 each contained between seven and two multichannel waveforms with high mutual
 185 correlation. We then coherently averaged the waveforms composing each cluster to
 186 construct a single waveform representative of the signals therein.

187

188 3.4 Waveform Correlation Detection

189 To search for similar waveforms not initially identified with our power detector and
 190 assigned to a cluster, we implemented a multichannel correlation detector. Multichannel
 191 correlation detectors compare template waveforms recorded from a given reference event
 192 with noisy data to identify similarly shaped “target” waveforms using a sample
 193 correlation coefficient. This coefficient generalizes the correlation $s(x)$ between pairs of
 194 single-channel waveforms to pairs of multichannel waveforms that represent
 195 measurements of seismic velocity recorded by a clock-synchronized, L -element seismic
 196 network [Harris, 1991; Gibbons and Ringdal, 2006]. These detectors effectively identify
 197 sources known as “seismic multiplets”, which comprise clusters of variable-magnitude
 198 earthquakes (or icequakes) that reoccur as distinct events, have similar hypocenters, and
 199 produce highly correlated seismograms [e.g., Moriya *et al.*, 2003]. Our correlation
 200 detector tests the correlation between a multichannel template waveform $\mathbf{W}(t)$ (taken
 201 from a cluster) and commensurate data stream matrix $\mathbf{X}(t)$ against a computed threshold
 202 η according to the following decision rule:

203

	$s(x) = \frac{\text{tr}(\mathbf{W}(t + \Delta t)^T \mathbf{X}(t))}{\ \mathbf{W}(t + \Delta t)\ _F \ \mathbf{X}(t)\ _F} \begin{cases} > \eta & H_1 \\ < \eta & H_0 \end{cases} \quad (2)$	
--	--	--

204

205 where $\|\mathbf{W}(t)\|_F$ is the matrix Frobenius norm and $\text{tr}(\mathbf{W}(t))$ is the matrix trace of $\mathbf{W}(t)$ (k
 206 = 1, 2), as before. The hypothesis H_0 below the conditional inequality signifies that
 207 $\mathbf{X}(t)$ consists of Gaussian noise ($\mathbf{X}(t) = \mathbf{N}(t)$) when $s(x) < \eta$; the hypothesis H_1 then
 208 signifies that $\mathbf{X}(t)$ consists of a scaled-copy of the template waveform $\mathbf{W}(t)$ buried in
 209 Gaussian noise ($\mathbf{X}(t) = A \cdot \mathbf{W}(t) + \mathbf{N}(t)$) if $s(x) > \eta$, where A is a scalar. However,
 210 noisy non-target waveforms originating from background seismicity may also be
 211 recorded and misdetected. Such false-detections occur if a signal within the data stream
 212 is sufficiently coherent with the template waveform that the correlation $s(x)$ exceeds the
 213 prescribed threshold for event declaration (η in Equation 2). In practice, this threshold so
 214 high that white noise has a very low chance of generating false detections, and therefore
 215 spuriously high correlation values are usually induced by nearly monochromatic noise or

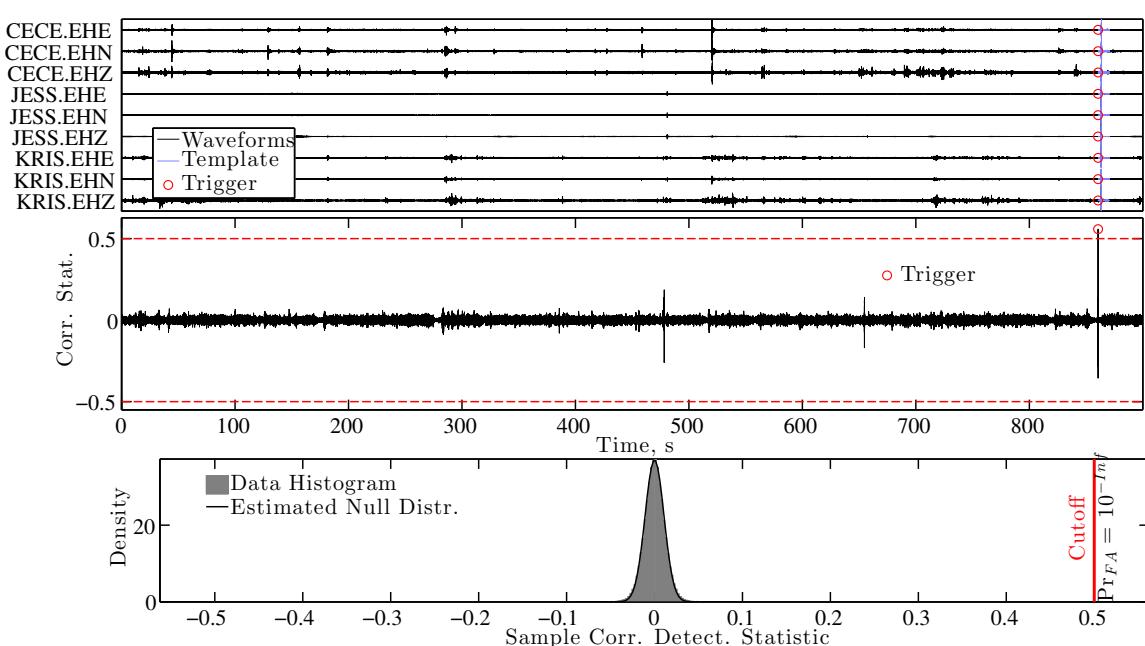
216 non-target seismicity. Alternatively, target waveforms that are (nearly) collocated with
 217 the template source may still generate lower-than-predicted cross-correlation ($s(x) < 1$)
 218 if the underlying signals exhibit incoherence with the template signal due to differences
 219 in radiation pattern.

220
 221 When only subsets of network geophones were logging data in a given period, only
 222 matrix columns containing operational stations were compared. We only included event
 223 detections where $s(x) > 1/2$ for analyses (Figures 7 a,b; red lines) after visual inspection
 224 suggested that waveforms sharing lower correlation likely had dissimilar sources or focal
 225 mechanisms, or that the waveform SNR was too low for interpretation. This correlation
 226 threshold gave a negligible false-alarm on noise probability, as determined by the
 227 correlation-coefficient's empirical null distribution [e.g., Weichecki-Vergara, 2001;
 228 Carmichael, 2013] parameterized by a mean effective degrees of freedom parameter:
 229

$$\int_{1/2}^{\infty} f_S(s(x); H_1) dS \sim 10^{-200} \quad (3)$$

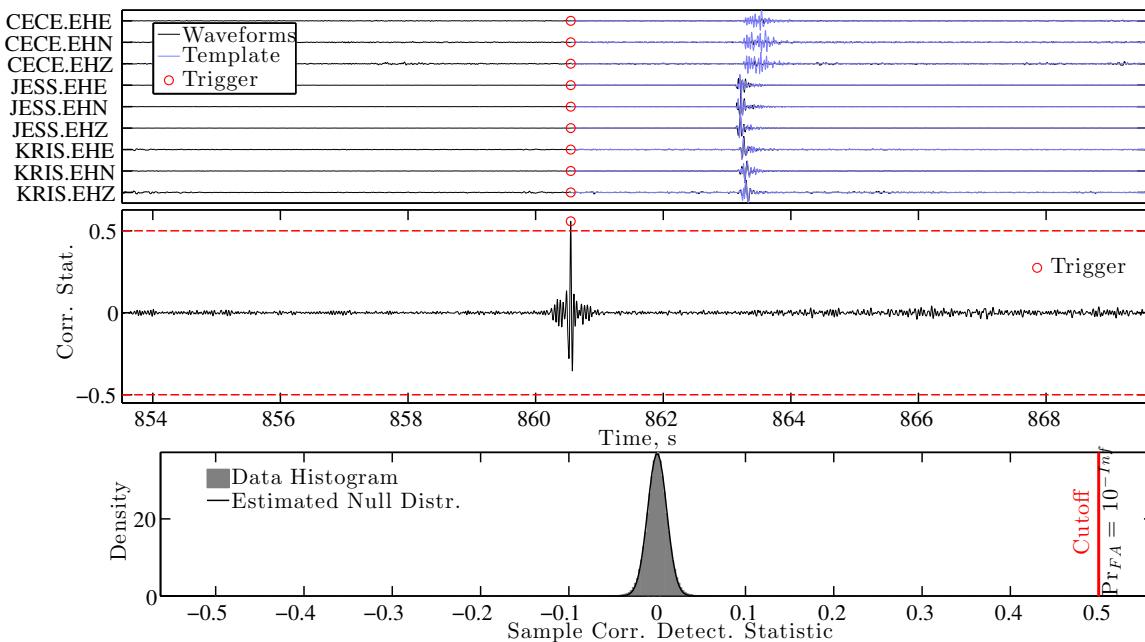
230
 231 This indicates that background noise has effectively zero probability of triggering our
 232 detector, so that only partially coherent background seismicity from other (non-target)
 233 earthquakes (or icequakes) likely generate false detections (Figures 7 a,b; bottom panels)
 234

235 Having established our detector thresholds, we processed all nine channels (three
 236 stations) of our data with each cluster-template. This processing identified 140 additional
 237 waveforms (Figure 8) among 14 different clusters (multiplet sequences) that satisfied
 238 each respective correlation detector's decision rule (e.g., Equation 2).
 239



240
 241 **Figure 6a** An example of processing data recorded at the Taylor network in 2014 with a
 242 correlation detector that includes a template selected from the coherent waveform stack

243 of the most populous cluster. **Top:** A nine-channel data stream (black) recorded on DOY
 244 133, 2014 during a brine release episode. The purple data segment shows the template
 245 waveforms superimposed on the black data-stream and temporally aligned at the peak
 246 correlation value. The red markers indicate the time of an event-declaration. **Middle:**
 247 The correlation statistic $s(x)$ computed by scanning the template waveform against the
 248 data stream at top. The red, horizontal line indicates the threshold for event declaration,
 249 determined by an effectively zero false alarm on noise probability constraint, as
 250 computed from the signal-absent distribution using the Neyman Pearson criteria.
 251 **Bottom:** The histogram computed from the correlation statistic time series (gray)
 252 superimposed with the theoretical null distribution (black curve) shaped by an effective
 253 degrees of freedom parameter N_E . The red vertical line shows the threshold for event
 254 declaration, consistent with an effectively zero right-tail probability as computed from
 255 the black curve. The theoretical distribution fits the observed histogram with a 6%
 256 relative error.
 257



258

259 **Figure 6b** A time-limited view of Figure 6a. The top plot now shows the template
 260 waveform (purple) superimposed on top of the target data (black). The middle plot shows
 261 the correlogram near peak correlation, well above background correlation values.
 262

263 4.1 Results and Conclusions

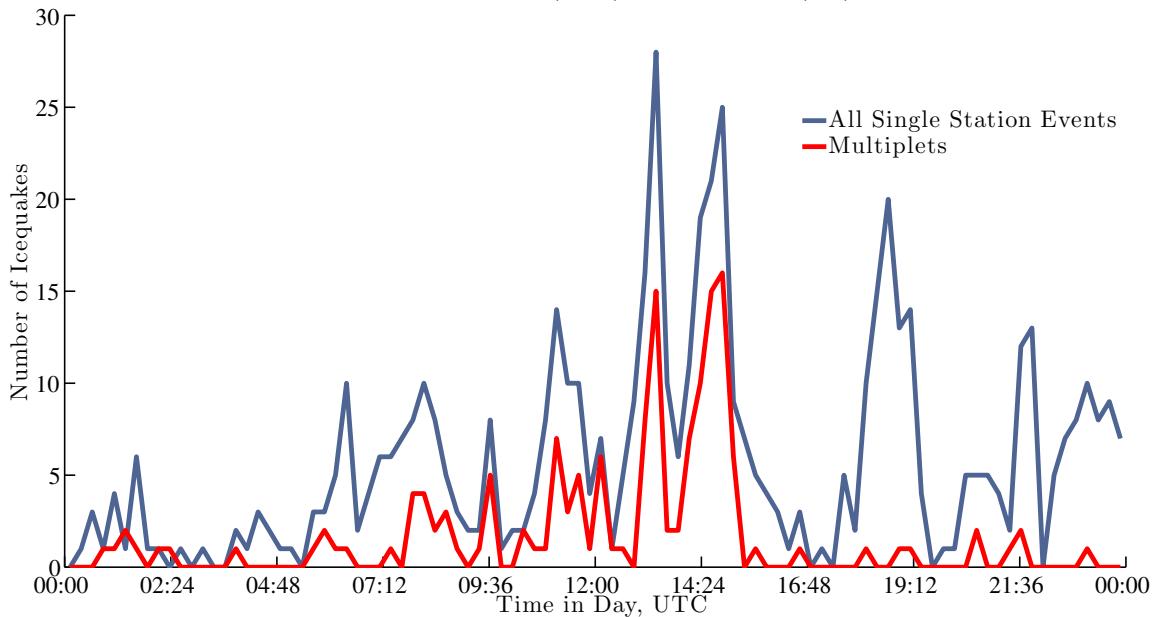
264 We have analyzed seismic data recorded on Taylor Glacier, ANT during a single day
 265 with a documented brine release episode (DOY 133, 2014). Our analyses focused on
 266 quantifying background seismic activity recorded by a small, three-element triaxial
 267 seismic network and identifying similar waveforms ostensibly triggered by spatially
 268 localized, repeating brittle deformation of glacial ice. Our fully autonomous signal
 269 detection methodology (1) identified seismic events using a noise-adaptive power
 270 detector based on statistically significant seismic waveforms; (2) associated waveforms
 271 that were observable on three or more station; (3) clustered associated waveforms with a

272 complete linkage clustering algorithm designed for glacial ice to identify seismic
273 multiplets; (4) coherently stacked all members of each cluster population to form a
274 multiplet template; and (5) used these templates in a nine channel correlation detector to
275 identify additional, repeating seismic events with similar waveforms and source
276 locations. Applied to our dataset, we identified 127 network-associated seismic events on
277 DOY 133, 2014 that were detectable on all three stations (Figure 6, purple curve) and
278 observed no false alarms on background noise. This seismic event population comprised
279 53 events (~40% of the total, power-detected event population) that could be assigned to
280 20 unique multiplet sequences (clusters). To test whether the members of the three most
281 populous multiplet populations were glaciogenic, we compared observed *p*-wave arrival
282 times for these events with forward modeled travel times between each receiver for
283 several synthetic sources. Based on these relative arrival times, we conclude that the
284 observed sources could not be North of station JESS and must be glaciogenic and are
285 therefore icequakes.

286 Having established these multiplets as likely icequakes, we found 140 additional
287 waveforms with membership to 14 of these 20 clusters by using the mean waveform from
288 each icequake cluster as a template (Figures 7 a,b; purple traces) within a nine-channel
289 correlation detector. Repeating seismic events therefore composed a comparable
290 percentage ($> 55\%$) of the total detected, icequake population (Figure 8). The most
291 populous of the resultant clusters included 27 distinct seismic events. The waveforms in
292 this cluster were highly correlated, and showed an average template-waveform
293 correlation coefficient $\overline{s(x)} \cong 0.64$ and peak correlation value of $\max\{s(x)\} \cong 0.87$
294 (Figure 9, left panel). Some of this observed variability resulted from additional signal
295 phases that may be attributed to Rayleigh waves, or closely spaced secondary events
296 (Figure 9; waveforms following main phase in right panel at ~ 3.7 sec). The remaining
297 variability reflects lower signal-to-noise characteristics and interference from narrowband
298 noise that may be induced by thermal stresses in the shallow ice. Cumulatively, these
299 highly correlated waveforms represent activation of repeatable seismic sources, like large
300 englacial fractures, that were spatially localized and had identical (or nearly so) focal
301 mechanisms. While these results are limited to one day, they may be applied to a longer
302 data set to include background seismicity and additional brine release episodes. If
303 additional work demonstrates that such icequakes indicate brine release, we suggest
304 applying our method to an autonomous seismic monitoring program of Blood Falls.

305

Event Frequency of All (Blue) and Multiplet (All) Icequakes



306

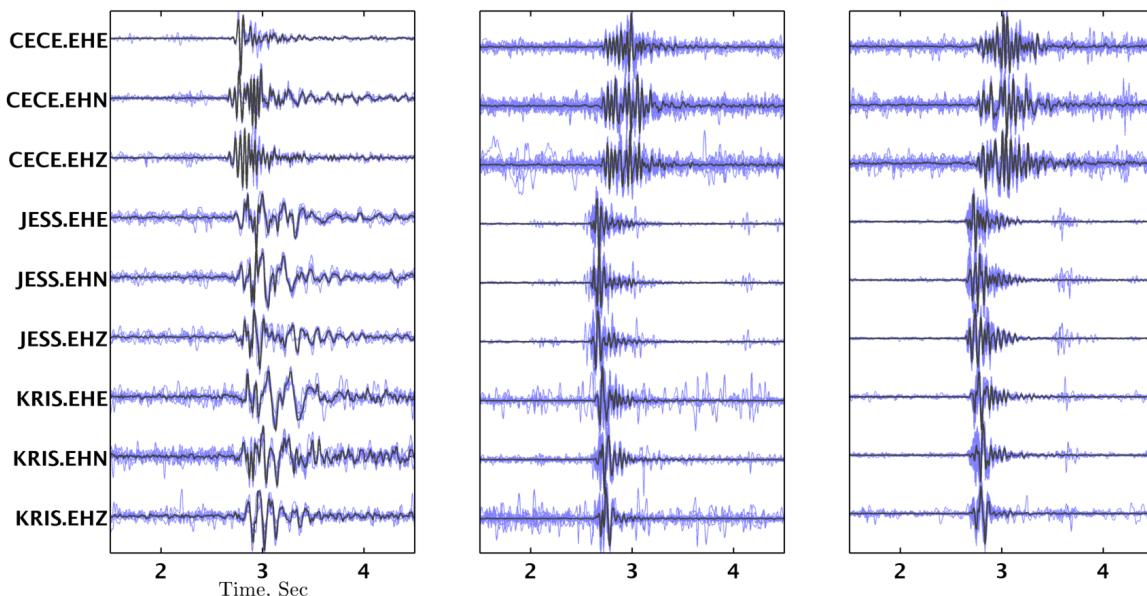
307 **Figure 8:** Seismicity from single-station event detections on DOY 133, 2014 compared
 308 against multiplets identified with a correlation detector. In both cases, seismicity is
 309 counted and binned into 15-minute intervals. The blue curve shows the total number of
 310 events that were detectable on at one or more geophones. The red curve shows timing of
 311 events that correlated with any cluster template waveform. The timing of multiplets peak
 312 coincidentally with maxima in seismicity.

313

314 **4.2 Future Work**

315 Our future work will be devoted to two primary tasks. The first task will be processing
 316 our entire data set using the method illustrated here, so that (a) days that include brine
 317 release can be compared against each other for location, timing and magnitude and (b)
 318 days that include no observed brine release episodes can be compared against ambient,
 319 background seismicity at Taylor Glacier. Our second task will be locating these repeating
 320 events. While our network comprises only three receivers compared to four unknown
 321 hypocentral parameters, we can eliminate time and fix depth in applying hypocentral
 322 regression. We can fix depth since our network has relatively poor depth resolution, and
 323 any parameter estimate will likely be unreliable. We can eliminate time arithmetically by
 324 using a centered and scaled version of the regression equations (Equation 2 of
 325 [Carmichael *et al.*, 2012]). We propose to first locate the template waveform's source (or
 326 the detected waveform with the highest SNR), and thereafter locate the events it identifies
 327 as similar. The mean hypocentral location between the template and following
 328 (correlation detected) events will then provide a lower-variance estimate for spatially
 329 localized multiplet source.

330



331

332 **Figure 9** Correlation detected waveforms for three separate multiplet sequences. In each
 333 panel, the purple traces show waveforms identified by a correlation detector template
 334 (black) that was obtained by coherently stacking associated waveforms within a cluster.
 335 The left most panel shows waveforms associated with the most populous cluster, which
 336 contained 7 events; the correlation detector identified an additional 20 icequake events
 337 that triggered similar waveforms (27 purple waveforms plotted). The sources producing
 338 this multiplet sequence appear to be spatially separated from the sources producing the
 339 multiplets in the middle and right panel, based on the relative arrival times of the
 340 waveforms at each receiver.

341

342 **Acknowledgments, Researcher Biographies**

343 Data collection was led by Dr. Erin Pettit of the University of Alaska Fairbanks (UAF)
 344 under NSF grant #1144177 Collaborative Research: MIDGE: Minimally Invasive Direct
 345 Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls,
 346 McMurdo Dry Valleys. Christina Carr, is a geophysics PhD student at the University of
 347 Alaska (Fairbanks) analyzing several of the geophysical datasets discussed herein. Joshua
 348 D Carmichael is a post-doctoral researcher with EES-17 at Los Alamos National
 349 Laboratory.

350

351 **References and Further Reading**

352 Blandford, R. R., (1974), An Automatic Event Detector At The Tonto Forest Seismic
 353 Observatory, *Geophysics*, 39(5), 633-643.

354 Carmichael, J. D., I. Joughin, M. D. Behn, S. Das, M. A. King, L. Stevens, and D.
 355 Lizarralde (2015), Seismicity on the Western Greenland Ice Sheet: Surface Fracture in
 356 the Vicinity of Active Moulins, *J. Geophys. Res. Earth Surf.*, 120,
 357 [doi:10.1002/2014JF003398](https://doi.org/10.1002/2014JF003398).

358 Carmichael, J.D., Nemzek, R., Arrowsmith S., and Sentz, K. (2015), Detecting Weak
359 Explosions at Local Distances by Fusing Multiple Geophysical Phenomenologies,
360 *Geophysical Journal International*, (In Review; Manuscript ID GJI-S-15-0027)

361 Carmichael, J. D., E. C. Pettit, M. Hoffman, A. Fountain, and B. Hallet (2012), Seismic
362 multiplet response triggered by melt at Blood Falls, Taylor Glacier, Antarctica, *J.
363 Geophys. Res. -Earth Surf.*, 117, F03004, doi: 10.1029/2011JF002221.

364 Carmichael, Joshua D. *Melt-Triggered Seismic Response in Hydraulically-Active Polar
365 Ice: Observations and Methods*. PhD thesis, University of Washington, 2013, uri:
366 <http://hdl.handle.net/1773/25007>

367 Gibbons, S. J. and F. Ringdal (2006), The detection of low magnitude seismic events
368 using array-based waveform correlation, *Geophysical Journal International*, 165(1),
369 149-166, doi: 10.1111/j.1365-246X.2006.02865.x.

370 Harris, D. B. (1989). *Characterizing source regions with signal subspace methods:
371 theory and computational methods* (No. UCID-21848). Lawrence Livermore National
372 Lab., CA (USA).

373

374 Harris, D. B. (1991). A waveform correlation method for identifying quarry explosions.
375 *Bulletin of the Seismological Society of America*, 81(6), 2395-2418.

376 Kay, S. M., (1998), *Fundamentals of Statistical Signal Processing: Volume II*, Prentice-
377 Hall PTR, Englewood Cliffs, N.J.

378 Moriya, Hirokazu, Hiroaki Niitsuma, and Roy Baria. Multiplet-clustering analysis reveals
379 structural details within the seismic cloud at the Soultz geothermal field, France.
380 *Bulletin of the Seismological Society of America* 93.4 (2003): 1606-1620, doi:
381 10.1785/0120020072

382 Weichecki-Vergara, S., H. L. Gray, and W. A. Woodward (2001), Statistical
383 development in support of CTBT monitoring, Tech. Rep. DTRA-TR-00-22, Southern
384 Methodist Univ., Dallas, Texas

385

386 **Appendix A: Power Detectors**
 387 Icequakes must have sufficiently large magnitudes to generate ice motion that is
 388 detectable by the geophones within a network. Weaker or remote icequakes will produce
 389 smaller displacement amplitudes at the source that are statistically more difficult to
 390 distinguish from the expected amplitude of background noise recorded by geophones in
 391 the far field. To discriminate icequakes from such noise, a power detector evaluates a
 392 statistic z_k that is computed from a ratio of short-term and long-term averages
 393 (STA/LTA) of signal power [Blandford, 1974]. This statistic is derivable from a
 394 generalized likelihood ratio test [Carmichael, 2013] and is expressed at sample k , within a
 395 detection window containing statistically stationary noise, as:
 396

$$z_k = \left(\frac{1}{S} \sum_{n=k}^{n=k+S-1} \left(\frac{x_n}{\sigma} \right)^2 \right) \div \left(\frac{1}{L} \sum_{n=k-L+1}^{n=k} \left(\frac{x_n}{\sigma} \right)^2 \right) \quad (\text{A.1})$$

397
 398 where x_k is sample k of the observed seismogram, S is the leading, short window length
 399 in samples, L is the following long window length in samples, and σ is the standard
 400 deviation of background noise in the current detection window; while z_k is independent
 401 of σ , we have retained it here for clarity.

402
 403 The statistic z_k has two distinct probability distribution functions; one applicable to the
 404 case of absent signal (a central F distribution), and one applicable to the case of present
 405 signal (a non-central F distribution); their analytical forms are described in several places
 406 (e.g., Kay, 1998; Carmichael 2013). Deciding an icequake has occurred is equivalent to
 407 choosing the distribution function that explains the measured value of the STA/LTA
 408 statistic at a prescribed probability. The signal-present distribution is parameterized by a
 409 so-called non-centrality parameter λ that is proportional to the waveform signal-to-noise
 410 ratio (SNR), which is zero for the signal absent case. This parameter is defined by:
 411

$$\lambda = \sum_{k=1}^S \left(\frac{A_k}{\sigma} \right)^2. \quad (\text{A.2})$$

412
 413 In Equation A.2, A_k is the true (noise-free) waveform amplitude at sample k , which is
 414 related to the noise-contaminated data through $x_k = A_k + n_k$, where n_k is a sample of
 415 zero-mean background noise with standard deviation σ^2 . Increasing values of λ (relative
 416 to zero) result in decreased overlap between the signal-present and signal-absent
 417 distribution and makes correctly discriminating between noise and an icequake more
 418 probable. A 0.95 probability of detecting an icequake at sample k that produces parameter
 419 λ is then obtained by integrating the probability density function over the detector
 420 threshold η consistent with a 10^{-7} detection probability:
 421

$$0.95 = \int_{\eta}^{\infty} f_{z_k}(z_k; \lambda, N_1, N_2) dz_k \quad (\text{A.3})$$

where:

$$10^{-7} = \int_{\eta}^{\infty} f_{Z_k}(z_k; \lambda = 0, N_1, N_2) dz_k$$

422

423 In Equation A.3, $f_{Z_k}(z_k; \lambda, N_1, N_2)$ is the signal-present F distribution, and $f_{Z_k}(z_k; \lambda =$
 424 $0, N_1, N_2)$ is the signal absent F distribution (Figure A.1, bottom); each are parameterized
 425 by two degree-of-freedom parameters N_1 and N_2 that are respectively equal to S and L for
 426 white noise, but substantially less for real, temporally correlated noise. We estimate these
 427 parameters from our data using the mean and variance of the STA/LTA statistic:
 428

$$E(z) = \frac{N_2}{N_2 - 2} \quad (A.4)$$

$$\text{var}(z) = \frac{2N_2^2(N_1 + N_2 - 2)}{N_1(N_2 - 2)^2(N_2 - 4)}$$

429

430 Using Equation A.4, we computed the sample mean and sample variance in place of the
 431 true mean $E(z)$ and variance $\text{var}(z)$ within each one-hour detection window using
 432 thousands of samples of z_k , and then solved for N_1 and N_2 .