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ABSTRACT

Described here are the results from the profiing of the proteins arginine
vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human
pituitary gland and pituitary adenoma tissue sections using a fully automated droplet-
based liquid microjunction surface sampling-HPLC-ESI-MS/MS system for spatially
resolved sampling, HPLC separation, and mass spectral detection.

Excellent correlation was found between the protein distribution data obtained
with this droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS system
and those data obtained with matrix assisted laser desorption ionization (MALDI)
chemical imaging analyses of serial sections of the same tissue. The protein
distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was
most abundant in the posterior pituitary gland region (neurohypophysis) and ATCH was
dominant in the anterior pituitary gland region (adenohypophysis).

The relative amounts of AVP and ACTH sampled from a series of ACTH
secreting and non-secreting pituitary adenomas correlated with histopathological
evaluation. ACTH was readily detected at significantly higher levels in regions of ACTH
secreting adenomas and in normal anterior adenohypophysis compared to non-
secreting adenoma and neurohypophysis. AVP was mostly detected in normal
neurohypophysis as anticipated.

This work demonstrates that a fully automated droplet-based liquid microjunction
surface sampling system coupled to HPLC-ESI-MS/MS can be readily used for spatially
resolved sampling, separation, detection, and semi-quantitation of physiologically-

relevant peptide and protein hormones, such as AVP and ACTH, directly from human
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tissue. In addition, the relative simplicity, rapidity and specificity of the current
methodology support the potential of this basic technology with further advancement for

assisting surgical decision-making.

Keywords: liquid microjunction, droplet-based liquid extraction, autosampler,
spatial distribution, human pituitary, protein, adrenocorticotropic hormone (ACTH), AVP

(vasopressin), pituitary adenoma.
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INTRODUCTION

During surgery, preliminary diagnosis of tissue biopsies is currently rendered by
trained pathologists via the microscopic review of hematoxylin and eosin (H&E) stained
thin tissue sections of the aforementioned biopsy samples. This process including the
cutting and mounting of the tissue typically takes about 20-30 minutes [1,2]. A more
detailed evaluation, which usually involves the characterization of the expression levels
of important diagnostic molecules, such as proteins, is not performed in an
intraoperative setting [3,4,5]. The customary method used for the detection of selected
protein biomarkers is immunohistochemistry (IHC), which relies on recognition of protein
antigens by antibodies that are generated against relevant epitopes of the biomarker of
interest [6]. Although IHC can reveal the presence of a protein biomarker with high
spatial resolution, it is time consuming, and limited by the quality and specificity of the
antibody. Moreover, the simultaneous characterization of multiple proteins is generally
impractical in the clinical setting. Hence, final diagnostic reports take days to issue and
significant amounts of information of potential importance to clinical care are left
unanalyzed within the tissue, and not available at the time of surgical resection to guide
decision-making.

Recently, significant strides have been made in the development of platforms
that can provide near real-time molecular information in the intraoperative setting. For
example, ambient ionization approaches such as desorption electrospray ionization
mass spectrometry (DESI MS) [1,7,8,9] and rapid evaporative ionization mass
spectrometry (REIMS) [2,10] have been used to monitor the lipids and metabolites

within tissue biopsy specimens. This information can be used to classify tumors, to
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provide important prognostic information such as tumor subtype and grade and to
evaluate the molecular margins at the outer limits of a surgical resection thereby
informing the surgeon if the tissue is free of tumor cells. For example, a DESI MS
molecular profile can be typically acquired from a single sample location within 2
minutes after mounting [1] or along a line from a tissue on a slide (smear or swab) in
several minutes. A more complete two-dimensional molecular image can be acquired
from a mounted tissue section in about an hour [1,11], that can be used to correlate
underlying histology with the presence of molecular signatures. Single point profiles are
appropriate for rapid data acquisition during a surgical procedure while 2D molecular
imaging is done in the research setting to carefully validate signatures relative to classic
histopathology criteria [1,9]. REIMS has also shown potential for near-real-time
characterization of human tissue in vivo by analysis of the aerosol released during
electrosurgical dissection [2]. Based on (mostly) lipidomic profiles acquired, the REIMS
approach provided accurate distinction between histological and histopathological tissue
types.

Despite the ability of both DESI and REIMS to provide near real-time molecular
information from the tissue at stake, both are still limited mainly to the analysis of lower
molecular weight biomolecules such as metabolites, fatty acids, and lipids. The ability
to characterize quickly the tissue distribution of larger macromolecular biomarkers like
peptides and protein would harness the diagnostic value of validated IHC approaches
for surgical decision-making.

Direct liquid extraction based surface sampling/ionization probe technology

coupled with mass spectrometry [12,13,14,15,16] is one alternative approach that has
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been proven capable of sampling and analyzing proteins from biological samples
[17,18,19,20,21,22,23]. Commercial systems like the Liquid Extraction Surface Analysis
(LESA) system from Advion have been used for extraction and direct nanoESI-MS
analysis of hemoglobin variants and other proteins from blood spot [17,20,21,22] and
bacterial colonies [18,23]. However, because these approaches employ simple
extraction and follow-up direct ESI-MS analysis the possibility of varying matrix effects
masking the targeted biomarkers of interest is a potential concern [24]. The use of
HPLC coupled with ESI-MS/MS for detection of targeted proteins facilitates the
evaluation of complex sample matrices, enables differentiation between the particular
disease related materials and enables absolute analyte quantitation.[25] However, this
approach traditionally requires extensive sampling and processing [26] or
homogenization of tissues [27], followed by extraction and cleanup steps. While an
unattended workflow might be employed for this multi-step process using conventional
laboratory preparative schemes and robots, these time-consuming steps render the use
of traditional HPLC/MS unrealistic for real-time or near real-time diagnostic applications.
However, the challenge of providing spatially resolved molecular information for
peptides or proteins in a time frame currently relevant for intraoperative work (e.g., <10
minutes) could currently be effectively addressed using liquid extraction-based surface
sampling coupled with high performance liquid chromatography (HPLC) electrospray
ionization-tandem MS (ESI-MS/MS). Such systems have been successfully used for
spatially resolved sampling and detection of drugs and metabolites from animal tissue
sections [28,29,30,31,32,33,34] and proteins from dried blood spots [30]. The use of

the liquid-extraction based sampling probes provides a simple and quick means to
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acquire a representative sample that can be immediately injected on column for
analysis. Sampling and analyses can be completed in less than 10 minutes
[28,29,30,31,32,35].

We here report proof-of-principle data demonstrating that a fully automated
droplet-based liquid microjunction surface sampling probe-HPLC-ESI-MS/MS system
can be used for spatially resolved sampling, HPLC separation, and mass spectral
detection of adrenocorticotropic hormone (ACTH) and arginine vasopressin (AVP) from
normal human pituitary gland and ACTH secreting and non-secreting human pituitary
adenomas. Sampling and analysis were completed in about 10 minutes per spot
sampled. Excellent correlation was found between the protein distribution data obtained
with this system and the data from matrix assisted laser desorption ionization (MALDI)
chemical imaging analyses of serial sections of the same tissue. The analysis of ACTH
and AVP levels in ACTH secreting and non-secreting pituitary adenomas also
corroborated results from histopathology segmentation of the tumor tissue sections. In
addition, the relative simplicity, rapidity and specificity of the current methodology
support the potential of this basic technology, with further advancement, for assisting

surgical decision-making.

EXPERIMENTAL SECTION
Chemicals. LC-MS grade Chromasolv® solvents 100/0.1 (v/v) water/formic acid
(FA) and 100/0.1 (v/v) acetonitrile (ACN)/FA were obtained from Sigma Aldrich (St.

Louis, MO, USA). All other solvents used in this study were of HPLC quality and
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purchased from Sigma Aldrich. AVP and ACTH standard (compounds 1 and 2 in

Scheme 1, respectively), sinapinic acid (SA) and trifluoroacetic acid (TFA) were
obtained from Sigma Aldrich.

Pituitary Tissue Preparation. All research subjects were recruited from surgical
candidates at the neurosurgery clinic of the BWH, and gave written informed consent to
the Partners Healthcare Institutional Review Board (IRB) Protocols. Pituitary adenoma
samples were obtained from the BWH Neuro-Oncology Program Tissue Committee,
and analyzed under approved IRB protocol. Pituitary adenoma samples were originally
diagnosed as ACTH secreting pituitary adenoma (A3, A4, and A5) and non-secreting
adenoma (N1) based on the clinical findings. The normal pituitary tissue used in these
experiments came from a 48-year-old female who passed away from a
leiomyosarcoma. The post-mortem interval until the autopsy was conducted was 18
hours. Nothing from the autopsy report indicated that there was anything abnormal
about this specific tissue. Tissue sections were prepared on a Microm HM 550 (Thermo
Scientific, Waltham, MA, USA) with the microtome chamber chilled at -22 °C and the
specimen holder set at -18 °C. The sections were prepared at a thickness of 10 um for
MALDI chemical imaging and histochemistry analysis, and 40 uym for liquid extraction-
HPLC-ESI-MS/MS analysis. For MALDI chemical imaging, the sections were thaw
mounted onto indium tin oxide (ITO) glass slides (Bruker Daltonics, Billerica, MA). For
liquid extraction-HPLC-ESI-MS/MS and histochemistry analyses, the sections were
mounted on 1”7 x 3” optical slides (Fisher, Pittsburgh PA). The sections were kept at -80
°C until analysis. Before analysis they were brought to room temperature over 30

minutes inside a desiccator. For each mass spectrometry analysis, lipids were removed
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by washing each tissue with 70% EtOH for 2 minutes, followed by fresh 70% EtOH for 1
minute, and then 95% EtOH for 1 minute. After this washing, the slides were dried in a
desiccator for at least 30 minutes.

Hematoxylin and Eosin Staining for Histochemical Analysis. The
histochemical analysis was performed on a sister section of those samples that were
analyzed by mass spectrometric techniques. The protocol was done as previously
described. [36] Sections were then dried at room temperature in a hood and covered
with histological mounting medium (Permount®, Fisher Chemicals, Fair Lawn, NJ)
followed by a glass cover slide.

MALDI Chemical Imaging. The normal pituitary section was prepared by
depositing matrix containing sinapinic acid (10 mg/mL in 60/40/0.1 (v/viv)
ACN/water/TFA) onto each ITO slide using an ImagePrep automated sprayer (Bruker
Daltonics, Billerica, MA, USA). MALDI chemical imaging was then performed using an
UltrafleXtreme MALDI TOF/TOF (Bruker Daltonics, Germany) equipped with a 1 kHz
smartbeam laser. The spectra were acquired in positive linear mode with a mass range
of m/z 500-25,000 using an external mass calibration based on a mixture of peptide and
protein calibration standards. Each pixel in the chemical image was acquired with 800
laser shots and the chemical image was acquired with 100 ym spatial resolution. The
MALDI images were created with the Flexlmaging 4.0 software package (Bruker
Daltonics, MA) using a root mean square normalization method.

Liquid Microjunction Surface Sampling-HPLC-ESI-MS/MS Analysis. High
contrast/resolution optical images of tissue samples mounted on glass slides 1" x 3” in

size were acquired individually pre-analysis using a Dino-Lite Premier digital
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microscope (AnMo Electronics Corp., Taiwan) and associated software at a resolution
of 3150 dpi (about 40x zoom; samples A3, A4, A5 and N1) and 1455 dpi (about 18.5x
zoom; samples Pit6) for best visualization of morphological details. For analysis, glass
slides holding the tissue sections were secured in a custom sample holder of size equal
to a microtiter plate (Figure la). The custom sample holder was designed in
OpenSCAD [37] and printed using acrylonitrile butadiene styrene (ABS) plastic
employing a Dimension 1200es (Stratasys, Eden Prairie, MN) 3D printer. The holder
included a spring-loaded sample region, space for 4 individual extraction solvent vials
and a smaller diameter hole used in locking the needle guide to assist with switching the
injector needle configuration into surface sampling mode. The spring-loaded
mechanism was an improvement over the last series of our 3D printed custom sample
trays [32] enabling a quicker sample placement and removal as compared to using
double sided tape to secure the sample to the holder. The optical image of the mounted
tissue for selection of surface locations to be sampled was acquired using a flatbed
scanner (model Perfection v300 Photo, Epson America Inc., Long Beach, CA, USA)
controlled with the in-house developed software dropletProbe Premium®. The surface
sampling process utilized an HTS-PAL autosampler (LEAP Technologies Inc., Carrboro,
NC) equipped with a 100-uL L-MARK® 22s-gauge gastight syringe with a fixed needle
(part no: LMK- 2620719, 152 um i.d., 717 um o.d., LEAP Technologies Inc.). This setup
was similar to that described previously [28,29,31,32]. Changes included the use of a
spring loaded custom 3D printed sample holder (see above) and entire control of the
autosampler by dropletProbe Premium® rather than by autosampler software LEAPShell

3™ (LEAP Technologies Inc.) [28,29,32] or by mass spectrometry software Analyst™

10
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(AB SCIEX, Concord, Ontario, Canada) [31]. This latter change shortened the time for
method development and provided more precise positioning of the autosampler syringe
needle along the vertical Z-axis for an individual surface location by making a needle to
surface distance measurement just prior to the sampling process. (see detailed
discussion below) A standard HPLC/MS hardware profile in Analyst™ was responsible
for HPLC and MS control, and data acquisition. Communication control and data flow
between the instruments are illustrated in Scheme 2.

Surface locations to be sampled were selected using the optical image. Once
the sample queue was completed (Supplemental Figure S1), the required HPLC/MS
acquisition method and MS data file names were transferred into Analyst™ via a text file
to create an Analyst™ sample queue. With the system controlled by dropletProbe
Premium®, surface analysis was commenced by the autosampler first drawing 5 L of
90/10/0.1 (v/viv) water/ACN/FA extraction solvent from a vial in one of the built-in vial
holders (Figure la) located on the custom sample tray into the syringe needle and
barrel. This was followed by switching the syringe needle configuration into surface
sampling mode using the needle lock hole (Figure 1la) also located on the custom
sample tray. After this, the laser distance unit was positioned above a surface location
to be sampled where the laser sensor-to-surface distance (D) was measured (Figure
1d, I). Using D and a previously determined vertical offset (D) between the laser sensor
and the probe (tip of the autosampler syringe needle), the actual probe-to-surface
distance (D, = D - Dy) was calculated in dropletProbe Premium®. The syringe needle
was then positioned above the given surface spot and the probe was moved down

vertically by D, - dp to obtain the predetermined optimal dp=0.2 mm probe-to-surface

11
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distance (Figure 1d, Il). As illustrated in Figure 1d (lll), this step was followed by
dispensing a discrete volume of extraction solvent (2 pL in this work) onto a surface
creating a liquid junction between the needle and the surface (Figures 1b and 1c). After
a 2 s extraction time (Figure 1d, 1V), the liquid was drawn back into the syringe needle
(Figure 1d, V), followed by switching the needle configuration from surface sampling
mode to injection mode (needle leveled with the needle guide), and the extract
transferred to an injector and injected onto a XBridge™ BEH300 C4 column (2.1 x 100
mm, 3.5 um particle size; Waters, Milford, MA, USA) for subsequent HPLC/MS analysis
employing an Agilent 1100 HPLC pump (Agilent Technologies, Santa Clara, CA) to
deliver the separation solvents coupled to an API 4000 triple quadrupole mass
spectrometer (AB SCIEX, Concord, Ontario, Canada). HPLC separation solvents A and
B were 100/0.1 (v/v) water/FA and 100/0.1 (v/v) ACN/FA, respectively. The 10-min-long
gradient separation included the following steps: 0-0.5 min: 90% A; 0.5-3 min: linear
gradient to 70% A; 3-5 min: linear gradient to 20% A; 5-6 min: linear gradient to 90% A;
and 6-10 min: 90% A. Solution flow rate was 200 pL/min.

Selected reaction monitoring (SRM) transitions of m/z 543.2 — 328.3 and m/z
757.8 — 876.2 were monitored for AVP (cpd 1) and ACTH (cpd 2), respectively using
positive ion mode ESI with an emitter voltage of 5.0 kV employing collision energies of
27 eV (cpd 1) and 23 eV (cpd 2) with a declustering potential of 80 V. Dwell time was
50 ms for each transition monitored. Turbo sprayer heater temperature was 200 °C.
Mass spectrometry conditions were optimized infusing 0.2 uM solutions of the

respective proteins in 50/50/0.1 (v/v/v) water/ACN/FA. Scheme 1 shows the compound

structures and the monitored precursor ions.

12
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RESULTS AND DISCUSSION

Profiling Normal Cadaveric Human Pituitary Gland Tissue. In order to assess the
suitability of the current liquid microjunction surface sampling-HPLC-ESI-MS/MS system
towards protein detection sister sections of a non-diseased cadaveric human pituitary
gland (coded Pit6) were analyzed by MALDI imaging and by the aforementioned setup.
Figure 2a shows an optical image of one of the tissues section taken before MALDI
chemical imaging with both the adenohypophysis (AH) and neurohypophysis (NH)
regions of the pituitary clearly visible. Distribution of AVP (green color) and ACTH (red
color) obtained by MALDI chemical imaging (analysis time of 3.5 hrs, 100 um x 100 um
pixel size) among the different tissue subtypes is shown in Figure 2c. The signal for
AVP dominated the NH region while the signal for ATCH was dominant in the AH
region. Figure 2b shows a scanned optical image of a sister section of the sample
presented in Figure 2a. The 90 surface locations marked with white plus signs are on
the nodes of a 9 x 10 grid with 2 mm spacing and represent the locations chosen for
analysis by droplet-based liquid microjunction surface sampling-HPLC-ESI-MS/MS.
The areas sampled included both the anterior AH and the posterior NH regions of the
pituitary as well as regions outside the tissue onto the glass-mounting slide. Given the
solvent and extraction conditions, the diameter of a liquid junction at the tissue surface
(i.e., the area sampled) at each of these points was about 1.5 - 2 mm. The sample
throughput of the system was about 11 min/sample with the time for the

chromatographic separation being predominate. For the 90 sampling locations the total

13
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analysis time (including samples analyzed outside the tissue margins) was about 16.5
hrs. Chromatograms respectively associated with the circled green and red sampling
positions in Figure 2b are presented in Figure 2e and 2f for the spatially resolved

detection and quantitation of AVP and ACTH. These chromatograms were generated

using the SRM transitions for AVP (cpd 1, m/z 543.2 — 328.3, Figure 2e) and ACTH
(cpd 2, m/z 757.8 — 876.2, Figure 2f). To automatically calculate compound specific

distributions of cpds 1 and 2 (i.e., heat maps), the dropletProbe Premium® software

was provided with the retention time ranges for background and peak area calculation

[29,31,32]. Gray and white sections show the time ranges used for peak integration

(R=5.6-6.4 min for cpd 1, R=6-6.8 min for cpd 2) and background calculation (R=2-2.8

min for both cpds), respectively. It is important to note, that similar to earlier
applications,[29,31,32] background-corrected signal only provides a relative distribution
of the analyte of interest and does not necessarily reflect the absolute amounts present.
The heat maps from the droplet sampling data were overlaid on the optical image to
show the relative intensity of the signals detected for AVP and ATCH using green and
red bars, respectively (Figure 2d). Comparison of these protein distribution results with
those obtained by MALDI chemical imaging (Figure 2c) finds good agreement between
the two techniques. In each data set AVP was dominant in the NH region and ACTH
dominant in the AH region of the pituitary.

Profiling Multiple Normal and Tumor Human Pituitary Gland Tissues. The
analytical utility of the current droplet-based liquid extraction surface sampling-HPLC-
ESI-MS/MS system for potential clinical application was evaluated for the analysis of

cadaveric non-tumor pituitary gland thin tissue sections (Pit6, see above), and surgically

14
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removed ACTH secreting (coded A3, A4, and A5, obtained from different specimens)
and non-secreting (coded N1) pituitary adenomas. A subset of pituitary adenoma,
microadenomas, are too small to be detected with diagnostic imaging such as magnetic
resonance imaging (MRI), but the presentation of clinical symptoms triggered by the
overproduction of pituitary hormones suggests the presence of a pituitary tumor. [38,39]
Cushing syndrome is observed in patients affected by ACTH secreting adenomas.[39]
The ability to directly localize the tumor during pituitary surgery through the detection of
hormone levels differing between malignant and normal tissues would significantly
enhance surgical precision and allow preservation of healthy functioning gland.

Optical images of H&E-stained samples are shown in Figures 3a-e. Portions of
the same tissues are shown with higher magnification images (corresponding to areas
marked by white rectangles in Figures 3a-e) in Figures 3f-j (areas of about 0.28 mm x
0.28 mm in size) to resolve detailed histological information. Figure 3k shows averaged
integrated chromatographic peak areas with standard deviation for AVP and ACTH
levels for Pit6 AH and NH regions, normal NH and ACTH secreting malignant regions of
sample A3, ACTH secreting A4 and A5 tumor samples and non-secreting N1 pituitary
adenomas, and for clean glass slide surface used as blank. (These values are also
summarized in Supplemental Table 1.) The green and red dashed lines in the plot
indicate background signal levels plus standard deviation for AVP and ACTH,
respectively. Three tissue samples at a minimum of two different locations apiece were
analyzed for each tissue subtype. Individual sampled locations and corresponding
integrated signal levels of AVP and ACTH for samples Pit6, A3, A4, A5 and N1 are

shown in Supplemental Figures S2-S6, respectively. Due to their expected chemical

15
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variability, results for different regions of samples coded Pit6 and A3 are shown
separately in Figure 3k. In agreement with the known histological presentation of
normal pituitary gland sample Pit6, ACTH and AVP were found dominant respectively in
the AH and NH regions of the gland. Protein levels in the normal NH region of sample
A3 were found to be similar to that of the NH region of Pit 6, as expected. However,
higher ACTH levels were found in the tumor region of A3 as delineated by
histopathology evaluation. In addition, elevated AVP level for this sample indicated the
possible NH origin of this malignant tissue. ACTH secreting sample A4, that indicated a
highly tumorous structure on the H&E-stained images in Figures 3c and 3h, exhibited a
high level of ACTH while AVP signal was negligible. Histopathological evaluation of
ACTH secreting sample A5 suggested a similar structure to that of the AH region of
normal Pit6 with some indication of tumor penetration in the tissue (see Figures 3f and
3i). In agreement with histopathology, protein levels were found to be similar to that of
AH region of Pit 6 with ACTH level being about 10x above background level. Finally,
highly malignant (see Figure 3j) non-ACTH secreting tumor sample N1 exhibited protein

signals that were statistically at background level.

CONCLUSION

We here described the profiling of two proteins — AVP and ACTH — from normal
human pituitary gland and pituitary adenoma tissue sections using a fully automated
droplet-based liquid extraction-HPLC-ESI-MS/MS system. Heat maps of the two
proteins of interest recorded with 2-mm-spatial resolution over a cadaveric normal

human pituitary gland revealed that AVP was found to be most concentrated in the
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posterior neurohypophysis and ACTH was found predominantly in the anterior
adenohypophysis regions. These results were in good agreement with results obtained
by MALDI chemical imaging, and aligned with the known distribution of these hormones
in the pituitary. In addition, ACTH and AVP levels obtained from surgically removed
ACTH secreting and non-secreting pituitary adenomas agreed with histopathology
evaluation of these samples.

On the basis of these results and the relative simplicity, rapidity and specificity of
the current methodology, the potential exists for this basic technology, with further
advancement, to be used to assist surgical decision-making. In the present work,
profiing of ACTH and AVP took 11 min per sample with the time for the
chromatographic separation being predominate. This timeframe is comparable to that
of traditional histopathology evaluation, while providing detailed molecular information
currently unattainable during surgery. Switching from HPLC to current state-of-the-art
ultra performance liquid chromatography (UPLC) would already offer a 5-8 time
decrease in chromatography separation time (current 10 minutes) with concomitant
improvement in detection sensitivity and chromatographic resolution [40]. This
envisions that separation of all common pituitary proteins with an upper molecular
weight of about 24 kDa [41] can be accomplished in about 3-4 min based on our
experience separating proteins with a molecular weight around 15-16 kDa [30].

More broadly, monitoring proteins levels in a rapid fashion could have numerous
additional applications that could be highly transformative for surgery. For instance, the
ability to detect specific pituitary hormones may have an application in the evaluation of

pituitary tumor resection specimens — particularly those of microadenomas such as
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those that secrete ACTH and other hormones like prolactin or growth hormone. Such
tumors are only millimeters in size and can be difficult for surgeons to visualize and for
pathologists to detect by microscopic review of H&E stained frozen sections. Our
previous work demonstrated successful sampling of crude cut bulk tissues [32] with
sampling locations that differed in height by as much as 1.9 mm, and some samples as
narrow as 1 mm. Those results pave the way for testing this automated sampling
system in various diagnostic applications including for cancer detection from tissue
biopsy samples directly in the operating environment without the need of a skilled

operator.
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