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The accelerator-driven transmutation of waste (ATW) system has been proposed for transmuting the
long-lived radioactive nuclei of high-level waste to stable or short-lived species. In recent ATW design
concepts', lead-bismuth eutectic (LBE), consisting of 44.5% Pb and 55.5% Bi by weight, is used as the
spallation target, system coolant, and reflector. Because of the excellent neutron reflection properties of
LBE, the subcriticality level of ATW is quite sensitive to the cross sections of lead and bismuth. The
purpose of this paper is to investigate the effects of these cross sections on subcriticality and other core
characteristics of ATW and to compare the results obtained using cross sections in different evaluated

nuclear data files.

The effects of lead and bismuth cross sections on the core characteristics of ATW were studied using
33 group cross section sets derived from the ENDF/B-VI, ENDF/B-V, JENDL-3.2, and BROND-2.2
nuclear data. A 2000 MW(thermal) ATW configuration similar to that described in Reference 1 was used
in this study. In this configuration, the spallation target region is 55 cm high and 25 cm in radius, and is
surrounded by a 15-cm thick LBE buffer. The adjacent fueled region is ~65 cm thick and 200 cm high.
The volume fractions of fuel, coolant, and structure are 25.7%, 59.3%, and 15%, respectively. The metal
alloy fuel is composed of roughly 70 % zirconium, 25 % transuranics (TRU), and 5 % Tc-99 by weight. A
thick LBE reflector surrounds the whole core; its axial thickness is 250 cm, and its radial thickness is

295.2 cm.

Region-dependent 33-group isotopic cross sections were generated based on ENDF/B-VI data using the
MC?%2 code?. In these calculations, 2*Pb was combined with 2*Pb since **Pb data is not available in

ENDF/B-VI. The cross sections of lead and bismuth isotopes were also generated based on ENDEF/B-V,
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JENDL-3.2, and BROND-2.2 data for comparison. In the case of ENDF/B-V, only natural Pb data are
available and hence the Pb isotopes were aggregately modeled. In the cases of JENDL-3.2 and BROND-

2.2, four lead isotopes (***Pb, **°Pb, ’Pb, and 2"*Pb) were separately represented.

The flux distribution was computed for an R-Z system model using the TWODANT? transport theory
code. Preliminary calculations showed that the multiplication factor and neutron balance components of
homogeneous eigenvalue problems are very close to those of fixed source problems with the spallation
neutron source. Thus, for computational convenience, this study was perf;)rmed with homogeneous

eigenvalue calculations without the spallation neutron source.

The multiplication factor and components of the neutron balance in the core are summarized in Table 1.
These results show that the lead and bismuth cross sections in different nuclear data differ significantly
from each other. In particular, the ENDF/B-V cross sections deviate substantially from those in the other
three data sets. Compared to ENDF/B-VI, the Bi cross sections in ENDF/B-V reduce the multiplication
factor by ~2.8% and the Pb cross sections increase it by ~1.4%. The effect of using the JENDL-3.2
bismuth data is to increase the multiplication factor by only 0.027%; use of the JENDL-3.2 lead data
reduces the multiplicatfon factor by ~1.1% compared to ENDF/B-VI. Finally, the bismuth and lead cross

sections in BROND-2.2 data reduce the multiplication factor by 0.004% and 0.045%, respectively.

The differences in multiplication factor are caused mainly by the differences in elastic scattering cross
sections. A sensitivity analysis using the DPT perturbation theory code* showed that the elastic scattering
cross sections of Pb-208 and Bi-209 have very large effects on the multiplication factor. Increased
scattering cross sections of Pb and Bi result in a softer spectrum and reduced leakage. Spectral softening
produces a negative effect on the multiplication factor because of the decrease in neutron importance with
decreasing energy, while reduced leakage yields a positive effect. In the ATW configuration analyzed
here, the leakage effect is larger than the spectral effect. However, the JENDL-3.2 lead cross section
results in a slightly softer spectrum and slightly increased leakage from the core, and hence its use reduces

the multiplication factor by ~1.1% compared to ENDF/B-VI. The absorption cross-section differences
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have smaller effects on the multiplication factor than the scattering cross-section differences, but they are
not negligible. Specifically, the lead cross sections have comparatively large effects due to the relatively
large absorption cross sections of **Pb and *’Pb. For example, use of the ENDF/B-V lead absorption

cross section increases the multiplication factor by ~1.1% relative to that obtained with ENDF/B-VI.

In summary, the sub-criticality level of the ATW core is quite sensitive to the lead and bismuth cross
sections. In view of the safety significance of the subcriticality level and its impact on system
requirements such as accelerator power, accurate prediction of ATW subcriticality is extremely important.
The results presented here suggest that more detailed study using experimental data and possibly re-

evaluation of lead and bismuth cross sections need to be performed.
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