Graph Processing Platforms at Scale: Practices and Experiences

Seung-Hwan Lim, Sangkeun Lee, Gautam Ganesh, Tyler C. Brown, and Sreenivas R. Sukumar

Computational Sciences and Engineering Division, Oak Ridge National Laboratory
Email: limsl @ornl.gov, lees4 @ornl.gov, browntc@ornl.gov, ganeshg @ornl.gov, and sukumarsr@ornl.gov

Abstract—Graph analysis has revealed patterns and rela-
tionships hidden in data from a variety of domains such as
transportation networks, social networks, clinical pathways,
and collaboration networks. As these networks grow in size,
variety and complexity, it is a challenge to find the right
combination of tools and implementation of algorithms to
discover new insights from the data. Addressing this challenge,
our study presents an extensive empirical evaluation of three
representative graph processing platforms: Pegasus, GraphX,
and Urika. Each system represents a combination of options
in data model, processing paradigm, and infrastructure. We
benchmark each platform using three popular graph mining
operations, degree distribution, connected components, and
PageRank over real-world graphs. Our experiments show that
each graph processing platform owns a particular strength for
different types of graph operations. While Urika performs the
best in non-iterative graph operations like degree distribution,
GraphX outperforms iterative operations like connected com-
ponents and PageRank. We conclude this paper by discussing
options to optimize the performance of a graph-theoretic
operation on each platform for large-scale real world graphs.

I. INTRODUCTION

Graph analysis unveils insightful patterns hidden in data
sets. This ability has brought graph mining to the forefront
in knowledge discovery applications. The growing demand
for graph analysis desires general-purpose graph processing
platforms that can perform arbitrary graph operations over
large data sets in a generic fashion, instead of customized
platforms and services for each specific graph-operation.
Responding to such a requirement, a few categories of
general-purpose graph processing platforms have emerged.
Some examples of such platforms are graph transactional
systems [1] and graph processing systems [2]-[4], along
with graph processing appliances that package graph pro-
cessing software with infrastructure [5].

The primary benefit of general-purpose graph processing
platforms is that it enables algorithm development over
system administration tasks such as providing fault toler-
ance, optimizing data loading processes, and minimizing
communication overheads. In order to support such features,
a graph processing platform typically involves a stack of
options (See Figure 1). The top layer is the data model layer
to efficiently represent the graph for the desired analysis.
The processing paradigm layer controls the efficiency of
implementation of graph-operations. The bottom infrastruc-

Data Model
Resource Description
] [Froperty Graph] [Framework (ngF)]

Processing Paradigm

[Matrix

[MapReduce

Bulk Synchronous

Parallel (BSP) Database Transactions]

Infrastructure

[Cloud (Public or Private)] [Supercomputer]

Figure 1: Graph processing systems involve multiple layers of stack
in processing graph operations.

ture layer controls the productivity of implemented graph-
operations.

Since choices in each layer of the stack is independent
of each other, a wide variety of options are available for
data scientists to perform graph analysis. For instance,
Resource Description Framework (RDF) can be processed
by MapReduce-based engines [6] or databases [7]. As an
example of processing paradigm, SPARQL query can be
processed in query engines in either Cloud environments [8]
or high-performance computing environments [5]. Due to
such a wide variety in the possible combination of choices,
evaluating general-purpose graph processing platforms re-
quires deeper understanding of all the layers in the stack.

Therefore, this study presents an extensive empirical eval-
uation on representative platforms to perform graph analysis
for large scale real-world problems. This study evaluates
Pegasus, GraphX, and Urika for graph analysis. Pegasus [9]
deals with graph-data represented as adjacency matrices,
processes using the MapReduce paradigm, and runs in
the Cloud environments. GraphX [4] prefers a property
graph format, supports Bulk Synchronous Parallel (BSP)
paradigm, and runs in the Cloud environments. Urika [5]
is a graph processing appliance based upon Cray’s XMT
architecture, in which a graph is represented using RDF
and graph analysis is conducted via transactional queries.
For infrastructure, we experiment with (1) an instance of
Urika at Oak Ridge National Laboratory, which has 2TB
of shared memory in the system, connected with Cray’s
proprietary interconnect network, and (2) a 65 node cluster
in a public Cloud environment. We believe the experimental
setting in this study is a representative medium-to-large sized
environment for analysis purposes.

This study benchmarks each graph processing platform for

three popular graph mining algorithms: degree distribution,
connected components, and PageRank. With Pegasus and
GraphX, we leverage the source code provided by the
authors. For Urika, we use our own implementation of
graph algortihms expressed using SPARQL queries. Our
approach is a first attempt at implementing iterative graph
mining operations in SPARQL. Detailed description of our
implementation is available in [10]. This study employs real
data sets from [11] such as DBLP, Patents, and Friendster.
DBLP has 0.3 million nodes and 1 million edges, Patents has
3.8 million nodes and 16.5 million edges, and Friendster has
65.6 million nodes and 1.81 billion edges.

Our benchmark results indicate that Urika is about 2 times
faster than GraphX, and 7 times faster than Pegasus, for
calculating degree distribution of Friendster. For connected
components over Friendster, GraphX shows 90 times faster
execution than Urika and 654 times faster than Pegasus.
As for PageRank over Friendster, GraphX demonstrates 8
times faster execution than both Urika and Pegasus. How-
ever, achieving desired performance with GraphX requires a
substantial effort such as controlling the level of parallelism
by the number of concurrent tasks (# of task executors) and
the number of total tasks (# of partitions), along with tuning
communication overheads.

The remainder of this paper flows as follows: §II describes
popular data model to represent graphs. §III provides a
brief description of three popular processing paradigms for
graph processing. §IV presents our empirical study results,
followed by discussion in §V. §VI presents the state of the
art in graph processing at large scale. §VII concludes the

paper.
II. REPRESENTING GRAPHS

Given a graph G = (V, &), where V represents vertices
and &£ represents edges, three different models are used
in practice to represent graph structures; matrix, property
graph, and RDF. While the matrix vector model considered
in Pegasus and HAMA [12] mainly represents the topology
of given graph, property graph and RDF have capabilities
to describe properties/attributes of entities (nodes/edges) in
the graph. Although property graph and RDF share the
same goal to represent graphs with properties, they differ in
format and represenation. The rest of this section provides
formal descriptions of matrix, property graph and RDF
representations.

A. Matrix

A graph G = (V,), where V is a set of nodes and € is a
set of edges, can be characterized by a |V| x [V| adjacency
matrix M, where it is defined by:

Definition 1.
. 1 if Je(vi,v;) €€
M(Z,]) — { (])

0 ,otherwise.

Note that e(v;, v;) represents an edge connecting v; and v;
in the definition. Matrix representation efficiently describes
the topology of graphs, but provides limited capability to
include properties/attributes for nodes and edges.

B. Property graph

A property graph is a directed multigraph, wherein
two vertices may share multiple parallel edges. Property
graph model is commonly used in graph databases such
as Neo4J [13], Titan [14], DEX [15], as well as graph
processing systems like GraphX [4]. Formal definition of
property graph is given by,

Definition 2. A property graph is a directed multigraph G =
(V,E,Ty,Te), where V is a finite set of nodes, E CV x V
is a finite multi-set of edges, Ty is a finite set of node types,
and T¢ is a finite set of edge types. Each node is mapped to
a node type by a node type mapping function ¢y : V — Ty,
and each edge is mapped to an edge type by an edge type
mapping function ¢g : E — Te. Each node v; € V or edge
er(vi,vj) € € has a set of <attribute, value> pairs that
describe the properties of the node.

C. Resource Description Framework (RDF)

The RDF and the SPARQL query languages are two
standards recommended by the W3C for representing and
querying linked data on the Web. RDF is widely adopted by
Semantic Web communities. An RDF collection consists of
a set of triples in the form of ‘subject, predicate, object’,
where subject denotes a globally unique resource, object
denotes either a unique resource or a literal (i.e., a string or
a number), and predicate denotes a relationship between the
subject and object. Also, RDF data can represent a directed,
labeled multi-graph, formally,

Definition 3. An RDF data graph G = (V,E,L,7) is a
directed, labeled multi-graph, where V is the set of nodes,
E is the set of directed edges between the nodes in V. L is
the set of edges and associated node labels. is a labeling
Sunction with 7 : VUE — L such that Yv;, vj € V, v; # vj.
It holds that 7(v;) # m(v;).

III. PROCESSING PARADIGMS FOR GRAPH PROCESSING

This section describes three popular processing paradigms
for general purpose graph processing: MapReduce, Bulk
Synchronous Parallel, and database transactions. Figure 2
summarizes the differences between processing models of
aforementioned processing platforms. Since many graph
algorithms are iterative, Figure 2 illustrates the logical flow
while processing iterations in each paradigm. Following
subsections provide more detailed description for each pro-
cessing paradigm, with the tools chosen for this study.

Data 3 ore
Hadoop I—[Loading]‘—[Execution]'—[Malenallze]—l
Data o <oTe
Spark [Loading]——[Execution]-—[Materialize]—I
[

. Data . Materialize
Urika [Loading]_[Ex“:m_[(Nntrcqnircd)]

Figure 2: Processing models of each iteration in graph algorithms
in Hadoop (Pegasus/MapReduce), Spark (GraphX/Pregel runtime),
and Urika (SPARQL). In Hadoop MapReduce, each iteration re-
peatedly loads data from disk and materializes the results into disk.
Spark, while initial graph is loaded from storage, each iteration is
materialized on distributed in-memory data structure for the next
iteration (Superstep in BSP). Urika supports online transactions.
Computation results are available in the system memory after the
execution of each iteration.

A. MapReduce-based Processing

The MapReduce programming paradigm, introduced by
Google [16] is a data-parallel framework. It allows develop-
ers to implement highly scalable and fault-tolerant parallel
applications to process large scale data in a distributed
shared-nothing environment. Apache Hadoop is an open-
source implementation of MapReduce. A MapReduce pro-
gram involves three phases: map, shuffle, and reduce. In
the map phase, each machine reads segments of input key-
value pairs from the distributed file system and generates
a new set of output key-value pairs (e.g. aggregates from
each segment). The shuffle phase receives all the key-value
pairs from map phase and sorts different output key-value
pairs. In reduce phase, each machine groups the key-value
pairs with the same key and stores grouped key-value pairs
as a new set of key-value pairs into the secondary storage
system.

Pegasus [9] is a notable graph analysis tool, adopting the
MapReduce paradigm. Since graph-mining tasks are typi-
cally dictated by the adjacency relationships, they involve a
large number of matrix manipulations. Pegasus implements
distributed versions of matrix multiplication called gener-
alized iterative matrix vector multiplication (GIM-V). The
formulation and design of matrix multiplication operations
exploit the block-structured nature of matrices to perform its
computations and hence can provide scalability. In experi-
ments, it was shown that GIM-V enabled computations on
Hadoop with high linear scalability, in addition to handling
over 2 billion edges in the graph.

B. Bulk Synchronous Parallel (BSP) Processing

In Pregel [2], Google proposed to use BSP paradigm [17]
for graph analysis in order to overcome the limitations of
MapReduce paradigm for graph processing: a large memory
requirement due to poor locality of memory accesses; too
many small jobs due to small computation per vertex;
and varying and unpredictable level of parallelism during
iterations.

BSP consists of the following steps: (1) dividing the
algorithm into a series of super-steps; (2) computing a local
update function on the vertex (in parallel across the graph);
(3) reading messages from a previous super-step; (4) sending
messages to a super-step; and (5) modify the states of
other outgoing edges. Pregel implements fault-tolerance by
allowing (at every super-step) messages to be checkpointed
at a master node that aggregates the local results. When
a failure occurs on any of the worker nodes, all the worker
nodes proceed from the previous super-step. While Google’s
Pregel is proprietary, Apache Giraph [18] is an open-source
implementation.

GraphX [4] is a graph processing platform that runs on
Spark [19], which supports the Pregel-runtime. Spark is a
open-source in-memory cluster computing system, which
overcomes many deficits of Hadoop MapReduce for iterative
algorithms. For instance, Spark maintains the dataset in a
distributed in-memory data structure, which can be effi-
ciently reused by iterative algorithms. In contrast, Hadoop
only allows storing the data back into secondary storage
in every iteration, which incurs inefficiency for iterative
algorithms. Spark, because of its in-memory processing
capabilities, enables low latency interactive data analysis.
Exploiting those features of Spark, GraphX conveniently
associates graph processing systems with Extract, Trans-
form, and Load (ETL) process of a graph from secondary
storage, though it is known to provide less efficient graph
processing than special-purpose graph processing systems
like GraphLab [20], and Giraph [18].

C. Database Transaction Processing

As part of the NoSQL movement [21], graph databases
have emerged to overcome the limitations of using relational
databases to process graph data structures. Graph databases
are designed for optimally storing, retrieving and querying
graph data, analogous to how tuples are represented in a
relational database. Typically, graph databases can more ef-
ficiently handle graph queries (e.g., subgraph pattern match-
ing) compared to relational databases. The major strength
of transaction-oriented graph processing paradigm is that it
allows processing online transactional queries over graphs
using graph query languages. There are two options when
it comes to choosing a graph database: (1) RDF triplestores
like Jena SDB [22], Sesame [23], Virtuoso [24]. They are
graph databases that store RDF triples, which can be queried
using SPARQL; and (2) graph databases like Neo4J [13],
Titan [14], DEX [15] that are well suited for property graphs.
Graph databases also support query languages. (e.g., Cypher,
Gremlin, etc.).

Database transaction systems prefer a uniform latency
over a large chunk of shared memory over distributed
memory slots [25]. Therefore, a reasonable choice of in-
frastructure is a large-scale shared memory system such as
Urika. Urika from YarcData, a sister-company of Cray, is

Table I: Data sets in this study

Name Edges Vertices Comments

DBLP 1 mil. 0.3 mil. Computer science collaboration
network

Patents 16.5 mil. 3.8 mil. Citation network among US patents

Friendster ~ 1.81 bil. 65.6 mil. Friendster online social network

built around a parallel supercomputer architecture, the Cray
XMT. Urika is a graph processing appliance that provides
both hardware-based solutions for resolving poor locality
in memory access, with the emphasis on communication
overhead, and an optimized software engine to process
SPARQL queries over RDF triples.

IV. EMPIRICAL EVALUATION OF PLATFORMS

This section presents the empirical results on benchmark-
ing three graph processing platforms, Pegasus, GraphX, and
Urika. Table I shows data sets used in the experiments.
They are publicly available data sets obtained from the
Stanford Network Analysis Project (SNAP) website [11]
and widely used by graph analysis community. Evaluation
results can be found in §IV-A (degree distribution), §IV-B
(connected components), and §IV-C (PageRank). As for
experimental environment, Table II shows the configuration
for Hadoop and Spark used in this study, as deployed on
a cloud instance in Amazon Web Services. We employed
a 65 node cluster for one master node and 64 worker
nodes, with the m3.2xlarge instance type. A VM instance of
m3.2xlarge type offers 8 CPUs and 30GB of RAM. Hadoop
and Spark are configured according to general guidelines
from [26], [27]. As mentioned earlier, Urika is a shared
memory system. Urika uses 64 Threadstorm processors, each
of which provides 128 hardware threads. Urika can support
up to 512 TBs of shared memory with a single memory
address for the processors. We used an instance that installed
at ORNL, which has 2 TBs of shared memory. Although the
system architectures are fundamentally different from each
other, they all have the same amount of memory (2 TBs).

A. Degree distribution

The degree of a node in a graph is the count of the number
of edges associated with that node.The degree distribution
is the probability distribution of the node-degrees over the
whole graph. More specifically, the degree distribution P (k)
of a graph is defined as the histogram of nodes in the graph
with degree k. Degree distribution is an important statistical
metric of a graph [28], [29]. However, it is a non-trivial
question to calculate degree distribution in a timely and
scalable manner, when the graph scale is large [30] and the
structure varies over time [31].

With SPARQL, degree distribution can be computed by
a single query, as standard SPARQL natively supports the
COUNT aggregation function. The query for computing
degree distribution of graphs is presented in Listing 1. It is a
nested SPARQL query where the subquery computes degree

of each node by counting the number of edges connected to
each node considering both incoming and outgoing direc-
tions, then the main query counts the frequencies of each
degree.

SELECT ?degree (COUNT (?degree) AS ?count)
WHERE
{ { SELECT (COUNT (?s) AS ?degree)
WHERE
{
{ ?s <url:edge> ?outgoing. }
UNION
{ ?incoming <url:edge> ?s. }
}
GROUP BY °?s } }
GROUP BY ?degree
ORDER BY ?degree

Listing 1: The SPARQL query for retrieving degree distribution of
a graph

As for the MapReduce implementation of degree distri-
bution, we used the implementation in Pegasus [9], which
consists of two phases of MapReduce jobs (refer to Listing
2). In the first pass, it reads the input file as a list of edges,
considering the source node as the key, and the destination
node as the value. The output of the first pass is the degree
of each node. In the second pass, it reads the output from
the first pass to count the number of nodes with the same
degree and then, group by degree. GraphX implements the
same MapReduce algorithm on Spark.

//Pass 1 group by node id
INPUT: edge list
OUTPUT: <Key (node_id), Value (degree)>
Map (Key k, Value v) begin
output (k, wv)
output (v, k)
end
Reduce (Key k, Value v[l...m]) begin
for each k do
degree = sum[Vv]
end
for each k do
output (k, degree)
end
end
//Pass 2 group by degree
INPUT: <Key (node_id), Value (degree)>
OUTPUT: <Key (degree), Value (count)>
Map (Key k, Value v) begin
output (v, 1)
end
Reduce (Key k, Value v) begin
for each k do
count = length (v)
end
for each k do
output (k, count)
end
end

Listing 2: Pseudocode of degree distribution in MapReduce

Figure 3 shows evaluation results for degree distribution.
As Urika is designed for on-line transactional process-
ing, degree distribution is efficiently processed as on-line
queries. This advantage is seen in the graph that shows
Urika outperforming other considered processing paradigms.
Degree distribution in Hadoop MapReduce-based Pegasus
has two phases. The second phase reading the output from

Table II: Hadoop and spark configuration that may impact on the performance.

Parameter Value Comments
Hadoop
Hadoop version 24.0 CDH 5.1.0 is used.
mapreduce.map.memory.mb 1536
mapreduce.reduce.memory.mb 3072
dfs.replication 3 HDFS replication factor
dfs.blocksize 268435456 256MB of HDFS block
yarn.nodemanager.resource.cpu-vcores 8 a total of 8 tasks or 8 spark executors per node

yarn.nodemanager.resource.memory-mb 25943

a total of 25GB of memory per node for yarn. 5GB of memory is saved for OS.

Spark version 1.0.0 CDH 5.1.0
SPARK_EXECUTOR_INSTANCES 128, 192 Across cluster, a total of 128 (2 x 64) and 192 (3 x 64) executors to distribute computation
spark.executor.memory 6g, 4g 6g for 128 task executors, 4g for 192 task executors
spark.storage.memoryFraction 0.5 en executor reserves 50%of memory for distributed in-memory data structure
spark.shuffle.memoryFraction 0.3 an executor reserves 50% of memory for shuffle
spark.shuffle.consolidateFiles True We employed ext4 filesystem for the storage mounted for Spark.
spark.rdd.compress True we compressed RDD with LZFCompressionCodec
deploy mode yarn-client it deploys a spark job with YARN
800 702,01 cost for each iteration, and (2) impractically large working
B 600 ¥ Pegasus set for a single machine, O(n) memory for each machine to
F GraphX hold a whole connected component in memor;
£ Urika p Y-
=400 FOR EACH NODE ?s
g 08.44 UPDATE {?s <labeled> ?prev.} WITH {?s <labeled> ?next}
2200 _ IN TEMP GRAPH
5] 97.12 99.76 WHERE
240‘67 25 -43'54 14.1 { { //new label ?next is decided as follows
0 S S SELECT ?s (MIN(labels(?s)) AS ?new)
dblp patents friendster WHERE

Figure 3: Degree distribution

the first phase - both of which happen at the file system
level involving multiple attempts to read and write from
disk. Therefore, Pegasus shows the slowest performance
for this operation. GraphX uses distributed in-memory data
structure, which prevents iterative jobs from the inefficiency
of looping between loading and flushing intermediate data
to file system. Thus, it is natural that GraphX performs
faster than Pegasus. However, the tested Urika instance
uses 64 Threadstrom processors, each of which supports
128 hardware threads. Thus, the level of parallelism for
Urika was much higher than GraphX (64x2x8=1024 or
64x3x8 =1536 concurrent tasks) in our environments, which
made Urika outperform GraphX for computing the degree
distribution. This result indicates that shared-memory based
massively parallel architecture may perform the best for
basic-graph pattern retrieval or finding summary statistics
of entities in a graph.

B. Connected components

Given an undirected graph G(V, E') with n nodes and m
edges, a connected component is a maximal set of nodes
that can reach each other through paths in G. Computing all
connected components of G is a fundamental graph problem
and can be solved efficiently on a sequential machine using
O(n + m) time. However, it is nontrivial to design an
efficient parallel algorithm for large number of nodes n and
edges m on parallel machines. According to a recent study
by Qin et. al. [32], challenges stem from (1) non-scalable
communication overhead, O(log(n)(m+n)) communication

{
labels (?s) < {label of ?s} UNION
{labels of ?s’s adjacent nodes}
}
GROUP BY °?s

P}
Listing 3: The SPARQL query for retrieving degree distribution of
a graph

Let us detail how to design a SPARQL query for finding
connected components. Since SPARQL query for finding
connected components is not publicly available, we devel-
oped our own sequence of queries, which is planned to
be open to public in the near future. Let us assume that
we are computing connected components for a graph G.
Initially, an unique integer label [, is assigned to each
node n;, which can be done by adding triples such as (n;,
<labeled>, l,,) in a newly created temporary graph, in
which intermediate and final results of the computation are
stored. Once the temporary graph is prepared, the algorithm
iteratively updates the temporary graph using G as follows;
for each node in the G, associated label in the temporary
graph is updated as the minimum label among all of labels
of its adjacent nodes in G, including its own label. For
example, if a node’s label is 6, and its adjacent nodes’
labels are 4, 5, and 9, the node’s label is updated to be 4,
as 4 is the minimum among all four numbers. To enhance
reader’s understanding, we illustrate the pseudo-SPARQL
query for updating the graph at each iteration in Listing
3. In this approach, it should be noted that even though
the same task is performed at every node, the task for each
node is independent of the tasks executed in parallel at the
other nodes.This approach maximizes Urika’s capability of
simultaneously processing each node in parallel.

The iteration stops when there are no more label updates.
As a result, all nodes in the same connected component
will have the same label, and the number of distinct labels
will be the number of graph components. The algorithm
requires O(n) of space complexity, where n is the number
of nodes, as it requires assign labels to every node. The
time complexity of the algorithm is O(n x d), where d is
the number of iterations until it converges. In the worst case
scenario, the maximum number of iterations d required is
the diameter of the graph.

def run[VD: ClassTag, ED: ClassTag] (graph: Graph[VD, ED]):
Graph[VertexId, ED] = {
val ccGraph = graph.mapVertices {case (vid, _)=> vid }
def sendMessage (edge: EdgeTriplet[VertexId, ED]) = {
if (edge.srcAttr < edge.dstAttr) {
Iterator ((edge.dstId, edge.srcAttr)
} else if (edge.srcAttr > edge.dstAttr) {
Iterator ((edge.srcId, edge.dstAttr))
} else {
Iterator.empty
}
}
va initialMessage = Long.MaxValue
Pregel (ccGraph, initialMessage, activeDirection =
EdgeDirection.Either) (

vprog = (id, attr, msg) => math.min(attr, msg),
sendMsg = sendMessage,
mergeMsg = (a, b) => math.min(a,b))

} // end of connectedComponents

Listing 4: Connected components in Pregel

Listing 4 shows the code snippet of connected components
within GraphX version of Pregel runtime. In the Pregel
or Bulk Synchronous Parallel (BSP) paradigm, the vertex
program is analogous to a map task in MapReduce paradigm.
At the end of each superstep, vertices send messages as
specified in sendMessage function. It distributes the message
to all connected vertices and a message is calculated in
vertex program, the smallest attribute amongst connected
vertex, or component ID in this case. After sending the
messages, each vertex combines the message according
to mergeMsg function, which simply selects the minimum
amongst all received messages. The primary benefit of this
processing paradigm is to reduce communication overhead.
All the vertices partitioned in one machine collectively
exchange updated message to vertices in other machines,
in each superstep. In our experiments, supersteps are less
than 50 for both connected components and PageRank.

Although there are newer methods to find connected
components using the MapReduce paradigm [33], we used
the matrix-based implementation in Pegasus [9]. Verisimilar
to the method used in the Pregel implementation, finding
connected components in Pegasus consists of three steps:
(1) each node sends its current component ID to neighbors;
(2) for each node, find the minimum value amongst current
component ID and all received component ID; and (3)
update component ID according to the results from the
step (2). The major differences between MapReduce and
Pregel stem from the method to communicate messages
among vertices. The implementation in Pegasus calculates

10000 4420.76

= ¥ Pegasus
E 1000 GraphX 541.46
“E’ Urika
E 100 79.08
2 18.34 22.19
g 10 I 6.75
s l 233 327 3.17

1

DBLP Patents Friendster

Figure 4: Connected components: note that the y-axis is in loga-
rithmic scale.

for each partition stored in each machine and computation
from each step is flushed into disk to be used in the next
step. However, the Pregel paradigm does not require storing
the output from each step into disk. Instead, it continues
to remain in the system main memory. Excepting for this
difference, the conceptual footprint of the MapReduce and
Pregel implementation are similar to each other. This is why
we have not presented the pseudo code for the MapReduce
implementation. Readers can refer to [9] for details.

Figure 4 shows the evaluation results for connected com-
ponents. Finding connected components involves multiple
iterations and the number of iterations is typically asso-
ciated with the diameter of given graph. The number of
iterations required for convergence increases with the size
of graph. GraphX outperforms Hadoop-based approach by
several orders of magnitude as size increases. Also, GraphX
uses Pregel runtime, that is, BSP paradigm, for connected
components.The BSP paradigm reduces the communication
overheads in updating each vertex and, in each superstep,
only vertices with updated results from prior superstep is in-
volved in future computations. Also, as the values converge,
the number of vertices participating in the computation
decreases. In contrast, each iteration in Urika essentially
performs the same amount of computation. Such a char-
acteristic made GraphX extremely efficient in processing
connected components for large graphs like Friendster data
set. However, we believe that processing efficiency will vary
according to the topology of a graph. Hence, reader may
have to exercise caution in extrapolating our execution times
for their own graphs in each processing paradigm.

C. PageRank

PageRank is a one of the most widely used graph algo-
rithms, and it is designed to measure the importance of nodes
in a graph. The algorithm is originally designed to compute
rankings of web pages that are linked with hyper links, but
it is now generally exploited in many other graph analysis
tasks. The PageRank algorithm computes the significance
of a node by looking at the number incoming links from
other important nodes. By that definition, nodes connected to
nodes with higher PageRank score will tend to have a higher
PageRank value. PageRank of a node is recursively defined,

and it is dependent on the number and PageRank scores
of all nodes from its incoming links. PageRank outputs
a probability distribution, which represents the likelihood
of a random walker, will arrive at each node. PageRank
is computed by, ¥ = aPT7 + (1 — a)+ ¢, where N is
the number of vertices in the graph, P is the transition
matrix for the graph, r; is the PageRank value for node
v, 6=(1,1,. ..,)T, and « is a damping factor, usually 0.85.

PageRank can be computed using SPARQL in a similar
way we computed connected components, as shown in
Listing 5. We again highlight that this is based upon our
own query design. It assigns initial PageRank score 1/N,
where N is the number of nodes in the graph, to all
nodes and creates a temporary graph to save the interme-
diate score assignments. Then, SPARQL query updates the
temporary graph iteratively. The iterative update of each
node’s PageRank score is computed by querying its adjacent
node’s PageRank score. When PageRank score converges,
the iteration stops.

//Prepare to compute the next PageRank scores
UPDATE ALL {?s <uri:nextPR> ?score}

WITH {?s <uri:prevPR> ?score}

IN TEMP GRAPH;

//Compute new PageRank scores
//and insert into the temporary named graph
FOR EACH NODE °?s
INSERT {?s <uri:nextPR> ?score} IN TEMP GRAPH
WHERE
{ { //df is typically set to 0.85,
//N is number of nodes in graph
SELECT ?s ((SUM(?vall/?val2) x df)+(1-df)/N AS ?score)
WHERE
{
{?x <uri:edge> 7?s.}
{ TEMP GRAPH ({
?x <uri:totalDegree> ?vall.
?x <uri:prevPR> ?val2
}
}
UNION
{?s <uri:edge> ?x.}
{ TEMP GRAPH {
?x <uri:totalDegree> ?vall.
?x <uri:prevPR> ?val2
}
}
//considering all edges as bidirectional edges
} GROUP BY ?s
b}

Listing 5: The pseudo-SPARQL query for iteratively updating
PageRank scores; Note that df should be replaced with actual a
damping factor and N with the number of nodes

// Initialize the pagerankGraph with each edge attribute
// having weight 1/outDegree and
// each vertex with attribute 1.0.

//Define the three functions to implement PageRank
//in the GraphX version of Pregel

def vertexProgram (
id: VertexId, attr: (Double, Double), msgSum: Double):
(Double, Double) = {
val (o0ldPR, lastDelta) = attr
val newPR = 0ldPR + (1.0 -resetProb) * msgSum
(newPR, newPR - 0l1ldPR)
}

def sendMessage (

1000 491.59 519.22

—_ ¥ Pegasus
G
‘g GraphX
g 100 Urika 55.97 6128
§ 29.7
s X
] 15.01
g
g 10 5.52
3
& 2.62 2.25

1

DBLP Patents Friendster

Figure 5: PageRank: y-axis values are in logarithmic scale. As for
GraphX, we employed different number of graph partitions for each
data set, 64 partitions for DBLP, 128 partitions for Patents, and
320 partitions for Friendster.

edge: EdgeTriplet[(Double, Double), Double]) = {
if (edge.srcAttr._2>tol) {
Iterator ((edge.dstId, edge.srcAttr._2 x edge.attr))
} else {
Iterator.empty
}
}

def messageCombiner (a: Double, b: Double): Double = a + b

//The initial message recieved by all vertices in PageRank
val initialMessage = resetProb / (1.0 -resetProb)

//Execute a dynamic version of Pregel
Pregel (pagerankGraph, initialMessage, activeDirection =
EdgeDirection.Out) (
vertexProgram, sendMessage, messageCombiner)
.mapVertices ((vid, attr) => attr._1)

Listing 6: PageRank in Pregel

Listing 6 shows a simplified code snippet for PageRank
algorithm in Pregel, where initialization part is omitted
due to the space constraints. Similar to finding connected
components, we have vertexProgram, sendMessage, and
messageCombiner. In this implementation, we note that each
vertex will send a message only if the difference between
prior message and current message is larger than given
tolerance value. Our tolerance value was 0.0001. For Pregel
experiments, we used a dynamic PageRank, which runs until
attributes assigned to each vertex converges. Also, reader
may note that the version of PageRank implemented in
GraphX is a non-normalized PageRank, which is differ-
ent from conventional PageRank algorithm. Conventional
PageRank algorithm initializes the attribute of each node
with a normalized value of 1/N, where N is the number
of nodes, as with our SPARQL query and Pegasus. Oth-
erwise, the Pregel implementation will behave similar to
the SPARQL query approach. As for PageRank included in
Pegasus, the high level description is the same as the Pregel
implementation.

Figure 5 shows evaluation results for PageRank. We find
that GraphX, which uses the Pregel paradigm, outperforms
other two platforms. Compared with Pegasus, Urika shows
faster execution time for small or medium data sets like
DBLP and Patents. It should be noted that SPARQL is orig-
inally designed for finding patterns, instead of performing
algorithmic operations. However, we find that Urika can

Execution time of each iteration

83000 | ®128/128
256/128
256/192

g 500 I
< B — e I

0 1 2 3 4 5 6 7
Iterations

(a) For PageRank over friendster, execution time of each Pregel
iteration on GraphX, a Pregel runtime on Spark. In the legend, X/Y

represents X partitions over Y task executors and so on.

256 partitions/ 128 executors

[N
w
(=3
o

1000 framesize=10

framesize=15

Execution time (sec)
w
[=3
(=}

(=}

0 1 2 3 4 5 6 7
Iterations

(b) For PageRank over Friendster, optimizing shuffle behavior of
Pregel runtime: framesize is the size of buffer in MB to transfer
computed results.

Figure 6: Optimally configuring GraphX depends on the input
graph and desired analysis, together with infrastructure. (a) shows
the number of partitions and the number of task executors should
be carefully tuned, which determines the level of the parallelism.
(b) shows that controlling communication overheads will be critical
to the performance.

process algorithmic operations based on SPARQL queries,
faster than or equal to MapReduce-based approach. We be-
lieve that the shared-memory hardware of the Urika system,
allowed us to overcome the limitation of transaction-based
processing paradigm. We attempted to create a SPARQL
query that manipulates the graph as large as possible to max-
imally utilize the memory capability. For GraphX results,
the execution time of Patents is faster than that of DBLP
partly because of different number of partitions. We will
discuss this behavior in detail in regard to the performance
implication of the number of partitions for each data set in
the following discussion section.

V. DISCUSSION: CHALLENGES IN USING EACH
PLATFORM

Each platform has its advantages and disadvantages and
offers opportunities for optimization in different ways. For
instance, Pegasus on Hadoop requires extensive study to
find optimal configuration for workloads in different system
infrastructures [34].Urika, on the other hand, is an appliance
that bundles software and hardware. Users are not allowed
to tune system configuration. The only available option is to
design efficient queries that best utilizes a shared-memory
architecture. While we reserved this query optimization task

on Urika as future work, we discuss the challenges in tuning
GraphX in this section.

Figure 6 shows that it is tricky to find the best configu-
ration for Pregel runtime on Spark, for each algorithm on
each data set. As for small data sets like DBLP and Patents,
it is relatively less critical with our 65-nodes cluster in the
Cloud environments. Although we have already noticed that
PageRank over 64 partitions DBLP (0.3 million nodes) can
perform slightly slower than PageRank over 128 partitions
Patents (3.8 million nodes), for PageRank over Friendster
data set, we suffered exponentially increasing execution time
while iterating. For the Friendster data set, PageRank on
GraphX had to go through 51 iterations (i.e., it did not
converge). Exponentially increasing execution time delayed
convergence. In order to perform analysis within reasonable
time, we choose a set of good configuration parameters
through trial-and-error.

Figure 6(a) shows that the level of parallelism can create
macro-level effects in the execution time of each iteration.
Initially, we configured two task executors per machine and
the number of graph partitions matched the number of task
executors. However, we faced exponential increase in the
execution time per iteration. We were not able to finish
PageRank over Friendster within a week. We conjectured
that the number of partitions might be too small since
the number of reduce tasks matches with the number of
partitions in GraphX. Then, we increased the number of
partitions while the number of task executors remained
the same, which yielded a substantial performance gain.
However, the execution time increased as the algorithm
progressed. We tried to increase the number of task executors
for the same number of partitions, but we were unable to see
improvements in execution time. Consequently, we ended up
optimizing communication overheads.

We speculated that communication overhead between
map tasks and reduce tasks may be causing delays in
convergence. Following [35], we started adjusting the buffer
size. We increased the buffer size by 50% for the shuffle
phase over the default buffer size. The shuffle buffer size
is responsible for the communication between mappers and
reducers. Figure 6(b) shows that, with the framesize of
15MB, we achieved a constant execution time for each
iteration. After the buffer size increase, we managed to
execute PageRank algorithm over Friendster data set in 61.28
minutes on average, as shown in Figure 5. We believe
that a systematic and automatic approach to find optimal
configuration is possible, but requires more attention.

VI. RELATED WORK

While knowledge discovery from graph data has been
studied for a while [36], discovery from integrated infor-
mation networks has seen a revitalization after the adoption
of the internet, social-networks and proliferation of social-
media. Recent surveys on managing and mining graph

data [37] and graph algorithms [38] along with the study
of laws and generating models [39] have helped design of
tools such as SUBDUE [40], gSpan [41] , OddBall [42],
Pegasus [9], NetworkX [43], and GraphLab [20].

Pegasus on Hadoop [9] and GraphLab, which can be
instantiated on the Cloud environments, are restricted to
mining homogenous graphs. On the other hand, graph-
databases such as Neo4j [13], Titan [14], and Trinity [44]
can house and retrieve massive heterogeneous graphs on
commodity hardware, which can be useful to describe real
world problems [37], [45]. However, graph databases have
limited data mining capabilities, in comparison to tools
such as Pegasus or GraphLab. This is primarily because of
the difficulty in expressing graph-theoretic algorithms using
query languages [46].

The scalability of graph processing tools is of interest
in the data analysis community in order to handle large
scale graphs. Infact, researchers at Microsoft performed a
similar empirical comparison of Microsoft products that can
process large graphs [47]. Other empirical evaluation studies
on general purpose graph processing systems include [48],
[49]. However, since GraphX is relatively new, none of them
include GraphX. Also, none of the earlier studies compare
graph databases or triple stores with general purpose graph
processing systems, with respect to graph mining capabil-
ities. Our study performed a benchmark study for open-
source tools, which were not discussed in aforementioned
Microsoft study. In addition to including GraphX, this study
included a specialized supercomputer for graph analysis.
To the best of our knowledge, graph appliances such as
Cray’s Urika had not been benchmarked with graph mining
capabilities until now.

VII. CONCLUSION

This study benchmarked three popular graph analysis plat-
forms, Pegasus, GraphX, and Urika, in order to compare effi-
cacy of each platform. We employed two categories of graph
analysis operations: finding statistical metrics of a graph
(degree distribution), and algorithmic operations (connected
components and PageRank). While each platform presented
unique challenges for optimal performance, such as tuning
configuration parameters or implementing algorithms to best
utilize the platform, this study suggests that each category
of platforms may show performance advantage in a certain
category of graph analysis operation. Our benchmark results
indicated that, as for finding statistical metrics of a graph,
database transaction based platforms like Urika may perform
better than MapReduce-based platforms like Pegasus or
Pregel-based platforms like GraphX. However, Pregel-based
platforms demonstrate a few orders of magnitude faster
execution time for algorithmic operations than MapReduce-
based platforms or database transaction based platforms. In
the future, we will evaluate graph pattern matching capabili-
ties of each graph processing platform. In this study, most of

graph processing evaluation studies only benchmarked graph
mining capabilities. We believe that this study will provide
valuable insights for data scientists to decide the suitable
graph processing systems for their desired graph analysis.

ACKNOWLEDGMENT

This manuscript has been authored by UT-Battelle, LLC under Contract
No. DE-ACO05-000R22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

REFERENCES

[1] R. Angles and C. Gutierrez, “Survey of graph database
models,” ACM Comput. Surv., vol. 40, no. 1, Feb. 2008.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, 1. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-
scale graph processing,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data,
2010.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on nat-
ural graphs,” in Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, 2012.

[4] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica,
“Graphx: A resilient distributed graph system on spark,” in
First International Workshop on Graph Data Management
Experiences and Systems, 2013.

[5] Cray, “YarcData Urika Big Data Graph Appliance,” http://
www.cray.com/Products/BigData/uRiKA.aspx.

[6] X.Zhang, L. Chen, Y. Tong, and M. Wang, “Eagre: Towards
scalable i/o efficient sparql query evaluation on the cloud,” in
Proceedings of the 2013 IEEE International Conference on
Data Engineering, 2013.

[7] Apache Jena, https://jena.apache.org.

[8] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald,
“Triad: A distributed shared-nothing rdf engine based on
asynchronous message passing,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of
Data, 2014.

[9] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A
peta-scale graph mining system implementation and observa-
tions,” in Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining, 2009.

[10] S. Lee, S. R. Sukumar, and S.-H. Lim, “Graph mining meets
the semantic web,” in 6th International Workshop on Data
Engineering meets the Semantic Web, 2015.

[11] J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth,” in Proceedings of the
2012 IEEE 12th International Conference on Data Mining,
2012.

[12] Apache HAMA, https://hama.apache.org/.

[13] J. Webber, “A programmatic introduction to neo4j,” in Pro-
ceedings of the 3rd Annual Conference on Systems, Program-
ming, and Applications: Software for Humanity, 2012.

[14] Aurelius, “Titan: distributed graph database,” https://github.
com/thinkaurelius/titan.

[15]

(16]

[17]

(18]
(19]

(20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

N. Martinez-Bazan, V. Muntés-Mulero, S. Gémez-Villamor,
J. Nin, M.-A. Sdnchez-Martinez, and J.-L. Larriba-Pey, “Dex:
high-performance exploration on large graphs for information
retrieval,” in Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management.
ACM, 2007.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of the 6th
Conference on Symposium on Opearting Systems Design &
Implementation, 2004.

L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, Aug. 1990.

Apache Giraph, http://giraph.apache.org/.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation, 2012.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein, “Graphlab: A new parallel framework for
machine learning,” in Conference on Uncertainty in Artificial
Intelligence (UAI), 2010.

J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql
database,” in 2011 6th international conference on Pervasive
computing and applications (ICPCA). 1EEE, 2011.

B. McBride, “Jena: Implementing the rdf model and syntax
specification.” in SemWeb, 2001.

J. Broekstra, A. Kampman, and F. Van Harmelen, “Sesame:
A generic architecture for storing and querying rdf and rdf
schema,” in The Semantic WebISWC 2002. Springer, 2002,
pp. 54-68.

O. Erling and I. Mikhailov, Virtuoso: RDF support in a native
RDBMS. Springer, 2010.

N. Savage, “The power of memory,” Communications of the
ACM.

Hortonworks, “How to plan and configure YARN and
MapReduce2 in HDP 2.0,” http://hortonworks.com/blog/
how-to-plan-and-configure-yarn-in-hdp-2-0/.

Apache Spark, “Tuning spark,” https://spark.apache.org/docs/
1.0.2/tuning.html.

A. L. Barabdsi and R. Albert, “Emergence of scaling in
random networks,” Science, vol. 286, no. 5439, pp. 509-512,
1999.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” in Proceedings of the
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, 1999.

M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate esti-
mation of the degree distribution of private networks,” in
Proceedings of the 2009 Ninth IEEE International Conference
on Data Mining, 2009.

M. McGlohon, L. Akoglu, and C. Faloutsos, “Weighted
graphs and disconnected components: Patterns and a genera-
tor,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2008.
L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin,
“Scalable big graph processing in mapreduce,” in Proceedings
of the 2014 ACM SIGMOD International Conference on
Management of Data, 2014.

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

L. Chitnis, A. Das Sarma, A. Machanavajjhala, and V. Ras-
togi, “Finding connected components in map-reduce in log-
arithmic rounds,” in Proceedings of the 2013 IEEE Interna-
tional Conference on Data Engineering, 2013.

H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size
fits all: Automatic cluster sizing for data-intensive analytics,”
in Proceedings of the 2Nd ACM Symposium on Cloud Com-
puting, 2011.

M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Rat-
nasamy, ‘“Routebricks: Exploiting parallelism to scale soft-
ware routers,” in Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, 2009.

T. Washio and H. Motoda, “State of the art of graph-based
data mining,” SIGKDD Explor. Newsl., vol. 5, no. 1, Jul. 2003.

C. C. Aggarwal and H. Wang, Managing and Mining Graph
Data. Springer Publishing Company, Incorporated, 2012.
S. Even, Graph Algorithms, 2nd ed. New York, NY, USA:
Cambridge University Press, 2011.

D. Chakrabarti and C. Faloutsos, “Graph mining: Laws,
generators, and algorithms,” ACM Computing Survey, 2006.

L. B. Holder, D. J. Cook, and S. Djoko, “Substructure
discovery in the subdue system,” in In Proc. of the AAAI
Workshop on Knowledge Discovery in Databases, 1994, pp.
169-180.

X. Yan and J. Han, “gspan: Graph-based substructure pattern
mining,” in Proceedings of the 2002 IEEE International
Conference on Data Mining, 2002.

L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spot-
ting anomalies in weighted graphs,” in Proceedings of the
14th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining - Volume Part 11, 2010.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring
network structure, dynamics, and function using networkx,”
in Proceedings of the 7th Python in Science Conference, 2008.

B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph
engine on a memory cloud,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data,
2013.

Y. Sun and J. Han, Mining Heterogeneous Information Net-
works: Principles and Methodologies, 2012.

J. Celko, Joe Celko’s SQL for Smarties: Advanced SQL
Programming, 4th ed. Morgan Kaufmann Publishers Inc.,
2010.

M. Najork, D. Fetterly, A. Halverson, K. Kenthapadi, and
S. Gollapudi, “Of hammers and nails: An empirical com-
parison of three paradigms for processing large graphs,” in
Proceedings of the Fifth ACM International Conference on
Web Search and Data Mining, 2012.

N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park,
M. A. Hassaan, S. Sengupta, Z. Yin, and P. Dubey, “Navi-
gating the maze of graph analytics frameworks using massive
graph datasets,” in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, ser. SIG-
MOD ’14, 2014.

Y. Lu, J. Cheng, D. Yan, and H. Wu, “Large-scale dis-
tributed graph computing systems: An experimental evalu-
ation,” PVLDB, vol. 8, no. 3, pp. 281-292, 2014.

