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THREE-DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS

by
Peter J. O’Rourke, Daniel C. Haworth, Raj Ranganathan

ABSTRACT

Computational fluid dynamics (CFD) is one discipline falling under the broad
heading of computer-aided engineering (CAE). CAE, together with computer-
aided design (CAD) and computer-aided manufacturing (CAM), comprise a
mathematical-based approach to engineering product and process design, analy-
sis, and fabrication. In this overview of CFD for the design engineer, our purposes
are three-fold: (1) to define the scope of CFD and motivate its utility for engi-
neering, (2) to provide a basic technical foundation for CFD, and (3) to convey

how CFD is incorporated into engineering product and process design.

I. OVERVIEW

The objective of CFD is the numerical solution of fluid-flow equations. The calculus
problem of solving a coupled system of nonlinear partial differential equations (PDEs) for
the variables of interest (e.g., velocity, pressure, and temperature) is transformed into an
algebra problem of solving a large system of simultaneous linear equations for discrete
unknowns that represent the state of a thermal-fluids system; the latter is amenable to
numerical solution on a digital computer.

The above is a somewhat abstract description of CFD, but one necessarily must
speak in general terms to introduce a subject that encompasses such a wide variety of
solution techniques. In this overview we will talk about finite difference, finite volume,
finite element, spectral, and some computational particle methods. The emphasis will
be on the first three in this list, as these are the methods that are primarily used in
contemporary CFD codes for engineering design.

Here we reserve the terminology “computational fluid dynamics” for computationally
intensive three-dimensional simulations of thermal-fluids systems where nonlinear momen-
tum transport plays an important role. It does not encompass all branches of numerical
analysis as applied to fluid dynamics problems. In particular, we exclude consideration
of zero- or quasi-dimensional analysis of fluids systems®? and linear heat conduction or
potential flow problems.34 .

The practice of CFD began with the advent of computers; indeed, the first computer
was developed, in part, to solve fluid-flow equations. It was recognized by the developers
of the atomic bomb at Los Alamos that many fluid dynamics problems were impossible to
solve by analytic means. What was needed was a machine that could perform the massive
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number of calculations necessary to solve the flow equations by simple finite-difference
methods. The ENIAC computer began operating shortly after World War II, and its first
calculations were to test various configurations for a hydrogen bomb.® Ensuring the safety
and reliability of today’s nuclear weapons remains a major impetus for the development of
more powerful computers and more efficient numerical techniques for solving the fluid-flow
equations.®

Initially most numerical solutions were limited to flows that could be approximated as
spatially one- or two-dimensional; the time and expense of performing three-dimensional
calculations remained prohibitive. Over the last 15 years, however, CFD calculations of
three-dimensional flows have become more common. This has heightened enormously the
interest in CFD among engineers, as most real flows are three dimensional. In fact, most
fluid-flow problems encountered in industry are so complex that the only method of analysis
to which they are amenable is CFD. Thus although CFD was born only 50 years ago, it
is difficult to find problems in fluid dynamics to which computer solution has not been

brought to bear.

The capability to perform three-dimensional CFD has resulted primarily from the
availability of faster computers with larger memories (Fig. 1).” The development of parallel
and massively parallel computers promises to further improve the speed and extend the
applicability of CFD. A recent simulation of the oceans®? serves to illustrate the problem
size and computational requirements that have been realized in modern applications. This
problem was run on a 512-node massively parallel computer, requiring 10 gigabytes of
memory (giga = billion, one byte = eight bits). It ran at a computational speed of four
gigaflops (“flops” = floating point operations per second), and required 80 days of computer
time. A plot of ocean surface temperature obtained in this simulation is shown in Fig. 2.
Computers with maximum performance at one teraflop (tera = trillion) now are becoming

available, and petaflop computers (peta = 1000 trillion) are being planned for the next
decade.?

At the same time, improved numerical methods have yielded higher computational
efficiency: that is, fewer operations and/or less memory for a given accuracy. Among the
most important of these advances has been the development of faster methods for solving
implicit difference approximations (see the following section). A third enabler for three-
dimensional CFD has been the formulation of improved finite-volume and finite-element
methods that better accommodate the complex geometrical boundaries that characterize
engineering flows. Examples of engineering applications are given later in this report.

The advent of three-dimensional calculations has increased the engineering relevance
of CFD, but many obstacles remain to be overcome before CFD realizes its full potential
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Fig. 2. Ocean surface temperatures from a recent CFD simulation of the north Atlantic

Ocean.®®

as an engineering design tool. Foremost among these is spatial resolution. Most
flows of practical interest have features whose relevant spatial and temporal scales span
many orders of magnitude. For exainple, in an automotive four-stroke-cycle, spark-
ignited internal-combustion engine operating at 2000 rpm, hydrodynamic scales range
from about 0.01 mm (the turbulence microscale) to 100 mm (the bore diameter); flame
thicknesses (stoichiometric, undiluted reactants) are in the range 0.01~0.10 mm; and, spray
droplets issuing from a typical port-fuel injector have diameters as small as 0.10 mm.!
Computers do not exist, and will not exist in the foreseeable future, that can store all
the numbers required to fully resolve these phenomena. Thus, the effects of small-scale,
unresolvable features on the large-scale, average flow features of interest are “modeled”
through modifications to the governing PDEs. Examples of models include turbulence
models, combustion models, and multiphase flow models. All models necessarily introduce
imprecision, and an ongoing goal of research is to improve the accuracy of these models.
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Other issues for three-dimensional engineering CFD include geometry acquisition and
grid generation, numerical accuracy, and diagnostics to extract the physical information
of interest from the computations. Modeling and other issues are discussed further in

subsequent sections.

II. FUNDAMENTALS OF COMPUTATIONAL FLUID DYNAMICS

We now give the governing equations of fluid dynamics and introduce the CFD
techniques for their solution. We also introduce some basic terminology used by
practitioners of CFD. Readers who are not interested in the technical foundation of CFD
may proceed to the next major section on how CFD is incorporated into the engineering
design process.
A. The Governing Equations of Fluid Dynamics

The equations of fluid dynamics can be derived from kinetic theory or continuum
points of view,'%!3:14 each of which complements the other. Kinetic theory regards the fluid

as made up of molecules subject to collisions and inter-molecular forces. Kinetic theory
derivations are valid only for dilute gases but give detailed information about how transport
phenomena, such as stresses and heat fluxes, arise from molecular fluctuations, which in
turn are related to the average molecular properties for which the fluid equations solve.
Continuum derivations regard the fluid as a continuous medium, show the applicability of
the fluid equations to a much broader class of media than dilute gases, but do not give
detailed information about transport phenomena.
1. The Equations of Continuous, Compressible Media. Three basic physical

principles, applicable to any contimious medium, are used in continuum derivations:

1. conservation of mass, '

2. Newton’s second law that force equals mass times acceleration, and

3. the first law of thermodynamics that total energy, in all its forms, must be

conserved. :

These three principles lead to the following three equations of motion.

the mass, or continuity, equation

dp | Opu; _
the momentum equation
Opu; 0 (puivy) _ 321‘_3' L oF, . and @

the total energy equation

OpE  0(pEu;) _ 0(Ziu;)  0Q; o
ot T dz; —  Om dz; * ok &




We have written these equations in Cartesian tensor notation,'® according to which the
subscripts ¢ and j take the values 1, 2, or 3 corresponding to the three Cartesian coordinate
directions. A subscript that appears just once in a term takes on one of the three values
1, 2, or 3; repeated subscripts in a term denote a summation of that term over all three
coordinate directions. The other notation in Eqgs. (1), (2), and (3) is defined in Table 1.

Table 1. Nomenclature

Symbol Definition

specific heat at constant pressure
specific heat at constant volume
internal energy

total energy

body force per unit mass
enthalpy _
turbulent kinetic energy
pressure

heat flux

universal gas constant

rate of deformation

time

temperature

velocity

molecular weight

spatial location

Kronecker delta function
dissipation rate of turbulent kinetic energy
heat conductivity

second coefficient of viscosity
bulk viscosity

first coefficient of viscosity

mass density

M>% X >3 o =28 e N0 R>wme Q.0

stress




We note here that the total energy, E, is the sum of the local flow kinetic energy and

its internal energy e

E=e+ %uf . 0
Alternative energy equations for e and for enthalpy h = e + p/p, where p is the pressure,
may easily be derived using Egs. (1), (2), and (3). CFD codes often solve internal energy
or enthalpy equations, in place of Eq. (3), when calculating compressible flows.

The above equations are expressed in Eulerian form, by which we mean that the time
derivative is taken at a fixed point in space. In contrast, in Lagrangian form, the time
derivative is taken following a fluid element.** Although the Eulerian form of the equations
is most often used in CFD, there are CFD methods that approximate the Lagrangian
equations.

When completed with constitutive relations appropriate for fluids, these are the basic
equations of compressible fluid dynamics. In practice one often encounters applications in
which extensions of these equations are necessary. Among the most common are extensions
to multicomponent and chemically reactive flows,'® to magnetohydrodynamic flows,'” and
to flows with radiative heat transfer.® It is beyond the scope of this modest overview of
CFD to give these extended equations, and the reader is referred to the cited references
for this information.

2. Constitutive Relations of Fluid Flow. To complete these equations we need
to express the stress ¥;; and heat flux Q; in terms of known fluid variables and their
derivatives. These expressions are known as constitutive relations. A fluid is a medium for
which the nonhydrostatic part of its stress depends only on its rate of deformation S;;, or
what is usually referred to as the rate of strain, and not on its deformation. The quantity

C 1 Buz 8uj

Thus, a fluid has no memory of its previous configurations. This fact, together with the

Sij is given by

assumption of an isotropic medium in terms of its microstructure, allow us!® to express
the full stress as

Eij = 2/.L51;j + /\Skk5ij —pdij , (6)
where J;; is the Kronecker delta function. 15 Fluids with this form of stress tensor are called
Newtonian fluids. The thermodynamic pressure p and the first and second coefficients of
viscosity p and ), depend only on the local thermodynamic state of the fluid. Often the
second coefficient of viscosity in Eq. (6) is replaced by the bulk viscosity X', defined by

2
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The heat flux Q; depends on gradients in temperature. Again assuming an isotropic

fluid @; may be written
oT

Er (8)
This is Fourier’s heat conduction law, and x is called the heat conduction coefficient or
simply the heat conductivity. Its value depends on the local thermodynamic state of the
gas. When one substitutes Eq. (6) for the stress tensor and Eq. (8) for the heat flux vector
into Egs. (1), (2), and (3), the resulting equations are called the compressible Navier-Stokes

Qi=—x

equations.

The fluid equations are completed by the specification of the quantities p, e, i, A, and
k in terms of the local fluid temperature T and density p. The equations specifying p and
e are referred to as thermal and caloric equations of state, respectively. For a so-called
ideal gas these are given by

R
and
T
e= / C\(T') dT” (10)

where the specific heat at constant volume C,, is a function of temperature. Alternatively,
the enthalpy h is given by

h= / " o)y ar (11)

" where, from the definition of h and the thermal equation of state Eq. (9), the specific heat

at constant pressure Cp is given by

R

Values of C, and C, versus temperature are given in the references.!%:2

The quantities p, A, and x are called transport coefficients. How they are related
to the local thermodynamic state of the fluid and its molecular properties are given in
another reference.?! Given an expression for the viscosity i, the heat conductivity x can
frequently be approximated by

_ HCp
k= (13)

where Pr is the Prandtl number, whose value is nearly constant and often of order unity.
3. Simplifications of the Fluid-Flow Equations. For certain flow situations
considerable computer time can be saved by solving simplified forms of the compressible
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flow equations. In this section we introduce the steady-state, inviscid, and incompressiblé
approximations, and we describe the circumstances under which they may be used.

The steady-state approximation is obtained simply- by dropping the time derivative
terms in Egs. (1), (2), and (3). While solving the steady-state equations can often save
computer time, sometimes CFD solution techniques for the steady-state equations have
what are called convergence difficulties, and steady fluid flow solutions are more reliably
obtained by calculating the long-time limits of solutions to the unsteady equations.?2

The inviscid, or Euler, equations are obtained by neglecting the viscosity and heat
conduction terms in the preceding equations. A necessary condition for the applicability
of the Euler equations is that the Reynolds number, Re, be much greater than one, where
Re is defined by

Re=24L (14)

In Eq. (14) p, u, and p are characteristic values of the density, velocity, and viscosity,
respectively, of the fluid, and L is a characteristic distance over which the velocity changes
appreciably, also called a gradient length. In a flow to which the Euler equations apply, L
is typically the dimension of the apparatus that bounds the flow. The Reynolds number
is approximately the ratio of the magnitude of the advective terms to that of the viscous
terms in the fluid momentum equation, Eq. (2). Thus when Re is large, the viscous terms
may sometimes be neglected. When fluid Prandtl numbers are of order unity, smallness
of the viscous terms also implies smallness of the heat conduction terms relative to the
advection terms in the energy equation.

There are many high-Reynolds number flows, however, where neglect of the viscous
and heat conduction terms is not justified. Sometimes fluid flows have broad regions over
which the inviscid equations apply, coupled with thin regions (e.g., boundary layers and
shocks) in which the viscous and heat conduction terms are important. In addition, as Re
is increased, many flows become turbulent, and the velocity then varies over a range of
length scales, L. At the smallest of these length scales, Re is of order unity, and viscosity
is important because it is responsible for the dissipation of turbulent kinetic energy into
heat. (See “turbulence,” below.)

An incompressible flow is one in which the divergence of the velocity field is identically

equal to zero

8u,-
Bmi

=5;=0. (15)




A necessary, but not sufficient,’* condition that a flow be incompressible is that the Mach
number, M, be much less than one, where M is defined by

M:%. (16)

In Eq. (16) u and c are characteristic values of the velocity and sound speed of the fluid.
In combination with the continuity equation Eq. (1), Eq. (15) implies that

Do _%p,,.00 _
Dt~ ot Yiag 0 (17)

D/ Dt is the time derivative following a fluid element, and Eq. (17) states that the density of
each element of fluid remains a constant along its trajectory. Commonly, a more restrictive

assumption is made that the density of the whole fluid is equal to a constant pg. In this
case, the momentum equation, Eq. (2), becomes '

aui + a(u,u]) _ lazij

ot Oz; po Oz s (18)

The great simplification of the incompressible flow equations is that the energy equation
is decoupled from the momentum equation and need not be solved. What we have given
here is the so-called primitive-variable form of the incompressible flow equations. Another
formulation that is used in CFD calculations of two-dimensional, incompressible flows is
the stream function and vorticity formulation.3

4. Turbulence and Other Models. As stated in the introduction, there are many
flow situations in which flows have changes in their properties, such as their velocities, with
superimposed size scales or time scales that differ by many orders of magnitude. Examples
are the seemingly chaotic motions in a turbulent flow or in a multiphase flow, such as

a liquid spraying into a gas. Classical theories of turbulence predict that the ratios of
the largest to the smallest fluctuation length scales of turbulent flows are approximately
equal to Re®", where here the Reynolds number Re is based on the velocity and size
scales of the largest turbulent eddies.?® Even a low value of Re = 10000 gives fluctuation
length scales varying over 3 orders of magnitude. For such cases it is impossible to resolve
the detailed flow fluctuations with CFD methods, and fortunately we are not concerned
with predicting these detailed fluctuations. We are concerned with average flow behavior,
however, and it is important to account for the effects of the fluctuations on average flow
variables.

There are many ways to define averaged, or filtered, flow variables. In general, space-
and time-averages can be defined using a filter function K (z;,t) whose integral overall
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space and time is unity. In terms of K, the average of a fluid variable g, denoted by §, is
defined by

q(zi,t) = //// q(yi, ) K (y; — 3, t' — t) dy; dt’ . (19)

For example, for pure time-averaging one can take K(z;,t) = 0(z;)¥r(t)/T, where

: 1 ifl<T/2
Ur(t) = {0 otherwise , (20)
and §(z;) is the Dirac delta function. Then the average ¢ is defined by
1 t+T/2
7@ t) = = / ol ) di’ (21).
T Ji—1/2

and the filter size is said to be T'. In addition to space- or time-averaging, one can also use
ensemble averaging. This is defined by averaging over an imagined large set of realizations
of a fluid experiment. Sometimes ensemble-averaging is combined with space- or time-
averaging. In any case, the fluctuation of quantity ¢ from its mean value is denoted by

q

q'(zs,t) = q(z5, ) — G(z1, 1) - (22)

There are two approaches to calculating average flow fields. In the first, called
Reynolds averaging because it was first proposed by O. Reynolds,?* one is interested in
predicting the average flow field and uses ensemble averaging, or a filter size that is large
compared with the scales of fluctuations. Thus the average of the fluctuating part of ¢ is

Zero
@) =0 (Reynolds averaging). (23)

In contrast, subgrid-scale turbulence models use filters with as small a size as possible,
typically comparable to the grid size in one’s CFD calculation. Thus, one attempts to
calculate flow fluctuations with scales larger than the filter, or grid size, and to model only
subgrid-scale fluctuations. In a subgrid-scale model the average of the fluctuating part of

q is, in general, nonzero
(@) #0 (Subgrid model filtering). (24)
Once the method of averaging is chosen, then equations for the averaged flow variables
can be obtained by averaging the equations of the preceding sections, or simplified forms

of these. In deriving the averaged equations, one finds that the rates of change of average
flow variables depend upon averages of the products of two fluctuating quantities, also
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called second-order correlations. The values of these are unknown; and if one tries to close
the system of equations by deriving transport equations for the second-order correlations,
it is found that these depend on third-order correlations, or averages of three fluctuating
quantities. Continuing in this way one finds that it is impossible to obtain a closed system
of equations using either Reynolds averaging or subgrid-scale averaging.? By using physical
and dimensional reasoning and empirical information, the unknown correlations must be
expressed (the word “modeled” is also used here) in terms of average flow variables that
are known.

A very important example of a second-order correlation and its modeling arises when
averaging the incompressible flow momentum equation, Eq. (18). The Reynolds-averaged

form of this equation is

(8712- am-ﬂ,-) 0%;; 0
Po + =
Zj

—_ 1ol .
ot Ox; Oz; O (pouzuj) +poF . (25)

The second-order correlation, —pouju;, on the right-hand side of this equation is called the
Reynolds stress. The most popular turbulence models in engineering design calculations are
the so-called two-equation models, in which the Reynolds stress is, with some theoretical

justification,?5:26 taken to have the form
=T <. 2
—pouiuj = 2,uTSij - §p0K5ij . (26)

In this expression pr is the turbulent viscosity and K is the turbulent kinetic energy

K= Tl (27)
By substituting for the Reynolds stress in Eq. (25) using Eq. (26), one finds that the
momentum equation for turbulent flow closely resembles the momentum equation for
laminar, or nonturbulent, flow. This is also the case for other averaged fluid equations,
and this resemblance allows the same numerical techniques for CFD to be applied to both
laminar and turbulent flows.

In two-equation turbulence models, transport equations are solved for the turbulent
kinetic energy, K, and one other scalar that gives a local length or time scale of the
turbulence. A popular choice for this second turbulence quantity is the turbulence kinetic
energy dissipation rate, €. In terms of K and e the turbulent viscosity is given by

2
Hr = c,_,poge— ; (28)
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where ¢, is a dimensionless constant. Launder and Spalding®® describe the K /e turbulence

model in more detail in Ref. 26, and the use of wall functions to calculate wall heat and
momentum losses in conjunction with the K /e model. Descriptions of many two-equation
turbulence models, and their relative advantages, may be found in Wilcox.2”

B. Numerical Solution of the Fluid-Flow Equations

We now introduce some common techniques for discretizing the fluid-flow equations
and methods for solving the discrete equations.

1. Discretization of the Fluid Equations. In the process of discretization we
represent a continuously varying fluid-flow field, which has an infinite number of degrees of
freedom, by a finite set of data. In this section we introduce the discretization techniques
used by finite difference, finite volume, finite element, spectral, and some particle methods,
and associated concepts of numerical stability and accuracy. The discrete equations of
the finite-difference, finite-volume, and finite-element techniques all look similar and are
referred to generically as “difference approximations.” In this introduction to CFD we
have only time to “scratch the surface” of each method. For more in-depth information,
the reader should consult one of several standard books on the subject.328:29:30,31,32

a. Finite-Difference Methods (FDMs). In FDMs we subdivide all the fluid region of
interest into nonoverlapping cells and store approximate values of the fluid variables in each

cell. This subdivision is called a grid or a mesh. Derivatives are approximated by taking
differences between the variable values in neighboring cells, using the idea. of a Taylor-series
expansion. Let us consider the simple one-dimensional example of finite-difference solution

of the linear advection equation

dg , O9q

in the spatial interval ¢ < z < b. We subdivide this interval into cells of equal size
Az = (b—a)/N, where N is the total number of cells, and denote by ¢? the approximate
value of g at the center of cell 4, which lies at the location, or grid point, z; = a+(i—1/2)Ax,
at time ¢ = nAt, where At is the computational timestep. (In this section, the subscript
i will represent a cell number, rather than a coordinate direction.) We have stored in
computer memory all the values of ¢7', 1 <4 < N, for a particular time ¢t = nAt, and we
wish to compute values at time ¢ = (n + 1)A¢ by using a finite-difference approximation
to Eq. (29).

To approximate the spatial derivative in Eq. (29), we consider the ¢? to be the values
at x; of a differentiable function g(z,t) that can be expanded in a Taylor series about any
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grid point. Thus the value of g at a neighboring grid point can be expressed in terms of
the value of ¢ and its derivatives at grid point ¢ by

" om dg\" / 0%¢\" (kAz)? 3
QGar = q; + (%) kAz + <3f”2>i 5 + O(Az®), (30)

2

where O(Az™) represents the fact that the remaining terms in this expansion have as their
lowest-order term one in which Az is raised to the power m. Now the value of the spatial
derivative in Eq. (29) can be approximated by any finite combination that satisfies

a n
> argy = (£> +0(Az™) (31)
k 2

when one substitutes from Eq. (30) for the g; 1, where the aj are coefficients that depend
on Az. In the approximation Eq. (31), ‘m’ is said to be the order of accuracy of the
approximation and all terms containing Az to some power are said to be truncation errors.
As long as m > 0, the approximation is said to be consistent. Examples of consistent

approximations are the centered-difference approximation

Q?+1—€I?—1_ @ "o 2
v —(am)'+O(Aw), (32)

2

which is second-order accurate, and the one-sided approximations

&G —a, (0Oq "
Ao = <_6:c>z + O(Az), (33a)
and
G =9 _ (0a\"
Ao = ( 51175),- + O(Az), (33b)

which are first-order accurate. If the advection speed u in Eq. (29) is positive, then the
approximation Eq. (33a) is called an upwind approximation and Eq. (33b) a downwind
approximation. '

Order of accuracy is one measure of the accuracy of a finite-difference method. To test
the accuracy of a. finite-difference solution one can refine the grid by reducing the cell size
Az. When Az is reduced by a factor of 2, numerical errors will be reduced approximately
by a factor of 4 when using a second-order method, but only by a factor of 2 with a
first-order method. It may thus seem to be desirable to use only methods with a very
high order of accuracy. In practice, however, it is difficult to define high-order methods
near boundaries, and often numerical solutions using high-order methods have oscillations
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in regions of steep gradients. Because of these difficulties, most modern finite-difference
methods have second- to fourth-order accuracy and sometimes drop to first-order accuracy

in regions of steep gradients.

Returning to the example of the linear advection equation, the time derivative can
be approximated in much the same way as the spatial derivative. Since one usually only
stores the values of ¢; at a single time-level in order to save computer storage, the time
derivative is most often approximated by the one-sided finite-difference formula

n+1l

i A
A (315)1 +O(At) . (34)

When Eq. (34)—and one of the finite-difference formulas Eq. (32), Eq. (33a), or Eq. (33b)—
are used to approximate the time- and space-derivatives in Eq. (29), one obtains a
consistent approximation to the linear advection equation that is first-order accurate in
time.

When these finite-difference equations are used to advance the numerical solution for
g in time, one finds that, in contrast to solutions to the differential equation, solutions to
the finite-difference equations using Eq. (32) or the downwind approximation Eq. (33b)
are subject to catastrophic numerical instabilities, and solutions using Eq. (33a) are only
stable if a certain condition is met. This condition, the so-called Courant condition, is
that the Courant number C = (uAt)/Ax be less than one. The origin of these numerical
instabilities was first discovered by J. von Neumann,3® who devised a method for analyzing
the stability of linear finite-difference equations based on examining the behavior of each
Fourier component of the solution.

The finite-difference approximations we have presented so far are explicit in the sense
that the solution. for q{”’l can be explicitly found by solving only the finite-difference
equation at grid point 7. All explicit methods, if they are stable, are subject to Courant
conditions to ensure their numerical stability. Intuitively, this condition arises because
when using an explicit method, information can only propagate at a speed proportional
to Az/At. In order for the numerical solution to approximate the physical solution, the
numerical propagation speed must be at least as great as the physical speed. For the simple
advection Eq. (29), the only physical propagation speed is u. For the fluid equations there
are several physical, or characteristic, speeds. The largest of these is u + ¢, where c is
the fluid speed of sound, and the Courant condition in explicit CFD calculations is based
on the speed v + ¢. To overcome the Courant condition one uses implicit finite-difference
methods, in which solution for the value of q;fH'l is implicitly coupled to the solution for
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g™t at other grid points. An example of an implicit finite-difference approximation to the
linear advection Eq. (29) is

- g -g 25
At =Tt 20z ’ (35)

which can be shown to be unconditionally stable. The disadvantage of implicit methods is
that they usually require costly iterative solution. Some iterative solution techniques for
implicit equations will be introduced below.

b. Finite-Volume Methods (FVMs). As in FDMs, FVMs subdivide the computa-
tional region into a mesh of cells; but finite-volume cells can be arbitrary quadrilaterals in
two dimensions, hexahedra in three dimensions, or indeed any shape enclosed by a set of
corner points. In contrast, FDMs are defined on grids that are obtained using orthogonal
curvilinear coordinate systems. Thus, FVMs have much more geometric flexibility than
FDMs.

Finite-volume methods approximate forms of the fluid equations that are integrated
over these cells, which are also called control volumes. As an example, we consider
finite-volume approximation of the integrated form of the mass equation, Eq. (1). After
integrating Eq. (1) over control volume V' and applying the Reynolds transport and

14 5ne obtains

%///pdv+//puinida=0. (36)
|4 S

The quantity pu;n; is the mass flux (mass per unit area and time) through surface S with

divergence theorems

unit normal n;, and Eq. (36) is a statement that the time-rate-of-change of the total mass
in volume V is equal to the sum of the fluxes, times the areas, through the surface S of

the volume. Thus mass is conserved in the sense that there are no internal mass sources.

Commonly, the time derivative term in Eq. (36) is approximated by

oyt —py
///pd’UNV A% , (37)

where v is the index of a finite-volume cell and V,, is its volume, and the surface integral

/ / puin; da ~ zo; Pots) (1) e Ale (38)

where the sum is over all faces « of control volume v; p, and (u;)o are approximations to

is approximated by

p and u;, respectively, on face a; (n;)q is an average unit normal vector to face o pointing
out of volume V; and A, is the area of face a.
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Using FVMs one can easily construct discrete approximations that have the conser-
vative property; that is, the discrete approximations can mimic the physical laws from
which the fluid equations were derived by conserving properties such as computed mass,
momentum, and energy. To be more precise, consider the approximation to the mass equa-
tion above. A conservative approximation has the property that if v and p are two cells
that share face o, then when one sums the finite-volume approximations to the change
of mass in cells v and y, the contributions due to fluxes through common face o cancel
each other. This will be true if p, and (u;), are defined the same way in the finite-volume
approximations at nodes v and , since the unit outward normal to face « relative to cell

v is minus the outward normal relative to cell . Conservative difference approximations
have many desirable accuracy properties. For example, it can be shown that difference
approximations that conserve mass, momentum, and energy will calculate the correct jump
conditions across shocks without having to resolve shock structure.3

A problem with FVMs is that it is difficult to formulate higher order FVMs. When
a FVM is specialized to a finite-difference grid, the difference approximations look very
much like finite-difference approximations, and one can perform Taylor-series expansions
and determine the order of accuracy of the method. When more general meshes are used,
however, it is unclear whether the same accuracy can be expected.

c. Finite-Element Methods (FEMs). FEMs?® use a consistent spatial interpolation
when evaluating all the spatial derivative terms in the fluid dynamics equations. These
methods have long been popular in stress analysis problems and have recently been gaining
popularity in CFD problems because of advances in the methodology. As in FVMs the
computational domain is subdivided into nonoverlapping cells that in three dimensions
are either arbitrary hexahedra or tetrahedra (Figs. 3, 4). Finite-element terminology is
different, however, in that the cells are called elements, and the vertices of the cells are
called nodes. A function g(z;,t) is represented by an expansion of the form

gz t) = Y @by (z:) (39)

where the sum is over all the nodes v in the computational domain. The b,(x;) are
called basis functions and have finite support, meaning that they vanish outside of some

neighborhood of the node v location (z;),. They also have the properties that

by ((xz)ﬂ) =0uy , (40)
where d,,, is the Kronecker delta function, and
D b(z) =1 (41)
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Fig. 3. Examples of grids used in CFD calculations. Two-dimensional examples are
shown for clarity. (a) A structured grid. (b) A block-structured grid. (c) An unstructured
hexahedral (quadrilateral) grid. (d) An unstructured tetrahedral (triangular) grid. (e)
Local mesh refinement via a transition region on an unstructured hexahedral grid. (f)
Local mesh refinement via cell splitting on an unstructured hexahedral grid. (g) A chimera
grid.
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Principal Cell or Element Types for CFD
Tetrahedron Hexahedron

(a)

(b)

Some Degenerate Hexahedra

ingle edge collapsed two edges collapsed:
=g ’ P ‘prism’ or ‘wedge’

BN

7

single face collapsed: two faces collapsed:
‘pyramid’ tetrahedron
(©)

Fig. 4. Principal cell or element types for CFD. (a) Tetrahedron: there are four vertices
or nodes, four faces, and six edges for each element. (b) Hexahedron: there are eight
vertices or nodes, six faces, and twelve edges for each element. Hexahedral elements
generally must remain convex (angles formed by edge and face intersections must remain
smaller than 180°). (c) A sampling of possible edge and/or face degeneracies for hexahedral

elements.

for all ;. Linear (for tetrahedra) or trilinear (for hexahedra) basis functions give rise
to second-order numerical methods in the following sense: when the finite-element grid is
refined in such a way that the dimensions of the elements are reduced by a factor of 2, then
the difference between the computed and exact solutions, as measured by a global integral
of this difference, is reduced by a factor of 4. Higher order FEMs may be constructed
by adding mid-side nodes to the elements and using nonlinear basis functions that have
properties Eq. (40) and Eq. (41).2% Because of Eq. (40) the coefficient g, (t) is the value of
q at location (z;), at time ¢. '

Although there are many possibilities for determining g, (¢), the most common
method is that of the Galerkin finite element method (GFEM). In GFEM one substitutes
expansions of the form Eq. (39) for each function in the fluid equations. To obtain the
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discrete equations associated with node v, one multiplies the resulting expanded equations
by basis function b,(z;) and integrates over the entire computational domain. This
gives rise to a coupled system of ordinary differential equations for the functions g, (t).
Standard numerical methods for ordinary differential equations may then be used to solve
for the g, (t). These ordinary differential equations involve coefficients that are integrals of
products of the basis functions and their derivatives. Evaluating these coefficients can be
a costly step in obtaining a GFEM solution.

d. Spectral Methods. Like FEMs, spectral methods® represent a function q(z;,t) by

a finite sum

a(@i,t) = 3 en(®balzs) , (42)

but unlike FEMs the basis functions by, (z;) are typically orthogonal functions with respect
to some weighting function W (z;); that is

/ / b (23)b ()W (3) s = Gy, (43)

There is no grid in a spectral method. The ¢, (¢) are no longer the values of ¢ at nodes, but
simply the coefficients of the function ¢ in an orthogonal function expansion. Ordinary
differential equations for the c¢,(t) are obtained by a method that is similar to that of
GFEM: one substitutes the expansion Eq. (42) into the fluid equations, then multiplies
the resulting expanded equation by b,(z;)W(z;), and integrates over the computational
domain.

Spectral methods are most often used in situations where suitable basis functions can
be found that satisfy the boundary conditions of one’s problem. When this is the case,
spectral methods are very efficient for solving fluid dynamics problems. For example, direct
simulations of turbulence with periodic boundary conditions invariably use Fourier series
expansions® because of their high accuracy. Because of the difficulty of finding suitable
basis functions that satisfy boundary conditions in complex geometries, spectral methods
are usually used only for simple geometries.

e. Computational Particle Methods. Computational particles have long been used
for many purposes in CFD calculations.35 At the simplest level they are used to follow the
motion of Lagrangian fluid elements for flow visualization purposes. At the other extreme,
in some particle methods the fluid is completely represented by particles, each of which
is endowed with a certain amount of mass, momentum, and energy. This is the case for
Particle-in-Cell (PIC) methods,3®3” and for the newer Smoothed-Particle-Hydrodynamics
(SPH) methods.?® The great advantage of the latter two methods is their Lagrangian
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nature. Because the Lagrangian equations are solved, numerical truncation errors are
avoided that arise from finite-difference approximations to the advection terms. These
are often the largest errors in approximations of the Eulerian equations. When carefully
formulated, PIC and SPH method solutions can also be Galilean invariant and conserve
angular momentum.3”

A disadvantage of particle methods lies in the difficulty of calculating interactions
among fluid particles—which give rise, for example, to the pressure gradient terms in the
momentum equation. This difficulty manifests itself, particularly in low Mach number
calculations, in particle bunching, and consequent fluctuations in advective transport. ‘
Possibly because of this difficulty, very few commercially available CED codes use particle
methods. An exception is a class of commonly used fluid /particle methods for calculating
dispersed, two-phase flows,3%4% such as occur when a liquid sprays into a gas. In these
methods, computational particles represent the dispersed phase entities and only interact
with each other weakly, if they do so at all.

2. Solution of Implicit Equations. When solving difference approximations

to the steady fluid equations, or when solving implicit approximations to the unsteady
equations, one must solve a large number of coupled algebraic equations for the unknown
values of the fluid variables. When the equations are linear, an equation corresponding to

the it cell or node can be written in the form

D asg = s, (44)

j .
where a;; are constant coefficients and s; is a known source term. The g¢; are the unknowns
for which we wish to solve; in an unsteady problem ¢; = q?"'l. For example, for the

implicit approximation Eq. (35) to the one-dimensional linear advection equation, one can
take ai; = 1.0, asi+1 = ult/(2A%), as—1 = —uli/(2Az), and s; = ¢*. Equation (44) is
usually written

Agq=s, (45)

where A = (a;;) is an N x N matrix of coefficients, N being the number of unknowns,
s = (s;) is a known source vector, and q = (g;) is the vector of unknowns. Because the
difference approximation in cell 7 only depends on the values of ¢ in cell 7 and a small
number of neighbors of cell 4, only a small number of the elements of the i*® row of matrix
A will be nonzero, and for this reason A is referred to as a sparse matrix. The basic
problem of implicit fluid dynamics is to solve Eq. (45) for the vector of unknowns, given a
sparse matrix A and source vector s.
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Only for problems with small IV can the matrix problem Eq. (45) be solved directly by
Gaussian elimination. This is because although the matrix A is sparse, and therefore does
not require much computer storage for its nonzero elements, when Gaussian elimination
is used to solve Eq. (45), one finds that it is generally necessary to store in computer
memory approximately N2 nonzero coefficients, which is impossible in problems with a
large number of cells.

Thus, iterative methods are usually used to solve the matrix problem Eq. (45).
Iterative solution methods calculate a sequence of approximations g that converge to the
solution q. The exact solution is not obtained, but one stops calculating q* when either
the difference between successive iterates g*+t! — g, or the residual Aq* —s, is acceptably
small. In the past, popular iterative methods have been point-suécessive relaxation, line-
successive relaxation, and methods based on approximate decomposition of matrix A into a
product of lower and upper triangular matrices that can each be easily inverted.3° Recently,
these methods have largely been supplanted by two methods that have greatly reduced the
computer time to solve implicit equations and thereby have made implicit methods more
attractive. These more recent methods are conjugate-gradient methods*' and multi-grid
methods. 42

When nonlinear finite difference equations are solved, the above iterative methods can
be used in conjunction with Newton’s method.*® A nonlinear difference approximation can

be written
F(q)=0, (46)

where F is a vector-valued function of the vector of unknowns q. If q* is the approximation
to the solution q after k¥ Newton-iteration steps, then g+ = ¢*+dq is obtained by solving
the matrix equation
Fdd =P (47)
The matrix g—g is called the Jacobian matrix. Equation (47) is of the form of Eq. (45) and
can be solved by one of the iterative methods for linear equations. Thus, solution for q
involves using an iteration within an iteration. As in the solution of nonlinear equations
for single variables, convergence is sometimes accelerated by under-relaxation; that is, one
takes g**+! = q* + A\dq where dq is the solution to Eq. (47) and X is an under-relaxation
factor whose value lies between zero and one.
Newton’s method is sometimes used to solve systems of coupled difference equations
arising in CFD,** but it is often more economical for this purpose to use the Simple-Implicit
Method for Pressure-Linked Equations (SIMPLE) method.*> In the SIMPLE method,

a system of coupled implicit equations is solved by associating with each equation an
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independent solution variable and solving implicitly for the value of the associated solution
variable that satisfies the equation, while keeping the other solution variables fixed. As
is implied by the acronym SIMPLE, pressure is chosen as an independent variable, and

a special treatment is used to solve for pressure.*® The equations are solved sequentially,
and repeatedly, until convergence of all the equations is obtained. The SIMPLE method is
more efficient if the difference equations are loosely coupled, or if some independent linear
combinations of the equations can be found that have little coupling.

C. Grid Generation for Complex Geometries

Before applying most of the CFD methods outlined above, a computational grid must
be generated that fills the flow domain and conforms to its boundaries. For complex
domains with curved or moving boundaries, or with embedded sub-regions that require
higher resolution than the remainder of the flow field, grid generation can be a formidable
task requiring more time than the flow solution itself. Two general approaches are available
to deal with complex geometries: use of unstructured grids and use of special differencing
methods on structured grids.

1. Unstructured Meshes. Figure 3 shows examples (in two dimensions) of several
possible grid arrangements for CFD. In a structured three-dimensional grid (Fig. 3a) one
can associate with each computational cell an ordered triple of indices (%, 5, k), where each
index varies over a fixed range, independently of the values of the other indices, and where
neighboring cells have associated indices that differ by plus or minus one. Thus, if N;, N,
and N are the number of cells in the ¢-, j-, and k-index directions, respectively, then the
number of cells in the entire mesh is V; N; V. Additionally, it is seen that each interior
vertex in a structured grid is a vertex of exactly eight neighboring cells.

In an unstructured grid (Figs. 3c and 3d), on the other hand, a vertex is shared by
an arbitrary number of cells. Unstructured grids are further classified according to the
allowed cell or element shapes (Fig. 4). In the case of FVMs in particular, an unstructured
CFD code may require a mesh of strictly hexahedral cells (Fig. 4b), hexahedral cells with
degeneracies (Fig. 4c), strictly tetrahedral cells (Fig. 4a), or may allow for multiple cell
types. In any case, the cells cannot be associated with an ordered triple of indices as in a
structured mesh.

Intermediate between structured and unstructured meshes are block-structured
meshes (Fig. 3b), in which “blocks” of structured grid are pieced together to fill the
computational domain.

There are three advantages of unstructured meshes over structured and block-
structured meshes. First, unstructured meshes do not require that the computational
domain or sub-domains be topologically cubic. This flexibility allows one to construct
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unstructured grids in which the cells are less distorted, and therefore give rise to less
numerical inaccuracy, compared with a structured grid. Second, local adaptive mesh
refinement (AMR) is naturally accommodated in unstructured meshes.by subdividing cells
in flow regions where more numerical resolution is required (Fig. 3e). Such subdivision
cannot be performed in structured meshes without destroying the logical (4, j, k) indexing.
Third, in some cases, particularly when the cells are tetrahedra, umstructured grid
generation can be automated with little or no user intervention.?® Thus, generating
unstructured grids can be much faster than generating block-structured grids.

On the other hand, unstructured-mesh CFD codes generally demand higher compu-
tational resources. Additional memory is needed to store cell-to-cell and vertex-to-cell
pointers on unstructured meshes, while this information is implicit for a structured mesh.
And, the implied connectivity of structured meshes reduces the number of numerical oper-
ations and memory accesses needed to implement a given solution algorithm compared
with the indirect addressing required with unstructured meshes.

The relative advantages of hexahedral versus tetrahedral element shapes remain
subjects of debate in the CFD community. Tetrahedra have an advantage in grid
generation, as any arbitrary three-dimensional domain can be filled with tetrahedra
using well-established methodologies.*® By contrast, it is not mathematically possible
to tessellate an arbitrary three-dimensional domain with nondegenerate six-faced convex
volume elements. Thus, each of the various automatic hexahedral grid-generation
approaches that have been proposed either yields occasional degeneracies or shifts the
location of boundary nodes, thus compromising the geometry.47-48

2. Specialized Differencing Techniques. In a second.general approach to
computing flows in complex geometric configurations, the onus of work is shifted from
complexity in grid generation to complexity in the differencing scheme.49:50:51 Structured
and block-structured grids are used, but one of three numerical strategies is used to extend
the applicability of these grids. The first strategy is to use so-called chimera grids?® that can
overlap in a fairly arbitrary manner (Fig. 3g). Solutions on the multiple grids are coupled
by interpolating the solution from each grid to provide the boundary conditions for the
grid that overlaps it. This is a very powerful strategy that handles naturally problems in
which two flow regions meet at a boundary with a complicated shape or where one object
moves relative to another. The second numerical strategy is to use so-called embedded
boundaries.®® Again, structured meshes are used, but the complicated boundary of the
computational domain is allowed to cut through computational cells. Special numerical
methods are then used in the partial cells that are intersected by the boundary. In the
third strategy, local AMR is allowed by using a nested hierarchy of grids.5! The different
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grids in the hierarchy are structured and have different cell sizes, but the cells in the more
finely resolved grids must subdivide those of the coarser grids (Fig. 3f).

Although the second general approach affords simplicity in grid generation, it generally
is less mature than the various unstructured-mesh approaches. Much developmeént
remains before these specialized differencing techniques have the robustness, generality,
and efficiency to deal with the variety-of problems presented in engineering applications.
For the near future, then, the use of various unstructured-mesh approaches is expected to

dominate in engineering applications of CFD.

III. COMPUTATIONAL FLUID DYNAMICS FOR ENGINEERING
DESIGN

We next relate the process by which the above formalisms are utilized by the industrial
design engineer. Because the use of CF'D in engineering design is proliferating rapidly in the
1990s, some of this information, particularly that citing specific software, will rapidly and
unavoidably become dated. We believe that the benefits of providing concrete examples
to the reader outweigh our concern of premature obsolescence.

CFD is one of the tools available to the engineer to understand and predict the
performance of thermal-fluids systems. It is used to provide insight into thermal-fluids
processes, to interpret experimental measurements, to identify controlling parameters, and
to optimize product and process designs. It is the use of CFD as a design tool that
is the principal focus here. In the course of a design program, an engineer typically
will perform multiple CFD computations to explore the influence of geometry (hardware
shape), operating conditions (initial and boundary conditions), and fluid properties. For
CFD to be fully integrated into the design process, it must satisfy ever-tightening demands
for functionality, accuracy, robustness, speed, and cost.

At present, most engineering CFD using commércially available software can be
characterized as having high geometric complexity (domain boundaries are complex three-
dimensional surfaces) and moderate physical complexity. The majority of flows considered
are steady, incompressible, single-phase,‘ and nonreacting. A common physical complexity
encountered in engineering situations is turbulence, as engineering flows typically are
characterized by a high Reynolds number. Turbulence is modeled using a two-equation
model (standard K/e or variants®’) in most cases. Applications to transient flows with
additional physical complexity and/or more sophisticated models (e.g., compressibility,
multiphase, reacting, higher-order turbulence models) are increasing,
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A. The CFD Process

Let us consider the idealized component design processes shown schematically in
Fig. 5. There the left-hand-side flowchart depicts a hardware-based design process, while
the right-hand side represents an analysis- or math-based process. Although CFD is
the single analysis tool under consideration here, the right-hand side applies equally well
to other mathematical/computational tools (e.g., finite-element structural analysis) that
together fall under the heading of CAE.

Both the hardware- and analysis-based processes require the generation or acquisition
of geometric data, and the specification of design requirements. Here it is assumed
that a three-dimensional CAD geometry model is the preferred method for geometric
representation. A hardware approach then proceeds with fabrication of prototypes,
followed by testing of prototypes, and evaluation of test results. Design iterations are
accomplished either by direct changes to the hardware or by modification of the CAD
dataset and refabrication, until the design requirements are satisfied. At that point the
original CAD data must be updated (in the case of direct hardware iterations), and the
design proceeds to the next component or system level where a similar process is repeated.

Component Design Processes

l Design Requirements |

| Geometry Acquisition Geometry Acquisition |,
or Generation (CAD) or Generation (CAD)
or Fabricate Generate
"| Hardware Grid
Test Compute Flow
Hardware Solution
v Y
No Evaluate Test Evaluate CFD | pnp
Results: < > Results:
Requirements Met? Requirements Met?
Yes Yes
To Next
Component
or System
Level

Fig. 5. Engineering component design processes. Left-hand side depicts a hardware-based
approach; right-hand side is an analysis- (CFD-) based approach.
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Analysis-based design (here, CFD) is not fundamentally different. Mesh generation
replaces hardware fabrication, computer simulation substitutes for experimental measure-
ment, and postprocessing diagnostics are needed to extract relevant physical information
from the vast quantity of numerical data. To the extent that relatively simple design
criteria are available and the component lends itself to a parametric representation, the
design-iteration loop can be automated using numerical optimization techniques.52 Auto-
mated computer optimization with three-dimensional CFD remains a subject of research;
in most engineering applications, determination of the next design iteration remains largely
a subjective, experience-based exercise.

Analysis-based design can be faster and less costly compared with hardware build-
and-test. If this is not yet the case in a particular application, it most likely will be true
at some point in the future. Thus, analysis affords the opportunity to explore more design
possibilities within specified time or budget constraints. Advances in rapid prototyping
systems53 and other fabrication technology mitigate this advantage to some extent.

A second advantage of analysis is that more extensive information can be extracted
compared with experimental measurements. CFD yields values of the computed dependent
variables (e.g., velocity, pressure, temperature) at literally thousands or even millions
of discrete points in space and (in time-dependent problems) in time. From this high
density of information can be extracted qualitative and quantitative pictures of flow
streamlines and three-dimensional isopleths of any computed dependent variable. For time-
dependent problems, animation or “movies” reveal the time evolution of physical processes.
Application-specific “figures-of-merit,” including total drag force, wall heat flux, or overall
pressure drop or rise, can be computed. Examples are given in the case studies that follow.
Experimental measurements, on the other hand, traditionally have been limited to global
quantities or to values of flow variables at a small number of points in space and/or time.
Thus in principal, much more complete information is available from CFD to guide the next
design iteration. An important caveat is that this additional information is useful only to
the extent that it accurately and reliably represents the actual hardware under the desired
operating conditions. In most applications of CFD today, there are sufficient sources of
uncertainty that abandonment of experimentation is unwarranted. Recent progress in
two- and three-dimensional experimental diagnostics (e.g., particle-image velocimetry for
velocity fields,?* laser-induced fluorescence for species concentrations®®) is enabling higher
spatial and/or temporal measurement densities in many applications. \

In Fig. 6, the CFD process is modeled as a four-step procedure: (1) geometry acquisi-
tion, (2) grid generation and problem specification, (3) flow solution, and (4) postprocess-
ing and synthesis. Depending on the level of integration in the software selected, four (or
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Fig. 6. The CFD process. Examples of available software are given in Table 2.

more) distinct codes may be needed to accomplish these tasks. Some vendors offer fully
integrated systems. For the purpose of exposition, we treat each step separately.

1. Geometry Acquisition (CAD). The principal role of CAD software in the
CFD process is to provide geometric definition of the bounding surfaces of the three-
dimensjonal computational domain. The computational domain of interest in CFD
generally is everything ezternal to the solid material; this conveniently might be thought
of as the negative of a finite-element structural solid model. Several CAD packages are
available commercially; examples are listed in Table 2. These codes are designed primarily
with the design and fabrication of three-dimensional solids in mind, and have considerable
functionality that is not of direct relevance for CFD.%6

The various CAD packages use different internal representations for curves (one-
dimensional objects), surfaces (two-dimensional objects), and solids (three-dimensional
objects). The surfaces needed for CFD, for example, may be represented using one
of several tensor-product polynomial or spline represemtations in a two-dimensional
parametric space.’”®® Any of these representations generally suffice for CFD; most FDM,
FVM, and FEM solution methodologies in today’s engineering CFD codes require at most
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Table 2. Examples of CFD software available in the United States. This partial listing
was extracted from information maintained by several computer hardware and software
companies on the Internet early in 1997. Further information on each company and/or
code can be found by initiating a network keyword search. Additional information is
provided for some companies in Table 3.

Geometry Acquisition
ICEM CFD

Unigraphics

CATIA

CADDS

I-DEAS

IEMS

Pro-Engineer

Patran

AutoCAD

Grid Generation
ICEM CFD

GridGen

Patran -

Hexar

CFD-GEOM
Postprocessing (3D Visualization)
ICEM

Patran

Fieldview

Application Visualization System - AVS
DATA VISUALIZER
EnSight

FAST
PLOT3D/TURB3D
MPGS

CFD-VIEW
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linear interpolation between the discrete points (nodes or vertices) representing the surface.
However, spectral-element methods®® and some other high-order orthogonal basis function
expansions require a level of surface definition that generally is not available from current
commercial CAD systems; this presently limits the application of such methods to simple
geometric configurations.

The need to move geometry models among different CAD systems having different
internal representations led to the establishment of standards for external geometric data
exchange. An early standard supported by most CAD software is the Initial Graphics

Exchange Specification (IGES).®% Most CAD to CFD interfaces now operate by extracting
the outer surfaces and writing an IGES file of “trimmed” B-spline surfaces. Newer
standards such as Standard for the Exchange of Product model data (STEP) are merging
with IGES and supplanting it; existing standards are evolving rapidly and new standards
are developed as needed. Other external data formats commonly used in the CAD/CAE
arena include Stereo Lithography (STL), where surfaces are processed into a set of
triangular facets, cloud-of-points (a set of random points in three-dimensional space), and
DES (a set of piece-wise linear curves Describing a Surface).

The set of raw surfaces extracted from the CAD model usually requires additional
processing before it is suitable for CFD grid generation. The extracted surfaces may not
define a closed three-dimensional domain (gaps), there may be more than one surface at
a physical location (overlaps), and there simply may be too much geometric detail to be
practical for CFD. Modern CAD and grid-generation systems provide fault tolerance and a
variety of tools to “clean up” the extracted surfaces prior to grid generation. This cleanup
step is labor intensive, and often is the single most time-consuming element of the CFD
process.

2. Grid Generation and Problem Specification. The second step in the CFD

process is to generate a computational mesh. This might be accomplished using the same
software as for geometry acquisition, or a separate code. The grid must satisfy three
general requirements: (1) it must be compatible with the selected flow solver; (2) it must
be sufficiently fine to satisfy accuracy requirements; and (3) it must be sufficiently coarse
to satisfy computational resource limitations.

For an unstructured mesh, the minimum information that must be provided from the
grid-generation step is the location of each node or vertex, and a description of connectivity
among the vertices. A complete problem prescription for CFD requires, in addition, the
specification of initial and boundary conditions for all flow variables (e.g., velocity, pressure,
temperature), fluid properties, and any model and numerical parameters. Other code-
and application-specific information also may be needed. Because both geometry and
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grid information are available at the grid-generation stage, this is the most natural time
to tag volumes for initial conditions and material properties and surfaces for boundary
conditions (e.g., specify which surfaces represent walls, inflow boundaries, etc.). Specific
initial values for each dependent variable at each interior cell or vertex, boundary values
for each boundary element face or vertex, and fluid properties may be set either in the
grid-generation software itself or in a separate “pre-processor” provided for the specific
CFD code. For present purposes, the pre-processor is considered to be part of the flow
solver. Model constants and numerical parameters are specified to the flow solver directly.

Fully automatic tetrahedral-mesh generation is available in a number of commercial
and public-domain codes.*® (See Table 2.) Early generations of automated hexahedral,
hexahedral-with-degeneracies, and hybrid hexahedral/tetrahedral strategies (requiring
varying levels of manual intervention) also are available at the time of this writing, 748
(See Table 2.) However, a high level of manual intervention still is required to generate
high-quality meshes for.CFD. This is particularly true in the case of tetrahedral meshes
in the vicinity of solid walls. Here we define a “high-quality” mesh as one that yields
high numerical accuracy for low computational effort (memory and CPU time). This
is quantified by performing multiple computations of a single-low configuration using
different meshes, and computing the error in each with respect to a benchmark numerical
or experimental solution. Fletcher3? and Sengupta et al.5* discuss modern mesh generation
techniques for CFD.

Regardless of the specific methodology used to generate the mesh, it is important
that any grid-generaﬁon software for CFD maintain separate data structures for geometry
definition and for the computational mesh. This ensures that design changes (modifications
to CAD surfaces) can be made without redoing the domain decomposition, that boundary
conditions can be reset without regenerating the grid, and that mesh density and
distribution can be changed independently of the geonietry.

3. Flow Solution. Most contemporary CFD solvers available to the industrial
design engineer use either finite-volume or finite-element discretization, with SIMPLE-like
iterative pressure-based implicit solution algorithms. Unstructured meshes of primarily
hexahedral elements (with limited degeneracies) have been prevalent in most finite-volume
formulations to date, although the grid-generation advantages of tetrahedra are leading to
an increase in the usage of that element type.

Default or recommended values of numerical parameters are provided by each flow
solver. New and/or unusual applicatioﬁs often require experimentation in selecting
values of numerical parameters to obtain a stable, converged solution. For the solution
methodologies commonly used today, parameters include choice of advection scheme (e.g.,
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the degree of upwinding), convergence criteria for linear equation solvers and pressure
iterations, time-step control (for transient problems), mesh adaptation (where available),
and other method-specific controls. For this reason, the CFD practitioner needs to have
a working knowledge of the information covered in the “Fundamentals” section above.
With these caveats, flow solution is the step requiring the least manual intervention. The
engineer can monitor the solution as it progresses using the available diagnostics, which
are discussed next.

4. Post-Processing and Synthesis. Viewing and making sense of the vast
quantities of three-dimensional data that are generated in CFD is a challenging task.
Many software packages have been developed for this purpose, both for structured and
unstructured meshes (Table 2). All provide considerable flexibility in setting model
orientation, in passing cutting planes and/or lines through the computed solution,
and in displaying the computed vector and scalar fields. Postprocessors have varying
levels of “calculator” capability for computing quantities not supplied directly from the
CED solution, such as vorticity or total pressure. Many allow transient animation to
accommodate time-dependent data. Most modern packages provide both a graphics-user
interface (GUI) and a save file/read file capability, the latter to allow the user to replicate
a particular view of interest for multiple data sets.

Such direct inspection of the computed fields provides detailed insight into flow
structure in the same sense as a high-resolution flow visualization experiment. In this
respect and others, it had been argued that CFD is more akin to experiment than to
theory. Features such as an undesirable flow separatioh, for example, might provide the
engineer with sufficient information to guide a modification to the device geometry for the
next design iteration. The connection between device performance or design requirements
and the full three-dimensional flow field often is not obvious, however; considerable effort
may be required to extract meaningful figures-of-merit from the numerical solution.

A judicious development of diagnostics is necessary to advance CFD from sophisticated
flow visualization tool to scientifically based design tool. Quantitative information of direct
relevance to the design is needed to drive design changes towards satisfaction of the design
requirements. Such diagnostics are application-specific, and have received relatively little
attention by CFD researchers and code developers. Examples of diagnostics to extract
physical insight and to assess numerical accuracy can be found in Haworth, El Tahry, and
Huebler.52
B. Examples of Engineering CFD

Application areas that have been particularly active in their use of CFD include
aircraft and ship design, geophysical fluid flows, and flows in industrial devices that involve
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energy conversion and utilization. A comprehensive list of the applications of CFD would
be difficult to compile, and no attempt to do so is made here. Instead, specific case
studies are cited with several purposes: (1) to illustrate the scope and state-of-the-art in
engineering CFD, (2) to highlight issues that arise in engineering applications of CFD, and
(3) to introduce some specific CFD software that is widely used in industry.

1. Internal Duct Flow. Many internal flows of engineering interest can be broadly
categorized as complex duct flows. The principal physical complexity is turbulence,
particularly as it influences flow separation. A related numerical issue is mesh resolution,
especially in the vicinity of walls. Flow losses (pressure drop and separations), flow
distribution among multiple branches, mixing, and heat transfer may be important in
such configurations.

Two examples of steady, incompressible CFD simulations are given in Fig. 7.63:64
Figures 7a and 7b show a simplified automotive heating, ventilation, and air-conditioning
(HVAC) duct. This is taken from a validation study, which also contains experimental
measurements.53 Results of this kind have allowed engineers to identify flow separations
and poor flow distribution among branches; optimized designs for lower pressure drop and
more favorable flow distribution are identified using CFD prior to hardware fabrication.

A second internal flow configuration (F'ig. 7c) illustrates the geometric complexity that
often arises in engineering applications. Figure 7c shows surface heat transfer coefficients
from computations of flow in the coolant passages of a production automotive engine block.
Such results are used to identify potential “hot spots” and to modify flow passages for more
uniform cooling.

2. External Aerodynamics. External flows comprise a second broad category of
engineering interest. This includes flows around immersed bodies such as aircraft, ships,
submarines, and automobiles. Bluff-body aerodynamics is particularly challenging; the
accurate computation of separation, which may be highly unsteady, is key to predicting

lift and drag.
Examples of computations and measurements for idealized three-dimensional bluff

bodies are shown in Figs. 8(a) and (b).5%:60:67:68 A computational challenge is to capture
the sudden drop in drag coefficient at a slant angle of about 30° (Fig. 8b). Computations
of flow over realistic vehicle shapes also are feasible using modern CAD/grid generation
tools (Fig. 8¢).° In all cases shown here, the flows have been computed as steady
and incompressible using standard Reynolds-averaged turbulence models to account for
unsteadiness.

3. Manufacturing Processes. Increasing attention is being focused on the

design and analysis of engineering processes. Heat transfer accompanied by melting
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Fig. 7. Examples of internal flow CFD. (a) A simplified automotive HVAC duct.53
(b) Measured and computed static pressure distributions along the ‘Top’ surface of
the Main Duct and Branch #1.% (c) Computed surface heat transfer coefficients for a
production automotive engine block.54
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and solidification occurs in manufacturing processes including casting, injection niolding,
welding, and crystal growth. In such applications, heat conduction in the solid is coupled
to convective heat transfer in the fluid. The solid-liquid interface moves with time, and its
location needs to be tracked as a propagating three-dimensional surface in a CFD solution.
Also, fluid properties may be highly temperature dependent and non-Newtonian, including
phase changes. Here we cite metal casting as one example of such an application.

Casting is a process in which parts are produced by pouring molten metal into a
cavity having the shape of the desired product. Figure 9(a) is a schematic of a typical
sand casting configuration.”® Once the two halves of the mold have been made, they are
carefully aligned, one over the other, with the aid of pins and bushings in the sides of
the molding boxes, to create the complete mold. Aside from the casting cavity itself,
other features are also incorporated into the finished mold, such as the pouring basin,
downsprue, runners, and ingates that conduct the molten metal into the casting cavity.
Risers, or reservoirs of molten metal that remain molten longer than the casting, are needed
with most metals and alloys that undergo liquid shrinkage as the casting solidifies. These
are placed at critical locations in the mold, generally at heavier sections and areas remote
from the ingates. Once the casting has been poured and allowed to cool, and after it has
been withdrawn from the sand mold, these appendages are removed before the casting
undergoes various finishing operations.

Fluid flow plays two important roles in the casting process. First, and most obviously,
the flow of molten metal is necessary to fill the mold. Second, and less obvious, are
the effects of convective fluid flow during solidification of the casting. It is the task of
the foundry engineer to design gating and riser systems (Fig. 9a) that ensure proper
filling and solidification, and CFD is playing an increasingly important role in this field.
Proper designs result in less scrap and less casting repair at the foundry. An example of a
computational mesh and computed solidification times is given in Figs. 9b and 9¢.”* One
CFD package that has been developed specifically for the modeling of flow and thermal
phenomena in casting applications is MAGMASOFTT™ 72 Recent references from the
literature give ample evidence of the vast amount of CFD activity that is taking place in
this area.”s:7

4. Building Interior. Figure 10 shows an example of CFD applied to building
HVAC design. In this case, the geometric configuration is relatively straightforward. The
computational domain represents the interior of the Sistine Chapel at the Vatican. The
purpose of the analysis was to determine the placement and angles of air-conditioning ducts
to minimize deposition of contaminants on the newly-restored surfaces of Michelanglo’s
frescos. The creation of two separate recirculation cells for the configuration shown in
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Fig. 9. A metal casting simulation. (a) A typical sand casting configuration.”® (b) Auto-

matically generated mesh (five million elements) for casting and cooling channels.”?
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Fig. 10. Flow in the interior of the Sistine Chapel for one possible air-conditioning system

configuration. Calculations were done using the FIDAP finite-element CFD code.”®

Fig. 10 was deemed to be favorable for isolating traffic-borne particles created by chapel
visitors in the lower half, from the fresco surfaces along the upper walls and ceiling.

5. Environmental Flow. Environmental flows include natural phenomena, such
as atmospheric weather patterns and ocean currents (Fig. 2), and flows of molten rock
beneath the earth’s crust. Engineering design issues arise in the extraction of fossil fuels
and other materials from the earth, in bridge and building design, and in the treatment
and dispersal of wastes from electrical utilities, transportation systems and vehicles, and
industrial manufacturing plants. Such problems typically are characterized by a coupling
of natural convection (resulting from temperature and/or concentration gradients) with
other forces, in many cases including the earth’s rotation.

6. Internal Combustion (IC) Engine. For our final example, we show a
few results from transient computations of flow, fuel spray, and combustion in a
reciprocating internal combustion engine (Fig. 11).7%7" This application includes geometric
complexity (complex internal flow passages, moving boundaries—piston and valves),
physical complexity (turbulence, combustion, multiphase flow), and numerical challenges

38




(deforming mesh, large density and fluid property variations, coupled Eulerian/Lagrangian
algorithms). This represénts an application area of CFD that lies at the frontier between
research and engineering application.

Of particular interest in a homogeneous-charge spark-ignited engine is the tradeoff
between flow losses and in-cylinder flow “structure.” Flow losses (induction system pressure

drop) reduce the quantity of air that can be drawn into the cylinder, lowering engine peak
power. A coherent large-scale in-cylinder flow structure tends to yield higher combustion
efficiency, but generation of highly structured flow (e.g., a large-scale swirl about the
cylinder axis) generally implies a pressure-drop penalty. These tradeoffs can be quantified
and optimized using CFD.® The computations of Figs. 11(a) and (b) were performed on
unstructured meshes of up to 250 000 predominantly hexahedral cells; computation through
one crankshaft revolution required about 150 equivalent single-processor Cray Y-MP CPU
hours.

Flame propagation for a production four-valve-per-cylinder automotive engine is
shown in Fig. 11(c). Flame shapes and burn rates are tailored by changing the intake
port, intake valve, and combustion chamber geometry. A good design generally is one
having favorable spark-gap conditions and a flame that propagates uniformly outward to
reach all solid walls at the same instant. ‘

Direct-injection diesel and gasoline engines, wherein liquid fuel is injected directly
into the combustion chamber, are of interest for their high fuel economy potential. Here
mixing and fuel stratification are key issues affecting combustion performance; CFD is one
tool that is being used to explore the influence of flow structure, injector placement, and
injection characteristics on engine combustion performance (Figs. 11d, 11e).77

IV. ISSUES AND DIRECTIONS FOR ENGINEERING CFD
A. Geometric Fidelity .

Geometric fidelity between hardware and the computational mesh is crucial to
obtaining accurate results. It is characteristic of the highly nonlinear flow equations that
small geometric perturbations can result in large changes to the flow field. One example
is shown in Fig. 12.7® Significantly different flow structure and mixing result when the
fraction-of-a-millimeter gap between piston and cylinder liner (the “top-ring-land crevice”)
is included in the mesh compared with when it is ignored. With a top-ring-land-crevice,
the flow entering the cylinder attaches to the cylinder wall and flows parallel to the wall
for an extended time; in the absence of this crevice, the entering flow quickly adopts
the port angle on entering the cylinder. This highlights the importance of maintaining a
consistent three-dimensional representation of the hardware at all stages of design, analysis,
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for a port and chamber configuration yielding weakly structured in-cylinder flow.™®

(a) Instantaneous computed and measured induction flow at piston bottom-dead-center
(b) Instantaneous computed and measured induction flow at piston bottom-dead-center
for a port and chamber configuration yielding a highly structured in-cylinder flow.”®
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Fig. 11 (continued). Examples of CFD for in-cylinder processes in reciprocating IC
engines. (c) Instantaneous computed velocity field and flame propagation near piston top-
dead-center for a production four-valve-per-cylinder engine. (d) Instantaneous computed
fuel spray for a direct-injection diesel engine.”” () Computed and measured heat release

for a direct-injection diesel engine.”?
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Fig. 12. Computed and measured ensemble-mean velocity fields on two-dimensional
cutting planes at 125° after piston top-dead-center for a ported two-stroke-cycle engine.”™
Computational results with and without a top-ring-land crevice are shown. (a) Measured
(top). (b) CFD with top-ring-land crevice (middle). (¢) CFD without top-ring-land crevice

(bottom).

and fabrication. The CFD practitioner should be wary of compromising the geometry in
favor of grid-generation expediency, particularly in applications where he or she has little
previous experience.
B. Numerical Inaccuracy

Meshes of hundreds-of-thousands of computational cells are common in transient
engineering applications of CFD today, and several millions of cells are being used in
steady-state computations. Even so, numerical inaccuracy remains an issue for three-
dimensional CFD. A mesh of 1000000 cells corresponds to just 100 nodes in each
coordinate direction in a three-dimensional calculation. With the low-order numerics that
characterize engineering CFD, this is sufficient to resolve a dynamic range of about 1 order

of magnitude (a factor of 10) in flow scales.
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Rapid progress is being made both in discretization schemes for tetrahedral meshes,
and in automated grid generation for (primarily) hexahedral meshes; it is unclear at this
time which will become dominant in engineering CFD.

C. Physical Models |

The physical models used to represent turbulence, combustion, sprays, and other
unresolvable phenomena, are a third source of uncertainty in CFD. Turbulence modeling,
in particular, is an issue that affects nearly all engineering applications. Research towards
improved models continues. Much new physical insight into turbulence is itself being
derived from large-scale numerical simulations.™ .

In many high Reynolds-number engineering applications in which the instantaneous
flow is highly transient and three-dimensional, turbulence models can be used to reduce
the problem to one of steady flow, provided that the mean quantities of interest are time-
independent. This reduces the computational requirements considerably, and provides
results of acceptable accuracy in many cases. However, as engineering design requirements
tighten, there is an increasing number of problems that demand a full three-dimensional
transient treatment. Models still are needed to account for scales smaller than those
that can be resolved numerically, but subgi’id—scale turbulence models are used instead of
Reynolds-averaged models. The resulting three-dimensional time-dependent simulations in
this case are referred to as large-eddy simulations (LES).2? The use of LES in engineering
design is expected to proliferate rapidly. Examples of current applications of interest
include acoustics and aerodynamic noise®! and in-cylinder flows in engines.82

In principle each of these three sources of uncertainty can be isolated and quantified
in simple configurations where a second source of data (e.g., experimental measurements)
is available. It is more difficult in engineering applications of CFD to isolate and to
quantify these errors to obtain meaningful estimates of error bounds. Early in the history
of three-dimensional CFD, discrepancies between CFD and experiments generally were
attributed to the turbulence model. The importance of the other sources of uncertainty,
and numerical inaccuracy in particular, has been more widely acknowledged recently.52:83:8¢
In our experience, most discrepancies between computations and measurements for single-
phase nonreacting flows in complex configurations are traced to geometric infidelity or to
inadequate mesh resolution (in cases where they have been traced at all).

D. User Expertise

CFD codes generally require more experience on the part of the user than other, more
mature, CAE tools (e.g., linear FEM structural analysis). “General purpose” CFD software
provides a large number of numerical parameters and problem specification options. In
steady-flow problems, results should be independent of the choice of initial conditions, but
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different initial conditions may lead to different steady solutions when time-marching to the
steady state. The choice of computational domain and specification of boundary conditions
always are important, both for steady and time-dependent flows. Minimal user experience
may suffice to obtain a reliable solution for steady incompressible flow in a benign geometric
configuration, but considerable expertise is needed in problem specification and in results
interpretation for complex flows.

E. CFD and Experimental Measurements

The engineering and scientific community typically accepts measurements from
experiments as being more reliable than similar information generated by a CFD
calculation. This is the reason for the strong emphasis placed by the profession on
“validating” CFD results. While it is true that there are many sources of uncertainty
in CFD, the same is true of experiments, particularly for compléx systems (e.g., the in-
cylinder flow of our last example). When comparing CFD results with measurements for
such complex engineering problems, it is more appropriate to approach the exercise as
a “reconciliation” rather than a “validation,” as the latter implies that the experiment
provides the “correct” value.

F. Interdisciplinary Analysis

In this overview, CFD has been considered as an isolated analysis tool. This is
satisfactory only to the extent that one can reasonably prescribe boundary conditions
that are independent of the flow solution itself.

For example, in the coolant-flow analysis of Fig. 7(c) temperature boundary conditions
might be prescribed from a separate finite-element structural analysis, but the temperature
field in the solid depends on the coolant flow itself. One can alternate through a sequence
of CFD and thermal structural analyses, taking the most recent boundary conditions
available at each step, to obtain a solution that effectively is coupled. A single direct
computation of the coupled solution would be more satisfactory, however. In this case,
a coupled fluid/heat conduction analysis is feasible because many CFD codes provide a
so-called conjugate heat transfer capability.

More difficult are cases where fluids and solids interact in a manner that changes
the shape of the flow domain. Flow/structure interactions including deformations are
important, for example, in some aircraft design problems or in applications where there is
significant thermal distortion. Interdisciplinary analysis tools are becoming available for
these problems and will see more widespread use in the future.

G. Future of Engineering CFD

Most contemporary commercial CEFD codes start from a discretization of the

continuum equations of fluid mechanics and require a computational mesh of discrete
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cells or elements. An alternative is to approach CFD from a kinetic theory point of view.
For example, an (essentially) grid-free Lagrangian-particle method has been developed and
implemented.® It is too early, at the time of this writing, to speculate on the future of
this approach for engineering design. Computations have been reported for configurations,
including external flow over simplified and realistic vehicles.

Active research areas for CFD include automated mesh generation, numerical
algorithms for parallel computer architectures, linear equation solvers, more accurate
and stable discretization schemes, automatic numerical error assessment and correction,
improved solution algorithms for coupled nonlinear systems, new and enhanced physical
models, more sophisticated diagnostics, interdisciplinary coupled structures/fluids analysis,
optimization algorithms, and coupling of three-dimensional CFD into systems-level models.

In the ideal math-based design process, CFD is one part of a multidisciplinary CAE
approach, and the full system (versus isolated component) is considered. Grid generation is
fully automated to ensure a high-quality (initial) mesh. The flow solver selects all numerical
parameters, and provides automated solution-adaptive mesh refinement to a specified
level of error or allowable computational resource (time or cost). Solution diagnostics
provide information of direct relevance to the design requirements. And, automated design
optimization through modifications to the geometry and/or operating conditions proceeds
until design requirements are met.

While much work remains to realize this ideal, CFD already is being used with
considerable success in engineering design. Its utility and applicability will increase as

the outstanding issues are resolved.

V. SOURCES FOR FURTHER INFORMATION

Many references to specific topics have been cited throughout this chapter. For general
information, one of several CFD texts can be consulted.3:28:31,32

At all stages of the CFD process (geometry acquisition, grid generation, flow solution,
and postprocessing), a broad array of commercial, public-domain, and in-house proprietary
codes are being used in engineering design. A small sampling of the software currently
available to the design engineer has been mentioned herein. For more comprehensive and
up-to-date listings, the reader can consult several sources. Computer hardware companies
maintain lists of software that have been ported to their platforms; software vendors
maintain lists of codes with which their own product is compatible. Table 3 has been
extracted from one such list.8% General®” and industry-specific engineering periodicals often
provide reviews of available software. And, a wealth of timely information can be found on
the Internet.3® Given the rapid pace at which CFD technology is evolving, this last source
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Table 3. This provides a snapshot in time (late 1996) of the wide variety of commercially

available, public domain, and proprietary CFD software used for engineering design and

analysis.3®

IFégmr/cggg NAME(s) COMPANY INFO ]
FLUENTAUNS Fluent Inc.

FLUENT-V4
RAMPANT-V2 and V3
NEKTON

TGRID

10 Cavendish Coun
Lebanon, NH 03766
hitp//www.fuent.com/

GASP

+AeroSoft, Inc.
i1872 Pratt Drive, Suile 1275
lBladGburg. VA 24060

[GMTEC

«General Mators Corporation
|R&D Conter
IWarran. Ml 48090

HAWK

lt:a!ik)mia Institute of Technology
11201 East Calitorrua Boulovard
‘Pasadena, CA 91125
éhnp:lew.mllem.edd

[XNCA

‘Analytical Methods, Inc.
*2133 1520d Avenus NE
{Redmond, WA 98052

‘Amlec Engineering, Inc.

£.0. Box 3633

Ballevue, WA 98009

Phone: 206-827-3304 Fax: 206-827-3989
e-mail: don@amtec.com

JURAL: Wi

KIVA-3

hito:/fryew,
Los Alamos National Laboratory
New Moaxico
htip:fiwww.lanl.gov

INASTAR

.Unitad Technologias Research Center
1411 Silver Lane

East Hartlord, CT 06108
;mtpdlulrcvmw.ulc.eom

NPARC

ENPARC Aliance
{NASA Lewis R.C.& Amold Engineering
‘Development Canler

Sverdrup Technology, IncJAEDC Group
1093 Avenuo C

Amoid AFB, TN 37389-9013

g-mail: nparc-support @info.amald.al.mil

http:/finfo.amold.af.mil:80/npare/
NS3D Prait & Whitnay Canada

Longuail, Quabec, CANADA

iPABSSD

NASA Langlsy Research Center
15 Langley Boulevard

Hamplon, VA 23581-0001
http/fwww.larc.nasa.gov/

PHOENICS

[NASA Ames Research Center & Boeing Co
NASA Amex Research Center

Molfett Field, CA 94035
http/iwww.arc.nasa.gov/

_Bosing Commercial Aiplane Gioup
lPropulsion Research CFD

P.0. Box 3707, MS 67-MH
Seattls, WA 98124-2207
-omall: ing.com
"CHAM Lid.
| ion, Haat & M Limited
:Bakery Houso, 40 High Street
IWimbledon Vitags, London SW19 SAU
ENGLAND

Phore: 44-1-81-97-7651

Fax: 44-1-81-879-3497

POLYFLOW

iPolyflow S.A.

.Place de [Universite, 16

8-1348 Louvain-La-Neuve, BELGIUM
lPhone: 32-0-10-45-28-61

Fax: 32-0-10-45-30-09

POLY3D

SPECTRUM-CENTRIC

'Rhsotek, Inc.

5500 Placa de Jumonwlle, Suite 311
Montreal, Quebec HIM L8, CANADA
Phone: 514-255-2056 Fax 514-255-1321

CENTRIC Engineering Systems, inc.
3393 Octavius Drive, Suite 201
Santa Clara, CA 95054-3004

STARCD

Computational Dynamics Ltd. England
Ofympic House

317 Latimer Road

London, W10 6RA, ENGLAND
Phone: 44-1-81-969-9639

Fax: 44-1-81-968-8606

TASCfow A d Scientific C ing Lid.
554 Parkside Orive
Watardoo, Ontaria N2L S$Z4, CANADA

TEAM Lockeed Aeronautical Systems Co.

NASA Langley Research Centar
115 Langley Boulevard
‘Hampton, VA 23681-0001
'hnpﬂwww.larc.nasa.govl

TNS3Dmb

[TAANAIR \NASA Ames Resoarch Center
{Moffett Field, CA 94035

http/iwww.arc.nasa.gov/

'
UH3D Ford Motor Co.

USAERO
VSAERO

+Analytical Methods, Inc,

2133 152nd Avenue N.E.

‘{Radmond, WA 98052

Phona: 206-843-9030 Fax: 206-746-1299
http:iwww.am-inc.com/

Y237 Unitad Technologios Research Center
411 Sitver Lane

East Hartford, CT 06108
htp/trowww.utc.com/

ACE-U CFD Rasearch Corporation
CFD-ACE 3325 Triana Boulevard
Huntswile, AL 35805
Ahnpﬂwww,ddlc.coml

AIRFLO3D Toxas Tech University

D of

o 9

ALPHA-FLOW Fuji Resoarch Instilute, JAPAN

Fujitsu, NEC, MHL, etc.. JAPAN

TEgin AFB
FL 32542

BAGGER

CFO++ {Matacomp Tachnologias, Inc.
650 Westiake Boulevard, Suite 203
Wastlake Village, CA 91362

CFL3ID NASA Langtey Resaarch Cenlar
15 Langley Bowlevard

Hampton, VA 23681-0001
hitp//www laccnasa.gov/

CFX AEA T g Tnc.
2000 Oxford Drive, Suite 610

iBothe! Park, PA 15102

{Phone: 1-800-529-3810, 412-833-4820
_Fax: 412-833-4580

‘info@engsw.asal.com

-The C i A ics Ci Inc
, 7701 N. Lamar, Suite 200
sAustin, TX 78752

COMCO

lmﬂ/\vww.oomcomml

[DSMC-SANDIA Sandia National Laboralory

{FASTU NASA Langley Research Center
15 Langley Boulevard
Hamplon, VA 23681-0001

hitp/www larc.nasa.gov/

[FDAP [Fluent (nc. (bought FDI Lidin 1996)
10 Cavendish Court

Lebanon, NH 03768
hitp/Awww.fluent.com/

Fluid Dynamics Intemationat
500 Davis Street, Suite 600

1Evanslon, IL 60201
lPhono: 708-491-0200 Fax: 708-859-6495
FIRE 1KIT Corporation

1355 Mandota Heights Road
SI. Paul, MN 55120
Phone: 612-688-0620 Fax 612-688-0497

|Rex drup T Tnc.

P.O. Box 1935/Bldg. 260

Eghn AFB, FL 32542
|[FLOTRAN Swanson Analysis Systems Inc.

P.O. Box €5, Johson Aoad
Houston, PA 15342-0065
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is particul;a,rly valuable. In addition to lists and descriptions of the available software, user
evaluations and direct comparisons of alternative codes and methodologies can be found
there. ‘

CFD is at a relatively early stage of development compared with other areas of CAE,
such as linear FEM structural analysis. No single code covers all areas of application
equally well. While “general purpose” CFD has been emphasized here, specialized
application-specific numerical methods and software often are needed. Specialized
experience and expertise can be found within university enginéering departments, U.S.
national laboratories, and engineering consulting firms; again, the Internet provides a
good vehicle for exploring these possibilities.
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