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Abstract

We apply a fully autonomous icequake detection methodology to a single day of high-
sample rate (200 Hz) seismic network data recorded from the terminus of Taylor Glacier,
ANT that temporally coincided with a brine release episode near Blood Falls (May 13,
2014). We demonstrate a statistically validated procedure to assemble waveforms
triggered by icequakes into populations of clusters linked by intra-event waveform
similarity. Our processing methodology implements a noise-adaptive power detector
coupled with a complete-linkage clustering algorithm and noise-adaptive correlation
detector. This detector-chain reveals a population of 20 multiplet sequences that includes
~150 icequakes and produces zero false alarms on the concurrent, diurnally variable
noise. Our results are very promising for identifying changes in background seismicity
associated with the presence or absence of brine release episodes. We thereby suggest
that our methodology could be applied to longer time periods to establish a brine-release
monitoring program for Blood Falls that is based on icequake detections.

1. Introduction

Blood Falls is a release of hypersaline, subglacial brine at the surface of the Taylor
Glacier in the McMurdo Dry Valleys that provides an accessible portal into an Antarctic
subglacial ecosystem. Taylor Glacier is a cold—based glacier that overlies sedimentary
bedrock and a preglacial marine deposit providing the ultimate source for a basal brine
system. Little is known about the origin of this brine, the amount of time it has been
sealed below Taylor Glacier, or the extent to which the brine is altered as it makes its way
to the surface at Blood Falls or what triggers its episodic release exclusively at Blood
Falls. Recent geomicrobiological analysis of the outflow has revealed a unique
community of marine organisms that persist by cycling iron and sulfur compounds for
growth. Little is known about the hydrology of the glacier, the physical structure of the
subglacial habitat, or the mechanism of brine release to the surface.

There are several motivating questions relating the seismicity of Taylor Glacier to
englacial or subglacial fluid flow. Previous geophysical work on Taylor Glacier has
related surficial melt input to a crack near Blood Falls, at a time when no brine release
was observed. Immediate, further work on Taylor Glacier seismicity seeks to answer the
following two questions: (1) “What is the seismic expression of brine outflow events
from Blood Falls?” and (2) “How does seasonal seismicity related to summer melt
events compare with seismicity associated with brine outflow?”

I Ground Based Nuclear Detonation Detection Group, Los Alamos National Laboratory,
Los Alamos, NM, 87544
2 Geophysical Institute, University of Alaska Fairbanks, Fairbanks AK 99775
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Mission

To address our first objective, we determine if brine release episodes from Taylor
Glacier, ANT (Figure 1) have detectable seismic signatures. A positive identification of
such signatures requires that icequakes attributed to a documented brine release is
distinguishable from any expected background seismicity in timing and/or location. To
determine if such signatures exist, we first searched for repeatable icequakes indicative of
active collocated events on days that include known discharge events (e.g., Figure 2). We
propose to then search for these same, repetitive icequakes (multiplets) on days with no
known discharge events. We will accept the hypothesis that icequakes spatiotemporally
located with brine release episodes are strong indicators for brine seep unrest if these
icequakes are not observed during relative quiescence. We will reject this hypothesis if
such release points are associated with spatially coincident active seismicity, without any
observable surface expression.

Here, we demonstrate an autonomous multiplet detector using a single day of seismic
network data recorded on day of year (DOY) 133, 2014. Our immediate goal is to
demonstrate a capability to evaluate repeating seismicity from Blood Falls rapidly and
thereby enable more focused analyses on the icequake locations and source magnitudes in
the presence and absence of coincident, brine discharge events. Future work will then be
devoted to a fully addressing the competing hypotheses (stated above).

2. Data

Geophysical data were collected from Taylor Glacier (-77.721, +162.266) during 2013-
2015 and included GPS, seismic, ground penetrating radar, time-lapse imagery, and
interferometric datasets. The near-terminus region, in particular, was instrumented with
three triaxial geophones (L-22 geophones) during the local summer of 2013 (Figure 1).
One of the three sensors (JESS) was installed within ~1 m deep ice pit, oriented to
geographical North and then backfilled with ice chips. The other receivers (CECE and
KRIS) was installed within ~0.5 m deep pits in the rocky ground, oriented to
geographical North, and then covered with rocky dirt. All instruments continuously
sampled ground velocity at 200 Hz using a Quanterra digitizer and logged data to a solid
state hard-drive. The data were retrieved the local summer of 2015.
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Figure 1 A 900m by 1100m overhead contour map of Taylor Glacier instrumented with 3
over-winter geophones. The glacier is interior to the blue curve,; other geographical
features are located.
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Brine release shown by red fluid

Figure 2 Brine released from Taylor Glacier on May 13, 2014 (UTC).

3. Methods

To identify repeating collocated seismic sources (e.g., Figure 4), we processed our
geophone data using a fully autonomous detection procedure. This procedure was
implemented sequentially in the four following steps.
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Collocated Events. DOY 133, Year 2014: 03:47:25 and 14:47:33
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Figure 4 A pair of vertical channel multichannel seismic waveforms measuring ground
velocity recorded on DOY 133, 2014 during a brine release event. The waveforms were
recorded about 11 hours apart and show similar intra-event arrival times of equivalent
waveform features and highly correlated waveform shapes. These attributes suggest that
the waveforms originate from the same location and are triggered by similar focal
mechanisms.

3.1 Seismic Event Identification

First, we identified individual seismic events by processing data from the vertical-channel
of each geophone using a noise-adaptive, digital power detector. This detector computes
a data statistic at each point in a geophone data stream by dividing an estimate of the
sample variance within a leading data window by an estimate of the sample variance
within a longer, following window i.e., the STA/LTA [Blandford, 1974]. To account for
statistically correlated background noise that is common to glaciogenic environments
(Figure 3),
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Figure 3 Noise variance estimates for each station in the network, computed in parallel
with the power detector, after removing event detections. Note the vertical axis log scale.
The noisiest station JESS is installed near the cliff face, where a substantial amount of
melt and cliff face flexure occurs; KRIS is installed near the cliff face of the Rhone
glacier; the quietest station (CECE) is installed farthest in-ice and away from any
vertical ice surface.

we computed robust estimates for the degree-of-freedom parameters of the data statistic’s
F-distribution within each detection window (see Appendix A). These updated
parameters enabled us to dynamically adjust the detector’s event declaration threshold
within each window and maintain a constant, acceptably low false-detection probability.
We set this probability to 107 using the Neyman-Pearson decision rule [Kay, 1998;
Chapter 7], so that waveforms with an SNR of ~10 dB had a 95% probability of being
detected on a single geophone in average noise conditions. We document the
computational form of the detection statistic, the decision rule threshold, and the density
function’s shaping parameters in Appendix A (see also [Carmichael et al., 2015 a]).
Results for a single, 15-minute recording period are illustrated in Figure 5.
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Figure 5 Power detector (STA/LTA) results as applied to 15 minutes of seismic data
recorded at Taylor station CECE after local noon on DOY 133, which resulted in three,
vertical channel detections. Top: Vertical channel seismic data bandpass filtered
between 2.5 and 35 Hz. The red markers correspond to waveform detections and where
the STA/LTA statistic exceeded the event declaration value; the other waveforms visually
apparent in this panel are too emergent to trigger our detector. Middle: The STA/LTA
statistic computed from the waveform data using a 0.65 sec (130 sample) short-term
window and a 2.65 second (530 sample) long-term window;, the red horizontal line shows
the declaration threshold for a 107 false alarm rate (). Bottom: The histogram (gray) of
the STA/LTA statistic, superimposed with the hypothesized null distribution (red, dashed
curve). The shaping parameters for the predicted curve were estimated from N; and N,
(the distribution’s degrees of freedom) and the red vertical line indicates the threshold

n from the middle panel; both estimates where made using the data shown here.

3.2 Icequake Waveform Association

Next, waveforms detected on different geophones within a time interval less than the
expected transit time of a shear wave across the network were identified as the same
icequake (i.e., we performed waveform association). From these detections, we counted
events that were large enough to be associated on all three geophones, and binned this
count each hour to measure icequake seismicity (Figure 6). To quantify our confidence in
this estimate, we identified time-windows where the predicted null (signal-absent) F-
distributional curve for the STA/LTA statistic matched the data statistic’s histogram with
< 20% root-means-square error. These signals provided our best hourly estimate of the
seismicity as well as a measure of confidence in our estimates (see also [Carmichael et
al., 2012; Carmichael et al., 2015a]).
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Event Frequency of All (Blue) and Associated (Purple) Icequakes
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Figure 6 Power detector (STA/LTA) results for DOY 133, 2014. Seismic event frequency
(seismicity) binned and counted into 15-minute intervals. The blue curve shows the total
number of events that were detectable at one or more geophones. The purple curve shows
seismicity for events large enough to register detections on all three receivers. These
curves temporally correlate, and thereby suggest that strong events occur with weaker
events.
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3.3 Seismic Waveform Clustering

Third, we applied a hierarchical, complete-linkage clustering algorithm to all associated
waveforms following Carmichael et al. [2012]. To perform this clustering, we first
computed the correlation coefficient p between all possible pairs of associated
multichannel waveforms, which were cut five seconds before their power-detected pick
times and five seconds thereafter. A multichannel seismogram produced by a seismic
source, sampled at interval At, is represented by a data matrix as follows:

W(t) = [wy(t), ..., wi(t), ..., wy ()], for t =t,, ty + At, ..., ty + NAL. (1)

In Equation (1), matrix column wy,(t) is an N-sample seismogram from geophone &,
recorded over 7-seconds (10 sec here) from absolute reference time # so that wy (¢, +
nAt) refers to sample n from geophone k. The correlation coefficient p; , that quantifies
the similarity between two different multi-channel signals W (t) and W) (t), recorded
from two different events, is derived from a maximum likelihood estimate [e.g., Harris,
1991; Carmichael et al., 2015 b] given by:

{tr( WO(t + At)TWED (t))} "
P =T IO Ol IW@ @)l
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where ||W(k)(t) ||F is the matrix Frobenius norm and tr(W®)(t)) is the matrix trace of

W®(t) (k= 1, 2). If a group of N multichannel waveforms correlated pair-wise above a
threshold of po = Y4 so that every waveform correlated well with every other waveform in
that group, we placed the waveforms into a cluster. We further constrained waveforms to
be excluded from membership between clusters, e.g., no waveform could belong to more
than one cluster. After our set assignment, waveforms within each cluster were then
stacked (coherently averaged) to form a template waveform for a multichannel
correlation detector. This process produced 20 distinct clusters for DOY 133, 2014 that
each contained between seven and two multichannel waveforms with high mutual
correlation. We then coherently averaged the waveforms composing each cluster to
construct a single waveform representative of the signals therein.

3.4 Waveform Correlation Detection

To search for similar waveforms not initially identified with our power detector and
assigned to a cluster, we implemented a multichannel correlation detector. Multichannel
correlation detectors compare template waveforms recorded from a given reference event
with noisy data to identify similarly shaped “target” waveforms using a sample
correlation coefficient. This coefficient generalizes the correlation s(x) between pairs of
single-channel waveforms to pairs of multichannel waveforms that represent
measurements of seismic velocity recorded by a clock-synchronized, L-element seismic
network [Harris, 1991; Gibbons and Ringdal, 2006]. These detectors effectively identify
sources known as “seismic multiplets”, which comprise clusters of variable-magnitude
earthquakes (or icequakes) that reoccur as distinct events, have similar hypocenters, and
produce highly correlated seismograms [e.g., Moriya et al., 2003]. Our correlation
detector tests the correlation between a multichannel template waveform W (t) (taken
from a cluster) and commensurate data stream matrix X (t) against a computed threshold
n according to the following decision rule:

H,
(Wt +A)TX(@) >

W+ 201Xl hs 1
0

s(x) = (2)

where ||W (t)||r is the matrix Frobenius norm and tr(W(t)) is the matrix trace of W (t) (k
=1, 2), as before. The hypothesis H, below the conditional inequality signifies that

X (t) consists of Gaussian noise (X(t) = N(t)) when s(x) < n; the hypothesis H; then
signifies that X (t) consists of a scaled-copy of the template waveform W (t) buried in
Gaussian noise (X(t) = A-W(t) + N(t)) if s(x) > n, where A is a scalar. However,
noisy non-target waveforms originating from background seismicity may also be
recorded and misdetected. Such false-detections occur if a signal within the data stream
is sufficiently coherent with the template waveform that the correlation s(x) exceeds the
prescribed threshold for event declaration (1 in Equation 2). In practice, this threshold so
high that white noise has a very low chance of generating false detections, and therefore
spuriously high correlation values are usually induced by nearly monochromatic noise or
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non-target seismicity. Alternatively, target waveforms that are (nearly) collocated with
the template source may still generate lower-than-predicted cross-correlation (s(x) < 1)
if the underlying signals exhibit incoherence with the template signal due to differences
in radiation pattern.

When only subsets of network geophones were logging data in a given period, only
matrix columns containing operational stations were compared. We only included event
detections where s(x) > 1/2 for analyses (Figures 7 a,b; red lines) after visual inspection
suggested that waveforms sharing lower correlation likely had dissimilar sources or focal
mechanisms, or that the waveform SNR was too low for interpretation. This correlation
threshold gave a negligible false-alarm on noise probability, as determined by the
correlation-coefficient’s empirical null distribution [e.g., Weichecki-Vergara, 2001;
Carmichael, 2013] parameterized by a mean effective degrees of freedom parameter:

(o)

1/Zfs(s(x); H; )dS ~10720° 3)

This indicates that background noise has effectively zero probability of triggering our
detector, so that only partially coherent background seismicity from other (non-target)
earthquakes (or icequakes) likely generate false detections (Figures 7 a,b; bottom panels)

Having established our detector thresholds, we processed all nine channels (three
stations) of our data with each cluster-template. This processing identified 140 additional
waveforms (Figure 8) among 14 different clusters (multiplet sequences) that satisfied
each respective correlation detector’s decision rule (e.g., Equation 2).
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Figure 6a An example of processing data recorded at the Taylor network in 2014 with a

correlation detector that includes a template selected from the coherent waveform stack

10
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of the most populous cluster. Top: A nine-channel data stream (black) recorded on DOY
133, 2014 during a brine release episode. The purple data segment shows the template
waveforms superimposed on the black data-stream and temporally aligned at the peak
correlation value. The red markers indicate the time of an event-declaration. Middle:
The correlation statistic s(x) computed by scanning the template waveform against the
data stream at top. The red, horizontal line indicates the threshold for event declaration,
determined by an effectively zero false alarm on noise probability constraint, as
computed from the signal-absent distribution using the Neyman Pearson criteria.
Bottom: The histogram computed from the correlation statistic time series (gray)
superimposed with the theoretical null distribution (black curve) shaped by an effective
degrees of freedom parameter Ng. The red vertical line shows the threshold for event
declaration, consistent with an effectively zero right-tail probability as computed from
the black curve. The theoretical distribution fits the observed histogram with a 6%
relative error.
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Figure 6b A time-limited view of Figure 6a. The top plot now shows the template
waveform (purple) superimposed on top of the target data (black). The middle plot shows
the correlogram near peak correlation, well above background correlation values.

4.1 Results and Conclusions

We have analyzed seismic data recorded on Taylor Glacier, ANT during a single day
with a documented brine release episode (DOY 133, 2014). Our analyses focused on
quantifying background seismic activity recorded by a small, three-element triaxial
seismic network and identifying similar waveforms ostensibly triggered by spatially
localized, repeating brittle deformation of glacial ice. Our fully autonomous signal
detection methodology (1) identified seismic events using a noise-adaptive power
detector based on statistically significant seismic waveforms; (2) associated waveforms
that were observable on three or more station; (3) clustered associated waveforms with a

11
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complete linkage clustering algorithm designed for glacial ice to identify seismic
multiplets; (4) coherently stacked all members of each cluster population to form a
multiplet template; and (5) used these templates in a nine channel correlation detector to
identify additional, repeating seismic events with similar waveforms and source
locations. Applied to our dataset, we identified 127 network-associated seismic events on
DOY 133, 2014 that were detectable on all three stations (Figure 6, purple curve) and
observed no false alarms on background noise. This seismic event population comprised
53 events (~40% of the total, power-detected event population) that could be assigned to
20 unique multiplet sequences (clusters). To test whether the members of the three most
populous multiplet populations were glaciogenic, we compared observed p-wave arrival
times for these events with forward modeled travel times between each receiver for
several synthetic sources. Based on these relative arrival times, we conclude that the
observed sources could not be North of station JESS and must be glaciogenic and are
therefore icequakes.

Having established these multiplets as likely icequakes, we found 140 additional
waveforms with membership to 14 of these 20 clusters by using the mean waveform from
each icequake cluster as a template (Figures 7 a,b; purple traces) within a nine-channel
correlation detector. Repeating seismic events therefore composed a comparable
percentage (> 55%) of the total detected, icequake population (Figure 8). The most
populous of the resultant clusters included 27 distinct seismic events. The waveforms in
this cluster were highly correlated, and showed an average template-waveform
correlation coefficient s(x) = 0.64 and peak correlation value of max{s(x)} = 0.87
(Figure 9, left panel). Some of this observed variability resulted from additional signal
phases that may be attributed to Rayleigh waves, or closely spaced secondary events
(Figure 9; waveforms following main phase in right panel at ~3.7 sec). The remaining
variability reflects lower signal-to-noise characteristics and interference from narrowband
noise that may be induced by thermal stresses in the shallow ice. Cumulatively, these
highly correlated waveforms represent activation of repeatable seismic sources, like large
englacial fractures, that were spatially localized and had identical (or nearly so) focal
mechanisms. While these results are limited to one day, they may be applied to a longer
data set to include background seismicity and additional brine release episodes. If
additional work demonstrates that such icequakes indicate brine release, we suggest
applying our method to an autonomous seismic monitoring program of Blood Falls.

12
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Figure 8: Seismicity from single-station event detections on DOY 133, 2014 compared
against multiplets identified with a correlation detector. In both cases, seismicity is
counted and binned into 15-minute intervals. The blue curve shows the total number of
events that were detectable on at one or more geophones. The red curve shows timing of
events that correlated with any cluster template waveform. The timing of multiplets peak
coincidentally with maxima in seismicity.

4.2 Future Work

Our future work will be devoted to two primary tasks. The first task will be processing
our entire data set using the method illustrated here, so that (a) days that include brine
release can be compared against each other for location, timing and magnitude and (b)
days that include no observed brine release episodes can be compared against ambient,
background seismicity at Taylor Glacier. Our second task will be locating these repeating
events. While our network comprises only three receivers compared to four unknown
hypocentral parameters, we can eliminate time and fix depth in applying hypocentral
regression. We can fix depth since our network has relatively poor depth resolution, and
any parameter estimate will likely be unreliable. We can eliminate time arithmetically by
using a centered and scaled version of the regression equations (Equation 2 of
[Carmichael et al., 2012]). We propose to first locate the template waveform’s source (or
the detected waveform with the highest SNR), and thereafter locate the events it identifies
as similar. The mean hypocentral location between the template and following
(correlation detected) events will then provide a lower-variance estimate for spatially
localized multiplet source.

13
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Figure 9 Correlation detected waveforms for three separate multiplet sequences. In each
panel, the purple traces show waveforms identified by a correlation detector template
(black) that was obtained by coherently stacking associated waveforms within a cluster.
The left most panel shows waveforms associated with the most populous cluster, which
contained 7 events, the correlation detector identified an additional 20 icequake events
that triggered similar waveforms (27 purple waveforms plotted). The sources producing
this multiplet sequence appear to be spatially separated from the sources producing the
multiplets in the middle and right panel, based on the relative arrival times of the
waveforms at each receiver.
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Appendix A: Power Detectors

Icequakes must have sufficiently large magnitudes to generate ice motion that is
detectable by the geophones within a network. Weaker or remote icequakes will produce
smaller displacement amplitudes at the source that are statistically more difficult to
distinguish from the expected amplitude of background noise recorded by geophones in
the far field. To discriminate icequakes from such noise, a power detector evaluates a
statistic z; that is computed from a ratio of short-term and long-term averages
(STA/LTA) of signal power [Blandford, 1974]. This statistic is derivable from a
generalized likelihood ratio test [Carmichael, 2013] and is expressed at sample 4, within a
detection window containing statistically stationary noise, as:

Y e)ese)

n=k n=k—-L+1

where x;, is sample k of the observed seismogram, S is the leading, short window length
in samples, L is the following long window length in samples, and o is the standard
deviation of background noise in the current detection window; while z;, is independent
of a, we have retained it here for clarity.

The statistic z;, has two distinct probability distribution functions; one applicable to the
case of absent signal (a central F distribution), and one applicable to the case of present
signal (a non-central F distribution); their analytical forms are described in several places
(e.g., Kay, 1998; Carmichael 2013). Deciding an icequake has occurred is equivalent to
choosing the distribution function that explains the measured value of the STA/LTA
statistic at a prescribed probability. The signal-present distribution is parameterized by a
so-called non-centrality parameter A that is proportional to the waveform signal-to-noise
ratio (SNR), which is zero for the signal absent case. This parameter is defined by:

s 2 (A.2)
-3

In Equation A.2, A is the true (noise-free) waveform amplitude at sample k, which is
related to the noise-contaminated data through x;, = A, + n;, where n;, is a sample of
zero-mean background noise with standard deviation o2. Increasing values of A (relative
to zero) result in decreased overlap between the signal-present and signal-absent
distribution and makes correctly discriminating between noise and an icequake more
probable. A 0.95 probability of detecting an icequake at sample k that produces parameter
A is then obtained by integrating the probability density function over the detector
threshold 1 consistent with a 107 detection probability:

© A3
0.95 = f fzk(Zk} A, Ny, N, )dz, (A9
n

where:
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10_7 = f ka(Zk; A= O,Nl,Nz )de
n

In Equation A.3, f7, (zx; A, Ny, N, ) is the signal-present F distribution, and f7, (z; 4 =
0, N3, N, ) is the signal absent F distribution (Figure A.1, bottom); each are parameterized
by two degree-of-freedom parameters N;and N, that are respectively equal to S and L for
white noise, but substantially less for real, temporally correlated noise. We estimate these
parameters from our data using the mean and variance of the STA/LTA statistic:

N (A.4)
N2 - 2
Ny (N, — 2)?(N, — 4)

E(z) =

var(z) =

Using Equation A.4, we computed the sample mean and sample variance in place of the
true mean E(z) and variance var(z) within each one-hour detection window using
thousands of samples of z;, and then solved for N; and N,.
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