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THREE-DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS

by

Peter J. O’Rourke, Daniel C. Haworth, Raj Ranganathan

ABSTRACT

Computational fluid dynamics (CFD) is one discipline falling under the broad
heading of computer-aided engineering (CAE). CAE, together with computer-
aided design (CAD) and computer-aided manufacturing (CAM), comprise a
mathematical-based approach to engineering product and process design, amdy-
Sisjand fabrication. In this overview of CFD for the design engineer, our purposes
are three-fold: (1) to define the scope of CFD and motivate its utility for engi-
neering, (2) to provide a basic technical foundation for CFD, and (3) to convey
how CFD is incorporated into engineering product and process design.

I. OVER~EW

The objective of CFD is the numerical solution of fluid-flow equations. The calculus

problem of solving a coupled system of nonlinear partial diiYerentialequations (PDEs) for

the variables of interest (e.g., velocity, pressure, and temperature) is transformed into an

algebra problem of solving a large system of simultaneous linear equations for discrete

unknowns that represent the state of a thermal-fluids system; the latter is amenable to

numerical solution on a digital computer.

The above is a somewhat abstract description of CFD, but one necessarily must

speak in general terms to introduce a subject that encompasses such a wide variety of

solution techniques. In this overview we will talk about finite difference, finite volume,

finite element, spectral, and some computational particle methods. The emphasis will

be on the first three in this list, as these are the methods that are primarily used in

contemporary CFD codes for engineering design.

Here we reserve the terminology “computational fluid dynamics” for computationally

intensive three-dimensional simulations of thermal-fluids systems where nonlinear momen-

tum transport plays an important role. It does not encompass all branches of numerical

analysis as applied to fluid dynamics problems. In particular, we exclude consideration

of zero- or quasi-dimensional analysis of fluids systemsl’2 and linear heat conduction or

potential flow problems.3’4

The practice of CFD began with the advent of computers; indeed, the fist computer

was developed, in part, to solve fluid-flow equations. It was recognized by the developers

of the atomic bomb at Los Alamos that many fluid dynamics problems were impossible to

solve by analytic means. What was needed was a machine that could perform the massive
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number of calculations necessary to solve the flow equations by simple finite-difference

methods. The ENIAC computer began operating shortly after World War II, and its first

calculations were to test various configurations for a hydrogen bomb.5 Ensuring the safety

and reliability of today’s nuclear weapons remains a major impetus for the development of

more powerful computers and more efficient numerical techniques for solving the fluid-flow

equations.G

Initially most numerical solutions were limited to flows that could be approximated as

spatially one or two-dimension~, the time and expense of performing three-dimensional

calculations remained prohibitive. Over the last 15 years, however, CFD calculations of

three-dimensional flows have become more common. This has heightened enormously the

interest in CFD among engineers, as most real flows are three dimensional. In fact, most

fluid-flow problems encountered in industry are so complex that the only method of analysis

to which they are amenable is CFD. Thus although CFD was born only 50 years ago, it

is difiicult to find problems in fluid dynamics to which computer solution has not been

brought to bear.

The capability to perform three-dimensional CFD has resuked primarily from the

availability of faster computers with larger memories (Fig. 1).7 The development of parallel

and massively parallel computers promkes to further improve the speed and extend the

applicability of CFD. A recent simulation of the oceanss’g serves to illustrate the problem

size and computational requirements that have been realized in modern applications. This

problem was run on a 512-node massively parallel computer, requiring 10 gigabytes of

memory (gigs = bfion, one byte = eight bits). It ran at a computational speed of four

gigaflops (“flops” = floating point operations per second), and required 80 days of computer

time. A plot of ocean surface temperature obtained in this simulation is shown in Fig. 2.

Computers with maximum performance at one teraflop (tera = trillion) now are becoming

available, and petaflop computers (peta = 1000 trillion) are being planned for the next

decade.l”

At the same time, improved numerical methods have yielded higher computational

efficiency that is, fewer operations and/or less memory for a given accuracy. Among the

most important of these advances has been the development of faster methods for solving

implicit difference approximations (see the following section). A third enabler for three

dimensional CFD has been the formulation of improved finit&volume and finite-element

methods that better accommodate the complex geometrical boundaries that characterize

engineering flows. Examples of engineering applications are given later in this report.

The advent of three-dimensional calculations has increased the engineering relevance

of CFD, but many obstacles remain to be overcome before CFD realizes its full potential

2
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Fig. 1. Growth in computer hardware performance, 1970 to 1995.7 (a) Memory chip

capacity doubles every 1.5 years. (b) Clock rate. (c) Peak single-processor megaflops.
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Fig. 2. Ocean surface temperatures from arecent CFDsimulation of the north Atlantic

Ocean.s’g

as an engineering design tool. Foremost among these is spatial resolution. Most

flows of practical interest have features whose relevant spatial and temporal scales span

many orders of magnitude. For example, in an automotive four-stroke-cycle, spark-

ignited internal-combustion engine operating at 2000 rpm, hydrodynamic scales range

from about 0.01 mm (the turbulence microscale) to 100 mm (the bore diameter); flame

thicknesses (stoichiometric, undiluted reactants) are in the range 0.01–0.10 mm, and, spray

droplets issuing from a typical port-fuel injector have diameters as small as 0.10 mm. II

Computers do not exist, and will not exist in the foreseeable future, that can store all

the numbers required to fully resolve these phenomena. Thus, the effects of small-scale,

unresolvable features on the large-scale, average flow features of interest are “modeled”

through modifications to the governing PDEs. Examples of models include turbulence

models, combustion models, and multiphase flow models. All models necessarily introduce

imprecision, and an ongoing goal of research is to improve the accuracy of these models.
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Otherissuesfor three-dimensionalengineeringCFD include geometry acquisition and
grid generation, numerical accuracy, and diagnostics to extract the physical information

of interest horn the computations. Modeling and other issues are discussed tither in

subsequent sections.

II. FUNDAMENTALS OF COMPUTATIONAL FLUID DYNAMICS

We now give the governing equations of fluid dynamics and introduce the CFD

techniques for their solution. We also introduce some basic terminology used by

practitioners of CFD. Readers who are not interested in the technical foundation of CFD

may proceed to the next major section on how CFD is incorporated into the engineering

design process.

A. The Governing Equations of Fluid Dynamics

The equations of fluid dynamics can be derived from kinetic theory or continuum

points of view,12’13’14each of which complements the other. Kinetic theory regards the fluid

M made up of moleculessubject to collisionsand inter-molecularforces. Kinetic theory
derivations are valid only for dilute gases but give detailed ir&ormation about how transport

phenomena, such as stresses and heat fluxes, arise horn molecular fluctuations, which in

turn are related to the average molecular properties for which the fluid equations solve.

Continuum derivations regard the fluid as a continuous medium, show the applicability of

the fluid equations to a much broader class of media than dilute gases, but do not give

detailed information about transport phenomena.

1. The Equations of Continuous, Compressible Media. Three basic physical

principles, applicable to any continuous medium, are used in continuum derivations:

1. conservation of mass,

2. Newton’s second law that force equals mass times acceleration, and

3. the first law of thermodynamics

conserved.

These three principles lead to the following

the mass, or continuity, equation

80

that total energy, in all its forms, must be

three equations of motion.

the momentum equation

the total energy equation

(1)

(2)

(3)

5
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We have written these equations in Cartesian tensor notation,15 according to which the

subscripts i and j take the values 1, 2, or 3 corresponding to the three Cartesian coordinate

directions. A subscript that appears just once in a term takes on one of the three values

1, 2, or 3; repeated subscripts in a term denote a summation of that term over all three

coordinate directions. The other notation in Eqs. (1), (2), and (3) is defined in Table 1.

Table 1. Nomenclature

Symbol Definition -

Cp specific heat at

c. specific heat at

e internal energy

E total energy

constant pressure

constant volume

F

h

K

t

T

u

w

P

-z

body force per unit mass

enthalpy

turbulent kinetic energy

pressure

heat flux

universal gas constant

rate of deformation

time

temperature

velocity

molecular weight

spatial location

Kronecker delta function

dissipation rate of turbulent kinetic energy

heat conductivi~

second coefficient of viscosity

bulk viscosity

first coefficient of viscosity

mass density

stress



We note here that the total energy, ~, is the SD of the local flOWkinetic energy and

its internal energy e .
(4)

Alternative energy equations for e and for enthalpy h = e + P/P, where P is the press~e,

may easily be derived using Eqs. (1), (2), and (3). CFD codes often solve internal energy

or enthalpy equations, in place of Eq. (3), when calculating compressible flows.

The above equations are expressed in Eulerian form, by which we mean that the time

derivative is taken at a iixed point in space. In contrast, in Lagrangian form, the time

derivative is taken following a fluid element. 14Although the Eulerian form of the equations

is most often used in CFD, there are CFD methods that approximate the Lagrangian

equations.

When completed with constitutive relations appropriate for fluids, these are the basic

equations of compressible fluid dynamics. In practice one often encounters applications in

which extensions of these equations are necessary. Among the most common are extensions

to multicomponent and chemically reactive flows,lG to magnetohyd.rodynarnic flows,17 and

to flows with radiative heat transfer.18 It is beyond the scope of thk modest overview of

CFD to give these extended equations, and the reader is referred to the cited references

for thk information.

2. Constitutive Relations of Fluid Flow. To complete these equations we need

to express the stress Zij and heat fk Qi in terms of known fluid variables ~~d their

derivatives. These expressions are known as constitutive relations. A fluid is a medium for

which the nonhydrostatic part of its stress depends only on its rate of deformation Sij I or

what is usually referred to as the rate of strain, and not on its deformation. The quantity

Sij is given by

‘ij’=:(%+%)
(5)

Thus, a fluid has no memory of its previous configurations. This fact, together with the

assumption of an isotropic medium in terms of its microstructure, allow us14 to express

the full stress as

Zij = 2/Lsij + ~skk~ij – p~ij , (6)

where Jij is the Kronecker delta function. 15Fluids with this form of stress tensor are called

Newtonian fluids. The thermodynamic pressure p and the first and second coefficients of

viscosity p and A, depend only on the local thermodynamic state of the fluid. Often the

second coefficient of viscosity in Eq. (6) is replaced by the bulk viscosity A’, defined by

A’=A+& (7)

7
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The heat flux Qj depends on gradients in temperature. Again assuming an isotropic

fluid Qi may be written

Qi = -.% . (8)
t

This is Fourier’s heat conduction law, and ~ is called the heat conduction coefficient or

simply the heat conductivity. Its value depends on the local thermodynamic state of the

gas. When one substitutes Eq. (6) for the stress tensor and Eq. (8) for the heat flux vector

into Eqs. (1), (2), and (3), the resulting equations are called the compressible Navier-Stokes

equations.

The fluid equations are completed by the specification of the quantities p, e, p, ~, and

ICin terms of the local fluid temperature T and density p. The equations speci~ing p and

e are referred to as thermal and caloric equations of state, respectively. For a so-called

ideal gas these are given by
R

p=pWT, (9)

and

1

T
e= CV(T’) dT’ (lo)

where the specific heat at constant volume CV is a function of temperature. Alternatively,

the enthalpy h is given by

1

T
h= CP(T’) dT’

where, horn the definition of h and the thermal equation

at constant pressure C’Pis given by

Cp=cv+;.

(11)

of state Eq. (9), the specific heat

(12)

Values of Co and CP versus temperature are given in the references.lg’20

The quantities p, A, and ~ are called transport coefficients. How they are related

to the local thermodynamic state of the fluid and its molecular properties are given in

another reference.21 Given an expression for the viscosity p, the heat conductivity

frequently be approximated by
Pcp1$—

= Pr

where PT is the Prandtl number, whose value is nearly constant and often of order

K can

(13)

unity.

3. Simplifications of the Fluid-Flow Equations. For certain flow situations

considerable computer time can be saved by solving simplified forms of the compressible

8



flow equations. In this section we introduce the steady-state, inviscid, and incompressible

approximations, and we describe the circumstances under which they may be used.

The steady-state approximation is obtained simply by dropping the time derivative

terms in Eqs. (1), (2), and (3). While solving the steady-state equations can often save

computer time, sometimes CFD solution techniques for the steady-state equations have

what are called convergence difficulties, and steady fluid flow solutions me more reliably

obtained by calculating the long-time limits of solutions to the unsteady equations.22

The inviscid, or Euler, equations are obtained by neglecting the V.iscosi@ and heat

conduction terms in the preceding equations. A necessary condition for the applicability

of the Euler equations is that the Reynolds number, Re, be much greater than one, where

Be is defined by

Re=@.
P

(14)

In Eq. (14) p, u, and p are characteristic values of the density, veloci~, and viscosity,

respectively, of the fluid, and L is a characteristic distance over which the velocity changes

appreciably, also called a gradient length. In a flow to which the Euler equations apply, L

is typically the dimension of the apparatus that bounds the flow. The Reynolds number

is approximately the ratio of the magnitude of the advective terms to that of the viscous

terms in the fluid momentum equation, Eq. (2). Thus when Re is large, the viscous terms

may sometimes be neglected. When fluid Prandtl numbers are of order unity, smallness

of the viscous terms also implies smallness of the heat conduction terms relative to the

advection terms in the energy equation.

There are many high-Reynolds ntiber flows, however, where neglect of the viscous

and heat conduction terms is not justified. Sometimes fluid flows have broad regions over

which the inviscid equations apply, coupled with thin regions (e.g., boundary layers and

shocks) in which the viscous and heat conduction terms are important. In addition, as Re

is increased, many flows become turbulent, and the velocity then varies over a range of

length scales, L. At the smallest of these length scales, Re is of order unity, and viscosity

is important because it is responsible for the dissipation of turbulent kinetic energy into

heat. (See “turbulence,” below.)

An incompressible flow is one in which the divergence of the velocity field is identically

equal to zero

E+Li,
‘= Sii=O.
~Xi

(15)

9



A necessary,

number, M,

but not sufBcient,14 condition that a flow be incompressible is that the Mach

be much less than one, where ill is defined by

M=3
c

(16)

In Eq. (16) u and c are characteristic values of the velocity and sound speed of the fluid.

In combination with the continuity equation Eq. (l), Eq. (15) implies that

(17)

D/Dt is the time derivative following a fluid element, and Eq. (17) states that the density of

each element of fluid remains a constant along its trajectory. Commonly, a more restrictive

assumption is made that the densi~ of the whole fluid is equal to a constant po. In this

case, the momentum equation, Eq. (2), becomes

The great simplification of the incompressible flow equations is that the energy equation

is decoupled fi-om the momentum equation and need not be solved. What we have given

here is the so-called primitiv~variable form of the incompressible flow equations. Another

formulation that is used in CFD calculations of two-dimensional, incompressible flows is

the stream function and vortici~ formulation.3

4. Turbulence and Other Models. As stated in the introduction, there me many

flow situations in which flows have changes in their properties, such as their velocities, with

superimposed size scales or time scales that diiler by many orders of magnitude. Examples

are the seemingly chaotic motions in a turbulent flow or in a multiphase flow, such as

a liquid spraying into a gas. Classical theories of turbulence predict that the ratios of

the largest to the smallest fluctuation length scales of turbulent flows are approximately

equal to Re0”75, where here the Reynolds number Re is based on the velocity and size

scales of the largest turbulent eddies.23 Even a low value of Re = 10000 gives fluctuation

length scales varying over 3 orders of magnitude. For such cases it is impossible to resolve

the detailed flow fluctuations with CFD methods, and fortunately we are not concerned

with predicting these detailed fluctuations. We are concerned with average flow behavior,

however, and it is important to account for the effects of the fluctuations on average flow

variables.

There are many ways to define averaged, or filtered, flow variables. In general, space-

and timeaverages can be defined using a filter function K(zi, t) whose integral overall

10



space and time is unity. In terms of K, the average of a fluid variable q, denoted by ~, is

defined by

q(zj, t) =
11

q(% t’)~ (yi – zi, t’ – t) dyi dt’ . (19)

For example, for pure time-averaging one can take ~(%~, t) = 6(~~)~T(t)/T, where

{

1 if Itl < T’/2
wT(~) = o otherwise , (20)

and L$(zi) is the Dirac delta function. Then the average q is defined by

and the filter size is said to be T’. In addition to space- or time-averaging, one can also use

ensemble averaging. This is defined by averaging over an imagined large set of realizations

of a fluid experiment. Sometimes ensemble-averaging is combined with space- or time-

averaging. In any case, the fluctuation of quantity q from its mean value is denoted by

!lf
q’(z~, ‘t) = q(fc~,t) – q(zi, t) . (22)

There are two approaches to calculating average flow fields. In the first, called

Reynolds averaging because it was first proposed by O. Reynolds,24 one is interested in

predicting the average flow field and uses ensemble averaging, or a filter size that is large

compared with the scales of fluctuations. Thus the average of the fluctuating part of q is

zero

~=o (Reynolds averaging). (23)

In contrast, subgrid-scale turbulence models use filters with as small a size as possible,

typically comparable to the grid size in one’s CFD calculation. Thus, one attempts to

calculate flow fluctuations with scales larger than the filter, or grid size, and to model only

subgrid-scale fluctuations. In a subgrid-scale model the average of the fluctuating part of

q is, in general, nonzero

(q’)# o (Subgrid model filtering). (24)

Once the method of averaging is chosen, then equations for the averaged flow variables

can be obtained by averaging the equations of the preceding sections, or simplified forms

of these. In deriving the averaged equations, one finds that the rates of change of average

flow variables depend upon averages of the products of two fluctuating quantities, also

11
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called second-order correlations. The values of these are unknown; and if one tries to close

the system of equations by deriving transport equations for the second-order correlations,

it is found that these depend on third-order correlations, or averages of three fluctuating

quantities. Continuing in this way one finds that it is impossible to obtain a closed system

of equations using either Reynolds averaging or sub~id-scale averaging.25 By using physical

and dimensional reasoning and empirical information, the unknown correlations must be

expressed (the word “modeled” is also used here) in terms of average flow variables that

are known.

A very important example of a second-order correlation and its modeling arises when

averaging the incompressible flow momentum equation, Eq. (18). The Reynolds-averaged

form of this equation is

(PO ai~ ~ &Z~iij ) 8Z~j
——
6+$ 6’Xj = ‘- & (f’”~)‘pOFi-dZj

(25)

The second-order correlation, –pou~u~, on the right-hand side of this equation is called the

Reynolds stress. The most popular turbulence models in engineering design calculations are

the so-called two-equation models, in which the Reynolds stress is, with some theoretical

justification, 25126taken to have the form

In this expression PT is the turbulent viscosity and K is the turbulent kinetic energy

(26)

(27)

By substituting for the Reynolds stress in Eq. (25) using Eq. (26), one finds that the

momentum equation for turbulent flow closely resembles the momentum equation for

larninar, or nonturbulent, flow. This is also the case for other averaged fluid equations,

and this resemblance allows the same numerical techniques for CFD to be applied to both

laminar and turbulent flows.

In two-equation turbulence models, transport equations are solved for the turbulent

kinetic energy, K, and one other scalar that gives a 10Cai length or time scale of the

turbulence. A popular choice for this second turbulence quantity is the turbulence kinetic

energy dissipation rate, e. In terms of K and e the turbulent viscosity is given by

12
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where CPis a dimensionless constant. Launder and SpaMing26 describe the K/e turbulence

model in more detail in Ref. 26, and the use of wall functions to calculate wall heat and

momentum losses in conjunction with the K/e model. Descriptions of many tym-equation

turbulence models, and their relative advantages, may be found in Wilcox.27

B. Numerical Solution of the Fluid-Flow Equations

We now introduce some common techniques for discretizing the fluid-flow equations

and methods for solving the discrete equations.

1. Discretization of the Fluid Equations. In the process of discretization we

represent a continuously varying fluid-flow field, which has an infinite number of degrees of

freedom, by a finite set of data. In this section we introduce the discretization techniques

used by finite difference, finite volume, fm.iteelement, spectral, and some particle methods,

and associated concepts of numerical stability and accuracy. The discrete equations of

the fi.nite-diilerence, finite-volume, and finite-element techniques all look similar and are

referred to generically as “difference approximations.” In this introduction to CFD we

have only time to “scratch the surface” of each method. For more in-depth information,

the reader should consult one of several standard books On the subje&3~?8~29~30~31~32

a. Finite-Di~erence Methods @DA4.sJ. In FDMs we subdivide all the fluid region of
interest into nonoverlapping cells and store approximate values of the fluid variables in each

cell. This subdivision is called a grid or a mesh. Derivatives are approximated by taking

differences between the variable values in neighboring cells, using the idea of a Taylor-series

expansion. Let us consider the simple one-dimensional example of finite-difference solution

of the linear advection equation

(29)

in the spatial interval a s z < b. We subdivide this interval into cells of equal size

AX= (b – a)/IV, where N is the total number of cells, and denote by q? the approximate

value of q at the center of celI i, which lies at the location, or grid point, Zi = a+(i–1/2)Az,

at time t = nAt, where At is the computational timestep. (In this section, the subscript

i will represent a cell number, rather than a coordinate direction.) We have stored in

computer memory all the values of q?, 1< i < N, for a particular time t = nAt, ~d we

wish to compute values at time t = (n + l)At by using a fite-difference approximation

to Eq. (29).

To approximate the spatial derivative in Eq. (29), we consider the q? to be the values

at xi of a differentiable function q(z, t) that can be expanded in a Taylor series about any

“ 13
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grid point. Thus the value of q at a neighboring grid point can be expressed in terms of

the value of q and its derititives at grid point i by

q’+’=q’+(%):kAz+(2):(k:)2+0(A’3’(30)

where O(AZ~) represents the fact that the remaining terms in this expansion have as their

lowest-order term one in which Ax is raised to the power m. Now the value of the spatial

derivative in Eq. (29) can be approximated by any finite combination that satisfies

E ()aq n
akq~+k=

%i
+ O(Az~) ,

k

(31)

when one substitutes from Eq. (30) for the q~+k,where the ak are coefficients that depend

on Ax. In the approximation Eq. (31), ‘m’ is said to be the order of accuracy of the

approximation and all terms containing AZ to some power are said to be truncation errors.

As long as m >0, the approximation is said to be consistent. Examples of consistent

approximations are the centered-difference approximation

()q?+l – !7?-1 = aq n

2Ax- zi
+ 0(Az2) ,

which is second-order accurate, and the onasided approximations

and

(32)

(33a)

(33b)

which are first-order accurate. If the advection speed u in Eq. (29) is positive, then the

approximation Eq. (33a) is called an upwind approximation and Eq. (33b) a downwind

approximation.

Order of accuracy is one measure of the accuracy of a finitdifference method. To test

the accuracy of a fi.nite-difference solution one can refine the grid by reducing the cell size

Ax. When AZ is reduced by a factor of 2, numerical errors will be reduced approximately

by a factor of 4 when using a second-order method, but only by a factor of 2 with a

first-order method. It may thus seem to be desirable to use only methods with a very

high order of accuracy. In practice, however, it is difhcult to define high-order methods

near boundaries, and often numerical solutions using high-order methods have oscillations

14



in regions of steep gradients. Because of these difficulties, most modern finite-difference

methods have second- to fourth-order accuracy and sometimes drop to first-order accuracy

in regions of steep gradients.

Returning to the example of the linear advection equation, the time derivative can

be approximated in much the same way as the spatial derivative. Since one usually only

stores the values of qi at a single time-level in order to save computer storage, the time

derivative is most often approximated by the one-sided finite-difference formula

% ()
n+l _ q? _ @ n+O(M)

At – zi”
(34)

lllhen Eq. (34)—and one of the finite-difference formulas Eq. (32), Eq. (33a), or Eq. (33b)—

are used to approximate the time- and space-derivatives in Eq. (29), one obtains a

consistent approximation to the linear advection equation that is first-order accurate in

time.

When these finite-difference equations are used to advance the numerical solution for

q in time, one finds that, in contrast to solutions to the differential equation, solutions to

the finite-difference equations using Eq. (32) or the downwind approximation Eq. (33b)

are subject to catastrophic numerical instabilities, and solutions using Eq. (33a) are only

stable if a certain condition is met. This condition, the so-called Courant condition, is

that the Courant number C = (uA-t)/Az be less than one. The origin of these numerical

instabilities was first discovered by J. von Neumann, 33 who devised a method for analyzing

the stability of linear finite-difference equations based on examining the behavior of each

Fourier component of the solution.

The finite-difference approximations we have presented so far are explicit in the sense

that the solution ~for q~+l can be explicitly found by solving only the finite-difference

equation at grid point i. All explicit methods, if they are stable, are subject to Courant

conditions to ensure their numerical stability. Intuitively, this condition arises because

when using an explicit method, information can only propagate at a speed proportional

to Ax/At. In order for the numerical solution to approximate the physical solution, the

numerical propagation speed must beat least as great as the physical speed. For the simple

advection Eq. (29), the only physical propagation speed is u. For the fluid equations there

are several physical, or characteristic, speeds. The largest of these is u + c, where c is

the fluid speed of sound, and the Courant condition in explicit CFD calculations is based

on the speed u + c. To overcome the Courant condition one uses implicit finite-difference

methods, in which solution for the value of q~+l is implicitly coupled to the solution for
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qn+l at other grid points. An

linear advection Eq. (29) is

example of an implicit finite-difference approximation to the

(35)

which can be shown to be unconditionally stable. The disadvantage of implicit methods is

that they usually require costly iterative solution. Some iterative solution techniques for

implicit equations will be introduced below.

b. Finite- VoJume Methods (FVMS). As in FDMs, FVMS subdivide the computa-

tional region into a mesh of cells; but finite-volume cells can be arbitrary quadrilaterals in

two dimensions, hexahedra in three dimensions, or indeed any shape enclosed by a set of

corner points. In contrast, FDMs are defined on grids that are obtained using orthogonal

curvilinear coordinate systems. Thus, FVMS have much more geometric flexibility than “

FDMs.

Finite-volume methods approximate forms of the fluid equations that are integrated

over these cells, which are also called control volumes. As an example, we consider

finitevolume approximation of the integrated form of the mass equation, Eq. (1). After

integrating Eq. (1) over control volume V and applying the Reynolds transport and

divergence theorems14 one obtains

HIP’u+l’uinid”=o
v s

(36)

The quantity ~uini is the mass flux (mass per unit area and time) through surface S with

unit normal ni, and Eq. (36) is a statement that the time-rate-of-change of the total mass

in volume V is equal to the sum of the fluxes, times the areas, through the surface S of

the volume. Thus mass is conserved in the sense that there are no internal mass sources.

Commonly, the time derivative term in Eq. (36) is approximated by

d J1.1 ‘+1– P;
z

p ‘v ~ v- Pv
At ‘

(37)

v

where v is the index of a finite-volume cell and V. is its volume, and the surface integral

is approximated by . .

// P“inida % ~P~(”i)a(ni)aAa , (38)
.JJ

CY

where the sum is over all faces a of control volume v; pa and (ui)a are approximations to

p and Ui, respectively, on face a; (ni)a is an average unit normal vector to face a pointing

out of volume V; and Aa is the area of face a.
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Using FVMS one can easily construct discrete approximations that have the conser-

vative property; that is, the discrete approximations can mimic the physical laws horn

which the fluid equations were derived by conserving properties such as computed mass,

momentum, and energy. To be more precise, consider the approximation to the mass equa-

tion above. A conservative approximation has the proper@ that if v and p are two cells

that share face a, then when one sums the finite-volume approximations to the change

of mass in cells v and ~, the contributions due to fluxes through common face Q cancel

each other. This will be true if pa and (ui)a are defined the same way in the finite-volume

approximations at nodes v and p, since the unit outward normal to kace a relative to cell

v is minus the outward normal relative to cell p. Conservative difference approximations

have many desirable accuracy properties. For example, it can be shown that d.iflerence

approximations that conserve mass, momentum, and energy will calculate the cofiect jump

conditions across shocks without having to resolve shock structure.3

A problem with FVMS is that it is dificult to formulate higher order FVMS. When

a FVM is specialized to a finite-difference grid, the difference approximations look very

much like finite-difference approximations, and one can perform Taylor-series expzmsions

and determine the order of accuracy of the method. When more general meshes are used,

however, it is unclear whether the same accuracy can be expected.

c. Finite-Element Methods @’EMs). FEMs28 use a consistent spatial interpolation

when evaluating all the spatial derivative terms in the fluid dynamics equations. These

methods have long been popular in stress analysis problems and have recently been gaining

popularity in CFD problems because of advances in the methodology. As in FVMS the

computational domain is subdivided into nonoverlapping cells that in three dimensions

are either arbitrary hexahedra or tetrahedral (Figs. 3, 4). Finite-element terminology is

different, however, in that the cells are called elements, and the vertices of the cells are

called nodes. A function q(zi, t) is represented by a expansion of the form

(@i, t) = ~ q.(qbv(zJ , (39)
v

where the sum is over all the nodes v in the computational domain. The b.(zi) are

called basis functions and have fkdte support, meaning that they vanish outside of some

neighborhood of the node v location (Zi)v. They also have the properties that

(40)

where JVPis the Kronecker delta tiction, md

(41)
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(a)

(d)

(b)

(e)

(c)

I

+ +-)

I

I I

(f)

(d
Fig. 3. Examples of grids used in CFD calculations. Two-dimensional examples are

shown for clarity. (a) A structured grid. (b) A block-strtictured grid. (c) An unstructured

hexahedral (quadrilateral) grid. (d) An unstructured tetrahedral (triangular) grid. (e)

Local mesh refinement via a transition region on an unstructured hexahedral grid. (f)

Local mesh refinement via cell splitting on an unstructured hexahedral grid. (g) A chimera

grid.
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Principal Cell or Element Types for CFD

Tetrahedron

a

.-_. A-------

(a)

Hexahedron

Y
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Some De enerate Hexahedra

single edge collapsed two edges collapsed:

09 ‘p~

single face collapsed: MO faces collapsed

Az!s
(c)

Fig. 4. Principal cell or element types for CFD. (a) Tetrahedron there are four vertices

or nodes, four faces, and six edges for each element. (b) Hexahedron there are eight

vertices or nodes, six faces, and @elve edges for each element. Hexahedral elements

generally must remain convex (angles formed by edge and face intersections must remain

smaller than 180°). (c) A sampling of possible edge and/or face degeneracies for hexahedral

elements.

for all z;. Linear (for tetrahedral) or trilinear (for hexahedra) basis functions give rise

to second-order numerical methods in the following sense: when the finite-element grid is

refined in such a way that the dimensions of the elements are reduced by a factor of 2, then

the difference between the computed and exact solutions, as measured by a global integral

of this difference, is reduced by a factor of 4. Higher order FEMs may be constructed

by adding mid-side nodes to the elements and using nonlinear basis functions that have

properties Eq. (40) and Eq. (41).28 Because of Eq. (40) the coefficient q.(t) is the value of

q at location (q). at time t.

Although there are many possibilities for determining q.(t), the most common

method is that of the Galerkin finite element method (GFEM). In GFEM one substitutes

expansions of the form Eq. (39) for each function in the fluid equations. To obtain the
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discrete equations associated with node v, one multiplies the resulting expanded equations

by basis function b. (xi) and integrates over the entire computational domain. This

gives rise to a coupled system of ordinary differential equations for the functions q.(t).

Standard numerical methods for ordinary differential equations may then be used to solve

for the qV(t). These ordinary d.iilerential equations involve coefficients that are integrals of

products of the basis functions and their derivatives. Evaluating these coefficients can be

a costly step in obtaining a GFEM solution.

d. Spectral iWethoo?s.Like FEMs, spectral methods28 represent a function q(zi, t) by

a iinite sum

q(zi, t) = ~ %(t) bm(xi) , (42)

n

but unlike FEMs the basis functions bn(q) are typically orthogonal functions with respect

to some weighting function W(Zi); that is

1 bn(fcJ&@Jw(3+kci = t)nm. (43)

There is no grid in a spectral method. The ~(t) are no longer the values of q at nodes, but

simply the coefficients of the function q in an orthogonal function expansion. Ordinary

differential equations for the ~(t) are obtained by a method that is similar to that of

GFEM: one substitutes the expansion Eq. (42) into the fluid equations, then multiplies

the resulting expanded equation by bow, and integrates over the computational

domain.

Spectral methods are most often used in situations where suitable basis functions can

be found that satisfy the boundary conditions of one’s problem. When this is the case,

spectral methods are very efficient for solving fluid dynamics problems. For example, direct

simulations of turbulence with periodic boundary conditions invariably use Fourier series

expansions34. because of their high accuracy. Because of the d.iiiiculty of finding suitable

basis functions that satisfy boundary conditions in complex geometries, spectral methods

are usually used only for simple geometries.

e. Computational Particle Methods. Computational particles have long been used

for many purposes in CFD calculations. 35 At the simplest level they are used to follow the

motion of Lagrangian fluid elements for flow visualization purposes. At the other extreme,

in some particle methods the fluid is completely represented by particles, each of which

is endowed with a certain amount of mass, momentum, md energy. This is the case for

Particle-in-Cell (PIC) methods,36’37 and for the newer Smoothed-Particle-Hydrodynamics

(SPH) methods.38 The great advantage of the latter two methods is their Lagrangian
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nature, Becausethe Lagrangianequations are solvedt numerical truncation errors are

avoided that arise fi-om il.nitdifYerence approximations to the advection terms. These

are often the largest errors in approximations of the Eulerian equations. When carefully

formulated, PIC and SPH method solutions can also be Galilean invariant apd conserve

angular momentum.37

A disadvantage of particle methods lies in the difficulty of calculating interactions

among fluid particles-which give rise, for example, to the pressure gradient terms in the

momentum equation. This dficulty manifests itself, particularly in low Mach number

calculations, in particle bunching, and consequent fluctuations in advective transport.

Possibly because of this diiliculty, very few commercially available CFD codes use particle

methods. An exception is a class of commonly used fluid/particle methods for calculating

dispersed, two-phase flows,3g’40 such as occur when a liquid sprays into a gas. In these

methods, computational particles represent the dispersed phase entities and only interact

with, each other weakly, if they do so at all.
. 2. Solution of Implicit Equations. When solving difference approximations

to the steady fluid equations,or whensolvingimplicit approkrnations to the unsteady
equations, one must solve a large number of coupled algebraic equations for the unknown

values of the fluid variables. When the equations are linear, an equation corresponding to

the ith cell or node can be written in the form

where aij are constant coefficients and Si is a known source term. The gj are the unknowns

for which we wish to solve; in an unsteady problem qj = q~+l. For example, for the

implicit approximation Eq. (35) to the one-dimensiomd linear advection equation, one can

take aii = 1.0, aii+l = uAt/(2Az), aii–l = –uAt/(2Az), and si = q;. Equation (44) is

usually written

Aq=s, (45)

where A = (aij) is an N x N matrix of coefficients, N being the number of unknowns,

s = (si) is a known source vector, and q = (qj) is the Vector of unknowns. Because the

difference approximation in cell i only depends on the values of q in cell i and a small

number of neighbors of cell i, only a small number of the elements of the ith row of matrix

A will be nonzero, and for this reason A is referred to as a sparse matrix. The basic

problem of implicit fluid dynamics is to solve Eq. (45) for the vector of unknowns, given a

sparse matrix A and source vector s.

21



.,
-. —

Only for problems with small N can the matrix problem Eq. (45) be solved directly by

Gaussian elimination. This is because although the matrix A is sparse, and therefore does

not require much computer storage for its nonzero elements, when Gaussian elimination

is used to solve Eq. (45), one finds that it is generally necessary to store in computer

memory approximately N2 nonzero coefficients, which is impossible in problems with a

large number of cells.

Thus, iterative methods are usually used to solve the matrix problem Eq. (45).

Iterative solution methods calculate a sequence of approximations q~ that converge to the

solution q. The exact solution is not obtained, but one stops calculating qk when either

the difference between successive iterates q~+l – qk, or the residual Aqk –s, is acceptably

small. In the past, popular iterative methods have been point-successive relaxation, line-

successive relaxation, and methods based on approximate decomposition of matrix A into a

product of lower and upper triangular matrices that can each be easily inverted.30 Recently,

these methods have largely been supplanted by two methods that have greatly reduced the

computer time to solve implicit equations and thereby have made implicit methods more

attractive. These more recent methods are conjugat~gradient methods41 and multi-grid

methods.42

When nonlinear tite difference equations are solved, the above iterative methods can

be used in conjunction with Newton’s method.43 A nonline& difference approximation can

be written

F(q) = O , (46)

where F is a vector-valued function of the vector of unknowns q. If qk is the approximation

to the solution q after k Newton-iteration steps, then qk+l = qk +~q is obtained by solving

the matrix equation
~F
~bq = –F(q~) . (47)

The matr& ~ is called the Jacobian matrix. Equation (47) is of the form of Eq. (45) and

can be solved by one of the iterative methods for linear equations. Thus, solution for q

involves using an iteration within an iteration. As in the solution of nonlinear equations

for single variables, convergence is sometimes accelerated by under-relaxation; that is, one

takes qk+l = qk + X5q where ~q is the solution to Eq. (47) and A is an under-relaxation

factor whose value lies between zero and one.

Newton’s method is sometimes used to solve systems of coupled difference equations

arising in CFD,a but it is often more economical for this purpose to use the Simpl~Implicit

Method for PressureLkked Equations (SIMPLE) method.45 In the SIMPLE method,

a system of coupled implicit equations is solved by associating with each equation an
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independent solution variable and solving implicitly for the value of the associated solution

variable that satisfies the equation, while keeping the other solution variables fixed. As

is implied by the acronym SIMPLE, pressure is chosen as an independent variable, and

a special treatment is used to solve for pressure.45 The equations are solved sequentially,

and repeatedly, until convergence of all the equations is obtained. The SIMPLE method is

more efficient if the difference equations are loosely coupled, or if some independent linear

combinations of the equations can be found that have little coupling.

C. Grid Generation for Complex Geometries

Before applying most of the CFD methods outlined above, a computational grid must

be generated that fills the flow domain and conforms to its boundaries. For complex

domains with curved or moving boundaries, or with embedded sub-regions that require

higher resolution than the remainder of,the flow field, grid generation can be a formidable

task requiring more time than the flow solution itself. Two general approaches are available

to deal with complex geometries: use of unstructured grids and use of special differencing

methods on structured grids.

1. Unstructured Meshes. Figure 3 shows examples (in two dimensions) of several

possible grid arrangements for CFD. In a structured three-dimensional grid (Fig. 3a) one

can associate with each computational cell an ordered triple of indices (i, j, k), where each

index varies over a fixed range, independently of the values of the other indices, and where

neighboring cells have associated indices that differ by plus or minus one. Thus, if Ni, lVj,

and Nk are the number of cells in the i-, j-, and k-index directions, respectively, then the

number of cells in the entire mesh is Ni Nj Nk. Additionally, it is seen that each interior

vertex in a structured grid is a vertex of exactly eight neighboring cells.

In an unstructured grid (Figs. 3C and 3d), on the other hand, a vertex is shared by

an arbitrary number of cells. Unstructured grids are further classified according to the

allowed cell or element shapes (Fig. 4). In the case of FVMS in particular, an unstructured

CFD code may require a mesh of strictly hexahedral cells (Fig. 4b), hexahedral cells with

degeneracies (Fig. 4c), strictly tetrahedral cells (Fig. 4a), or may allow for multiple cell

types. In any case, the cells cannot be associated with an ordered triple of indices as in a

structured mesh.

Intermediate between structured and unstructured meshes are block-structured

meshes (Fig. 3b), in which “blocks” of structured grid are pieced together to fill the

computational domain.

There

structured

domain or

are three advantages of unstructured meshes over structured and block-

meshes. First, unstructured meshes do not require that the computational

sub-domains be topologically cubic. This flexibility allows one to construct
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unstructured grids in which the cells are less distorted; and therefore give rise to less

numerimil inaccuracy, compared with a structured grid. Second, local adaptive mesh

refinement (AMR) is naturally accommodated in unstructured meshes.by subdividing cells

in flow regions where more numerical resolution is required (Fig. 3e). Such subdivision

cannot be performed in structured meshes without destroying the logical (i, j, k) indexing.

Third, in some cases, particularly when the cells are tetrahedral, unstructured grid

generation can be automated with little or no user intervention. 46 Thus, generating

unstructured grids can be much faster than generating block-structured grids.

On the other hand, unstructured-mesh CFD codes generally demand higher compu-

tational resources. Additional memory is needed to store cell-to-cell and vertex-to-cell

pointers on unstructured meshes, while this information is implicit for a structured mesh.

And, the implied connectivity of structured meshes reduces the number of numerical oper-

ations and memory accesses needed to implement a given solution algorithm compared

with the indirect addressing required with unstructured meshes.

The relative advantages of hexahedral versus tetrahedral element shapes remain

subjects of debate in the CFD community. Tetrahedral have an advantage in grid

generation, as any arbitrary three-dimensional domain can be filled with tetrahedral

using well-established methodologies. 46 By contrast, it is not mathematically possible

to tessellate an arbitrary three-dimensional domain with nondegenerate six-faced convex

volume elements. Thus, each of the various automatic hexahedral grid-generation

approaches that have been proposed either yields occasional degeneracies or shifts the

location of boundary nodes, thus compromising the geometry.47~48

2. Specialized Differencing Techniques. In a second. general approach to

computing flows in complex geometric configurations, the onus of work is shifted from

complexity in grid generation to complexity in the dflerencing scheme.4g~50t51Structured

and block-structured grids are used, but one of three numerical strategies is used to extend

the applicability of these grids. The first strategy is to use so-called chimera grids49 that can

overlap in a fairly arbitrary manner (Fig. 3g). Solutions on the multiple grids are coupled

by interpolating the solution horn each grid to provide the boundary conditions for the

grid that overlaps it. This is a very powerful strategy that handles naturally problems in

which two flow regions meet at a boundary with a complicated shape or where one object

moves relative to another. The second numerical strategy is to use so-called embedded

boundaries.50 Again, structured meshes are used, but the complicated boundary of the

computational domain is allowed to cut through computational cells. Special numerical

methods are then used in the partial cells that are intersected by the boundary. In the

third strategy, local AM”R is allowed by using a nested hierarchy of grids.51 The different
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grids in the hierarchy are structured and have different cell sizes, but the cells in the more

finely resolved grids must subdivide those of the coarser grids (Fig. 3f).

Although the second general approach affords simplicity in grid generation, it generally

is less mature than the various unstructured-mesh approaches. Much development

remains before these specialized differencing techniques have the robustness, generality,

and efficiency to deal with the variety-of problems presented in engineering applications.

For the near future, then, the use of various unstructured-mesh approaches is expected to

dominate in engineering applications of CFD.

III. COMPUTATIONAL FLUID DYNAMICS FOR .ENGINEERING

DESIGN

We next relate the process by which the above formalisms are utilized by the industrial

design engineer. Because the use of CFD in engineering design is proliferating rapidly in the

1990s, some of this information, particularly that citing speciiic software, will rapidly and

unavoidably become dated. We believe that the benefits of providing concrete examples

to the reader outweigh our concern of premature obsolescence.

CFD is one of the tools available to the engineer to understand and predict the

performance of thermal-fluids systems. It is used to provide insight into thermal-fluids

processes, to interpret experimental measurements, to identi~ controlling parameters, and

to optimize product and process designs. It is the use of CFD as a design tool that

is the principal focus here. In the course of a design program, an engineer typically

will perform multiple CFD computations to explore the influence of geometry (hardware

shape), operating conditions (initial and boundary conditions), and fluid properties. For

CFD to be fully integrated into the design process, it must satis~ ever-tightening demands

for functionality, accuracy, robustness, speed, and cost.

At present, most engineering CFD using commercially available software can be

characterized as having high geometric complexi~ (domain boundaries are complex three-

dimensional surfaces) and moderate physical complexity. The majority of flows considered

are steady, incompressible, singlephase, and nonreacting. A common physical complexity

encountered in engineering situations is turbulerice, as engineering flows typically are

characterized by a high Reynolds number. Turbulence is modeled using a two-equation

model (standard K/c or variants27) in most cases. Applications to transient flows with

additional physical complexity and/or more sophisticated models (e.g., compressibility,

multiphase, reacting, higher-order turbulence models) are increasing.
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A. The CFD Process

Let us consider the idealized component design processes shown schematically in

Fig. 5. There the left-hand-side flowchart depicts a hardware-based design process, while

the right-hand side represents an analysis- or math-based process. Although CFD is

the single analysis tool under consideration here, the right-hand side applies equally well

to other mathematical/computational tools (e.g., finite-element structural analysis) that

together fall under the heading of CAE.

Both the hardware and analysis-based processes require the generation or acquisition

of geometric data, and the specification of design requirements. Here it is assumed

that a three-dimensional CAD geometry model is the preferred method for geometric

representation. A hardware approach then proceeds with fabrication of prototypes,

followed by testing of prototypes, and evaluation of test results. Design iterations are

accomplished either by direct changes to the hardware or by modification of the CAD

dataset and refabrication, until the design requirements are satisfied. At that point the

original CAD data must be updated (in the case of direct hardware iterations), and the

design proceeds to the next component or system level where a similar process is repeated.

Component Design Processes
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Fig. 5. Engineering component design processes. Left-hand side depicts a hardwarebased

approach; right-hand side is an analysis- (CFD-)
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fialysis-based design (here, CFD) is not fundamental.ly different. Mesh generation

replaces hardware fabrication, computer simulation substitutes for experimental measure

ment, and postprocessing diagnostics are needed to extract relevant physical information

from the vast quanti~ of numerical data. To the extent that relatively simple design

criteria are available and the component lends itself to a parametric representation, the

design-iteration loop can be automated using numerical optimization techniques.52 Auto-

mated computer optimization with three-dimensional CFD remains a subject of research

in most engineering applications, determination of the next design iteration remains largely

a subjective, experience-based exercise.

Analysis-based design can be faster and less costly compared with hardware build-

and-test. If this is not yet the case in a particular application, it most likely will be true

at some point in the future. Thus, analysis affords the opportunity to explore more design

possibilities within specified time or budget constraints. Advances in rapid prototyping

systems53 and other fabrication technology mitigate this advantage to some extent.

A second advantage of analysis ~ that more extensive information can be extracted

compared with experimental measurements. CFD yields values of the computed dependent

variables (e.g., velocity, pressure, temperature) at literally thousands or even millions

of discrete points in space and (in time-dependent problems) in time. From this high

density of information can be extracted qualitative and quantitative pictures of flow .

streamlines and three-dimensional isopleths of any computed dependent variable. For time-

dependent problems, animation or “movies” reveal the time evolution of physical processes.

Application-specific “figures-of-merit, “ including total drag force, wall heat flux, or overall

pressure drop or rise, can be computed. Examples are given in the case studies that follow.

Experimental measurements, on the other hand, traditionally have been limited to global

quantities or to values of flow variables at a small number of points in space and/or time.

Thus in principal, much more complete in.iormation is available horn CFD to guide the next

design iteration. An important caveat is that this additional information is useful only to

the extent that it accurately and reliably represents the actual hardware under the desired

operating conditions. In most applications of CFD today, there are sufficient sources of

uncertainty that abandonment of experimentation is unwarranted. Recent progress in

two- and three-dimensional experimental diagnostics (e.g., particle-image velocimetry for

velocity fieMs,54 laser-induced fluorescence for species concentrations55) is enabling higher

spatial and/or temporal measurement densities in many applications.

In Fig. 6, the CFD process is modeled as a four-step procedure: (1) geometry acquisi-

tion, (2) grid generation and problem specification, (3) flow solution, and (4) postprocess-

ing and synthesis. Depending on the level of integration in the software selected, four (or
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Fig. 6. The CFD process. Examples of available software are given in Table 2.

more) distinct codes may be needed to accomplish these tasks. Some vendors offer fully

integrated systems. For the purpose of exposition, we treat each step separately.

1. Geometry Acquisition (CAD). The principal role of CAD software in the

CFD process is to provide geometric definition of the bounding surfaces of the three-

dimensional computational domain. The computational domain of interest in CFD

generally is everything eaiernal to the solid material; this conveniently might be thought

of as the negative of a finite-element structural solid model. Several CAD packages are

available commercially; examples are listed in Table 2. These codes are designed primarily

with the design and fabrication of three-dimensional solids in mind, and have considerable

functionality that is not of direct relevance for CFD.56

The various CAD packages use different internal representations for curves (one-

dimensional objects), surfaces (two-dimensional objects), and solids (three-dimensional

objects). The surfaces needed for CFD, for example, may be represented using one

of several tensor-product polynomial or spline representations in a two-dimensional

parametric space. 57’58Any of these representations generally stice for CFD; most FDM,

FVM, and FEM solution methodologies in today’s engineering CFD codes require at most
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Table 2. Examples of CFD software available in the United States. This partial listing

was extracted from ~ormation maintained by several computer hardware and software

companies on the Internet early in 1997. Further information on each company and/or

code can be found by initiating a network key-word search. Additional information is

provided for some companies in Table 3.

Geometry Acquisition

ICEM CFDI

Unigraptics

CATIA

CADDS

I-DEAS

IEMS

Pro-Engineer

Patran

AutoCAD

Grid Generation

ICEM CFD

GridGen

Patran “.

Hexar

CFD-GEOM

Postprocessing (3D Visualization)

ICEM

Patran

Fieldview

Application Visualization System - AVS

DATA VISUALIZER,

EnSight

FAST

PLoT3D/TuRB3D

MPGS

CFD-VIEW
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linear interpolation between the discrete points (nodes or vertices) representing the surface.

Howeverj spectral-element methods5g and some other high-order orthogonal basis function

expansions require a level of surface definition that generally is not available from current

commercial CAD systems; this presently limits the application of such methods to simple

geometric configurations.

The need to move geometry models among different CAD systems having differerit

internal representations led to the establishment of standards for external geometric data

exchange. An early standard supported by most CAD software is the Initial Graphics

Exchange Spectication (IGES).60 Most CAD to CFD interfaces now operate by extracting

the outer surfaces and writing an IGES file of “trimmed” B-spline surfaces. Newer

standards such as Standard for the Exchange of Product model data (STEP) are merging

with IGES and supplanting it; existing standards are evolving rapidly and new standards

are developed as needed. Other external data formats commonly used in the CAD/CAE

arena include Stereo Lithography (STL), where surfaces are processed into a set of

triangular facets, cloud-of-points (a set of random points in three-dimensional space), and

DES (a set of piece-wise linear curves Describing a Surface).

The set of raw surfac&s extracted horn the CAD model usually requires additional

processing before it is suitable for CFD grid generation. The extracted surfaces may not

define a closed three-dimensional domain (gaps), there may be more than one surface at

a physical location (overlaps), and there simply may be too much geometric detail to be

practical for CFD. Modern CAD and grid-generation systems provide fault tolerance and a

variety of tools to “clean up” the extracted surfaces prior to grid generation. This cleanup

step is labor intensive, and often is the single most time-consuming element of the CFD

process.

2. Grid Generation and Problem Specification. The second step in the CFD

process is to generate a computational mesh. This might be accomplished using the same

software as for geometry acquisition, or a separate code. The grid must satisfy three

general requirements: (1) it must be compatible with the selected flow solver; (2) it must

be sticiently fine to satisfy accuracy requirements; and (3) it must be sufficiently coarse

to satisfy computational resource limitations.

For an unstructured mesh, the minimum information that must be provided fkom the

grid-generation step is the location of each node or vertex, and a description of connectivity

among the vertices. A complete problem prescription for CFD requires, in addition, the

specification of initial and boundary conditions for all flow variables (e.g., velocity, pressure,

temperature), fluid properties, and any model and numerical parameters. Other code-

and application-specific information also may be needed. Because both geometry and
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grid information are available at the grid-generation stage, this is the most natural time

to tag volumes for initial conditions and material properties and surfaces for boundary

conditions (e.g., specify which surfaces represent walls, inflow boundaries, etc.). Specific

initial values for each dependent variable at each interior. cell or vertex, boundary values

for each boundary element face or vertex, and fluid properties may be set either in the

grid-generation software itself or in a separate “pm-processor” provided for the specific

CFD code. For present purposes, the preprocessor is considered to be pat of the flow

solver. Model constants and numerical parameters are specified to the flow solver directly.

Fully automatic tetrahedral-mesh generation is available in a number of commercial

and public-domain codes. 46 (See Table” 2.) Early’ generations of automated hexahedral,

hexahedral-with-degeneracies, and hybrid hexahedral/tetrahedral strategies (requiring

varying levels of manual intervention) also are available at the time of this writing.47>48

(see Table 2.) However, a high level of manual intervention still is required to generate

high-quality meshes for. CFD. This is particularly true in the case of tetrahedral meshes

in the vicinity of solid walls. Here we define a “high-qualit#’ mesh as one that yields

high numerical accuracy for low computational effort (memory and CPU ti!me). This

is quantified by performing multiple computations of a singleflow configuration using

different meshes, and computing the error in each with respect to a benchmark numerical

or experimental solution. Fletcher32 and Sengupta et al.61 diSCUSS modem mesh generation

techniques for CFD.

Regardless of the specific methodology used to generate the mesh, it is important

that any grid-generation software for CFD maintain separate data structures for geometry

definition and for the computational mesh. This ensures that design changes (modifications

to CAD surfaces) can be made without redoing the domain decomposition, that boundary

conditions can be reset without regenerating the grid, and that mesh density and

distribution can be changed independently of the geometry.

3. Flow Solution. ‘ Most contemporary CFD solvers available to the industrial

design engineer use either finite-volume or fhite-element discretization, with SIMPLElike

iterative pressure-based implicit solution algorithms. Unstructured meshes of primarily

hexahedral elements (with limited degeneracies) have been prevalent in most finite-volume

formulations to date, although the grid-generation advantages of tetrahe&ra are leading to

an increase in the usage of that element type.

Default or recommended values of numerical parameters are provided by each flow

solver. New and/or unusual applicatio& often require experimentation in selecting

values of numerical parameters to obtain a stable, converged solution. For the solution

methodologies commonly used today, parameters include choice of advection scheme (e.g.,
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the degree of upwinding), convergence criteria for linear equation solvers and pressure

iterations, time-step control (for transient problems), mesh adaptation (where available),

and other method-specific controls. For this reason, the CFD practitioner needs to have

a working knowledge of the information covered in the “Fundamentals” section above.

With these caveats, flow solution is the step requiring the least manual intervention. The

engineer can monitor the solution as it progresses using the available diagnostics, which

are discussed next.

4. Post-Processing and Synthesis. Viewing and making sense of the vast

quantities of three-dimensional data that are generated in CFD is a challenging task.

Many software packages have been developed for this purpose, both for structured and

unstructured meshes (Table 2). All provide considerable flexibility in setting model

orientation, in passing cutting planes and/or lines through the computed solution,

and in displaying the computed vector and scalar fields. Postprocessors have varying

leveIs of “calculator” capability for computing quantities not supplied directly born the

CFD solution, such as vorticity or total pressure. Many allow transient animation to

accommodate time-depend6nt data. Most modern packages provide both a graphics-user

interface (GUI) and a save file/read file capability, the latter to”allow the user to replicate

a particular view of interest for multiple data sets.

Such direct inspection of the computed fields provides detailed insight into flow

structure in the same sense as a high-resolution flow visualization experiment. In this

respect and others, it had been argued that CFD is more akin to experiment than to

theory. Features such as an undesirable flow separation, for example, might provide the

engineer with sufficient information to guide a modification to the device geometry for the

next design iteration. The connection between device performance or design requirements

and the full three%imensional flow field often is not obvious, however; considerable effort

may be required to extract meaningful figures-of-merit h-em the numerical solution.

A judicious development of diagnostics is necessary to advance CFD from sophisticated

flow visualization tool to scientifically based design tool. Quantitative information of direct

relevance to the design is needed to drive design changes towards satisfaction of the design

requirements. Such diagnostics are application-specific, and have received relatively little

attention by CFD researchers and code developers. Examples of diagnostics to extract

physical insight and to assess numerical accuracy can be found in Haworth, El Tahry, and

Huebler.62

B. Examples

Application

aircraft and ship
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areas that have been particularly active in their use of CFD include

design, geophysical fluid flows, and flows in industrial devices that involve



energy conversionand utilization. A comprehensivelist of the applicationsof CFD would

be difficult to compile, and no attempt to do so is made here. Instead, specific case

studies are cited with several purposes: (1) to illustrate the scope and state-of-the-art in

engineering CFD, (2) to highlight issues that arise in engineering applications of CFD, and

(3) to introduce some specific CFD software that is widely used in industry.

1. Internal Duct Flow. Many internal flows of engineering interest can be broadly

categorized as complex duct flows. The principal physical complexity is turbulence,

particularly as it influences flow separation. A related numerical issue is mesh resolution,

especially in the vicinity of walls. Flow losses (pressure drop and separations), flow

distribution among multiple branches, mixing, and heat transfer may be important in

such configurations.

Two examples of steady, incompressible CFD simulations are given in Fig. 7.63’64

Figures 7a and 7b show a simplified automotive heating, ventilation, and air-conditioning

(HVAC) duct. This is taken from a validation study, which also contains experimental

measurements .63 Results of this kind have allowed engineers to identi& flow separations

and poor flow distribution among branches; optimized designs for lower pressure drop and

more favorable flow distribution are identified using CFD prior to hardware fabrication.
A second internal flow configuration (Fig. 7c) illustrates the geometric complexity that

often arises in engineering applications. Figure 7Cshows surface heat transfer coefficients

from computations of flow in the coolant passages of a production automotive engine block.

Such results are used to identi~ potential “hot spots” and to modify flow passages for more

uniform cooling.

2. External Aerodynamics. External flows comprise a second broad category of

engineering interest. This includes flows around immersed bodies such as aircraft, ships,

submarines, and ~automobiles. Blufi-body aerodynamics is particularly challenging; the

accurate computation of separation, which may be highly unsteady, is key to predicting

lift and drag.

Examples of computations and measurements for idealized thredimensional blufF

bodies are shown in Figs. 8(a) and (b) .65@167168A computational challenge is to capture

the sudden drop in drag coefficient at a slant angle of about 30°, (Fig. 8b). Computations

of flow over realistic vehicle shapes also are feasible using modern CAD/grid generation

tools (Fig. 8c) .69 In all cases shown here, the flows have been computed as steady

and incompressible using standard Reynolds-averaged turbulence models to account for

unsteadiness.

3, Manufacturing Processes. Increasing attention is being focused on the

design and analysis of engineering processes. Heat transfer accompanied by melting
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Fig. 7. Examples of internal flow CFD. (a) A simplified automotive HVAC duct.63

(b) Measured and computed static pressure distributions along the ‘Top’ surface of

the hflain Duct and Branch #1.63 (c) Computed surface heat transfer coefficients for a

production automotive engine block.64
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Fig. 8. Examples of external flow CFD. (a) Generic three-dimensional blti body

for validation studies. 65 (b) Computed drag coefficient versus slant angle (angle a).66

(c) Measured and computed pressure coefficients along a production car body.69
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and solitication occurs in manufacturing processes including casting, injection molding,

welding, and crystal growth. In such applications, heat conduction in the solid is coupled

to convective heat transfer in the fluid. The solid-liquid interface moves with time, and its

location needs to be tracked as a propagating thredimensional surface in a CFD solution.

Also, fluid properties may be highly temperature dependent and non-Newtonian, including

phase changes. Here we cite metal casting as one example of such an application.

Casting is a process in which parts are produced by pouring molten metal into a

catity having the shape of the desired product. Figure 9(a) is a schematic of a typical

sand costing configuration. 70 Once the two halves of the mold have been made, they are

carefully aligned, one over the other, with the aid of pins and bushings in the sides of

the molding boxes, to create the complete mold. Aside from the casting cavity itself,

other features are also incorporated into the finished mold, such as the pouring basin,

downsprue, runners, and ingates that conduct the molten metal into the casting cavity.

Risers, or reservoirs of molten metal that remain molten longer than the casting, are needed

with most metals and alloys that undergo liquid shrinkage as the casting solidifies. These

are placed at critical locations in the mold, generally at heavier sections and areas remote

from the ingates. Once the casting has been poured and allowed to cool, and after it has

been withdrawn from the sand mold, these appendages are removed before the casting

undergoes various finishing operations. .

Fluid flow plays two important roles in the casting process. Fimt, and most obviously,

the flow of molten metal is necessary to fill the mold. Second, and less obvious, are

the effects of convective fluid flow during solidification of the casting. It is the task of

the foundry engineer to design gating and riser systems (Fig. 9a) that ensure proper

filling and solidification, and CFD is playing an increasingly important role in this field.

Proper designs result in less scrap and less casting repair at the foundry. An example of a

computational mesh and computed solidification times is given in Figs. 9b and 9C.71One

CFD package that has been developed specifically for the modeling of flow and thermal

phenomena in casting applications is MAGMASOFTTM.72 Recent references from the

literature give ample evidence of the vast amount of CFD activity that is taking place in

this area.73’74

4. Building Interior. Figure 10 shows an example of CFD applied to building

HVAC design. In this case, the geometric configuration is relatively straightforward. The

computational domain represents the interior of the Sistine Chapel at the Vatican. The

purpose of the analys~ W= to deterfie the placement ancl anglesof ti-conditioning ducts
to minimize deposition of contaminants on the newly-restored surfaces of Michelanglo’s

bwscos. The creation of two separate recirculation cells for the configuration shown in
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Fig. 9. A metal casting simulation. (a) A typical sand casting configuration.70 (b) Auto-
matically generated mesh (five million elements) for casting and cooling channels.71

(c) Computed local solidification times, which range from 1 to 3000 seconds.71
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Fig. 10. Flow in the interior of the Sistine Chapel for one possible air-conditioning system

configuration. Calculations were done using the FIDAP finite-element CFD code.75

Fig. 10 was deemed to be favorable for isolating traffic-borne particles created by chapel

visitors in the lower half, from the fresco surfaces along the upper walls and ceiling.

5. Environmental Flow. Environmental flows include natural phenomena, such

as atmospheric weather patterns and ocean currents (Fig. 2), and flows of molten rock

beneath the earth’s crust. Engineering design issues arise in the extraction of fossil fuels

and other materials from the earth, in bridge and building design, and in the treatment

and dispersal of wastes from electrical utilities, transportation systems and vehicles, and

industrial manufacturing plants. Such problems typically are characterized by a coupling

of natural convection (resulting from temperature and/or concentration gradients) with

other forces, in many cases including the earth’s rotation.

6. Internal Combustion (IC) Engine. For our final example, we show a

few results from transient computations of flow, fuel spray, and combustion in a

reciprocating internal combustion engine (Fig. 11) .76’77This application includes geometric

complexity (complex internal flow passages, moving boundaries-piston and valves),

physical complexity (turbulence, combustion, multiphase flow), and numerical challenges
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(deforming mesh, large density and fluid property variations, coupled 13ulerian/Lagrangian

algorithms). This represents an application area of CFD that lies at the frontier between

research and engineering application.

Of particular interest in a homogeneous-charge spark-ignited engine is the tradeoff

between flow losses and in-cylinder flow “structure.” Flow losses (induction system pressure

drop) reduce the quantity of air that can be drawn into the cylinder, lowering engine ped

power. A coherent large-scale in-cylinder flow structure tends to yield higher combustion

efficiency, but generation of highly structured flow (e.g., a large-scale swirl about the

cylinder axis) generally implies a pressure-drop penal@. These tradeoffs can be quantified

and optimized using CFD.76 The computations of Figs. 11(a) and (b) were performed on

unstructured meshes ofupto250000 predominantly hexahedral cells; computation through

one crankshaft revolution required about 150 equivalent single-processor Cray Y-MP CPU

hours.

Flame propagation for a production four-valv~per-cylinder automotive engine is

shown in Fig. 11(c). Flame shapes and burn rates are tailored by changing the intake

port, intake valve, and combustion chamber geometry. A good design generally is one

having favorable spark-gap conditions and a flame that propagates uniformly outward to

reach all solid walls at the same instant. .

Direct-injection diesel and gasoline engines, wherein liquid fuel is injected directly

into the combustion chamber, are of interest for their high fuel economy potential. Here “

mixing and fuel stratification are key issues affecting combustion perfornwmce; CFD is one

tool that is being used to explore the influence of flow structure, injector placement, and

injection characteristics on engine combustion performance (Figs. lld, lle).77

IV. ISSUES AND DIRECTIONS FOR ENGINEERING CFD

A. Geometric Fidelity

Geometric fidelity between hardware and the computational mesh is crucial to

obtaining accurate results. It is characteristic of the highly nonlinear flow equations that

small geometric perturbations can result in large changes to the flow field. One example

is shown in Fig. 12.78 Significantly different flow structure and mixing result when the

fraction-of-a-millimeter gap between piston and cylinder liner (the “top-ring-land crevice”)

is included in the mesh compared with when it is ignored. With a top-ring-land-crevice,

the flow entering the cylinder attaches to the cylinder wall and flows parallel to the wall

for an extended time; in the absence of this crevice, the entering flow quickly adopts

the port angle on entering the cylinder. This highlights the importance of maintaining a

consistent three-dimensional representation of the hsrdware at all stages of design, analysis,
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Fig. 11. Examples of CFD. for in-cylinder processes in reciprocating IC engines.

(a) Instantaneous computed and measured induction flow at piston bottom-dead-center

for a port and chamber configuration yielding weakly structured in-cylinder flow.76

(b) Instantaneous computed and measured induction flow at piston bottom-dead-center

for a port and chamber configuration yielding a highly structured in-cylinder flow.76
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Fig. 11 (continued). Examples of CFD for in-cylinder processes in reciprocating IC

engines. (c) Instantaneous computed velocity field and flame propagation near piston top-

dead-center for a production four-valve-per-cylinder engine. (d) Insta.ntaneous computed

fuel spray for a direct-injection diesel engine.77 (e) Computed and measured heat release
for a direct-injection diesel engine.77
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Fig. 12. Computed and measured ensemble-mean velocity fields on two-dimensional

cutting planes at 125° after piston top-dead-center for a ported two-stroke-cycle engine.78

Computational results with and without a top-ring-land crevice are shown. (a) Measured

(top). (b) CFD with top-ring-land crevice (middle). (c) CFD without top-ring-land crevice

(bottom).

and fabrication. The CFD practitioner should be wary of compromising the geometry in

favor of grid-generation expediency, particularly in applications where he or she has little

previous experience.

B. Numerical Inaccuracy

Meshes of hundreds-of-thousands of computational cells are common in transient

engineering applications of CFD today, and several millions of cells are being used in

steady-state computations. Even so, numerical inaccuracy remains an issue for three-

dimensional CFD. A mesh of 1000000 cells corresponds to just 100 nodes in each

coordinate direction in a three-dimensional calculation. With the low-order numerics that

characterize engineering CFD, this is sufficient to resolve a dynamic range of about 1 order

of magnitude (a factor of 10) in flow scales.
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Rapid progress is being made both in discretization schemes for tetrahedral meshes,

and in automated grid generation for (primarily) hexahedral meshes; it is unclear at this

time which will become dominant in engineering CFD.

C. Physical Models

The physical models used to represent turbulence, combustion, sprays, and other

unresolvable phenomena are a third source of uncertainty in CFD. Turbulence modeling,

in particular, is an issue that affects nearly all engineering applications. Research towards

improved models continues. Much new physical tilght into turbulence is itself being

derived horn large-scale numerical simulations.79

In many high Reynolds-number engineering applications in which the instantaneous
flow is highly transient and thredimensional, turbulence models can be used to reduce

the problem to one of steady flow, provided that the meun quantities of interest are time-

independent. This reduces the computational requirements considerably, and provides

results of acceptable accuracy in many cases. However, as engineering design requirements

tighten, there is an increasing number of problems that demand a full three-dimensional

transient treatment. Models still are needed to account for scales smaller than those

that can be resolved numerically, but sub~id-scale turbulence models are used instead of

Reynolds-averaged models. The resulting three-dimensional tim&dependent simulations in

this case are referred to as large-eddy simulations (L13S).80The use of LES in engineering

design is expected to proliferate rapidly. Examples of current applications of interest

include acoustics and aerodynamic noise81 and in-cylinder flows in engines.82”

In principle each of these three sources of uncertain@ can be isolated and quantified

in simple configurations where a second source of data (e.g., exp’erimental measurements)

is available. It is more difficult in engineering applications of CFD to isolate and to

quanti& these errors to obtain meaningful estimates of error bounds. Early in the history

of three-dimensional CFD, discrepancies between CFD and experfients generally were

attributed to the turbulence model. The importance of the other sources of uncertainty,

and numerical inaccuracy in particular, has been more widely acknowledged recently.62~83~84

In our experience, most discrepancies between computations and measurements for single

phase nonreacting flows in complex configurations are traced to geometric infidelity or to

inadequate mesh resolution (in cases where they have been traced at all).

D. User Expertise

GFD codes generally require more experience on the part of the user than other, more

mature, CAE tools (e.g., linear FEM structural analysis). “General purpose” CFD software

provides a large number of numerical parameters and problem specification options. In

steady-flow problems, results should be independent of the choice of initial conditions, but
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different initial conditions may lead to different steady solutions when time-marching to the

steady state. The choice of computational domain and specification of boundary conditions

always are important, both for steady and time-dependent flows. Minimal user experience

may suflice to obtain a reliable solution for steady incompressible flow in a benign geometric

configuration, but considerable expertise is needed in problem specification and in results

interpretation for complex flows.

E. CFD an’d Experimental Measurements

The engineering and scientific community typically accepts measurements horn

experiments as being more reliable than similar information generated by a CFD

calculation. This is the reason for the strong emphasis placed by the profession on

“validating” CFD results. While it is true that there are many sources of uncertain~

in CFD, the same is true of experiments, particularly for complex systems (e.g., the in-

cylinder flow of our last example). When comparing CFD results with measurements for

such complex engineering problems, it is more appropriate to approach the exercise as

a “reconciliation” rather than a %Jidation,” as the latter implies that the experiment

provides the “correct” value.

F. Interdisciplinary Analysis

In this overview, CFD has been considered as an isolated analysis tool. This is

satisfactory only to the extent that one can reasonably prescribe boundary conditions

that are independent of the flow solution itself.

For example, in the coolant-flow analysis of Fig. 7(c) temperature boundary conditions

might be prescribed from a separate finiteelement structural analysis, but the temperature

field in the solid depends on the coolant flow itself. One can alternate through a sequence

of CFD and thermal structural analyses, taking the most recent boundary conditions

available at each step, to obtain a solution that effectively is coupled. A single direct

computation of the coupled solution would be more satisfactory, however. In this case,

a coupled fluid/heat conduction analysis is feasible because many CFD codes provide a

so-called conjugate heat transfer capability.

More diificult are cases where fluids and solids interact in a manner that changes

the shape of the flow domain. Flow/structure interactions including deformations are

important, for example, in some aircraft design problems or in applications where there is

significant thermal distortion. Interdisciplinary analysis tools are becoming available for

these problems and will see more widespread use in the future.

G. Future of Engineering CFD

Most contemporary commercial CFD codes start from a discretization of the

continuum equations of fluid mechanics and require a computational mesh of discrete

44



cells or elements. An alternative is to approach CFD horn a kinetic theory point of view.

For example, an (essentially) grid-free Lagrangian-particle method has been developed and

implemented.85 It is too early, at the time of this writing, to speculate on the future of.

this approach for engineering design. Computations have been reported for configurations,

including external flow over simplified and realistic vehicles.

Active research areas for CFD include automated mesh generation, numerical

algorithms for parallel computer architectures, linear equation solvers, more accurate

and stable discretization schemes, automatic numerical error assessment and correction,

improved solution algorithms for coupled nonlinear systems, new and enhanced physical

models, more sophisticated diagnostics, interdisciplinary coupled structures/fluids analysis,

optimization algorithms, and coupling of three-dimensional CFD into systems-level models.

In the ideal math-based design process, CFD is one part of a multidisciplinary CAE

approach, and the full system (versus isolated component) is considered. Grid generation is

fully automated to ensure a high-quality (initial) mesh. The flow solver selects all numerical

parameters, and provides automated solution-adaptive mesh refinement to a specified

level of error or allowable computational resource (time or cost). Solution diagnostics

provide information of direct relevance to the design requirements. And, automated design

optimization through modifications to the geometry and/or operating conditions proceeds

until design requirements are met.

While much work remains to realize this ideal, CFD already is being used with

considerable success in engineering design. Its utility and applicability will increase .as

the outstanding issues are resolved.

V. SOURCES FOR FURTHER INFORMATION

Many references to specific topics have been cited throughout this chapter. For general

information, one of several CFD texts can be consulted.3’28’31’32

At all stages of the CFD process (geometry acquisition, grid generation, flow solution,

and postprocessing), abroad array of commercial, public-domain, and in-house proprietary

codes are being used in engineering design. A small sampling of the software currently

available to the design engineer has been mentioned herein. For more comprehensive and

up-to-date listings, the reader can consult several sources. Computer hardware companies

maintain lists of software that have been ported to their platforms; software vendors

maintain lists of codes with which their own product is compatible. Table 3 has been

extracted born one such list .86Genera187and industry-specific engineering periodicals often

provide reviews of available software. And, a wealth of timely information can be found on

the Internet.88 Given the rapid pace at which CFD technology is evolving, this last source
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Table3. This provides asnapshot in time (late 1996) of thewide variety of commercially

available, public domain, and proprietary CFD software used for engineering design and

analysis.86

)RUA77CODE NAMEts), COMPANYINFO

.uENTAJNS Ifluml k {
,uEN7-V4 10CavmdishCwll
UAPW?-V2d V3 b?hmm.t4H03766
3cr0+4 hflpllw.w.flum!.md

;RID

42P :AWOSOII, Inc.

f~d~HJ%’:

tiEC
[R6L7 comer
lWa,,mI. Ml 4,090

~— ;b6kmia!nsbltie of Tedmob9Y
,lZW ‘d Ctidonua Scu!.wmd

;Pasadma,CA91125
#ll!@kv.2alledU3dd

C.4 :Amalj4icd Methods. k.

‘2123 1S2nd Awawe NE
IRsdmond. WA 98052

kw Ewii.ering. Inc.

~&;&O09

PhmEC 2W827-3304 Fax 206.827-2989

‘*main &n 0 mnemnm
. .

VA~ ~:~M$&$wd-ov

HAD

---
S3D

—.-
15 Laq!aiLi&w-d
tiar@m.VA‘225414031

.hllOJAwlwJarm=wlOvl

ARc &SA Ane$ R&warcSI Center h G09i!q C-a
NASA Amex Research Canter
M.Men F#d. CA 9403S

hUpJh’mv.m.mS-3.Wl I
.SC4W conmmrdal A@lan6 Grow
,pmpuwm Research cm
P.O. BOX3707, MS 67-MH

Sealtle,WA SS124.2207
.em .‘ddw&kkm&Qol—

R6iNcs ,CHAA4 Ud.

@+ctiration, Haal h Mmwwm Limiied
~Snkwy HWSO, 40i+gh Sweet
,Wa-nbhdm ViUagn. London SW19 EAU

1%:98.,.8,.97-76s1

Fax 44-1 -S1-87 %3497

OLYFLOW ;POIWOWS.A

lPla& de Nnivetie, 16

&?zz!,~BELGN”

OLY30 ‘meow lm.
~~m~am,&.Jmwna.stile311

;Mmlrna!. C3W2-SCHIM 3LS, CANADA

f2mn= 514-255-2056 Fax 514.25S-1321

PEC7RUM-CENTRIC iCENTRIC E@w3dma SVSWrrs. Inc.
3393 OdatiuS Dtio. Suite 201
SanIa C12m. CA 9S0S4 .3034

TARCO @m@atimal ~anics Ud. En@and

Wc House
317 Ladnw Road

Londm.W106RA. ENGW40
Phm.z 44.1-61 .%9.%39

,Fax 46-1 -81.96SW06

‘7Ascnow Advanced Sdentdic C.am@iW Ud.

554 Pad@2 orb
waml.w. ontatia N2L SZ4, CANADA

TEPM ~LocAwdAemnatdkXIS@eM2C0.

7NS20mb NASA b@.Y R6smrch Cwlsr

:15 b-qby SwL9vafd

;~fl~~~~,fl~~j

$
TRFWAIR ,NASA Ames Resnati tinter

iM*lt E&d. CA 9403S
httplfw.warcnasa.gwl

uH2n FOFJMOW CO.

USAERO iWfid MEIM5. 1~

VSAEIIO 2132 lS2d Avmve N.E.

~~;&:dF=’0&74”Z”

Y237 kJMod Tedmdogies Research Center
!4,, S*, ~me

@l tbli!wdecloaloa
MIFJIIA-.LIWMIJ

ACE-U cm Raznarch COrparalian

CFLLACE 3325 Ttima Swdwatd
HmLsw!le, AL 35605

@@Abwddfc.cOmJ

AIRFL030
EyEt:r&X’J.E@w@l

NPHA$LOW F@ R6search Insmde, JAPAN

Ftjilw, NEC, MHI, etc.. JAPAN

1- plnPJAwcOmcOmw

DSMC-SANDIAIsa@la National Latafalov

FASN NASAL@.9y Rmafch Cmbsr

15LsngleyEY.J3V3KI
Hamohm. VA 23641-0001

[Fluid-C$lfWfl17.l@61

!X13 Da* Stfee!, Suite 600

,Evanston, IL 20?01
!Phme: 703-4914203 Fax 70s46%49S
1“~~ ~

FIRE ‘KIT Cwporzbon
1355 Mend-ala Hei@_4sRoad

S1. Paul, MN 5S120
Phmw f3124S8~20 Fax 612-97

FL5x ;swdrw Techmkqf. Inc.
P.o. sax l$OYJI*. 2ao
E.$IITAFS. FL32S42

FL07RAN swnwn An21y3ii Systems Inc.

P.O. Sax 65, Joh$m Road
,H.wlm. PA 15342-9055

46



is particularly valuable. In addition to lists and descriptions of the available software, user

evaluations and direct comparisons of alternative codes and methodologies can be found

there.

CF’D is at a relatively early stage of development” compared with other areas of CAE,

such as linear FEM structural analysis. No single code covers all areas of application

equally well. While “general purpose” CFD has been emphasized here, specialized

application-specific numerical methods and software often are needed. Specialized

experience and expertise can be found within university engineering departments, U.S.

national laboratories, and engineering consulting ihns; again, the Internet provides a

good vehicle for exploring these possibilities.
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