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ABSTRACT

The Extreme-scale Simulator (xSim) is a performance in-
vestigation toolkit for high-performance computing (HPC)
hardware/software co-design. It permits running a HPC
application with millions of concurrent execution threads,
while observing its performance in a simulated extreme-
scale system. This paper details a newly developed network
modeling feature for xSim, eliminating the shortcomings of
the existing network modeling capabilities. The approach
takes a different path for implementing network contention
and bandwidth capacity modeling using a less synchronous
and accurate enough model design. With the new network
modeling feature, xSim is able to simulate on-chip and on-
node networks with reasonable accuracy and overheads.
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1 Introduction

The fastest supercomputers in the world are able to per-
form more than 10 PFlop/s (1 PFlop/s = 10'® floating-
point operations per second) using the LINPACK bench-
mark [10]. For example, the “Titan” Cray XK7 system
at Oak Ridge National Laboratory has 560,640 compute
cores with a theoretical peak performance of 27.1 PFlop/s
and a LINPACK performance of 17.1 PFlop/s. Most of
the performance comes from NVIDIA graphics processing
units (GPUs). It is the second fastest supercomputer in the
world and has a computational efficiency for LINPACK of
63 %. In contrast, the “Sequoia” IBM BlueGene/Q sys-
tem at Lawrence Livermore National Laboratory has 1.57
million IBM Power BQC processor cores with a theoreti-
cal peak of 20.1 PFlop/s and a LINPACK performance of
16.3 PFlop/s. It is the third fastest supercomputer and its
computational efficiency is 81 %. Both systems employ
different architectures (GPUs vs. embedded processors).

1.1 HPC Hardware/Software Co-design

The application-architecture performance gap, which is the
difference between the peak capabilities of the hardware
and the performance realized by applications, is in this case
the computational efficiency using the LINPACK bench-
mark. Since different architectures provide different per-
formance capabilities and different applications require dif-

ferent performance features, deploying high-performance
computing (HPC) systems that fit the workload needs of
computing centers requires hardware/software co-design.
It closes the application-architecture performance gap by
designing HPC systems to meet application requirements
and HPC applications to exploit architectural features.

Investigating and understanding the performance
properties of next-generation HPC systems and the perfor-
mance requirements of the targeted HPC applications is an
essential part of HPC hardware/software co-design. Per-
formance profiling of compute-node architectures is typi-
cally performed using highly accurate simulation and pro-
totyping. Full-system profiling is limited to simulation
approaches only as a large-scale deployment of a next-
generation HPC architecture is typically only available
once the system has been delivered to a customer. An
experimental prototype for testing purposes is cost pro-
hibitive, as a single deployment can cost $50M-$200M.

Full-system simulation approaches require a signifi-
cant amount of resources and a trade-off between simula-
tion accuracy and performance. Considering that a system
may be simulated that is 10-to-100 times faster than any-
thing available today, these approaches typically employ
parallel discrete event simulation (PDES) solutions and run
on today’s HPC systems. A combination of highly-accurate
simulation at small scale and less-accurate simulation at
large scale is often utilized to improve the less-accurate
simulation with the results of the highly-accurate simula-
tion in the form of tuned architectural models.

1.2 The Extreme-scale Simulator

The Extreme-scale Simulator (xSim) [12, 7, 5, 4, 3, 9, 6]
is a performance investigation toolkit that permits running
a HPC application with millions of concurrent execution
threads, while observing its performance in a simulated
extreme-scale system. Using a lightweight PDES, xSim
executes a Message Passing Interface (MPI) application on
a smaller system in an oversubscribed fashion with a vir-
tual wall clock time, such that performance data can be ex-
tracted using architectural models. It currently does not
support threaded programming models, task-based execu-
tion models, and accelerators.

The capabilities of xSim have been recently demon-
strated [5] by (a) scaling it to 134,217,728 (227) simulated
MPI ranks (each with its own process context) on a 960-



core Linux cluster (a world record in extreme-scale simu-
lation), (b) evaluating different MPI collective communi-
cation algorithms on a simulated future-generation system
with 2,097,152 (22') MPI ranks using the same cluster, and
(c) investigating a Monte Carlo solver using different archi-
tectural parameters with 16,777,216 (224) simulated MPI
ranks using the same cluster. xSim has a fault injection fea-
ture [7] that allows to simulate MPI process failures. Fail-
ure notifications are propagated (according to the simulated
architecture) to each simulated MPI process, which in turn
reacts to the fault. xSim offers full support for application-
level checkpoint/restart and MPI user-level failure mitiga-
tion, i.e., a fault-tolerant MPI [2].

1.3 Contribution

xSim accounts for the execution time of each simulated
MPI process using a processor model. It also accounts
for the wait time incurred by simulated MPI communica-
tion using a network model. xSim’s network model uses
topology models with static routing and parametrized la-
tency and bandwidth. Supported topologies include star,
ring, mesh, torus, twisted torus, and tree. Hierarchical
combinations, such as to simulate network-on-chip and
network-on-node, as well as, rendezvous protocol and
source/destination process contention simulation are sup-
ported as well. However, the network model does not pro-
vide full contention modeling due to the impact it would
have on the simulators scalability and usability. A highly
accurate simulation that is too slow to deliver results in a
reasonable time frame does not provide much benefit.

This paper revisits this assumption and details a
newly developed network contention and bandwidth capac-
ity modeling feature for xSim. The approach uses a less
synchronous and accurate enough model design. With the
new feature, xSim is able to simulate on-chip and on-node
networks with reasonable accuracy and overheads.

The following provides an overview of xSim’s design
to identify the inherent challenges in implementing a scal-
able network model, describes the existing network model-
ing capabilities and their shortcomings, and illustrates the
new network modeling features that eliminate these short-
comings. The paper continues with a series of experimental
results demonstrating the new network modeling features
and a short discussion of related work. This paper con-
cludes with a brief summary of the presented work.

2 Overall Simulator Design

xSim is designed like a traditional HPC application per-
formance investigation tool, as an interposition library that
sits between the MPI application and the MPI library, us-
ing the MPI performance tool interface (PMPI) to intercept
MPI calls made by the application. It supports simulated
point-to-point and collective MPI communication, as well
as, simulated MPI data types, groups, communicators, and
communication request objects. In total, xSim supports 92
simulated MPI functions for each supported programming

language, C, C++, and Fortran. An application is run in the
simulator using the following steps:

e Add the xSim header file to the application source code:
— Add “#include xsim-c.h” for C applications
— Add “#include xsim-cxx.h” for C++ applications
— Add “#include xsim-f.h” for Fortran applications
e Recompile the application and link it with the xSim sim-
ulator library and the respective xSim programming lan-
guage interface library:
— Link with “-Ixsim -1xsim-c” for C applications
— Link with “-Ixsim -Ixsim-cxx” for C++ applications
— Link with “-Ixsim -Ixsim-f” for Fortran applications
e Run the application with:
— “mpirun -np <physical process cout> <application>
-xsim-np <simulated process count> <simulation
parameters> <application parameters>"

The simulator is implemented in C using two
(pthread) threads per physical MPI process. In the com-
munication thread, the PDES receives and enqueues sim-
ulated MPI messages from the native MPI library into an
incoming message queue. This thread also receives and
processes PDES control messages from the native MPI li-
brary. In the simulation thread, the core mechanism of
the PDES dequeues every received simulated MPI mes-
sage from the incoming message queue and switches into
the context of the destined simulated MPI process for con-
sumption. A simulated MPI process receives its MPI mes-
sages indirectly by dequeueing them from the queue and
yielding to another simulated MPI process if no matching
message is in the queue. A simulated MPI process sends its
MPI messages directly within the simulation thread utiliz-
ing the native MPI library. A user-space process threading
capability within the simulation thread and the decoupling
of receiving/pre-processing and processing/sending offers
optimal performance and oversubscription capability with-
out being synchronized by the native MPI library.

3 Existing Network Modeling Capabilities

xSim utilizes a network architecture model to account for
the wait time incurred by communication between simu-
lated MPI processes. Every simulated point-to-point MPI
communication has an associated cost, which reflects the
time needed to transmit the message by the source and to
receive it by the destination. The network model is applied
upon sending and receiving a simulated MPI message.

3.1 Architectural Model

With every simulated MPI_Isend () call that initiates a
send operation, the message transmission times are estab-
lished. The point in time to send the first byte ¢4 is ini-
tialized with the source’s simulated MPI process time. The
0-byte round-trip latency [, to the destination is added to
ts1 if the message size meets or exceeds the MPI ren-
dezvous protocol threshold. [, is calculated using the stati-
cally routed network distance (hop count) i and the link la-
tency [ in the simulated network architecture: [, = 2% h*[.



Some simulated network architectures, such as mesh and
torus, support different link latencies in different network
dimensions. In this case, each link latency is added sepa-
rately along the network route. The point in time to send
the last byte 5 is initialized with ¢4; and increased by the
message send time using the network bandwidth b and the
message size s: tso = ts1 + (s/b). Some simulated net-
work architectures, such as mesh and torus, support differ-
ent link bandwidths in different network dimensions. In
this case, the lowest bandwidth along the network route is
considered. The point in time to receive the first byte ¢,.1
is initialized with ¢4, and increased by the 0-byte one-way
latency [ to the destination, where [y = [,./2. The point in
time to receive the last byte ¢,o is initialized with ¢4 and
increased by [y as well. This basic model only considers
network structure, latencies, and bandwidths.

To model source-side contention, each simulated MPI
process maintains an additional time #p,cyious_s2 tO save
the point in time the last byte of the previous simulated
MPI message was sent. Each time the network model is
applied upon sending a simulated MPI message, the point
in time to send the first byte t,; is calculated as described
and Compared with tprevious,sQ‘ tsl is set to tp7'evious,s2 if
it is less than ?,¢yious_s2- All values that depend on t,4;
are calculated after modeling source-side contention. This
effectively serializes the transmission times for messages
from the same source.

The message transmission times are calculated as part
of the simulated MPI_Isend () call by the source to initi-
ate the send operation. While ¢, is saved in the associated
MPI request object and ¢, cpious_s2 1S stored in the simu-
lated MPI process object, ¢,1 and t,o are transmitted with
the simulated MPI message. The simulated MPT _Wait ()
call by the source to complete the send operation compares
the current simulated MPI process time with the saved ¢4
and adds a wait time to the simulated MPI process time
if 55 exceeds it. This properly models the source side of
non-blocking point-to-point MPI communication.

To additionally model destination-side contention,
each simulated MPI process maintains an additional time
Lpreviousr2 t0 save the point in time the last byte of the
previous simulated MPI message was received. Each time
a message is received, the point in time to receive the first
byte ¢, that is contained in the message is compared with
tpreviousr2. tr1 S€L 1O tpreviousr2 and t,o is advanced ac-
cordingly by tprevious.r2—tr1 if tr1 isless than €, epiousro-
This effectively serializes the transmission times for mes-
sages to the same destination.

The simulated MPI_Irecv () call by the destination
to initiate the receive operation saves the current simulated
MPI process time as t,,s; in the associated MPI request
object. The MPI Wait () call by the destination to com-
plete the receive operation applies the destination-side con-
tention model as described and compares the previously
saved simulated MPI process time ¢,,s; With ¢,.1. ¢,.1 set to
tpost and ..o is advanced accordingly by o5 — ty1 if £q
is less than ¢,,;. The simulated MPI_Wait () call also
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compares the current simulated MPI process time with ¢,.o
and adds a wait time to the simulated MPI process time if
tro exceeds it. This properly models the destination side of
non-blocking point-to-point MPI communication.

3.2 Hierarchies and Collectives

Hierarchical combinations, such as a HPC system with an
on-chip, an on-node and a system network, are simulated
by identifying the lowest-level network that source and des-
tination reside in and using its model. For example, two
simulated MPI processes located on the same processor
would only use the on-chip network model, while two sim-
ulated MPI processes located on different compute nodes
would only use the system network model. This simplifica-
tion is appropriate as lower-level networks in HPC systems
typically have significantly lower link latency and signifi-
cantly higher link bandwidth.

Collective MPI operations, such as a broadcast or a re-
duction, are constructed from non-blocking point-to-point
MPI communication operations. xSim supports linear im-
plementations, as well as, log, variants.

3.3 Shortcomings

The described existing network modeling capabilities in
xSim have been shown to be accurate enough for a num-
ber of applications [5, 9]. Figure 1, shows the payload-
dependent native and simulated shared memory and Gi-
gabit Ethernet MPI message latency in a multi-core Linux
cluster, for example. xSim is able to closely simulate the
performance of the native MPI library. However, the net-
work model does not provide full contention modeling, i.e.,



the simulation does not account for the fact that a single
network interface card is shared between multiple cores
and that on-node core-to-core communication is limited by
memory bandwidth. Figure 2 demonstrates this deficiency
by executing the IS program of the NAS Parallel Bench-
mark (NPB) suite [11] with a class C problem size on a
16-node Linux cluster with 8 cores per node. The bench-
marks stops scaling at 8 cores on the native system, but
continues to scale in the simulation. The root cause of this
simulation error is the lack of network contention model-
ing, as the NPB IS program is an integer sort with heavy
communication.

4 New Network Modeling Features

To alleviate the identified shortcomings, the existing net-
work modeling capabilities have been extended to include
modeling contention in network hierarchies and model-
ing network bandwidth capacity. The main challenge for
implementing these features is the potential for global
synchronization. Recent work [8] in improving xSim’s
deadlock resolution protocol and simulated MPI message
matching algorithm revealed that the execution time over-
head introduced by xSim’s PDES can surge from 238 % to
13,808 % with the global synchronization caused by the op-
tional accurate MPI process failure simulation. This is due
to the fact that sending a simulated MPI message becomes a
highly synchronizing event with accurate MPI process fail-
ure simulation, significantly slowing down the otherwise
asynchronous operation of the PDES. The targeted network
modeling features utilize coordination and flow of informa-
tion without significant synchronization to track the usage
of the simulated network and to infer contention without
introducing significant PDES execution time overheads.

4.1 Network Contention Modeling

The first newly implemented feature deals with network
contention caused by sharing a single common access point
to a higher-level network by a lower-level network. A typ-
ical example is the single network interface card that is
shared between multiple processor cores on the same com-
pute node. While the processor cores form an on-node net-
work, its access to the higher-level system network uses a
single network card. The existing network modeling ca-
pability in xSim simply simulates full bandwidth access to
the system network for each processor core, ignoring the
bandwidth bottleneck the network card introduces.

To add network contention modeling between differ-
ent networks, a highly accurate approach would serialize
and order all simulated communication going in and out of
each network by their time stamps, such that the network
contention model can be applied correctly to each message.
This approach, however, essentially serializes all simulated
communication, causing a global synchronization effect.
An alternative approach is to model network contention
less accurately by applying the network contention model
to each message without serializing and ordering it. Due to
the asynchronous operation of the PDES, physical message

transmission times and order do not match simulated mes-
sage transmission times and order. This introduces a simu-
lation accuracy error as the network contention model may
be applied to messages in the incorrect order, i.e., one mes-
sage arrives too early and another message too late by the
same time difference. Given the goal of xSim to provide a
scalable simulation environment, the less accurate network
contention modeling approach is more appropriate.

The existing network modeling capabilities have been
extended by a mechanism for tracking the incoming and
outgoing message traffic for each simulated network. This
tracking mechanism are lists of incoming and outgoing
message transmission times for each simulated network.
For each message, the point in time to transmit the first
byte t;1 and the point in time to transmit the last byte t4o
are stored in an incoming or outgoing traffic list. Every
time the transmission times of a new message are added,
the list is traversed to identify conflicts and the transmis-
sion times of the new message are moved accordingly to
resolve conflicts. If there is no conflict or once a conflict
has been resolved, there is no contention and the message
transmission times are simply added to the list. A message
may be fragmented due to already existing message trans-
mission times in the list. In this case, the point in time to
transmit the last byte ¢;o is extended accordingly and the
point in time to transmit the first byte ¢;; is recalculated to
maintain the bandwidth relationship between ;1 and ¢;o.
This is necessary as t;; and ¢4 are used by other parts of
the network model that are not aware of fragmentation.

As part of the simulated MPI _Isend () call, the net-
work contention model is applied once the point in time
to send the first byte t5; and the point in time to send the
last byte 5o have been calculated. ¢;; and t;5 are initial-
ized with tg1 and ts9. The network contention model is
applied for each simulated network by adding the mes-
sage transmission times to the outgoing message traffic list
of a lower-level network when the message is routed to a
higher-level network and to the incoming message traffic
list of a lower-level network when the message is routed
to the lower-level network. Once the network contention
model is applied, the point in time to receive the first byte
t,r1 is initialized with ¢4 and increased by the 0-byte one-
way latency ly. The point in time to receive the last byte
t,o is initialized with ¢4 and increased by [ as well.

The incoming and outgoing traffic lists are maintained
by the lowest member of each simulated network, e.g, by
the first core within each simulated compute node. In con-
trast to a fully centralized solution, this distributed ap-
proach enables performance gains when simulating with
oversubscription. Multiple simulated MPI processes lo-
cated on the same physical MPI processes are able to ac-
cess some of the traffic lists directly, without the need to
send/receive a native MPI message to/from a central net-
work contention model manager. The lists are regularly
cleared of old transmission times to keep memory usage
low using the global virtual time of the PDES to identify
the timeline all simulated MPI processes have passed. The



network contention model can be configured for each sim-
ulated network separately, i.e., it can be enabled/disabled.

4.2 Network Bandwidth Capacity Modeling

The second newly implemented feature deals with network
bandwidth capacity restrictions that exist for networks with
a total routable bandwidth that is less than the total possi-
ble bandwidth created through message injection. A typi-
cal example is the shared memory communication between
cores on the same processor, where the main memory band-
width limits all-to-all communication between cores. The
existing network modeling capability in xSim simply sim-
ulates full all-to-all bandwidth within the on-chip network,
ignoring the main memory bottleneck.

The existing network modeling capabilities have been
extended by a mechanism for tracking the message traffic
within each simulated network, independent from source
and destination. This tracking mechanism consists of one
additional message transmission times list for each sim-
ulated network. For each message, the point in time to
transmit the first byte £,; and the point in time to trans-
mit the last byte ¢, are stored in this transfer traffic list.
Before storing, 2 is scaled by the difference between the
network’s point-to-point bandwidth b and total bandwidth
capacity ¢: tyo = tz1 + (tz2 — t21)(b/c). Every time the
transmission times of a new message are added, the list is
traversed to identify conflicts and the transmission times
of the new message are moved accordingly to resolve con-
flicts. If there is no conflict or once a conflict has been
resolved, there is no transfer contention and the message
transmission times are simply added to the list. A message
may be fragmented due to already existing message trans-
mission times in the list. In this case, the point in time to
transmit the last byte ¢, is extended accordingly and the
point in time to transmit the first byte ¢, is recalculated to
maintain the bandwidth relationship between ¢, and t,o.
Once added to the list, the scaling of ¢;; and .2 by the dif-
ference between the network’s point-to-point bandwidth b
and total bandwidth capacity c is reversed.

The simulated MPI_TIsend () call applies this band-
width capacity model for the lowest-level network that
source and destination reside in, right after applying the
network contention model for the outgoing traffic of the
lower-level networks and before applying the network con-
tention model for the incoming traffic of the lower-level
networks. t,1 and t,o are initialized with ;1 and ¢;5 from
the network contention model if there is a lower-level net-
work, or with tg1 and t4o if not. t;; and ¢;o of the lower-
level network, or t41 and t4o if there is none, are initialized
with .1 and t,o afterwards. The transfer traffic lists are
maintained by the lowest member of each simulated net-
work, e.g, by the first core within each simulated compute
node to maintain a distributed design approach. The trans-
fer lists are regularly cleared. The network bandwidth ca-
pacity model can be configured for each simulated network
separately as well, i.e., it can be enabled/disabled and the
bandwidth capacity can be set.
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5 Experimental Evaluation

The accuracy and overhead of the newly developed net-
work modeling features for xSim have been evaluated
against the existing network modeling capabilities and the
physical system being simulated.

5.1 Evaluation Setup

The experiments were performed on a 128-core Linux clus-
ter computer with 16 compute nodes, two 2.4 GHz AMD
Opteron 2378 processors per node, 4 cores per processor,
8 GB RAM per node, and a non-blocking 1 Gbps Ethernet
interconnect. The system is running Ubuntu 12.04 LTS,
Open MPI 1.6.4, and GCC 4.6.

The experiments used a subset of the NAS Parallel
Benchmark (NPB) suite [11], which was developed by the
NASA Advanced Supercomputing (NAS) Division to aid
in evaluating the performance of HPC systems. The bench-
mark programs were derived from computational fluid dy-
namics, unstructured adaptive mesh, parallel I/O, multi-
zone, and computational grid applications. The input prob-
lem sizes are predefined and organized in classes, e.g., A,
B, C, and D. The experiments in this paper utilize on the
following benchmarks and classes:

e CG, a conjugate gradient solver (class B),
e IS, an integer sort (class C), and
e LU, a Lower-Upper Gauss-Seidel solver (class A).

These benchmarks and their classes were specifically
selected as they represent particular features of interest.
Figure 3 shows their execution times on the Linux clus-
ter. NPB CG and IS scale up to the 8 processor cores lo-
cated within the same compute node. The execution time
of NPB CG beyond 8 processor cores stays roughly flat,
while the execution time of NPB IS goes initially slightly
up and then comes slightly down again at 128 cores. The
execution time of NPB LU scales to 16 processor cores and
then stays flat. The three benchmarks experience network
contention issues.

5.2 Simulator Configuration

For the experiments using xSim, the simulated network
has been configured to replicate the structure and capa-
bilities of the physical evaluation platform. At the lowest



level, a network of 4 compute cores was configured with a
shared memory core-to-core MPI message latency of 1 us
and bandwidth of 12,487.8 Mb/s, and a MPI rendezvous
threshold of 4 kB. At the next level up, a network of 2
compute processors was configured with a shared memory
processor-to-processor MPI message latency of 1 us and
bandwidth of 12,487.8 Mb/s, and a MPI rendezvous thresh-
old of 4 kB. At the top level, a network of 16 compute nodes
was configured with a Gigabit network node-to-node MPI
message latency of 48 us and bandwidth of 944.146 Mb/s,
and a MPI rendezvous threshold of 8 kB. The network con-
figuration values have been experimentally obtained and
are a close match in the simulation (see Figure 1).

For the experiments that employ the network con-
tention modeling feature, the network of 4 compute cores
was configured with contention for accessing the network
of 2 compute processors. The network of 2 compute pro-
cessors was configured with contention for accessing the
system network. For the experiments that employ the net-
work bandwidth capacity modeling feature, the network of
4 compute cores was configured with a bandwidth capacity
of 12,487.8 Mb/s as the shared memory is a bottleneck.

A native MPI process is placed on each physical core
in the experiments, while each simulated MPI process is
executed within one native MPI process. This one-to-one
matching of the native and the simulated environment as-
sures a fair evaluation.

5.3 Evaluation Results

Scaling experiments were performed from 1-128 proces-
sor cores for the NPB CG, IS and LU benchmarks running
(a) on the native system without xSim, (b) within xSim us-
ing the original network model, (c¢) within xSim using the
added network contention model, and (d) within xSim us-
ing the network contention and bandwidth capacity models.

Figure 4(a) shows the execution time of the NPB CG
(class C) benchmark. The simulation error introduced by
xSim using the original network model is clearly visible.
Over the entire series, including 1-8 cores where it matches
up, the average simulation error is 36.9 % and the maxi-
mum error is 87 %. With network contention modeling,
the error is visibly reduced. The average simulation error
is 10.6 % and the maximum error is 26.2 %. Adding the
network bandwidth capacity model reduces the average er-
ror to 9.4 % and the maximum error is 24.3 %.

Similar results are shown in Figure 4(b) for the NPB
IS (class C) benchmark. The simulation error introduced
by xSim and its reduction using the added network con-
tention and bandwidth capacity models are clearly visible.
The average simulation error by xSim using the original
network model of 46 % and the maximum error of 87.5 %
are reduced to an average error of 14 % and a maximum
error of 27.3 %. The average simulation error is reduced to
12.2 % and the maximum error is reduced to 17.5 % using
the additional bandwidth capacity model.

For NPB LU (class A), as shown in Figure 4(c), the
simulation error introduced by xSim using the original net-

work model is 30.6 % on average with a maximum of 65 %.
They are reduced to 16.4 % and 44 %, respectively, with the
network contention model. The additional bandwidth ca-
pacity model does not yield a reduction of the average error,
but of the maximum error. The average error increases to
18 %, while the maximum error decreases to 42.5 %. Even
with the new network modeling capabilities, NPB LU does
not fully flatten out at larger core counts. This is likely due
to the less accurate (but more scalable) simulation of the
new network modeling capabilities.

Figure 5(a) illustrates the overhead introduced by
xSim in comparison to the native NPB CG execution. The
simulation overhead average and maximum over the entire
series increases only slightly from 228 % and 506 % to
230 % and 517 % with the network contention model as
more messages are being processed by the PDES. The sim-
ulation overhead actually decreases dramatically to 136%
and 318% with the added bandwidth capacity model. This
is likely due to internal optimizations of the PDES when
there is more up-to-date information communicated.

In Figure 5(b), the overhead introduced by xSim for
NPB IS when going from the original network model to the
network contention model is increased from an average of
56.4 % to 63.3 %, while the maximum is decreased from
283 % to 187 %. It is increased to 97.5 % and 300 % when
employing the additional bandwidth capacity model.

For NPB LU (Figure 5(c)) the overhead is initially
drastically increased from 22.9 % (average) and 50.8 %
(maximum) to 1,825 % and 5,390%, and then further dras-
tically increased to 4,451 % and 14,247%, respectively.
This huge performance impact is likely due to the fact that
the additional messages of the new network modeling fea-
tures disturb the highly bulk-synchronous operation of the
Lower-Upper Gauss-Seidel solver.

6 Related Work

The BigSim [1] project studied programming issues in
large-scale HPC systems. The BigSim Emulator was de-
veloped for application testing and debugging at scale and
runs atop Charm++/AMPI. It supports up to 100,000 sim-
ulated MPI processes distributed over 2,000 cores. It does
not offer time-accurate simulation. The BigSim Simula-
tor was developed for identification of performance bottle-
necks and uses a trace-driven PDES that models architec-
tural parameters of a HPC system. For time-accurate sim-
ulation, it supports a variable-resolution processor model
and a detailed network model.

The Structural Simulation Toolkit (SST) [13] of-
fers simulation of novel architectures, including processor,
memory, and network. It is a modular PDES framework
atop MPI that scales to a few hundred simulated multi-core
nodes. Its value is in the ability to investigate the perfor-
mance of future node architectures and to generate models
for larger-scale simulations. SST/macro is a complemen-
tary simulation toolkit that processes output from the MPI
tracing library DUMPI for performance evaluation. Similar
to the BigSim Emulator/Simulator combination, SST and
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inal network model (Old xSim), added network contention
model (xSim w. Cont.), and added network bandwidth ca-
pacity model (xSim w. Cont. & Cap.)
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simulator performance (in wall-clock time) with origi-
nal network model (Old xSim), added network contention
model (xSim w. Cont.), and added network bandwidth ca-
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SST/macro enable the synergy between small-scale cycle-
accurate and large-scale communication-accurate simula-
tions. While SST is mature, it is quite complex to use.
SST/macro is still under development.

There are a also variety of network simulators, such
as ns3 (http://www.nsnam.org) and NetSim (http://tetcos.
com/software.html), that are able to provide network per-
formance metrics at various abstraction levels, such as net-
work, sub-network, and packet traces. These detailed sim-
ulators offer high-accuracy/low-scalability results that are
not compatible with the high-scalability approach needed
for extreme-scale system simulation.

7 Conclusions

This paper detailed a newly developed network modeling
feature for xSim, eliminating the shortcomings of the exist-
ing network modeling capabilities in simulation accuracy.
The approach takes a different path for implementing net-
work contention and bandwidth capacity modeling using a
less synchronous and accurate enough model design.

The evaluation results of the implemented network
contention and bandwidth capacity model show that the
maximum simulation error introduced by xSim using the
original network model could be reduced from 87 % to
24.3 % for NPB CG, from 87.5 % to 17.5 % for NPB IS,
and from 65 % to 42.5 % for NPB LU. The additional sim-
ulation overheads for NPB CG and IS are minimal, while
the simulation overhead increases for NPB LU are substan-
tial, but manageable (in comparison to accurate MPI pro-
cess failure simulation). With the new network modeling
feature, xSim is able to simulate on-chip and on-node net-
works with reasonable accuracy and overheads.

8 Acknowledgements

This work was sponsored by the Laboratory Directed Re-
search and Development Program of Oak Ridge National
Laboratory (ORNL) and the U.S. Department of Energy’s
Office of Advanced Scientific Computing Research.

This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-000R22725 with the
U.S. Department of Energy. The United States Govern-
ment retains and the publisher, by accepting the article for
publication, acknowledges that the United States Govern-
ment retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will pro-
vide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

References

[1] A.Bhatele, N. Jain, W. Gropp, and L. Kale. Avoiding
hot-spots on two-level direct networks. In Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1-11,
2011.

[2] W. Bland, A. Bouteiller, T. Herault, J. Hursey,
G. Bosilca, and J. J. Dongarra. An evaluation of user-
level failure mitigation support in MPI. In 19th Euro-
pean conference on Recent Advances in the Message
Passing Interface (EuroMPI), pages 193-203, 2012.

[3] S. Bohm and C. Engelmann. xSim: The extreme-
scale simulator. In International Conference on High
Performance Computing and Simulation (HPCS),
pages 280-286, 2011.

[4] C. Engelmann. Investigating operating system noise
in extreme-scale high-performance computing sys-
tems using simulation. In JASTED International Con-
ference on Parallel and Distributed Computing and
Networks (PDCN), 2013.

[5] C.Engelmann. Scaling to a million cores and beyond:
Using light-weight simulation to understand the chal-
lenges ahead on the road to exascale. Future Genera-
tion Computer Systems (FGCS), 30(0):59-65, 2014.

[6] C. Engelmann and F. Lauer. Facilitating co-design
for extreme-scale systems through lightweight simu-
lation. In Workshop on Application/Architecture Co-
design for Extreme-scale Computing (AACEC), pages
1-8, 2010.

[7] C. Engelmann and T. Naughton. Toward a per-
formance/resilience tool for hardware/software co-
design of high-performance computing systems. In
International Conference on Parallel Processing
(ICPP): International Workshop on Parallel Software
Tools and Tool Infrastructures (PSTI), pages 962—
971, 2013.

[8] C. Engelmann and T. Naughton. Improving the
performance of the extreme-scale simulator. In
IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications (DS-RT),
pages 198-207, 2014.

[9] I. S. Jones and C. Engelmann. Simulation of large-
scale HPC architectures. In International Conference
on Parallel Processing (ICPP): International Work-
shop on Parallel Software Tools and Tool Infrastruc-
tures (PSTI), pages 447-456, 2011.

[10] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon.
Top 500 List of Supercomputer Sites, 2014. http://
www.top500.org.

[11] National Aeronautics and Space Administration.
NAS Parallel Benchmarks, 2014. http://www.nas.
nasa.gov/Resources/Software/npb.html.

[12] T. Naughton, C. Engelmann, G. Vallée, and S. Bohm.
Supporting the development of resilient message
passing applications using simulation. In Euromi-
cro International Conference on Parallel, Distributed,
and network-based Processing (PDP), pages 271—
278, 2014.

[13] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett,
C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, and B. Jacob. The
structural simulation toolkit. SIGMETRICS Perform.
Eval. Rev., 38(4):37-42, 2011.


http://www.nsnam.org
http://tetcos.com/software.html
http://tetcos.com/software.html
http://energy.gov/downloads/doe-public-access-plan
http://www.iasted.org/conferences/home-795.html
http://www.iasted.org/conferences/home-795.html
http://www.iasted.org/conferences/home-795.html
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://icpp2013.ens-lyon.fr
http://icpp2013.ens-lyon.fr
http://www.psti-workshop.org
http://www.psti-workshop.org
http://ds-rt.com/2014
http://ds-rt.com/2014
http://www.top500.org
http://www.top500.org
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.pdp2014.org
http://www.pdp2014.org
http://www.pdp2014.org

	Introduction
	HPC Hardware/Software Co-design
	The Extreme-scale Simulator
	Contribution

	Overall Simulator Design
	Existing Network Modeling Capabilities
	Architectural Model
	Hierarchies and Collectives
	Shortcomings

	New Network Modeling Features
	Network Contention Modeling
	Network Bandwidth Capacity Modeling

	Experimental Evaluation
	Evaluation Setup
	Simulator Configuration
	Evaluation Results

	Related Work
	Conclusions
	Acknowledgements

